WorldWideScience

Sample records for cancer hela cells

  1. Studies of traditional Chinese medicine monomer on HeLa cell of cervical cancer.

    Science.gov (United States)

    Yang, Jianping; Li, Jingyu; Sun, Miaomiao; Chen, Kuisheng

    2014-07-01

    This paper is to study the effect of traditional Chinese medicine monomer including quercetin, curcumin and Glaucocalyxin A on Hela cell of cervical cancer. The inhibiting effect of quercetin, curcumin and Glaucocalyxin A on HeLa cells' proliferation is detected through using MTT method. Analysis for the effect of quercetin, curcumin and Glaucocalyxin A on proliferation cycle of Hela cell is performed through adopting flow cytometry. Three kinds of traditional Chinese medicine monomer can inhibit the growth of Hela cell, and they show dependent relationship between time and dose. Quercetin, curcumin and Glaucocalyxin A could inhibit cell proliferation, probably through making Hela cell be in stagnation and inducing its apoptosis. PMID:25016267

  2. Effect of quercetin on radiosensitivity of human uterine cervix cancer HeLa cells

    International Nuclear Information System (INIS)

    In order to investigate the effects of Quercetin on radiosensitivity of human Uterine Cervix Cancer HeLa cells, MTT assay and clonogenic assay were performed to evaluate the cytotoxicity of Quercetin on the cells. Clonogenic assay was used to observe its effects on the radiosensitivity of the cells. MTT result shows that the inhibition of Quercetin on the cells is in the dose-dependent and time-dependent. And the clonogenic assay result shows that the effect of Quercetin on HeLa cells can be divided into two parts, one for the inhibition of HeLa cells and another for the induction of HeLa cell death. The other clonogenic assay result also shows Quercetin can decrease clonogenic survival rate of HeLa cells exposed to X rays. The study shows Quercetin might enhance the radiosensitivity of the HeLa cell line. And it may provide a useful evaluation to combination of ionizing radiation and Quercetin for cancer patients. (authors)

  3. Radiation sensitization by CAPE on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Objective: To study the radiosensitizing effect of caffic acid phenethyl ester (CAPE) on human cervical cancer HeLa cells. Methods: MTT assay was used to measure the relation between the inhibition effect and CAPE concentrations by CAPE with different concentrations on HeLa cells for 24 hours. HeLa cells were divided into the control and experimental groups, both of which were given 0, 2, 4, 6 and 8 Gy of 60Co ?-irradiation, respectively. The cell clones were counted. Meanwhile HeLa cells were divided into the control, CAPE, irradiation and combination groups. Flow cytometric analysis was adopted to detect the changes of cell cycle distribution induced by CAPE. Results: The inhibition rate of CAPE acting on Hela cells increased with concentrations (F=126. 49 ? 3654.88, P0) (1.45 and 1.82 Gy) and the quasi-threshold dose (Dq) (1.89 and 3.21 Gy) of HeLa cells in experimental group decreased comparing with control group, SER was 1.26. Compared with the sole irradiation group, cells in G2/M phase of the CAPE group and the sole irradiation group increased (P2/M arrest and may be related to the inhibition of the sub-lethal damage repair. (authors)

  4. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junye [Department of Radiation Medicine, Fourth Military Medical University, Xi' an (China); Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi' an (China); Zhang, Jing [Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi' an (China); Wang, Xiaowu [Department of Radiation Medicine, Fourth Military Medical University, Xi' an (China); Li, Yan [Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi' an (China); Chen, Yongbin; Li, Kangchu [Department of Radiation Medicine, Fourth Military Medical University, Xi' an (China); Zhang, Jian [Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi' an (China); Yao, Libo, E-mail: bioyao@fmmu.edu.cn [Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi' an (China); Guo, Guozhen, E-mail: guozhengg@hotmail.com [Department of Radiation Medicine, Fourth Military Medical University, Xi' an (China)

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  5. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    International Nuclear Information System (INIS)

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  6. Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression

    International Nuclear Information System (INIS)

    NDRG2, a member of N-Myc downstream regulated gene family, plays some roles in cellular stress, cell differentiation and tumor suppression. We have found that NDRG2 expression in cervical cancer Hela cells increases significantly upon stimulation with cisplatin, the most popular chemotherapeutic agent currently used for the treatment of advanced cervical cancer. This interesting phenomenon drove us to evaluate the role of NDRG2 in chemosensitivity of Hela cells. In the present study, RNA interference was employed to down-regulate NDRG2 expression in Hela cells. RT-PCR and Western blot were used to detect expression of NDRG2, Bcl-2 and Bax in cancer cells. Real-time PCR was applied to detect miR-15b and miR-16 expression levels. Drug sensitivity was determined with MTT assay. Cell cloning efficiency was evaluated by Colony-forming assay. Apoptotic cells were detected with annexin V staining and flow cytometry. In vitro drug sensitivity assay revealed that suppression of NDRG2 could sensitize Hela cells to cisplatin. Down-regulation of NDRG2 didn’t influence the colony-forming ability but promoted cisplatin-induced apoptosis of Hela cells. Inhibition of NDRG2 in Hela cells was accompanied by decreased Bcl-2 protein level. However, Bcl-2 mRNA level was not changed in Hela cells with down-regulation of NDRG2. Further study indicated that miR-15b and miR-16, two microRNAs targetting Bcl-2, were significantly up-regulated in NDRG2-suppressed Hela cells. These data suggested that down-regulation of NDRG2 could enhance sensitivity of Hela cells to cisplatin through inhibiting Bcl-2 protein expression, which might be mediated by up-regulating miR-15b and miR-16

  7. The Screening Of Cytotoxic Fraction From Elephantopus scaber Linn against Human Cervical Cancer (Hela Cells

    Directory of Open Access Journals (Sweden)

    Nurkhasanah

    2015-06-01

    Full Text Available Purpose: Cervical cancer has become the second leading cause of death after breast cancer. Elephantopus scaber Linn (ES has been used traditionally for curing various diseases. The objective of this study was to explore the active fraction from ES as anticancer and the mode of cell death. Method: The ES herb were extracted using maceration method with ethanol followed by evaporation to get the concentrated extract. The extract were fractionated using petroleum ether, chloroform, ethyl acetate and methanol respectively. The cytotoxic activity of were carried out with MTT method, and the mode of cell death were observed by acridine orange-Ethidium bromide double staining. Result: The result showed that the ES fraction has cytotoxic activity against HeLa cell lines with IC50 values of petroleum ether, chloroform, ethyl acetate and methanol fractions were 185; 42.26; 95.72; 650 ?g/ml respectively. The mode of cell death showed by the doublestaining method were apoptosis. The cell dead could be distinguish from live cells. The cell dead appear to absorb the ethidium bromide as the DNA of the cell membrane was damage and ethidium bromide could interact with DNA of the cells, while the live cells do not absorb the ethidium bromide as the cell membrane still intact. Conclusion: The chloroform fraction of ES is the most cytotoxic fraction against HeLa cells.

  8. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells

    OpenAIRE

    Lucília Domingues; José A. Teixeira; Ana Nicolau; Carla de Oliveira

    2011-01-01

    Frutalin is the ?-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microsc...

  9. Anticancer Activity of Natural Compound (Zerumbone Extracted from Zingiber zerumbet in Human HeLa Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    A.B.H. Abdul

    2008-01-01

    Full Text Available A natural compound, zerumbone was extracted, isolated and purified from the rhizomes of edible plant Zingiber zerumbet using methanol extraction and Column Chromatography (CC method. The isolated and purified zerumbone crystals were subjected to High Performance Liquid Chromatography (HPLC, Liquid Chromatography Mass Spectrometry (LCMS and 13C NMR and 1H NMR analysis to confirm the purity, molecular weight and molecular structure. The study investigated the purified zerumbone crystals for its anti-cancer properties on human cervical cancer cell line (HeLa. Cisplatin, was used as a positive control in this study. The cytotoxicity of zerumbone and cisplatin were investigated using the MTT assay and caspases-3 was estimated with colorimetric assay in zerumbone treated HeLa cells. Morphological analysis showed that there were changes observed on HeLa cancer cells after treatment with zerumbone and cisplatin. The MTT assay results demonstrated that the IC50 value ( ± SEM of zerumbone was determined to be 11.3 ?M (2.5 ?g mL-1 whilst the IC50 value of cisplatin was at 7.5 ?M (1.6 ?g mL-1. Prominent growth retardation was identified to the HeLa cancer cells, after treatment with both compounds, while caspase-3 was observed to be significantly increased in zerumbone treated cells as compared to untreated control cells. This study showed promising avenues towards zerumbone to be developed as a new chemo-natural drug for treatment of cervical cancer.

  10. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 ?M concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans. PMID:25308441

  11. Serum ferritin in patients with cancer: determination with antibodies to HeLa cell and spleen ferritin

    International Nuclear Information System (INIS)

    Some malignant tissues and cell lines contain acidic isoferritins and it has been suggested that the assay of such isoferritins in serum may be of value in the diagnosis of malignancy. This paper describes a radioimmunoassay for acidic ferritin purified from HeLa cells. Examination of purified heart, kidney, liver and spleen ferritin showed that the assay was highly specific for acidic isoferritins. Ferritin concentrations have been measured with antibodies to HeLa cell and spleen ferritin in extracts of normal and tumour tissue. Although the tumours contained more HeLa type ferritin than the corresponding normal tissue the HeLa/spleen type ferritin ratio was low. HeLa-type ferritin concentrations have been compared with values obtained with anti-spleen ferritin in over 1000 sera from normal subjects and patients with cancer and leukaemia. HeLa-type ferritin was not detected (<2 ?g/l) in most normal sera. Concentrations of up to 53 ?g/l were found in sera from patients with malignant disease but the HeLa/spleen type ferritin ratio was always very low. There appears to be little application for antibodies to HeLa cell or heart ferritin in the diagnosis or monitoring of cancer. (Auth.)

  12. The effects of ionizing radiation combined with autophagy inducers or inhibitors or inhibitors on human cervical cancer hela cells

    International Nuclear Information System (INIS)

    Objective: To detect the effects of ionizing radiation combined with autophagy inhibitors and inducers on the proliferation of human cervical cancer cell line. Methods: MTT and flowcytometry (FCM) were used to detect the surviving and proliferation of human cervical cancer cells,and analysis of the relationship of dose-effect and time-effect was made. Results: With the increase of irradiation doses (2, 4, 6, 8 and 10 Gy) and the elongation of irradiation time (24, 48 and 72 h), the inhibiting effect of ionizing radiation on the proliferation of human cervical cancer cells increased (P< 0.05 or P< 0.01). The inhibiting effect of 6 Gy combined with autophagy inducer rapamycin on the proliferation of Hela cells weakened (P< 0.05). The inhibiting effects of 6 Gy combined with autophagy inhibitor 3-MA on the cell proliferation were higher than those in 6 Gy group (P< 0.05). Conclusion: Ionizing radiation combined with autophagy inducers can inhibit apoptosis in Hela cells, while the ionizing radiation combined with autophagy inhibitors can promote their apoptosis. (authors)

  13. ANTI-PROLIFERATION ACTIVITY OF NANOENCAPSULATED BIOADHESIVE VAGINAL GEL OF ISOLATED ACTIVE COMPOUND (BVI03 FROM Boehmeria virgata (FORST GUILL LEAVES AGAINST HUMAN CANCER CERVIX HELA CELLS

    Directory of Open Access Journals (Sweden)

    Lukman M

    2015-05-01

    Full Text Available To investigate the anti-proliferation of BVI03 which was formulated in Nanoencapsulated Bioadhesive Vaginal Gel (NBVG form, an isolated active compound from B. virgata using MTT method. The anti-proliferative effects of nanoencapsulated and NBVG were tested against HeLa cells compared with BVI03 un-formulated. The result showed that this formula had less anti-proliferation effect against cervical cancer of HeLa cells.

  14. Radiosensitizing effect of artesunate on nude mice transplanted with HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Objective: To investigate the radiosensitization of artesunate on nude mouse transplanted with HeLa cells,and to explore its possible mechanisms. Methods: HeLa cells were inoculated into the nude mice to establish tumor model. Mice were randomly divided into 4 groups as blank control,artesunate group, radiation group and artesunate + radiation group when average volume of tumor were about 5 mm × 5 mm× 5 mm. During the term of treatment, the volume of tumors were measured every 2 days. After 14 days treatment, the mice were killed and tumor tissues were harvested for flow cytometry to detect the alteration of cell cycle. Meanwhile, the pathological change of the tumor tissue was observed with HE staining method, and the change of expression of cycle regulatory protein Cyclin B1, Cdc2 and Wee1 were detected by Western blot. Results: The growth of tumor was significantly inhibited by artesunate combined with radiation and its inhibition rate was 72.34%. Flow cytometry results showed that the percent of cells in G1 phase increased and G2 phase decreased in the artesunate + radiation group compared with those in irradiation group (t=4.41, 4.12, P<0.05). The expression level of Cyclin B1 was obviously increased while that of Wee1 decreased in the artesunate + radiation compared with irradiation group. There was no difference in the expression of Cdc2 among the four groups. Conclusions: Artesunate can dramatically increase the radiosensitivity of transplanted tumor of HeLa cells. The possible mechanism might be related to the decreasing G2 phase by regulating the expression of Cyclin B1 and Wee1. (authors)

  15. Fucoxanthin induces apoptosis in human cervical cancer cell line HeLa via PI3K/Akt pathway.

    Science.gov (United States)

    Ye, Guoliu; Lu, Qin; Zhao, Weidong; Du, Danli; Jin, Lijie; Liu, Yusheng

    2014-11-01

    Cervical cancer (CC) is a malignant neoplasm arising from cells originating in the cervix uteri, among the top causes of death from cancer in women. In a gene expression profiling study of metabolic response to treatment, PI3K/Akt signaling pathway are associated with the development of CC. A common mechanism of Akt activation seen in cancer types is alterations in the upstream regulators of Akt such as phosphatidylinositol 3-kinase (PI3K), which is overexpressed in cervical cancer tissues, and leads to phosphorylation of Akt. Both PI3K and Akt inhibitors exist and may be therapeutically valuable. In the present study, we use MTT assay and western blot for the high-throughput screening to select specific inhibitors of PI3K/Akt signaling pathway, and then obtain fucoxanthin. Fucoxanthin is a water-soluble dietary fiber, taken from the unique slimy component of alginic cells. Various studies have pointed out that fucoxanthin is very effective for the treatment of cancer. Our results have shown that fucoxanthin induced a significant apoptosis of HeLa cells, compared with other candidates. After treatment with fucoxanthin for 24 h, the level of phosphorylation was inhibited in a dose-dependent manner, and the proteins of apoptotic markers were changed in HeLa cells. And fucoxanthin could suppress tumor growth in vivo. In addition, the mitochondrial signal transduction pathway maybe was involved in its mechanism and NF-?B activation was decreased after treatment with fucoxanthin. Therefore, fucoxanthin may be used as anti-cervical cancer drugs in the future. PMID:25113250

  16. The Ability to Survive Mitosis in the Presence of Microtubule Poisons Differs Significantly Between Human Nontransformed (RPE-1) and Cancer (U2OS, HeLa) Cells

    OpenAIRE

    Brito, Daniela A.; Rieder, Conly L.

    2009-01-01

    We used live cell imaging to compare the fate of human nontransformed (RPE-1) and cancer (HeLa, U2OS) cells as they entered mitosis in nocodazole or taxol. In the same field, and in either drug, a cell in all lines could die in mitosis, exit mitosis and die within 10 h, or exit mitosis and survive ?10 h. Relative to RPE-1 cells, significantly fewer HeLa or U2OS cells survived mitosis or remained viable after mitosis: in nocodazole concentrations that inhibit spindle microtubule assembly, or i...

  17. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells.

    Science.gov (United States)

    Nagayama, Kazuaki; Hamaji, Yumi; Sato, Yuji; Matsumoto, Takeo

    2015-07-16

    The interaction between cells and the extracellular matrix on a topographically patterned surface can result in changes in cell shape and many cellular functions. In the present study, we demonstrated the mechanical deformation and trapping of the intracellular nucleus using polydimethylsiloxane (PDMS)-based microfabricated substrates with an array of micropillars. We investigated the differential effects of nuclear deformation on the proliferation of healthy vascular smooth muscle cells (SMCs) and cervical cancer HeLa cells. Both types of cell spread normally in the space between micropillars and completely invaded the extracellular microstructures, including parts of their cytoplasm and their nuclei. We found that the proliferation of SMCs but not HeLa cells was dramatically inhibited by cultivation on the micropillar substrates, even though remarkable deformation of nuclei was observed in both types of cells. Mechanical testing with an atomic force microscope and a detailed image analysis with confocal microscopy revealed that SMC nuclei had a thicker nuclear lamina and greater expression of lamin A/C than those of HeLa cells, which consequently increased the elastic modulus of the SMC nuclei and their nuclear mechanical resistance against extracellular microstructures. These results indicate that the inhibition of cell proliferation resulted from deformation of the mature lamin structures, which might be exposed to higher internal stress during nuclear deformation. This nuclear stress-induced inhibition of cell proliferation occurred rarely in cancer cells with deformable nuclei. PMID:26054426

  18. Effects of artesunate combining with radiation on apoptosis in nude mice transplanted with HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of Artesunate combining with radiation on apoptosis in transplanted tumors. Methods: HeLa cells were inoculated into the nude mice to develop a tumor model. Mice were randomized into four groups as the control group, the Artesunate group,the irradiation group and the combination group when average volume of tumor achieved about 5 mm x 5 mm x 5 mm. During the period of treatment, the volume of tumors was measured per 2 days. After 14 days treatment, the mice were killed and tumor tissues were harvest, the tumor size and weight were measured, tumor inhibitory rate calculated and TUNEL assay was used to analysis the apoptosis of tumor tissue. Results: The tumor weight in combination group was significantly lower than that than in the irradiation group [(0.64 ± 0.11) gvs (1.31 ± 0.58) g] (P<0.05), the tumor inhibitory rate was 71.17%. The apoptosis in the combination group was obviously higher than that in the irradiation group [(77.5 ± 8.07) %vs (48.80 ± 6.71) %] (P<0.05 ). Conclusion: Artesunate can dramatically increase the radiosensitivity of tumor model transplanted with HeLa cells of cervical cancer, the possible mechanism of radiosensitization of Artesunate is related to increasing apoptosis of tumor cells. (authors)

  19. Antiproliferative and Apoptosis Inducing Effects of Non-Polar Fractions from Lawsonia inermis L. in Cervical (HeLa) Cancer Cells.

    Science.gov (United States)

    Kumar, Manish; Kaur, Paramjeet; Kumar, Subodh; Kaur, Satwinderjeet

    2015-04-01

    Two non-polar fractions viz. hexane (Hex-LI) and chloroform fraction (CHCl3-LI) of Lawsonia inermis were studied for their antiproliferative potential in various cancer cell lines viz. HeLa, MCF-7, A549 and C6 glioma cells. Both the fractions showed more than 60 % of growth inhibition in all the tested cell lines at highest tested concentration. In clonogenic assay, different concentrations of Hex-LI and CHCl3-LI decreased the number and size of colonies as compared to control in HeLa cells. The apoptotic effects as nuclear condensation, fragmentation were visualized with Hoechst-33342 staining of HeLa cells using confocal microscope. Both fractions induced apoptotic cell death in human cervical carcinoma (HeLa) cells as evident from flow cytometric analysis carried out using Annexin V-FITC and propidium iodide dyes. CHCl3-LI treated cells significantly induced apoptosis (25.43 %) in comparison to control. Results from Neutral Comet assay demonstrated that both fractions induced double stranded breaks (DSB's) in HeLa cells. Our data indicated that Hex-LI and CHCl3-LI treated cells showed significant increase of 32.2 and 18.56 % reactive oxygen species (ROS) levels in DCFH-DA assay respectively. Further, experimental studies to decipher exact pathway via which these fractions induce cell death are in progress. PMID:25931778

  20. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Cui Zhang

    2015-07-01

    Full Text Available 8-p-Hdroxybenzoyl tovarol (TAW is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb. Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER stress and unfolded protein response (UPR. Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA. Loss of beclin 1 (an autophagic regulator function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.

  1. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    Science.gov (United States)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  2. DYTOGENETIC ANALYSIS OF HELA AND CHANG CELLS

    OpenAIRE

    N.Lzadian; Sussman, H

    1982-01-01

    Based on the evaluation of two human cell lines, Hela and Chang, abeuploidy and several marker chromosomes were found in both cells. The morphological characteristic of marker chromosomes of Chang cells was distinctly different from HeLa. Certain submetacentric marker chromosome was frequently present among 80% of marker chromosomes of Chang cells which distinguished this line from HeLa, which showed the various identifiable marker chromosomes. This evidence clearly established the different ...

  3. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    International Nuclear Information System (INIS)

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor

  4. The Enhanced Inhibitory Effect of Different Antitumor Agents in Self-Microemulsifying Drug Delivery Systems on Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Zoltán Ujhelyi

    2015-07-01

    Full Text Available The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS containing antitumor agents (bleomycin, cisplatin and ifosfamide and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-?, TNF-? as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  5. Induction of apoptotic effects of antiproliferative protein from the seeds of Borreria hispida on lung cancer (A549) and cervical cancer (HeLa) cell lines.

    Science.gov (United States)

    Rupachandra, S; Sarada, D V L

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220?nm. F3 showed an apparent molecular weight of 35?KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10?µg to 1000?µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000?µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  6. Isolation of Melittin from Iranian Honey Bee Venom and Investigation of Its Effect on Proliferation of Cervical Cancer- HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    K Pooshang Bagheri

    2013-06-01

    Full Text Available Introduction: Cervical cancer is the second prevalent cancer in developing countries and the sixth prevalent cancer in USA. Since conventional treatment methods are associated with detrimental side effects, searching for new drugs using natural ingredients is very important. Previous studies have shown that melittin (main component of honey bee venom has anticancer properties along with the effect on cell membrane and activation of apoptosis. In this study, inhibitory effects of melittin on the viability and proliferation of cervical cancer cell line (HeLa was investigated. Methods: Melittin was purified from honeybee venom using reversed-phase HPLC method. Then, biological activity of melittin was examined by hemolytic activity analysis on the red blood cells. In order to investigate whether melittin inhibits proliferation of HeLa cell, MTT assay was performed. HeLa cells were plated in a 96-well plate and treated with serially diluted concentrations of melittin for 12 and 24 hours. The viability of the cells was measured via MTT assay at 540nm. Results: Melittin showed a strong hemolytic activity (HD50=0.5 µg/ml which can be reduced by FBS(HD50=2 µg/ml. Results of MTT assay indicated that melittin shows cytotoxic effect on cervical cancer cells with IC50 = 1.2 ug/ml at 12h incubation period. Conclusion: In this study, biological activity of melittin and inhibitory effect of FBS on hemolysis were determined via hemolytic activity analysis. MTT assay indicated that melittin induced cytotoxic effects in a dose dependent manner on cervical cancer cells and it also revealed dependence on incubation time as well.

  7. Effects of HMGB1 Expression Suppressed by siRNA on Cell Cycle and Proliferation of Human Cervical Cancer Cell Line HeLa

    Directory of Open Access Journals (Sweden)

    Yuan-yuan QIU

    2010-04-01

    Full Text Available OBJECTIVE In this study, RNA interference was used to evaluate the effects of HMGB1 expression on cell cycle and proliferation of the human cervical cancer cell line HeLa. METHODS We had previously constructed and screened effective eukaryotic expression vectors carrying PGCsi3.0-1/HMGB1 siRNA and PGCsi3.0-3/HMGB1 siRNA, then the vectors were transfected into HeLa cells. The expression of HMGB1 before and after transfection in HeLa cells were detected by RT-PCR and Western blot. The cell viability and proliferating activity was tested by Trypan blue dye test and MTT, and the cell cycle was determined by ? ow cytometry. RESULTS The introduction of PGCsi3.0-1/HMGB1 siRNA and PGCsi3.0-3/HMGB1 siRNA inhibited the expression of HMGB1mRNA and protein efficiently and specifically, there was a sifnificant difference between the siRNA groups and the control groups (P < 0.05. The proliferation speed of PGCsi3.0-1 group and PGC si3.0-3 group were obviously slower than those of PGCsi3.0-Neg group and non-transfected group. Flow cytometry showed that the content of DNA in G2 phase in PGCsi3.0-1 group and PGCsi3.0-3 group were obviously more than those in PGCsi3.0-Neg group and non-transfected group, but the content in S phase was less (P < 0.01. The progression of cell cycle was arrested from G2 to S phase. CONCLUSION PGCsi3.0-1/HMGB1 siRNA and PGCsi3.0-3/HMGB1 siRNA could specially suppress the expression of HMGB1 gene, inhibit the proliferation speed of HeLa cells effectively, and arrest the progression of cell cycle from G2 to S phase. RNAi provides a new approach to the bio-therapy of cervical cancer.

  8. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis.

    Science.gov (United States)

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 ?M 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism. PMID:23243437

  9. DYTOGENETIC ANALYSIS OF HELA AND CHANG CELLS

    Directory of Open Access Journals (Sweden)

    N.Lzadian

    1982-08-01

    Full Text Available Based on the evaluation of two human cell lines, Hela and Chang, abeuploidy and several marker chromosomes were found in both cells. The morphological characteristic of marker chromosomes of Chang cells was distinctly different from HeLa. Certain submetacentric marker chromosome was frequently present among 80% of marker chromosomes of Chang cells which distinguished this line from HeLa, which showed the various identifiable marker chromosomes. This evidence clearly established the different etiology of these two human cell lines.

  10. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    OpenAIRE

    Qun Liu; Yong-Bo Peng; Lian-Wen Qi; Xiao-Lan Cheng; Xiao-Jun Xu; Le-Le Liu; E-Hu Liu; Ping Li

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight m...

  11. Evaluation of the antitumour activity of Rinvanil and Phenylacetylrinvanil on the cervical cancer tumour cell lines HeLa, CaSKi and ViBo.

    Science.gov (United States)

    Sánchez-Sánchez, Luis; Alvarado-Sansininea, Jesús J; Escobar, María L; López-Muñoz, Hugo; Hernández-Vázquez, José M V; Monsalvo-Montiel, Iván; Demare, Patricia; Regla, Ignacio; Weiss-Steider, Benny

    2015-07-01

    Capsaicin is a potent inducer of apoptosis in tumourreceptor potential vanilloid 1 (TRPV1). The present study determined the IC50 and cytotoxic and apoptotic activities of the Capsaicin analogues Rinvanil and Phenylacetylrinvanil (PhAR) on three cervical cancer cell lines: HeLa, CaSKi and ViBo. These analogues possess an increased affinity for TRPV1 receptors. The IC50 obtained proved to be cytotoxic for all three cell lines; however, in the cells treated with Capsaicin both active caspase-3 and nuclear fragmentation were present. Capsaicin and its analogues also inhibited the normal proliferation of lymphocytes, suggesting that they are non-selective antitumour compounds. Finally, we discuss the possible loss of the relation between apoptosis and affinity to TRPV1, and the need for other strategies to synthesise Capsaicin analogues that can be useful in cancer treatments. PMID:25864613

  12. Irradiation And Papillomavirus E2 Proteins On Hela Cells

    International Nuclear Information System (INIS)

    Exposure to relatively high doses ionizing radiation activates cellular responses that impair cell survival. These responses, for which the p53 protein plays a central role, form the basis for cancer radiotherapy. However, the efficacy of radiation treatments on cell killing is often reduced as a consequence of the frequent inactivation of the p53 protein in cancer cells. Loss of p53 protein is associated with later stages of most human tumors and resistance to anticancer agents. Carcinomas are frequent malignant tumors in humans. The majority of cervical carcinomas are etiologically linked to the presence of HPV virus (Human Papillomavirus). In carcinoma tumor cells, as well as in their derived-cell lines such as HeLa cells, the p53 protein is generally not detected due to its degradation by the product of the HPV-associated oncogenic E6 gene. Another characteristic of HPV-positive cervical cancer cells is the loss of the regulatory viral E2 gene expression as a consequence of viral DNA integration into the cellular genome. Reintroduction of E2 expression in HeLa cells reactivates p53, due to a negative effect on the expression of E6 protein, with a concomitant arrest of cell proliferation at the phase G1 of the cell cycle and delay in cell division via the repression of E2F-target genes. To elucidate whether reactivation of p53 would improve the cell killing effect of ionizing radiation in cancer cells, we studied the combined effects of radiation and E2 expression on the cell cycle distribution in HeLa cells

  13. The Aqueous Extract of Ficus religiosa Induces Cell Cycle Arrest in Human Cervical Cancer Cell Lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 Positive)

    OpenAIRE

    Choudhari, Amit S; Suryavanshi , Snehal A; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 posit...

  14. Photodynamic Effects of Pterin on HeLa Cells

    DEFF Research Database (Denmark)

    Denofrio, M. Paula; Lorente, Carolina

    2011-01-01

    Pterins, heterocyclic compounds widespread in biological systems, participate in relevant biological processes and are able to act as photosensitizers. In the present study, we ascertained that 2-aminopteridin-4(3H)-one, abbreviated as Ptr, is readily incorporated into and ? or onto cervical cancer cells (HeLa) and that these cells die upon UV-A irradiation of Ptr. Cell death was assessed using two tests: (1) the Rhodamine 123 fluorescence assay for mitochondrial viability and (2) the Trypan Blue assay for membrane integrity. The data suggest that, for Ptr-dependent photoinitiated cell death, events related to mitochondrial failure precede those associated with the failure of the cell membrane.

  15. 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to HeLa cervical cancer cells in vitro.

    Science.gov (United States)

    Yang, Rui; Chen, Daozhen; Li, Mengfei; Miao, Fengqin; Liu, Peidang; Tang, Qiusha

    2014-01-01

    20(s)-ginsenoside Rg3 is extracted from traditional Chinese medicine, red ginseng. However, due to its poor aqueous solubility and low oral bioavailability, the use of 20(s)-Rg3 is limited. This study aimed to explore a method of preparing nano-sized 20(s)-ginsenoside Rg3 particle named 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres (20(s)-Rg3/HSAMNP) to change dosage form to improve its aqueous solubility and bioavailability. 20(s)-Rg3/HSAMNP were prepared by the desolvation-crosslinking method. The character of 20(s)-Rg3/HSAMNP was detected. An antiproliferative effect and cell apoptosis rates of 20(s)-Rg3/HSAMNP on human cervical cancer cells were determined by the MTT assay and flow cytometry, respectively. TEM analysis showed that 20(s)-Rg3/HSAMNP were approximately spherical and uniform in size. Thermodynamic testing showed that the corresponding magnetic fluid of a specific concentration rosed to a steady temperature of 42-65?C. Iron content was approximately 3 mg/mL. Drug encapsulation efficiency was approximately 70%. The potential of 20(s)-Rg3/HSAMNP combined with magnetic hyperthermia therapy to inhibit cell growth and induce apoptosis was much more prominent than that of the other groups. A new dosage form of 20(s)-Rg3 was prepared, which effectively induced apoptosis in HeLa cervical cancer cells in vitro when combined with hyperthermia. PMID:25226895

  16. Effect of Quercetin on radio-sensitivity of HeLa cells

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of Quercetin on radio-sensitivity of human Uterine Cervix Cancer HeLa cells, HeLa cells were cultured in different concentrations of Quercetin and different doses of irradiation. The clonogenic assay was used to observe the cell survival rate. The repair of DNA double-strand breaks and effect of Quercetin combination of radiation on the cell cycle were detected by flow cytometry. The results show that the radio-sensitivity of Quercetin on HeLa cells was obvious and the unrepaired DSBs after irradiation increased, but did not decrease G2/M cell cycle arrest. From this it can be inferred that the effect on HeLa cell radio-sensitivity may be related to the inhibition of the repair of DNA double-strand breaks induced by Quercetin, but it dose not reveal a significant relation with the cell cycle and G2/M arrest. (authors)

  17. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekharreddy, Pala; Rani, Pathipati Usha, E-mail: usharani65@yahoo.com

    2014-06-01

    A one-step and eco-friendly process for the synthesis of silver-(protein-lipid) nanoparticles (Ag-PL NPs) (core–shell) has been developed using the seed extract from wild Indian Almond tree, Sterculia foetida (L.) (Sterculiaceae). The reaction temperature played a major role in controlling the size and shell formation of NPs. The amount of NPs synthesized and qualitative characterization was done by UV–vis spectroscopy and transmission electron microscopy (TEM), respectively. TEM studies exhibited controlled dispersity of spherical shaped NPs with an average size of 6.9 ± 0.2 nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) revealed ‘fcc’ phase and crystallinity of the particles. X-ray photoelectron spectroscopy (XPS) was used to identify the protein–lipid (PL) bilayer that appears as a shell around the Ag core particles. The thermal stability of the Ag-PL NPs was examined using thermogravimetric analysis (TGA). Further analysis was carried out by using Fourier transform infrared spectroscopy (FTIR), where the spectra provided evidence for the presence of proteins and lipid moieties ((2n-octylcycloprop-1-enyl)-octanoic acid (I)), and their role in synthesis and stabilization of Ag NPs. This is the first report of plant seed assisted synthesis of PL conjugated Ag NPs. These formed Ag-PL NPs showed potential mosquito larvicidal activity against Aedes aegypti (L.), Anopheles stephensi Liston and Culex quinquefasciatus Say. These Ag-PL NPs can also act as promising agents in cancer therapy. They exhibited anti-proliferative activity against HeLa cancer cell lines and a promising toxicity was observed in a dose dependent manner. Toxicity studies were further supported by the cellular DNA fragmentation in the Ag-PL NPs treated HeLa cells. - Highlights: • Green synthesis of protein-lipid conjugated Ag NPs using S. foetida L. seed extract. • S. foetida seed extract acted as good reducing and stabilizing agent for Ag NPs. • XPS and FTIR confirm the biomolecules associated with Ag NPs. • Synthesized Ag NPs showed potential biological activities.

  18. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and ruffles in cervical cancer epithelial HeLa cells

    Science.gov (United States)

    Ruiz-Lafuente, Natalia; Alcaraz-García, María-José; García-Serna, Azahara-María; Sebastián-Ruiz, Silvia; Moya-Quiles, María-Rosa; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Dock10 is one of the three members of the Dock-D family of Dock proteins, a class of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Its homologs Dock9 and Dock11 are Cdc42 GEFs. Dock10 is required for maintenance of rounded morphology and amoeboid-type movement. Full-length isoforms of Dock10 have been recently cloned. Here, we address GTPase specificity and GEF activity of Dock10. In order of decreasing intensity, Dock10 interacted with nucleotide-free Rac1, Cdc42, and Rac3, and more weakly with Rac2, RhoF, and RhoG. Inducible expression of Dock10 in HeLa epithelial cells promoted GEF activity on Cdc42 and Rac1, and a morphologic change in two-dimensional culture consisting in loss of cell elongation, increase of filopodia, and ruffles. Area in contact with the substrate of cells that spread with non-elongated morphology was larger in cells expressing Dock10. Inducible expression of constitutively active mutants of Cdc42 and Rac1 in HeLa cells also induced loss of elongation. However, Cdc42 induced filopodia and contraction, and Rac1 induced membrane ruffles and flattening. When co-expressed with Dock10, Cdc42 potentiated filopodia, and Rac1 potentiated ruffles. These results suggest that Dock10 functions as a dual GEF for Cdc42 and Rac1, affecting cell morphology, spreading and actin cytoskeleton protrusions of adherent HeLa cells. PMID:25862245

  19. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    Science.gov (United States)

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell. PMID:26143114

  20. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    Scientific Electronic Library Online (English)

    José María Eloy, Contreras-Ortiz; Juan Carlos, Vázquez-Chagoyán; José Simón, Martínez-Castañeda; José Guillermo, Estrada-Franco; José Esteban, Aparicio-Burgos; Jorge, Acosta-Dibarrat; Alberto, Barbabosa-Pliego.

    2013-09-02

    Full Text Available Background : The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties o [...] f the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results : Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions : Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines.

  1. Condurango (Gonolobus condurango Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro CE-treatment on HeLa: a ROS-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Kausik Bishayee

    2015-09-01

    Full Text Available Objectives: Condurango (Gonolobus condurango extract is used by complementary and alternative medicine (CAM practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa as our model, the molecular events behind condurango extract’s (CE’s anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR. Other included cell types were prostate cancer cells (PC3, transformed liver cells (WRL-68, and peripheral blood mononuclear cells (PBMCs. Results: Condurango extract (CE was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC, a scavenger of reactive oxygen species (ROS, suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA damage at the G zero/Growth 1 (G0/G1 stage. Further, CE increased the tumor necrosis factor alpha (TNF-? and the fas receptor (FasR levels both at the ribonucleic acid (RNA and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2, and caused an opening of the mitochondrial membrane’s permeability transition (MPT pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

  2. Antiproliferative effects of some medicinal plants on HeLa cells

    Directory of Open Access Journals (Sweden)

    Ceni?-Miloševi? Desanka

    2013-01-01

    Full Text Available Medicinal plants maintain the health and vitality of individuals, and also have potential curative effect on various diseases, including cancer. In this study were investigated the antiproliferative effects of water extracts of previously obtained ethanolic dry extracts of three different medicinal plants (Echinacea angustifolia, Salvia officinalis and Melissa officinalis on cell lines derived from human cervix adenocarcinoma (HeLa cells. The best cytotoxic activity (IC50 = 43.52 ?g/ml on HeLa cell lines was exhibited by Echinacea angustifolia. The extract of Salvia officinalis also showed a good cytotoxic activity against HeLa cell lines; the IC50 value was 70.41 ?g/ml. Melissa officinalis manifested a slightly weaker cytotoxic activity and an IC50 value of 122.22 ?g/ml. [Projekat Ministarstva nauke Republike Srbije, br. 34021 i br. 175011

  3. Methanol extract from Vietnamese Caesalpinia sappan induces apoptosis in HeLa cells

    Scientific Electronic Library Online (English)

    Tran Manh, Hung; Nguyen Hai, Dang; Nguyen Tien, Dat.

    Full Text Available BACKGROUND: This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation. RESULTS: A m [...] ethanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50value of 26.5?±?3.2 µg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation. CONCLUSION: This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.

  4. ANTICANCER AND CYTOTOXIC POTENTIAL OF TRITICUM AESTIVUM EXTRACT ON HELA CELL LINE

    OpenAIRE

    Patel Janki B; Patel Piyush M.

    2013-01-01

    The objective of the study was to analyze the anticancer property of the leaves of Triticum aestivum on HeLa cells. The Indian medicinal plant Triticum aestivum that is used in traditional medicine for cancer and non cancerous diseases was collected. The crude methanolic extract was prepared by using standard protocols. The antiproliferative effect the methanolic extract was evaluated in vitro by employing MTT assay. The potency of each plant extract concentration was calculated in terms of p...

  5. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    Science.gov (United States)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The ?-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  6. Tumoricidal effects of nanomaterials in HeLa cell line

    Science.gov (United States)

    Fakhar-E-Alam, M.; Kishwar, S.; Khan, Y.; Siddique, M.; Atif, M.; Nur, O.; Willander, M.

    2011-11-01

    The current study exhibits the cellular response of HeLa (cervical cancer) cells to metal oxides ultrafine nanomaterials e.g. manganese dioxide nanowires (MnO2 NRs), iron oxide nanoparticles (Fe2O3 NPs) and zinc oxide nanorods (ZnO NRs) as bare and as conjugated with photosensitizers. For cytotoxic evaluations, the cellular morphology, (MTT) assay, reactive oxygen species (ROS) production were used for cases with and without photo sensitizer as well illuminated with UV-visible laser exposed conditions. Three different photosensitizers were tested. These are 5-aminolevulinic acid (5-ALA), Photofrin® and protopor phyrin dimethyl ester (PPDME). Significant loss in cell viability was noted with 100-500 ?g/ml in bare and conjugated forms of the metal oxides used. The effect was insignificant with lower concentrations (0.05-50 ?g/ml). While notable anticancer effect of 5-ALA under 30 J/cm2 of diode laser irradiation was noted as compared to other photo sensitizer. By increasing the UV irradiation time of labeled cells, generation of ROS was observed, indicating the possibility of achieving efficient photodynamic therapy (PDT).

  7. Growth regulation of HeLa cells by 1060 nm photons

    International Nuclear Information System (INIS)

    Living organisms are open systems dominated by electromagnetic interaction. An essential feature of a living system is its cybernetic process which imply their capability of adaptation and sensitivity to internal and external fluctuations. The experimental results show that coherent and incoherent light of 1060 nm wavelength influences the metabolic processes and consequently the proliferation of cancer cell cultures (HeLa). Light induced regulation of HeLa cell growth depends on the cell density, the state of the cell culture and the amount of light irradiation. Best proliferation inhibiting effects can be obtained by application of 200 J/m2 on HeLa cells in Lag-Phase and a typical cell density of 5.104 cells/cm2. Proceeding on the singlet oxygen hypothesis (KLIMA, H. et al.; 1990), it is shown mathematically that the dynamical behaviour of the NADH model is influenced by 1060 nm photons. Both, the experimental and the numerical results support our hypothesis: 1060 nm photons regulate the proliferation of HeLa cells. (author)

  8. Antiproliferative effects of some medicinal plants on HeLa cells

    OpenAIRE

    Ceni?-Miloševi? Desanka; Tambur Z.; Bokonji? D.; Ivan?aji? S.; Stanojkovi? Tatjana; Grozdani? Nadja; Jurani? Zorica

    2013-01-01

    Medicinal plants maintain the health and vitality of individuals, and also have potential curative effect on various diseases, including cancer. In this study were investigated the antiproliferative effects of water extracts of previously obtained ethanolic dry extracts of three different medicinal plants (Echinacea angustifolia, Salvia officinalis and Melissa officinalis) on cell lines derived from human cervix adenocarcinoma (HeLa cells). The best cytotoxic activity (IC50 = 43.52 ?g/m...

  9. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    Science.gov (United States)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  10. Wogonin and neobaicalein from Scutellaria litwinowii roots are apoptotic for HeLa cells

    Scientific Electronic Library Online (English)

    Zahra, Tayarani-Najarani; Javad, Asili; Heydar, Parsaee; Seyed Hadi, Mousavi; Naser Vadati, Mashhadian; Alireza, Mirzaee; Seyed Ahmad, Emami.

    2012-04-01

    Full Text Available Chemical investigation on the CH2Cl2 fraction of the Scutellaria litwinowii Bornm. & Sint., Lamiaceace, root extract for the first time resulted in the isolation of wogonin, and neobaicalein. These compounds were evaluated for their cytotoxicity towards HeLa cell lines and lymphocytes. Meanwhile, th [...] e role of apoptosis was explored in this toxicity. The cells were cultured in RPMI medium and incubated with different concentrations of isolated flavonoids. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1peak). Wogonin, and neobaicalein inhibited the growth of malignant cells in a dose-dependent manner. The IC50 values of 46.62 and 79.34 µM were, respectively, found for neobaicalein and wogonin against HeLa cells after 48 h of treatment. Neobaicalein induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved in neobaicalein toxicity. Neobaicalein exerts cytotoxic and pro-apoptotic effects in HeLa cell lines and could be considered as a potential chemotherapeutic agent in cancer treatment.

  11. Cellular uptake on N- and C-termini conjugated FITC of Rath cell penetrating peptides and its consequences for gene-expression profiling in U-937 human macrophages and HeLa cervical cancer cells.

    Science.gov (United States)

    Kuo, Jung-hua Steven; Lin, Chia-Wei

    2013-11-01

    Rath peptide has been introduced as a delivery vector that transports various membrane-impermeable cargoes in a non-covalent fashion. In this paper, we present a study on Rath peptide conjugated with fluorescein-5-isothiocynate (FITC) differing in its N- and C-termini. We conducted cellular toxicity and uptake experiments in U-937 and HeLa cells to analyze biocompatibility profiles and translocation efficiencies of Rath peptide with FITC serving as both a cargo and a fluorescent marker. We found that the conjugation of FITC on Rath peptide at N-terminus (FITC-Rath) led to more rapid cellular uptake in U-937 cells and significantly higher cellular uptake in HeLa cells than that which occurred at C-terminus. From DNA microarray analysis, FITC-Rath induced gene expression changes in both U-937 and HeLa cells. Five overlapping regulated genes were identified, and this overlap indicated that FITC-Rath displayed some degree of generality regarding gene responses in the two cell lines used. A real-time quantitative reverse transcriptase-polymerase chain reaction was used to confirm which regulated genes were affected by FITC-Rath. Cell communication, signal transduction, cell surface receptor signaling pathway, signal transducer activity and cellular process, were identified as overlapping biological themes. These data provide useful information on molecular mechanisms for using Rath-based delivery systems. PMID:23937069

  12. Photosensitized inactivation of tumor HeLa cells by phthalocyanines

    International Nuclear Information System (INIS)

    The combined effect of tetrasulfonated phthalocyanine (TSPC, 1.0 ?M) or chloraluminium phthalocyanine (CAPC, 1.0 ?M) and copper vapour laser radiation (?=670 nm) causes a dose dependent decrease in the survival rate of HeLa cells at exponential and stationary growth phase estimated by the trypan blue exclusion test or colony-forming ability test. TSPC is two times and CAPC seven times more effective, with regard to lethality, than the know photosensitizer, a hematoporphyrin derivative

  13. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harminder; Pujari, Geetanjali [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India); Semwal, Manoj K. [Army Hospital (R and R), Delhi Cantonment, New Delhi 110010 (India); Sarma, Asitikantha [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India); Avasthi, Devesh Kumar, E-mail: dka@iuac.res.in [Radiation Biology Group, Inter University Accelerator Centre, Post Box 10502, New Delhi 110067 (India)

    2013-04-15

    Highlights: ? Glucose capped gold nanoparticles (Glu-AuNPs) are synthesized for internalization in HeLa cells (cervical cancer cells). ? Internalization of Glu-AuNPs in HeLa cells is confirmed by cross section TEM of cells. ? Irradiation (by C ion or ?-rays) of HeLa cells with internalized Glu-AuNPs results in enhanced radiosensitization. ? There is about 30% reduction in radiation dose for 90% cell killing of HeLa cells, when internalized by Glu-AuNPs. ? The enhanced radiosensitization due to Glu-AuNPs is of interest for researchers in nanobiotechnology and radiation biology. -- Abstract: Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The ?-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  14. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2009-01-01

    ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2 downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the inc...

  15. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to ?-rays

    International Nuclear Information System (INIS)

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to ?-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of ?-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of ?-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to ?-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  16. Cytotoxic Effects of Different Extracts and Latex of Ficus carica L. on HeLa cell Line

    OpenAIRE

    Khodarahmi, Ghadam Ali; Ghasemi, Nasrollah; Hassanzadeh, Farshid; Safaie, Marzieh

    2011-01-01

    It has been reported that latex and extracts of different species of Ficus are cytotoxic to some human cancerous cell lines. In this study, cytotoxicity of fruit and leaf extracts as well as the latex of Ficuscarica L. on HeLa cell line were evaluated. ethanolic extracts of leaves and fruits were prepared through percolation and ethyl acetate and dichloromethane extracts were prepared by reflux method. Cytotoxic effects of these extracts and latex against HeLa cell line were then examined. Br...

  17. Outcome of Treatment of Human HeLa Cervical Cancer Cells With Roscovitine Strongly Depends on the Dosage and Cell Cycle Status Prior to the Treatment.

    Czech Academy of Sciences Publication Activity Database

    Wesierska-Gadek, J.; Borza, A.; Walzi, E.; Kryštof, Vladimír; Maurer, M.; Komina, O.; Wandl, S.

    2009-01-01

    Ro?. 106, ?. 5 (2009), s. 937-955. ISSN 0730-2312 Institutional research plan: CEZ:AV0Z50380511 Keywords : APOPTOSIS * CELL CYCLE ARREST * CYCLIN -DEPENDENT KINASES Subject RIV: ED - Physiology Impact factor: 2.935, year: 2009

  18. Toona Sinensis and Moschus Decoction Induced Cell Cycle Arrest in Human Cervical Carcinoma HeLa Cells.

    Science.gov (United States)

    Zhen, Hong; Zhang, Yifei; Fang, Zhijia; Huang, Zhiwei; You, Chongge; Shi, Ping

    2014-01-01

    Toona sinensis and Moschus are two herb materials used in traditional Chinese medicine, most commonly for their various biological activities. In this study, we investigated the inhibitory effect of three decoctions from Toona sinensis, Moschus, and Toona sinensis and Moschus in combination on cell growth in several normal and cancer cell lines by cell viability assay. The results showed that the combined decoction exhibited the strongest anticancer effects, compared to two single decoctions. The observations indicated that the combined decoction did not induce cell apoptosis and autophagy in HeLa cells by fluorescence microscopy. Flow cytometry analysis revealed that the combined decoction arrested HeLa cell cycle progression in S-phase. After the decoction incubation, among 41 cell cycle related genes, eight were reduced, while five were increased in mRNA levels by real-time PCR assay. Western blotting showed that there were no apparent changes of protein levels of Cyclin E1, while P27 expression significantly declined and the levels of CDC7 and CDK7 obviously increased. The data suggest that the RB pathway is partially responsible for the decoction-induced S-phase cell cycle arrest in HeLa cells. Therefore, the combined decoction may have therapeutic potential as an anticancer formula for certain cancers. PMID:24511319

  19. Radiosensitizing effect of Chitosan on HeLa and LN 18 brain tumor cells exposed to electron beam radiation

    International Nuclear Information System (INIS)

    Chitosan has been widely used for multiple applications because it is a non-toxic biocompatible, biodegradable, and adsorptive material. A previous study has shown that low-molecular-weight chitosan (LMWC) exerts a cytotoxic effect on oral cancer cells. Although a higher concentration of LMWC in comparison to cisplatin was needed in order to kill cancer cells, it was relatively less cytotoxic to non-cancer cells. Some of the well known anticancer drugs have the property of sensitizing the cell to radiation, which will be more applicable during combination therapy of cancer. The present study was undertaken to find the radiosensitizing effect of chitosan on Hela and Brain tumor (LN18) cells against electron beam radiation (EBR). Both the cancer cell lines, Hela and LN 18 were treated with different concentration of chitosan (50 and 100 ?g/ml) pre and post exposure to 4 Gy EBR. The percentage of cell viability, percentage of apoptosis and ssDNA damage in the treated cells were assessed by MTT assay, DNA diffusion assay and comet assay respectively. The obtained results showed 62.1315.08 and 65.2412.45 percent Hela and LN 18 viable cells at 24 hour after the exposure to 4 Gy EBR. The percentage of viability was found to be decreased in cells exposed to EBR in the presence of chitosan. Supporting to this, percentage of apoptotic cells was found to be more in treated groups (28.1314.34 and 25.1313.76) when compared with control (23.1911.07 and 20.7914.86). Treatment of HeLa and LN18 before and after the exposure of EBR showed significantly (P<0.05) more frequency of micronucleus and % of DNA damage than the 4 Gy EBR control group. These results conclude the sensitizing effect of chitosan on cancer cell line against EBR exposure. (author)

  20. Stable tRNA precursors in HeLa cells.

    OpenAIRE

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several ...

  1. Transcription of Simian Virus 40 chromosomes in an extract of HeLa cells.

    OpenAIRE

    Beard, P; Nyfeler, K

    1982-01-01

    Simian Virus 40 (SV40) chromosomes were incubated with a concentrated extract of HeLa cells containing RNA polymerase II and other factors involved in transcription. SV40-specific RNA was synthesized. In the absence of HeLa cell extract the synthesis of labeled RNA by endogenous RNA polymerase in the chromosome preparations amounted to less than one tenth of that when the HeLa cell extract was present. Incubation with the HeLa extract increased the amount of Sarkosyl-resistant (i.e., transcri...

  2. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    International Nuclear Information System (INIS)

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1

  3. Evaluation of the effects of paederus beetle extract and gamma irradiation on HeLa cells

    Directory of Open Access Journals (Sweden)

    Fariba Samani

    2014-04-01

    Full Text Available Objective(s:Cervical cancer is a malignancy that is the second most common cause of death from cancer in women throughout the world. Paederus beetle (Paederus fuscipes extract (PBE, contains bioactive compounds such as pederine which has cytotoxic properties and blocks DNA and protein synthesis at very low concentrations. In this investigation we tried to determine the effects co-treatment with PBE and gamma irradiation on HeLa cells. Materials and Methods: The viability of the cells was measured by two methods: MTT and Colony assay. Results: We found that supplementing gamma irradiation therapy with PBE does not increase cell death and it might even interfere with its cytotoxicty at the concentrations below 0.1 ng/ml and the viability for irradiation vs irradiation + PBE was 37%: 60%.   Conclusion: This finding might be due to radioprotective effects of the very low doses of PBE against gamma radiation.

  4. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line

    OpenAIRE

    Danielle Berrington; Namrita Lall

    2012-01-01

    Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum M...

  5. Stimulation of postirradiation DNA synthesis in ultraviolet irradiated HeLa cells by fluorodeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Brozmanova, J. (Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky)

    1984-01-01

    The influence of precultivation with fluorodeoxyuridine (FdUrd) on the rate of overall DNA synthesis in UV irradiated HeLa cells was studied. HeLa cells were pretreated either for 24 h with FdUrd, or for 6 h with FdUrd + 18 h in FdUrD-free medium before UV irradiation (10 J.m/sup -2/). Both pretreatments stimulated the rate of DNA synthesis not only in unirradiated but also in UV irradiated cells. It is concluded that precultivation of HeLa cells with FdUrd increased the UV resistance of DNA synthesis as compared with untreated cells.

  6. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén; Svendsen, Winnie Edith

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical...

  7. Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Alshatwi Ali A

    2009-11-01

    Full Text Available Abstract Background Cancer remains one of the most dreaded diseases causing an astonishingly high death rate, second only to cardiac arrest. The fact that conventional and newly emerging treatment procedures like chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reverting the outcome of the disease to any drastic extent, has made researchers investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. This study progresses in the direction of identifying component(s from Nigella sativa with anti cancer acitivity. In the present study we investigated the efficacy of Organic extracts of Nigella sativa seed powder for its clonogenic inhibition and induction of apoptosis in HeLa cancer cell. Results Methanolic, n-Hexane and chloroform extracts of Nigella sativa seedz effectively killed HeLa cells. The IC50 values of methanolic, n-hexane, and chloroform extracts of Nigella sativa were 2.28 ?g/ml, 2.20 ?g/ml and 0.41 ng/ml, respectively. All three extracts induced apoptosis in HeLa cells. Apoptosis was confirmed by DNA fragmentation, western blot and terminal transferase-mediated dUTP-digoxigenin-end labeling (TUNEL assay. Conclusion Western Blot and TUNEL results suggested that Nigella sativa seed extracts regulated the expression of pro- and anti- apoptotic genes, indicating its possible development as a potential therapeutic agent for cervical cancer upon further investigation.

  8. Genistein Inhibition of Topoisomerase II? Expression Participated by Sp1 and Sp3 in HeLa Cell

    Directory of Open Access Journals (Sweden)

    Yunzhi Li

    2009-07-01

    Full Text Available Genistein (4?, 5, 7-trihydroxyisoflavone is an isoflavone compound obtained from plants that has potential applications in cancer therapy. However, the molecular mechanism of the action of genistein on cancer cell apoptosis is not well known. In this study, we investigated the effect of genistein on topoisomerase II-? (Topo II?, an important protein involved in the processes of DNA replication and cell proliferation. The results revealed that inhibition of Topo II? expression through the regulation of Specificity protein 1 and Specificity protein 3 may be one of the reasons for genistein’s induction of HeLa cell apoptosis.

  9. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  10. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  11. Antioxidant, anticancer, and apoptosis-inducing effects of Piper extracts in HeLa cells

    Directory of Open Access Journals (Sweden)

    Wahyu Widowati

    2013-06-01

    Full Text Available Objective: Cervical cancer is the second most common cancer as well as one of leading cause of cancer-related death for women worldwide. In regards to that issue, focus of this paper will be on popularly used Piperaceae members including Piper betle L, Piper cf fragile Benth, Piper umbellatum L, Piper aduncum L, Piper pellucidum L. This research was conducted to elucidate the antioxidant, anticancer and apoptosis inducing activities of Piperaceae extracts on cervical cancer cells, namely HeLa cell line. Methods: The anticancer activity was determined by inhibiting the proliferation of cells. Apoptosis inducing was determined by inhibiting proliferation cells and by SubG1 flow cytometry. The antioxidant activity is determined by using superoxide dismutase value and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity. Results: The highest anticancer activity at 24 h incubation was found for P.pellucidum extract (IC50: 2.85 µg/ml; The anticancer activity at 48 h incubation was more than at 24 h for all extracts. The highest apoptotic activity was found for P.betle (12.5 µg/ml at both 24 and 48 h incubatio. The highest antioxidant activity was also represented by P.betle extract. Conclusions: All Piperaceae extracts have high anticancer activity; longer incubation increase anticancer activity. P.betle extract has the highest antioxidant property. [J Exp Integr Med 2013; 3(3.000: 225-230

  12. Factors influencing the accumulation of tetraphenylphosphonium cation in HeLa cells.

    OpenAIRE

    Hiller, R.; SCHAEFER, A.; Zibirre, R; Kaback, H R; Koch, G.

    1984-01-01

    Exposure of HeLa cells to tetraphenylphosphonium cation (TPP+) results in a rapid accumulation intracellularly, and a steady-state level is reached within 10 min. Accumulation of [3H]TPP+ in HeLa cells is reduced under the following conditions: (i) after preincubation of cells in buffered saline or in medium containing two- to fourfold higher concentrations of amino acids, (ii) exposure to the alkylating agent L-1-tosylamido-2-phenyl-ethylchloromethyl ketone, (iii) ouabain-mediated inhibition...

  13. Association of ubiquitin-activating enzyme with HeLa cell chromosomes during mitosis.

    OpenAIRE

    Cook, J. C.; Chock, P B

    1991-01-01

    Ubiquitin-activating enzyme (E1) is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. Antibodies raised against E1 were affinity purified and used for immunostaining HeLa cells. Condensed chromosomes in mitotic cells were found to be strongly immunoreactive. Chromosomes from metaphase-arrested HeLa cells were isolated and chromosome-associated proteins were analyzed by Western blotting. E1 was detected in fractions containing isolated chromosomes. These res...

  14. The Sensitivity of Hela Kyoto Cell Line Transfected with Sensor HyPer2 to Cisplatin

    Directory of Open Access Journals (Sweden)

    Belova A.S.

    2014-12-01

    Full Text Available The aim of the investigation is to compare by means of MTT assay cytotoxic effect of cisplatin on the cells of HeLa Kyoto line and HeLa Kyoto line containing genetically-encoded sensor of hydrogen peroxide HyPer2 (HeLa Kyoto–HyPer2 line, and using staining by trypan blue to identify the doses of cisplatin causing cell death at different exposure time. Materials and Methods. A HeLa Kyoto cell line of human cervical carcinoma and HeLa Kyota line transfected with the cytoplasmic sensor of hydrogen peroxide (HeLa Kyoto–HyPer2 were used in the study. The analysis of cytotoxic and antiproliferative action of cisplatin in relation to the given cells was performed using MTT assay. Cell viability was determined after 24 h of incubation with the preparation at concentrations from 0 to 50 ?mol/L, then within the period from 0 to 24 h with an interval of 2 h at concentration of IC50; and also after 2, 4, 6, 8 h at concentrations from 9.3 to 833.3 ?mol/L a quantity of live and destructed cells was counted using staining by trypan blue. Results. After cisplatin expose the dose-response curves for cell viability of Hela Kyoto and HeLa Kyoto–HyPer2 cell lines were built according to MTT assay data. It was established that concentration of IC50 corresponding to the dose causing a loss of viability of 50% of cells is 1.3 times lower for HeLa Kyoto–HyPer2 compared to HeLa Kyoto. The results of staining by a vital agent trypan blue showed that inhibiting effects of cisplatin in concentration of IC50 by 24 h are mainly linked with the delay of cell division but not with their death. At concentrations up to 52 ?mol/L damage of the membranes does not occur during 8 h, and at superhigh concentrations — 416.7 ?mol/L — the damage is possible already 4 h after the exposure. Conclusion. Comparison of sensibility of the two cell lines to the effect of cisplatin showed that transfection of the cells with the fluorescent protein results in the increase of the sensitivity to cisplatin. When HeLa Kyoto–HyPer2 cells are exposed to the preparation at concentration of IC50 during 24 h, inhibition of cell division is observed; higher concentrations of the preparation cause increase of the number of dead cells and diminish the terms of their destruction.

  15. Inhibitory Activity of Synthesized Acetylated Procyanidin B1 Analogs against HeLa S3 Cells Proliferation

    Directory of Open Access Journals (Sweden)

    Syuhei Okamoto

    2014-02-01

    Full Text Available Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG, green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  16. Acridine Orange Stain for Determining Intracellular Enteropathogens in HeLa Cells

    OpenAIRE

    Miliotis, Marianne D.

    1991-01-01

    Green-fluorescent intracellular enteropathogenic bacteria were observed after infected HeLa cell monolayers were stained with acridine orange and counterstained with crystal violet at least 3 h after infection.

  17. Rheological properties of mammalian cell culture suspensions: Hybridoma and HeLa cell lines.

    Science.gov (United States)

    Shi, Y; Ryu, D D; Ballica, R

    1993-03-25

    Data on viscous (eta') and elastic (eta'') components of the complex viscosity versus oscillatory angular frequency (0.01 to 4.0 rad/s) with increasing strains were obtained for hybridoma cell (62'D3) and HeLa cell (S3) suspensions in PBS at 0.9 (mL/mL) cell volume fraction using a Weissenberg rheogoniometer equipped with two parallel plate geometry at ambient temperature. Both cell suspensions exhibited shear thinning behavior. From the measured viscoelastic properties, the yield stress was calculated. Hybridoma cell suspension (15 microm as the mean diameter of cells) showed the yield stress at 550 dyne/cm(2) that was 1.8 times higher than the value of HeLa cell suspension (22 microm mean diameter) as measured at the oscillatory angular frequency, 4.0 rad/s. The apparent viscosities of HeLa cell suspension at four concentrations and varying steady shear rate were also determined using the Brookfield rotational viscometer. The yield stress to steady shear test was about 130 dyne/cm(2) for HeLa cell suspension at 0.9 (mL/mL) cell volume fraction. The apparent viscosity was in the range about 1 approximately 1000 Poise depending on the cell concentration and shear rate applied. A modified semiempirical Mooney equation, eta = eta(0) exp[K gamma(.)(-beta)phi(c)(1 - K'' sigmaphi(c) /D)] was derived based on the cell concentration, the cell morphology, and the steady shear rate. The beta, shear rate index, was estimated as 0.159 in the range of shear rate, 0.16 to 22.1 s(-1), for the cell volume fractions from 0.6 to 0.9 (mL/mL). In this study, the methods of determining the shear sensitivity and the viscous and the elastic components of mammalian cell suspensions are described under the steady shear field. PMID:18609617

  18. Methanolic extracts from brown seaweeds Dictyota cilliolata and Dictyota menstrualis induce apoptosis in human cervical adenocarcinoma HeLa cells.

    Science.gov (United States)

    Gomes, Dayanne Lopes; Telles, Cinthia Beatrice Silva; Costa, Mariana Santana Santos Pereira; Almeida-Lima, Jailma; Costa, Leandro Silva; Keesen, Tatjana Souza Lima; Rocha, Hugo Alexandre Oliveira

    2015-01-01

    Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta) collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa). All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC) and Dictyota menstrualis (MEDM). In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma) cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity. PMID:25871374

  19. Methanolic Extracts from Brown Seaweeds Dictyota cilliolata and Dictyota menstrualis Induce Apoptosis in Human Cervical Adenocarcinoma HeLa Cells

    Directory of Open Access Journals (Sweden)

    Dayanne Lopes Gomes

    2015-04-01

    Full Text Available Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa. All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC and Dictyota menstrualis (MEDM. In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity.

  20. Photodynamic damage study of HeLa cell line using ALA

    Science.gov (United States)

    AlSalhi, M. S.; Atif, M.; AlObiadi, A. A.; Aldwayyan, A. S.

    2011-04-01

    The present study evaluates the photodynamic damage with 5-aminolevulinic acid (5-ALA) using HeLa as experimental model. HeLa cell line was irradiated with red light (He-Ne laser, ? = 632.8 CW nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of HeLa cells were studied. The optimal uptake of photosensitizer ALA in HeLa cells was investigated by means of PpIX fluorescence intensity by exciting the HeLa cell suspension at 450 nm and a detection wavelength set at 690 nm. Cells viability was determined by means of trypan blue solution. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 4 h in vitro incubation. We found that the combination with 5-ALA and laser irradiation leads to time/concentration-dependent increase of cells death and also energy doses-dependent enlarge the cells death. The fluorescence intensity after PDD of carcinoma cells reduce when compared with the control group. The fluorescence emission spectral profiles after PDD of carcinoma cells showed a dip around 425-525 nm when compared with the control group. This may be due to the damage of mitochondria component of cells. The percentage of HeLa cells after PDD shows that the percentage of cells survival rate as function of laser dose (power). Hence it is clear that at 200 ?g/ml ALA and 20 mW laser irradiation, more than 70% of HeLa cells were dead after 15 min.

  1. Heterofucan from Sargassum filipendula Induces Apoptosis in HeLa Cells

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre Oliveira Rocha

    2011-04-01

    Full Text Available Fucan is a term used to denominate a family of sulfated polysaccharides rich in sulfated L-fucose. Heterofucan SF-1.5v was extracted from the brown seaweed Sargassum filipendula by proteolytic digestion followed by sequential acetone precipitation. This fucan showed antiproliferative activity on Hela cells and induced apoptosis. However, SF-1.5v was not able to activate caspases. Moreover, SF-1.5v induced glycogen synthase kinase (GSK activation, but this protein is not involved in the heterofucan SF-1.5v induced apoptosis mechanism. In addition, ERK, p38, p53, pAKT and NF?B were not affected by the presence of SF-1.5v. We determined that SF-1.5v induces apoptosis in HeLa mainly by mitochondrial release of apoptosis-inducing factor (AIF into cytosol. In addition, SF-1.5v decreases the expression of anti-apoptotic protein Bcl-2 and increased expression of apoptogenic protein Bax. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.

  2. FRAKSINASI PROTEIN KAPANG LAUT Xylaria psidii KT30 DAN SITOTOKSISITASNYA TERHADAP SEL HeLa [Fractionation of Proteins of Marine Fungus Xylaria psidii KT30 and their Cytotoxicity against HeLa Cells

    Directory of Open Access Journals (Sweden)

    Mita Gebriella Inthe

    2014-06-01

    Full Text Available Cervical cancer is the most common cause of death for Indonesian women after human breast cancer. One of the efforts of cancer treatment is the utilization of natural compounds. One of the microorganisms having the potential as anticancer agent is endophytic fungi. Endophytic fungi from the marine habitat can be isolated from sea weeds, sea grasses, sponges, and mangroves. Xylaria psidii KT30, a marine fungus used in this study was isolated from red seaweed Kappaphycus alvarezii. Xylaria psidii KT30 was cultivated in potato dextrose broth medium for nine days at room temperature 27-29°C in shaking condition. This study aimed to obtain protein fractions from X. psidii KT30 and determine their toxicity againt Chang and HeLa cells. The fractionation process was conducted using DEAE Sephadex A-50 column chromatography and the toxicity was determined by Brine Shrimp Lethality Test (BSLT. The metabolites excreted in the culture broth was extracted using 90% of ammonium sulphate. The extract was then tested for their toxicity against HeLa and Chang cells by Microculture Tetrazolium Technique (MTT assay.The results revealed that LC50 of the protein extract of X. psidii KT30 was 104.95 ppm and IC50 was 69.9 ppm. Based on the National Cancer Institute (NCI, this value showed moderate cytotoxicity against HeLa cells.

  3. Hyperthermia HeLa cell treatment with silica coated manganese oxide nanoparticles

    CERN Document Server

    Villanueva, A; Alonso, JM; Rueda, T; Martínez, A; Crespo, P; Morales, MP; Fernandez, MA Gonzalez; Valdes, J; Rivero, G

    2009-01-01

    HeLa tumour cells incubated with ferromagnetic nanoparticles of manganese oxide perovskite La0.56(SrCa)0.22MnO3 were treated with a high frequency alternating magnetic field. The particles were previously coated with silica to improve their biocompatibility. The control assays made with HeLa tumour cells showed that cell survival and growth rate were not affected by the particle internalization in cells, or by the electromagnetic field on cells without nanoparticles. The application of an alternating electromagnetic field to cells incubated with this silica coated manganese oxide induced a significant cellular damage that finally lead to cell death by an apoptotic mechanism.

  4. Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells

    International Nuclear Information System (INIS)

    Naturally occurring phytoanthracycline, aloin, was used to radiosensitize HeLaS3 human cervix carcinoma cells. The results indicated that the cytotoxic adjuvant effect of aloin was synergistic with IR at all drug concentrations and comparable to the cytotoxicity of 5-10Gy IR alone. Radiosensitization of HeLaS3 cells was achieved by 60?M aloin which reduced IC50 dose of IR from 3.4- to 2Gy. The cell damage by both agents compromised cell capacity to conduct programmed cell death by apoptosis, and led to the synergic cytotoxic cell death by necrosis. (author)

  5. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    International Nuclear Information System (INIS)

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ?3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC50 value was found to be 4 ?g/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells

  6. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar, E-mail: dr.samirmukherjee@gmail.com

    2013-09-15

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ?3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC{sub 50} value was found to be 4 ?g/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  7. Intracellular Water Specific MR of Microbead-adherent Cells: HeLa Cell Intracellular Water Diffusion

    OpenAIRE

    Zhao, L; Sukstanskii, A.L.; Kroenke, C. D.; Song, J.; Piwnica-Worms, D.; Ackerman, J. J. H.; Neil, J. J.

    2008-01-01

    The 1H MR signal arising from flowing extracellular media in a perfused, microbead-adherent cultured cell system can be suppressed with a slice-selective, spin-echo pulse sequence. The signal from intracellular water can, thus, be selectively monitored. Herein, this technique was combined with pulsed field gradients to quantify intracellular water diffusion in HeLa cells. The intracellular water MR diffusion-signal attenuation at various diffusion times was well described by a biophysical mod...

  8. Cardiolipin synthesis is required to support human cholesterol biosynthesis from palmitate upon serum removal in Hela cells

    OpenAIRE

    Hauff, Kristin D.; Choi, Seok-Yong; Frohman, Michael A; Hatch, Grant M.

    2009-01-01

    We examined whether cardiolipin (CL) synthesis was required to support cholesterol (CH) production from palmitate in Hela cells. Knock down of human cardiolipin synthase-1 (hCLS1) in Hela cells has been shown to reduce CL synthesis (Choi et al., 2007). Hela cells stably expressing shRNA for hCLS1 and mock control cells were incubated for 16 h with [14C(U)]palmitate bound to albumin (1:1 molar ratio) in the absence or presence of serum. Knock down of hCLS1 in Hela cells resulted in a reduction...

  9. Poliovirus-induced alterations in HeLa cell membrane functions.

    OpenAIRE

    SCHAEFER, A.; Kühne, J; Zibirre, R; Koch, G.

    1982-01-01

    Protein synthesis, amino acid uptake, membrane potential, cell volume, Na+ and K+ levels, and ATPase (Na+,K+ activated; EC 3.6.1.3) activity were investigated in control and poliovirus-infected HeLa cells. Inhibition of protein synthesis was first observed 60 min postinfection and reached a maximum at 120 min. The onset of protein synthesis inhibition coincided with a decrease in cell volume and with an elevation of ATPase activity in isolated HeLa cell membranes. Some 3 h after virus adsorpt...

  10. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zori?a Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 ?g/mL.

  11. MiR-138 downregulates miRNA processing in HeLa cells by targeting RMND5A and decreasing Exportin-5 stability

    Science.gov (United States)

    Li, Jie; Chen, Ying; Qin, Xingliang; Wen, Junzhi; Ding, Hongmei; Xia, Wei; Li, Shaohua; Su, Xueting; Wang, Wei; Li, Hui; Zhao, Qiang; Fang, Tao; Qu, Lianghu; Shao, Ningsheng

    2014-01-01

    MicroRNAs (miRNAs) are a class of non-coding small RNAs that consist of ?22 nt and are involved in several biological processes by regulating target gene expression. MiR-138 has many biological functions and is often downregulated in cancers. Our results showed that overexpression of miR-138 downregulated target RMND5A (required for meiotic nuclear division 5 homolog A) and reduced Exportin-5 stability, which results in decreased levels of pre-miRNA nuclear export in HeLa cells. We also found that miR-138 could significantly inhibit HeLa cell migration by targeting RMND5A. Our study therefore identifies miR-138–RMND5A–Exportin-5 as a previously unknown miRNA processing regulatory pathway in HeLa cells. PMID:24057215

  12. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ? Curcumin induces oxidative stress by targeting the thioredoxin system. ? Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ? Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ? Curcumin sensitizes HeLa cells to oxidative stress.

  13. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells

    Directory of Open Access Journals (Sweden)

    Kaba SI

    2015-03-01

    Full Text Available Said I Kaba, Elena M Egorova Institute of General Pathology and Pathophysiology, Moscow, Russia Abstract: In the last decade, much attention has been paid to studies of the effect of silver nanoparticles (Ag NPs on tumor cells. Apart from elucidation of the mechanism of NPs’ interaction with mammalian cells, these studies are aimed at discovering new effective antitumor drugs. In this work, we report about the toxic effects of Ag NPs observed on two types of tumor cells: HeLa (adhesive cells and U937 (suspension cells. The Ag NPs were obtained by an original method of biochemical synthesis. Particle size was 13.2±4.72 nm, and zeta potential was -61.9±3.2 mV. The toxicity of Ag NPs in the concentration range 0.5–8.0 µg Ag/mL was determined by means of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and cytofluorometry after 4 and 24 hours' incubation. It was found that Ag NPs had high toxicity toward both cell types. The minimal concentrations where a toxicity effect was registered (toxicity thresholds lied in the range 0.5–2.0 µg Ag/mL. In parallel with the Ag NP solution, cells were incubated with water solutions of the NP stabilizer (aerosol-OT and Ag+ ions (as silver nitrate. It was shown that aerosol-OT had no effect on the viability on HeLa cells, but was moderately toxic toward U937, though less dangerous for these cells than Ag NPs. With Ag+ ions, for HeLa no toxic effect was observed, while for U937 they were as toxic as the Ag NPs. The data obtained indicate that Ag NPs as used in this study may prove to be useful for the creation of medicines for cancer therapy. Keywords: silver nanoparticles, cell viability, apoptosis, tumor cells

  14. Dynamic behavior of histone H1 microinjected into HeLa cells

    International Nuclear Information System (INIS)

    Histone H1 was purified from bovine thymus and radiolabeled with tritium by reductive methylation or with 125I using chloramine-T. Red blood cell-mediated microinjection was then used to introduce the labeled H1 molecules into HeLa cells synchronized in S phase. The injected H1 molecules rapidly entered HeLa nuclei, and a number of tests indicate that their association with chromatin was equivalent to that of endogenous histone H1. The injected molecules copurified with HeLa cell nucleosomes, exhibited a half-life of ?100h, and were hyperphosphorylated at mitosis. When injected HeLa cells were fused with mouse 3T3 fibroblasts < 10% of the labeled H1 molecules migrated to mouse nuclei during the next 48 h. Despite their slow rate of migration between nuclei, the injected H1 molecules were evenly distributed on mouse and human genomes soon after mitosis of HeLa-3T3 heterokaryons. These results suggest that although most histone H1 molecules are stably associated with interphase chromatin, they undergo extensive redistribution after mitosis

  15. Single-walled carbon nanotube interactions with HeLa cells

    Directory of Open Access Journals (Sweden)

    Musselman Inga H

    2007-10-01

    Full Text Available Abstract This work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma – mass spectrometry, and absorption and Raman spectroscopies. Confocal microRaman spectroscopy was used to demonstrate that DM-SWNTs were taken up by HeLa cells in a time- and temperature-dependent fashion. Transmission electron microscopy revealed SWNT-like material in intracellular vacuoles. The morphologies and growth rates of HeLa cells exposed to DM-SWNTs were statistically similar to control cells over the course of 4 d. Finally, flow cytometry was used to show that the fluorescence from MitoSOX™ Red, a selective indicator of superoxide in mitochondria, was statistically similar in both control cells and cells incubated in DM-SWNTs. The combined results indicate that under our sample preparation protocols and assay conditions, CoMoCAT DM-SWNT dispersions are not inherently cytotoxic to HeLa cells. We conclude with recommendations for improving the accuracy and comparability of carbon nanotube (CNT cytotoxicity reports.

  16. Trypanosoma cruzi trypomastigotes induce cytoskeleton modifications during HeLa cell invasion

    Scientific Electronic Library Online (English)

    Maria Cecília, Fernandes; Leonardo Rodrigues de, Andrade; Norma Windsor, Andrews; Renato Arruda, Mortara.

    2011-12-01

    Full Text Available It has been recently shown that Trypanosoma cruzi trypomastigotes subvert a constitutive membrane repair mechanism to invade HeLa cells. Using a membrane extraction protocol and high-resolution microscopy, the HeLa cytoskeleton and T. cruzi parasites were imaged during the invasion process after 15 [...] min and 45 min. Parasites were initially found under cells and were later observed in the cytoplasm. At later stages, parasite-driven protrusions with parallel filaments were observed, with trypomastigotes at their tips. We conclude that T. cruzi trypomastigotes induce deformations of the cortical actin cytoskeleton shortly after invasion, leading to the formation of pseudopod-like structures.

  17. The Ubiquitin Ligase UBE3A Dampens ERK Pathway Signalling in HPV E6 Transformed HeLa Cells

    OpenAIRE

    Aguilar-Martinez, Elisa; Morrisroe, Claire; Sharrocks, Andrew D

    2015-01-01

    Signalling through the ERK MAP kinase pathway plays an important role in many biological processes and it is often deregulated in disease states such as cancer. One major effect of MAP kinase signalling is to promote gene expression through the phosphorylation and activation of transcription factors like ELK1. ELK1 in turn controls the activity of immediate-early genes such as FOS. Here we have used ELK1 activation in HeLa cells as a read out to conduct a genome-wide siRNA screen to identify ...

  18. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells

    International Nuclear Information System (INIS)

    TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis

  19. Response of HeLa and Chinese hamster cells to low doses of photons and neutrons

    International Nuclear Information System (INIS)

    Survival of colony-forming ability has been estimated for HeLa and Chinese hamster (ovary) cells irradiated in vitro with 300 k V x-rays at 100 rad min-1, with 60Co gamma rays over protracted periods of time, with 14 MeV DT neutrons at 10 to 30 rad min-1 and with protracted 252Cf neutron irradiation. A computer program has been used to analyse the experimental data to determine the best fit to a Puck-type survival curve. Comparison of the survival curves of HeLa cells show that oxygen was a simple DMF when cells were only hypoxic but not when they were completely anoxic. The same contrast applied to a change in LET from 300 k V x-rays to 14 MeV neutrons; with CHO cells a simple DMF was found but with HeLa cells it was not. With protracted cobalt gamma-irradiation, oxygen was a simple DMF; with californium it was not. The comparison between cobalt and californium is therefore complicated. In two series of experiments the dose-response of both HeLa and CHO cells was measured over the shoulder as well as the straight-line portions of the Puck curves for both 300 k V x-rays and 14 MeV neutrons. The initial slopes of the survival curves could therefore be computed. These observations lead to the conclusion that for x-rays the initial slope of the survival curve for CHO cells is only just significantly different from zero. For HeLa cells the x-ray curve has a well defined initial slope. (author)

  20. Cytotoxic Effects of Different Extracts and Latex of Ficus carica L. on HeLa cell Line.

    Science.gov (United States)

    Khodarahmi, Ghadam Ali; Ghasemi, Nasrollah; Hassanzadeh, Farshid; Safaie, Marzieh

    2011-01-01

    It has been reported that latex and extracts of different species of Ficus are cytotoxic to some human cancerous cell lines. In this study, cytotoxicity of fruit and leaf extracts as well as the latex of Ficuscarica L. on HeLa cell line were evaluated. ethanolic extracts of leaves and fruits were prepared through percolation and ethyl acetate and dichloromethane extracts were prepared by reflux method. Cytotoxic effects of these extracts and latex against HeLa cell line were then examined. Briefly, He Lacells were seeded at 2 × 10(4) cells/mL in 96-well plates. After 24 h incubation at 37(°)C, the cells were treated with different concentrations of the extracts or latex. The viability of the cells was determined by the reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) from formazan following 48 h incubation and the absorbance was measured at 540 nm using an ELISA plate reader. The results indicated that the latex and different extracts of Ficus carica could reduce the viability of the He Lacells at concentrations as low as 2 µg/mL in a dose dependent manner. The approximate IC50 values of the ethanolic, ethyl acetate and dichloromethane extracts of the leaves and fruits were 10, 19, 12 µg/mL and 12, 12, 11.5 µg/mL, respectively. The IC50 for the latex was about 17 µg/mL. PMID:24250354

  1. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells

    Directory of Open Access Journals (Sweden)

    Elgjo Kjell

    2009-07-01

    Full Text Available Abstract Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.

  2. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Julie Kirkegaard

    2014-08-01

    Full Text Available This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  3. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  4. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    Scientific Electronic Library Online (English)

    C., Chen; R.L., Yang.

    2013-08-01

    Full Text Available MP [4-(3?,3?-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characterist [...] ic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1 , p16INK4a and Gadd45?, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.

  5. Localization of Cap-Binding Protein in Subcellular Fractions of HeLa Cells

    OpenAIRE

    Hansen, Joanna L.; Etchison, Diane O.; Hershey, John W.B.; Ehrenfeld, Ellie

    1982-01-01

    The 26,000-Mr cap-binding protein was analyzed by a cross-linking assay in cell fractions from uninfected and poliovirus-infected HeLa cells. Cap-binding protein was found in the postribosomal supernatant (S-200) and in the ribosomal salt wash. The cap-binding protein in the S-200 had a sedimentation coefficient of 5 to 7S and lacked the ability to restore translation in extracts of poliovirus-infected cells.

  6. Shutoff of HeLa cell protein synthesis by encephalomyocarditis virus and poliovirus: a comparative study.

    OpenAIRE

    Jen, G; Detjen, B M; Thach, R. E.

    1980-01-01

    Previous experimental results have suggested that poliovirus and encephalomyocarditis (EMC) virus employ very different mechanisms for shutting off host protein synthesis. However, this conclusion is suspect, inasmuch as different cell types were used for the two viruses; hence the apparent mechanistic differences might be specific for cell type and not virus type. To test this possibility we compared shutoff mechanisms in poliovirus- and EMC virus-infected HeLa cells. Striking differences we...

  7. Translation of capped viral mRNAs in poliovirus-infected HeLa cells.

    OpenAIRE

    Alonso, M. A.; Carrasco, L.

    1982-01-01

    HeLa cells doubly infected with Semliki Forest virus (SFV) and poliovirus synthesize either more poliovirus proteins or more SFV late proteins depending on the time of super-infection with poliovirus. Under some conditions, the infected cells translate uncapped poliovirus mRNA and capped 26S mRNA from SFV simultaneously, even though host protein synthesis has been shut down. Vesicular stomatitis virus (VSV) protein synthesis is depressed drastically when VSV-infected cells are super-infected ...

  8. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  9. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells

    International Nuclear Information System (INIS)

    Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following ?-irradiation. The levels of ?H2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSoxTM Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of ?-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of ?-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation. (author)

  10. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Dini, Luciana

    2015-06-01

    This study reports the induction of autophagy by two concentrations (2×103 or 2×104 NPs/cell) of 30 nm sized ?-D-Glucose- and ?-D-Glucose/Sucrose-coated silver NanoParticles (AgNPs-G and AgNPs-GS respectively) in HeLa cells treated for 6, 12, 24 and 48 hrs. Cell viability was assessed by Neutral Red (NR) test and morphological evaluation. In addition ROS generation (NBT test) and induction of apoptosis/necrosis (Annexin V/Propidium Iodide-Annexin V/PI staining) and autophagy (Monodansylcadaverine-MDC staining) were evaluated. Cytotoxicity, ROS generation and morphology changes depend on NPs type and amount, and incubation time. As a general result, AgNPs-G are more toxic than AgNPs-GS. Moreover, the lowest AgNPs-GS concentration is ineffective on cell viability and ROS generation. Only 10% and 25% of viable HeLa cells were found at the end of incubation time in the presence of higher amount of AgNPs - G and AgNPs-GS respectively and in parallel ROS generation is induced. To elucidate the type of cell death, Annexin V/PI and MDC staining was performed. Interestingly, irrespective of coating type and NPs amount the percentage of apoptotic cells (Annexin V+/PI-) is similar to viable HeLa cells. At contrary, we observed a NPs amount dependent autophagy and necrosis induction. In fact, the lower amount of NPs induces autophagy (MDC+/PI- cells) whereas the higher one induces necrosis (Annexin V+/PI+ cells). Our findings suggest that AgNPs-induced cytotoxicity depends on AgNPs amount and type and provide preliminary evidence of induction of autophagy in HeLa cells cultured in the presence of AgNPs.

  11. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    International Nuclear Information System (INIS)

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics. (paper)

  12. Cell damage resulting from the labeling of rat lymphocytes and HeLaS3 cells with In-111 oxine

    International Nuclear Information System (INIS)

    Rat thoracic-duct lymphocytes and HeLa S3 cells were labeled in vitro with different amounts of indium-111 oxine. The labeled rat lymphocytes were tested for their ability to recirculate normally in syngeneic rats; the labeled HeLa S3 cells for their ability to divide to form colonies in tissue culture. Both cell types behaved normally by these criteria when labeled with small amounts of indium-111 oxine but at higher doses were obviously damaged. Evidence was obtained for the HeLa S3 cells that this damage was primarily radiation-induced. These findings may impose limitations on the use of In-111 oxine as a cell label for clinical purposes

  13. Buforin IIb induces endoplasmic reticulum stress-mediated apoptosis in HeLa cells.

    Science.gov (United States)

    Jang, Ju Hye; Kim, Yu Jin; Kim, Hyun; Kim, Sun Chang; Cho, Ju Hyun

    2015-07-01

    Buforin IIb, a novel cell-penetrating anticancer peptide derived from histone H2A, has been reported to induce mitochondria-dependent apoptosis in tumor cells. However, increasing evidence suggests that endoplasmic reticulum and mitochondria cooperate to signal cell death. In this study, we investigated the mechanism of buforin IIb-induced apoptosis in human cervical carcinoma HeLa cells by focusing on ER stress-mediated mitochondrial membrane permeabilization. Two-dimensional PAGE coupled with MALDI-TOF and western blot analysis showed that buforin IIb treatment of HeLa cells resulted in upregulation of ER stress proteins. PBA (ER stress inhibitor) and BAPTA/AM (Ca(2+) chelator) pretreatment rescued viability of buforin IIb-treated cells through abolishing phosphorylation of SAPK/JNK and p38 MAPK. SP600125 (SAPK/JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated down-regulation of Bcl-xL/Bcl-2, mitochondrial translocation of Bax, and cytochrome c release from mitochondria. Taken together, our data suggest that the ER stress pathway has an important role in the buforin IIb-induced apoptosis in HeLa cells. PMID:25958204

  14. DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells.

    OpenAIRE

    Syväoja, J; Suomensaari, S; Nishida, C; Goldsmith, J S; Chui, G S; Jain, S.; Linn, S.

    1990-01-01

    DNA polymerases alpha, delta, and epsilon have been purified and characterized from the same HeLa cell extract in order to determine their relationship by comparing them from the same cell type. The catalytic properties and the primary structures of the large subunits of the DNA polymerases as compared by partial peptide mapping with N-chlorosuccinimide are different. Likewise, the small subunit of DNA polymerase epsilon appears to be distinct from the large subunit of the same polymerase and...

  15. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 ?g/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 ?g/mL concentration for 16 h, but high in 400-500 ?g/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 ?g/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  16. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    International Nuclear Information System (INIS)

    The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on human cervix epithelioid carcinoma cell line (HeLa). Nickel oxide precursors were synthesized by an nickel sulphate-excess urea reaction in boiling aqueous solution. The synthesized NiO nanoparticles (< 200 nm) were investigated by X-ray diffraction analysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in 50-500 micro g/ml NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy. The cytotoxicity was observed low in 50-200 micro g/ml concentration for 16 h, but high in 400-500 micro g/ml concentration for 2-6 h. HeLa cells cytoplasm membrane was lysed and detached from the well surface in 400 micro g/ml concentration NiO nanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in culture on the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation. (authors)

  17. A molecular understanding of d-homoestrone-induced G2/M cell cycle arrest in HeLa human cervical carcinoma cells.

    Science.gov (United States)

    Minorics, Renáta; Bózsity, Noémi; Molnár, Judit; Wölfling, János; Mernyák, Erzsébet; Schneider, Gyula; Ocsovszki, Imre; Zupkó, István

    2015-10-01

    2-Methoxyestradiol (ME), one of the most widely investigated A-ring-modified metabolites of estrone, exerts significant anticancer activity on numerous cancer cell lines. Its pharmacological actions, including cell cycle arrest, microtubule disruption and pro-apoptotic activity, have already been described in detail. The currently tested d-ring-modified analogue of estrone, d-homoestrone, selectively inhibits cervical cancer cell proliferation and induces a G2/M phase cell cycle blockade, resulting in the development of apoptosis. The question arose of whether the difference in the chemical structures of these analogues can influence the mechanism of anticancer action. The aim of the present study was therefore to elucidate the molecular contributors of intracellular processes induced by d-homoestrone in HeLa cells. Apoptosis triggered by d-homoestrone develops through activation of the intrinsic pathway, as demonstrated by determination of the activities of caspase-8 and -9. It was revealed that d-homoestrone-treated HeLa cells are not able to enter mitosis because the cyclin-dependent kinase 1-cyclin B complex loses its activity, resulting in the decreased inactivation of stathmin and a concomitant disturbance of microtubule formation. However, unlike 2-ME, d-homoestrone does not exert a direct effect on tubulin polymerization. These results led to the conclusion that the d-homoestrone-triggered intracellular processes resulting in a cell cycle arrest and apoptosis in HeLa cells differ from those in the case of 2-ME. This may be regarded as an alternative mechanism of action among steroidal anticancer compounds. PMID:26228523

  18. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells.

    OpenAIRE

    Swanson, A F; Kuo, C. C.(National Central University, 32054, Chung-li, Taiwan)

    1994-01-01

    Recent studies have shown that the major outer membrane protein (MOMP) of Chlamydia trachomatis is glycosylated. The glycan of the MOMP of C. trachomatis serovar L2 was separated from the glycoprotein with N-glycanase, reduced with tritiated NaBH4, and tested for its ability to interact with HeLa cells. The [3H]glycan was shown to attach readily to HeLa cells at 25 or 37 degrees C. This process was slower at 4 degrees C. Competition for possibly similar receptor sites on HeLa cells between th...

  19. A key inactivation factor of HeLa cell viability by a plasma flow

    Science.gov (United States)

    Sato, Takehiko; Yokoyama, Mayo; Johkura, Kohei

    2011-09-01

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H2O2 in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H2O2, we assessed the differences in the effects of plasma-treated medium and H2O2-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H2O2 into the cells, response to H2O2 decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H2O2 is one of the main factors responsible for inactivation of HeLa cell viability.

  20. A key inactivation factor of HeLa cell viability by a plasma flow

    International Nuclear Information System (INIS)

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H2O2 in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H2O2, we assessed the differences in the effects of plasma-treated medium and H2O2-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H2O2 into the cells, response to H2O2 decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H2O2 is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  1. A key inactivation factor of HeLa cell viability by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takehiko; Yokoyama, Mayo [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: sato@ifs.tohoku.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan)

    2011-09-21

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H{sub 2}O{sub 2} in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H{sub 2}O{sub 2}, we assessed the differences in the effects of plasma-treated medium and H{sub 2}O{sub 2}-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H{sub 2}O{sub 2} into the cells, response to H{sub 2}O{sub 2} decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H{sub 2}O{sub 2} is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  2. Radioprotective effect of calorie restriction in Hela cells and SD rats

    International Nuclear Information System (INIS)

    Objective: To explore the effect of low calorie metabolism on the survival of HeLa cells exposed to X-rays, and the influence of starvation on the antioxidative factors in the blood of rats after irradiation. Methods: MTT method was used to evaluate the impact of different concentration glucose on the proliferation of HeLa cells. Colony formation assay was employed to detect the influence of glucose (1, 5, 10 and 25 mmol/L) on radiosensitivity of HeLa cells. Flow cytometry assay was used to analyze distribution of cell cycle and apoptosis. 60 male SD rats were randomly divided into 6 groups with 10 rats each. Rats in every two groups were fed ad libitum, fasted for 24 h and fasted for 48 h, respectively. Rats in one group of each approach were respectively exposed to whole-body X-rays at 11 Gy. At 2 h after irradiation,all of rats were sacrificed and their venous blood was collected. Elisa kits were used to detect superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Results: An increased viability was observed in HeLa cells treated with the glucose at low concentration (<25 mmol/L), while HeLa cell growth was inhibited by glucose at doses of >25 mmol/L. Relevant to cells treated with 1 mmoL/L glucose, SERs (sensitive enhancement ratio) in cells exposed to 5, 10 and 25 mmol/L glucose were 1.07, 1.10 and 1.23,respectively. A reduction of G2/M and S arrests and apoptosis caused by 6 Gy X-ray irradiation were observed [(49.68 ±1.88)% and (35.54±1.45)% at G2/M phase, (16.88 ±1.22)% and (10.23 ±1.65)% at S phase, t=10.42, 5.61, P<0.05] and in the cells treated with 1 mmol/L glucose compared with cells treated with 25 mmol/L glucose [(25.50 ± 0.95)% and (7.56 ± 1.07)%, t=21.72, P<0.05].Without irradiation, calorie restriction exhibited a negligible influence on SOD and T-AOC in rats. However, after 11 Gy irradiation, compared with rats fed ad libitum, the levels of SOD and T-AOC were significantly increased in rats with calorie restriction (t=40.32, 42.78, P<0.05). Conclusions: Calorie restriction has a certain radioprotective effect in vivo and in vitro. (authors)

  3. UVC modulation of epidermal growth factor receptor number in HeLa S3 cells.

    Science.gov (United States)

    Ley, K D; Ellem, K A

    1992-02-01

    Induction of transforming growth factor alpha (TGF alpha) in human cell lines by 254 nm ultraviolet radiation (UVC) suggests that TGF alpha may have an autocrine role in UV-induced tumorigenesis. Binding of TGF alpha to epidermal growth factor receptor (EGFR) is an important initial step in transducing the signal for cell division. Experiments reported herein were designed to determine whether, in addition to inducing TGF alpha, UVC might also induce changes in the levels of EGFR on HeLa S3 cells [125I]EGF binding to HeLa S3 cells was inhibited 8 h after exposure to 7 J/m2 UVC radiation followed by increased [125I]EGF binding 16-32 h after irradiation. Scatchard analysis of EGF binding at 28 h indicated that irradiated cells had 60% more receptors with no differences in apparent binding affinities (56,300 +/- 5494 receptors versus 34,900 +/- 1899 receptors in sham-irradiated cells). Cell cycle analysis at 8 h post-UVC indicated that cells had slowed traverse of S-phase, but by 24 and 48 h, times at which increases in [125I]EGF were evident, cell cycle distributions were essentially back to normal. These results indicate that UVC modulates EGFR numbers in HeLa S3 cells and suggest that solar radiation may modulate EGFR numbers in keratinocytes or other cells in the skin. The presence of UV-induced growth factors such as TGF alpha and increased levels of EGFR may result in sustained cell proliferation by autocrine or paracrine mechanisms. These populations of cycling cells would then be at risk for subsequent mutational events that result in transformation to a tumorigenic state. PMID:1740007

  4. PARP-1 is a key player in controlling apoptosis induced by high LET carbon ion beam and low LET gamma radiation in HeLa cells

    International Nuclear Information System (INIS)

    PARP-1 inhibitors have long been used as chemo-sensitizer or radio-sensitizer and specific PARP-1 inhibitors are also in clinical trial for the treatment of various cancers. PARP-1 is not only involved in DNA repair but also plays very complex role in induction of apoptosis in postirradiation condition. Our objective is to investigate role of PARP-1 in apoptosis triggered by high LET carbon ion beam (CIB) and low LET gamma. We have treated HeLa and PARP-1 knock down HeLa (Hsil) cells with various doses of CIB and gamma. We measured DNA damage by comet assay and various apoptotic parameters such as nuclear fragmentation, activation of caspase-3,8,9, AIF translocation etc. We observed higher DNA breaks and also higher apoptosis in HsiI cells compared with HeLa cells. Both CIB and gamma treatment results G2/M arrest but unlike gamma CIB makes S-phase delay, implicating that gamma and CIB triggers different pathway after DNA damage. Cell death by CIB or by gamma increased up on knocking down of PARP-1 but increase is higher for high LET CIB compared with low LET gamma. Furthermore, expression level of PARP-1 controls the intensity of overall apoptosis in cells in post-irradiation condition. So, combination of PARP-1 inhibition with high LET CIB could be a promising tool to combat cancer. (author)

  5. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    International Nuclear Information System (INIS)

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ? NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ? NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ? The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ? N terminal of NP1 was critical for apoptosis induction and nuclear localization

  6. Effect of different stress factors on IL-6 and leptin expression in HELA cell cultures

    International Nuclear Information System (INIS)

    Objective: To study the effect of three stress factors high glucose (HG), lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) on the expression of culture supernatant IL-6 (IL-6) and leptin contents of HELA cell line. Methods: HELA cell culture models of severe inflammatory response syndrome were prepared with cultures treated with 50 mmol/L glucose (HG), 4 ?g/ ml LPS and 100 ?mol/L H2O2 respectively and supernatant contents of IL-6 and leptin were measured with RIA at 1h, 6h and 24h. Results: Generally speaking, the culture supernatant contents of IL-6 gradually increased and leptin contents gradually decreased with significant differences from those in cultures not treated with either stress factor at 6h and 12h (P<0.05). Conclusion: Leptin as a possible anti-inflammatory cytokine might plays an important protective role in severe inflammatory response. (authors)

  7. Anticancer Activity Test for Extracts of Sarang Semut Plant (Myrmecodya pendens) to HeLa and MCM-B2 Cells

    OpenAIRE

    A. Soeksmanto; M.A. Subroto; H. Wijaya; P. Simanjuntak

    2010-01-01

    The aim of this study is to investigate anticancer activity of methanol extract (ethylacetate, n-buthanol and water partitions) and water extract from Sarang semut (local name), Myrmecodya pendens which is one of Rubiaceae family. Within Papua area (Indonesia), this medicinal plant has been used traditionally as alternative treatment for ulcer, tumor and cancer. In this study, the extracts of this plant were tested for their activities in some cancer cells (HeLa and MCM-B2 cell). The result s...

  8. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72

    OpenAIRE

    Martín, Rebeca; Martín, Carla; Escobedo, Susana; Suárez, Juan E; Quirós, Luis M

    2013-01-01

    Abstract Background The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Results Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single gl...

  9. Isolation of an active transcription initiation complex from HeLa cell-free extract.

    OpenAIRE

    Tolunay, H E; Yang, L.; Anderson, W F; Safer, B

    1984-01-01

    A two-step procedure has been developed for the formation of RNA polymerase II transcription initiation and elongation complexes. Initiation complexes are rapidly formed in HeLa cell-free extract supplemented with a DNA template containing the adenovirus 2 major late promoter and ATP. Assembly of transcription components required for correct initiation is absolutely dependent on specific eukaryotic promoter sequences. Sarkosyl-sensitive transcription initiation complexes are rapidly converted...

  10. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells. Keywords: folate-PEG-chlorin, folate receptor positive cells, cell death model, mechanism

  11. Anticancer Activity Test for Extracts of Sarang Semut Plant (Myrmecodya pendens to HeLa and MCM-B2 Cells

    Directory of Open Access Journals (Sweden)

    A. Soeksmanto

    2010-01-01

    Full Text Available The aim of this study is to investigate anticancer activity of methanol extract (ethylacetate, n-buthanol and water partitions and water extract from Sarang semut (local name, Myrmecodya pendens which is one of Rubiaceae family. Within Papua area (Indonesia, this medicinal plant has been used traditionally as alternative treatment for ulcer, tumor and cancer. In this study, the extracts of this plant were tested for their activities in some cancer cells (HeLa and MCM-B2 cell. The result showed that water extract of this plant has better anti cancer activity compared to other extracts. The IC50 value of water extract A is 27.61 ppm (HeLa and 54.57 ppm (MCM-B2, while water extract B is 29.36 ppm (HeLa and 74.20 ppm (MCM-B2. Our study concluded that polar extract (water exhibited higher anticancer activity than non-polar extracts (ethylacetate and n-buthanol.

  12. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  13. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  14. Monoolein-based cubosomes affect lipid profile in HeLa cells.

    Science.gov (United States)

    Rosa, Antonella; Murgia, Sergio; Putzu, Danilo; Meli, Valeria; Falchi, Angela Maria

    2015-10-01

    Monoolein-based cubosomes are promising drug delivery nanocarriers for theranostic purposes. Nevertheless, a small amount of research has been undertaken to investigate the impact of these biocompatible nanoparticles on cell lipid profile. The purpose of the present investigation was to explore changes in lipid components occurring in human carcinoma HeLa cells when exposed to short-term treatments (2 and 4h) with monoolein-based cubosomes stabilized by Pluronic F108 (MO/PF108). A combination of TLC and reversed-phase HPLC with DAD and ELSD detection was performed to analyze cell total fatty acid profile and levels of phospholipids, free cholesterol, triacylglycerols, and cholesteryl esters. The treatments with MO/PF108 cubosomes, at non-cytotoxic concentration (83?g/mL of MO), affected HeLa fatty acid profile, and a significant increase in the level of oleic acid 18:1 n-9 was observed in treated cells after lipid component saponification. Nanoparticle uptake modulated HeLa cell lipid composition, inducing a remarkable incorporation of oleic acid in the phospholipid and triacylglycerol fractions, whereas no changes were observed in the cellular levels of free cholesterol and cholesteryl oleate. Moreover, cell-based fluorescent measurements of intracellular membranes and lipid droplet content were assessed on cubosome-treated cells with an alternative technique using Nile red staining. A significant increase in the amount of the intracellular membranes and mostly in the cytoplasmic lipid droplets was detected, confirming that monoolein-based cubosome treatment influences the synthesis of intracellular membranes and accumulation of lipid droplets. PMID:26341749

  15. Study on effects of organic solvents on Hela cells by digital holography

    Science.gov (United States)

    Ouyang, Liting; Wang, Dayong; Wang, Yunxin; Wang, Xinlong; Marx, Lisa

    2012-11-01

    In the anticancer research with traditional Chinese medicine, many medicinally effective components can only dissolve in higher polar organic solvents, such as ethanol, dimethyl sulfoxide (DMSO) etc. However, organic solvents may directly interfere with the accuracy of therapeutic efficacy evaluation. Therefore the study on effects of organic solvents with different concentrations on Hela cells is of great significance. The digital holography is a non-destructive and non-contact method to image the transparent sample without staining and with the high precision and high resolution. In this paper, the digital holography is proposed to replace the methyl-thiazol-tetrazolium (MTT) or the Giemsa dye method. Based on the pre-magnification off-axis Fresnel digital holographic theory, an inverted microscopy system is built to obtain the phase-contrast images of the Hela cells, which are added different concentrations of organic solvents. Compared to the control group, there is significantly differences with the shapes of Hela cells with different organic solvents. The size of cell with ethanol 25% is no significantly difference with the control group. But the sizes of cells in the solutions with ethanol 12.5% and 50% are smaller than the control group. Next, the sizes of cells in the solutions with DMSO 12.5%, 25% and 50% are great smaller, compared with the control group. The results show that the digital holography has high practical value in detecting the changes in the shape of cells and is helpful in the choice of organic solvents for further apoptosis study.

  16. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2015-10-01

    Full Text Available Yanhong Zheng,1 Yunlan Tang,2 Zhirong Bao,1 Hui Wang,1 Feng Ren,1 Mingxiong Guo,2 Hong Quan,1 Changzhong Jiang11Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University; 2College of Life Sciences, Wuhan University, Wuhan, People’s Republic of ChinaAbstract: Nanomaterials have an advantage in “personalized” therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 µg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. Keywords: superparamagnetism, MRI/CT, chemoradiotherapy, intelligent nanoprobe

  17. Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles

    DEFF Research Database (Denmark)

    Vetrone, Fiorenzo; Naccache, Rafik

    2010-01-01

    We report on the efficient incorporation of non-functionalized NaYF(4) : Er(3+), Yb(3+) nanoparticles inside HeLa live cancer cells by direct endocytosis. The efficient two-photon excited near-infrared-to-visible upconversion fluorescence of these nanoparticles is then used to obtain high-contrast intracellular fluorescence images of single cells. These images reveal a redistribution of the nanoparticles inside the cell as the incubation time increases. Thus, non-functionalized NaYF(4) : Er(3+), Yb(3+) nanoparticles emerge as very promising fluorescence probes for real-time imaging of cellular dynamics.

  18. Spontaneous and radiation induced cell death in HeLa S3 human carcinoma

    International Nuclear Information System (INIS)

    Radiation biologists have classified radiation-induced cell death based on cell proliferative capacity to either mitotic or interphase death. Cytologists have revealed two morphologically and biochemically diverse forms of cell death, apoptosis and necrosis. While the knowledge of the former is already well exploited by radiologists, cell susceptibility to apoptosis and necrosis is still under investigation. We studied characteristics of spontaneous cell death, and dose dependence and time course of radiation-induced cell death of human uterine cervix epitheloid carcinoma HeLaS3 in culture. Cells were irradiated with 2-40 Gy of ?-rays. The effect on growth, viability, morphology and genomic DNA structure were followed 24-72 h after irradiation. Cell viability was evaluated by trypan-blue exclusion assay and cell morphology by in situ DNA staining with propidium iodide. Cell genomic DNA fragmentation pattern was determined by electrophoresis on 2% agarose gels. At all cell densities 25-35% cells were PI positive and their DNA was fragmented to a high molecular size (?20 kbp), but the internucleosomal ladder was not observed. A significant decrease in viability to 33% was observed 72 h post 40 Gy irradiation. It corresponded to 55% of PI positive cells. A smear of smaller DNA fragments (0.1-1 kbp), 24 h after 10-20 Gy irradiation was considered as proof that the dominant form of radiation-induced cell death was necrosis. It was concluded that the dominant form of radiation-induced cell death in HeLaS3 population was necrosis and the radiation dose which caused 50% of cell death after 72 h (termed ND50) was between 30-40 Gy. (author)

  19. Vibrio fluvialis attachs to but does not enter Hela cell monolayers

    Scientific Electronic Library Online (English)

    I. T., Carvalho; V., Magalhães; N. C., Leal; V., Melo; M., Magalhães.

    1994-06-01

    Full Text Available Considering the possibility that invasiveness could be a neglected factor of virulence in Vibrio fluvialis-linked enteritis, since a dysenteric form of the disease was seen in Bangladesh, we studied 12 Brazilian strains of the organism, six clinical and six environmental, to determine whether they m [...] ight be able to enter into HeLa cell monolayers or would carry plasmids incidentally involved in invasiveness. Four human and two environmental isolates attached to but did not enter into the cells. Though five strains harbored plasmids,no relationship was found between the carriage of these genetic elements and adhesiveness.

  20. Internal binding of eucaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts.

    OpenAIRE

    Pelletier, J.; Sonenberg, N

    1989-01-01

    Translation initiation on poliovirus mRNA in poliovirus-infected cells has been shown to occur by internal binding of ribosomes to the 5' noncoding region (J. Pelletier and N. Sonenberg, Nature [London] 334:320-325, 1988). Here we show that internal ribosome binding can occur in HeLa cell extracts in vitro. Internal binding to the 5' noncoding region of poliovirus mRNA in a bicistronic context was independent of the upstream open reading frame and did not require poliovirus proteins.

  1. The effect of caffeine on x-ray repair of radioresistant HeLa cells

    International Nuclear Information System (INIS)

    The contribution of caffeine-modifiable repair process to the radiosensitivity of a radioresistant HeLa strain (RC-355) has been investigated in comparison with control HeLa strain (CC-24). Both the final slope and the shoulder of X-ray survival curve for log-phase cells were affected by caffeine posttreatment. When the treatment with 10 mM caffeine delayed, an increase in survival was observed with increasing interval between irradiation and the treatment. During first several hours of the repair interval, the steepness of the final slope of survival curve decreased rapidly, and rate of the decrease was found to be higher in RC-355 than in CC-24 cells. Longer time (24 hours or more) before the initiation of caffeine treatment was required for the complete recovery of the shoulder. When the cells were incubated in plateau-phase after irradiation, an appreciable increase in survival was observed in comparison with when plated immediately following X-ray. The increase was found to be greater for RC-355 than for CC-24. The results suggest that the radioresistant RC-355 cells repaired more X-ray-induced PLD than CC-24 cells did. (author)

  2. Enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia

    International Nuclear Information System (INIS)

    Mitotically synchronized cultures of HeLa S-3 cells were subjected to the treatment of radiation (400 rad), hyperthermia (430C), and a combination of both at different phases of the division cycle. The radioresistance was most pronounced in the mid G-1 and late S phases, while thermal resistance was greatest in the early G-1 phase and steadily decreased as cells entered the S phase. Cells in the late S and early G-2 phases were found to be most sensitive to hyperthermia. The sequential treatment of radiation immediately followed by hyperthermia resulted in an enhanced cell killing throughout the cell cycle with a marked synergism occurring in cells in the late S phase. The age-response function of the combined treatment was more similar to that of the thermal age response

  3. Increase of UV-resistance in xeroderma pigmentosum cells by human HeLaS3 DNA transfection

    International Nuclear Information System (INIS)

    The DNA-mediated gene transfer had been carried out by both calcium phosphate coprecipitation and electroporation method. The cellular DNA and DNA fragments from human cervical carcinoma HeLaS3 cells were introduced with PSV2Neo DNA into XP20S (SV40) cells. The transfectants were picked up after twice selections by G418 and 3 J/m2 UV-irradiation. The results showed that cellular DNA and Bg1 I, Xho I digested DNA fragments from HeLaS3 could correct the deficiency of excision repair gene in XP cells, and cause the recipient cells resistant to UV irradiation. The second transfection experiment confirmed that HeLaS3 DNA were really integrated into XP cell chromosome and stably expressed within the cell genome

  4. Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations.

    OpenAIRE

    Swanson, P E; Carroll, S. B.; Zhang, X F; Mackey, M. A.

    1995-01-01

    Hyperthermia is an efficient means of inducing cell death in vivo and in vitro. Among human neoplastic cells, HeLa S3 cells are susceptible to heat injury when exposed to long duration moderate hyperthermia (41.5 C), conditions that are reproducible and sustainable in the clinical setting. Hence, HeLa S3 cells are a useful substrate for evaluation of hyperthermic injury in human neoplasia. Previous studies have demonstrated a consistent response of HeLa S3 cells to moderate hyperthermia: spon...

  5. The fibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor ?-mediated superoxide dismutase induction in HeLa cells

    International Nuclear Information System (INIS)

    The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) ? and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofi brate (FF). Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. In HeLa cells total SOD activity was increased with increasing FF doses up to 30 ?M. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, PPAR? and PPAR? were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and PPAR? were not increased with FF. However, the mRNA of PPAR? was increased with FF. FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with PPAR?.

  6. Proteomic, cellular, and network analyses reveal new DUSP3 interactions with nucleolar proteins in HeLa cells.

    Science.gov (United States)

    Panico, Karine; Forti, Fabio Luis

    2013-12-01

    DUSP3 (or Vaccinia virus phosphatase VH1-related; VHR) is a small dual-specificity phosphatase known to dephosphorylate c-Jun N-terminal kinases and extracellular signal-regulated kinases. In human cervical cancer cells, DUSP3 is overexpressed, localizes preferentially to the nucleus, and plays a key role in cellular proliferation and senescence triggering. Other DUSP3 functions are still unknown, as illustrated by recent and unpublished results from our group showing that this enzyme mediates DNA damage response or repair processes. In this study, we sought to identify new interactions between DUSP3 and proteins directly or indirectly involved in or correlated with its biological roles in HeLa cells exposed to gamma or UV radiation. By using GST-DUSP as bait, we pulled down interacting proteins and identified them by LC-MS/MS. Of the 46 proteins obtained, six hits were extensively validated by immune techniques; the proteins Nucleophosmin, HnRNP C1/C2, and Nucleolin were the most promising targets found to directly interact with DUSP3. We then analyzed the DUSP3 interactomes using physical protein-protein interaction networks using our hits as the seed list. The validated hits as well as unvalidated hits fluctuated on the DUSP3 interactomes of HeLa cells, independent of the time post radiation, which confirmed our proteomic and experimental data and clearly showed the proximity of DUSP3 to proteins involved in processes intimately related to DNA repair and senescence, such as Ku70 and Tert, via interactions with nucleolar proteins, which were identified in this study, that regulate DNA/RNA structure and functions. PMID:24245651

  7. Tumor cell imaging using the intrinsic emission from PAMAM dendrimer: a case study with HeLa cells

    OpenAIRE

    Biswal, Bijesh K.; Kavitha, Manniledam; R.S VERMA; Prasad, Edamana

    2009-01-01

    HeLa 229 cells were treated with methotrexate (MTX) and doxorubicin (DOX), utilizing fourth generation (G4), amine terminated poly(amidoamine) {PAMAM} dendrimer as the drug carrier. In vitro kinetic studies of the release of both MTX and DOX in presence and absence of G4, amine terminated PAMAM dendrimers suggest that controlled drug release can be achieved in presence of the dendrimers. The cytotoxicity studies indicated improved cell death by dendrimer-drug combination, compared to the cont...

  8. Cell surface hydrophobicity, adherence to HeLa cell cultures and haemagglutination pattern of pyelonephritogenic Escherichia coli strains.

    OpenAIRE

    Brauner, A; Katouli, M; Tullus, K; Jacobson, S. H.

    1990-01-01

    Cell surface hydrophobicity, haemagglutination pattern and adherence to HeLa cells were examined in 230 strains of Escherichia coli collected from women (n = 61 strains) and children (n = 65 strains) with non-obstructive acute pyelonephritis and in 104 faecal control strains of E. coli from healthy adults (n = 71 strains) and children (n = 33 strains). Pyelonephritogenic E. coli strains showed a significantly increased incidence of hydrophobic properties (90%) and mannose resistant haemagglut...

  9. Negative pion depth-dose profile examined by means of HeLa cell survival curves

    International Nuclear Information System (INIS)

    HeLa cells were irradiated at liquid nitrogen temperature with negative pions from Nimrod at the Rutherford Laboratory and then assayed for survival of colony-forming ability. Complete dose-response curves were obtained from repeated determinations at fourteen different positions along the depth dose profile and survival curves fitted to the data by computer programme. A depth damage profile was thus established in terms of the final slopes of these curves. This confirmed the expected RBE value of the 1.9 at the ionisation peak. Although a value of unity was found in the main plateau region, the 'entrance' positions showed significantly higher values. (author)

  10. Changes in cell cycle progression of HeLaS3 cells synchronized after X-ray irradiation

    International Nuclear Information System (INIS)

    Objective: To observe the effect of different doses of X-rays on cell cycle progression of synchronized HeLaS3 cells. Methods: Using a double block method with thymidine and flow cytometric analysis, the changes in cell cycle progression of synchronized HeLaS3 cells were examined after 75 mGy and 2.0 Gy X-irradiation in G0/G1, S and G2 + M phases respectively, and the dose-response relationship given in G2/M phase was analyzed after irradiation. Results: The S and G2 phases occurred late 9-15 h after the releasing point regardless of whether HeLaS3 cells were irradiated with 2 Gy in G0/G1, S or G2 + M phases. HeLaS3 cells underwent a G2 arrest 9 and 12 h after the releasing point when 75 mGy irradiation was administered in G0/G1 and G2 + M phases, and this delay skipped completely at 12 and 15 h, respectively. Moreover, the cell cycle progression was accelerated. However, there was no G2 delay at 9 and 11 h when the cells were irradiated with 75 mGy in S phase, and in this case the cell cycle progression from G2/M to G0/G1 phase was accelerated. A study on the dose-effect relationship showed that the number of G0/G1 phase cells decreased, and G2 delayed after 0.025-2.0 Gy irradiation given in G2/M phase, and the delay was dose-dependent. However, the changes in the number of S phase cells were different between low (0.025-0.1 Gy) and higher (0.5-2.0 Gy) doses. Conclusion: G2 delay is a very radiosensitive parameter, which occurs in HeLaS3 cells after X-ray irradiation with a dose as low as 25 mGy when administered in G0/G1 and G2 + M phases, but this delay only occurs with doses above 0.1 Gy when the cells are irradiated in S phase

  11. Apoptosis induced by (di-isopropyloxyphoryl-Trp)2-Lys-OCH3 in K562 and HeLa cells

    Indian Academy of Sciences (India)

    Feng Liu; Shi-Ying Liu; Ping Xu; Zhen-Hua Xie; Guo-Ping Cai; Yu-Yang Jiang

    2008-03-01

    According to the method used in our laboratory, our group synthesized (DIPP-Trp)2-Lys-OCH3. It inhibited the proliferation of K562 and HeLa cells in a dose- and time-dependent manner with an IC50 of 15.12 and 42.23 M, respectively. (DIPP-Trp)2-Lys-OCH3 induced a dose-dependent increase of the G2/M cell population in K562 cells, and S cell population in HeLa cells; the sub-G0 population increased dramatically in both cell lines as seen by PI staining experiments using a FACS Calibur Flow cytometer (BeckmanCoulter, USA). Phosphatidylserine could significantly translocate to the surface of the membrane in (DIPP-Trp)2-Lys-OCH3-treated K562 and HeLa cells. The increase of an early apoptotic population was observed in a dose-dependent manner by both annexin-FITC and PI staining. It was concluded that (DIPP-Trp)2-Lys-OCH3 not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle. It may have arrested the K562 and HeLa cells in the G2/M, S phases, respectively. The apoptotic pathway was pulsed at this point, resulting in the treated cells entering into programmed cell death. (DIPP-Trp)2-Lys-OCH3 is a potential anticancer drug that intervenes in the signalling pathway.

  12. Activation of poly(ADP-ribose) polymerase by sulfur mustard in HeLa cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Clark, O.E.; Smith, W.J.

    1993-05-13

    Poly(ADP-ribose) polymerase (PADPRP) E.C.2.4.2.30 has been proposed to play a key role in the NAD+ depletion following alkylation of DNA in sulfur mustard (HD) exposures. Papirmeister et al. (Fundam Appl Toxicol 5:Sl34, 1985) hypothesized that activation of PADPRP was central to the subsequent depletion of NAD+ and activation of proteolytic enzymes leading to vesication. NAD+ depletion following HD exposure has been previously documented and the results have been used to infer the effect of HD exposure on PADPRP. The present study was undertaken to demonstrate the direct effect of HD on PADPRP activity. HeLa cells culture were used as the model system. At 10 microns HD PADPRP activity was increased above the levels of controls in the first hour. The activity peaked at 4 hrs and by 6 hrs had returned to control levels. The 24-hour level of PADPRP activity was again elevated above the controls. The 100 microns HD exposures had maximal enzymatic response in HeLa cells within the first hour. The level had decreased 40% from the maximum by the second hour reaching a plateau at 30% of the maximum response after 4 hrs. Cells exposed to 100 microns HD showed enzyme levels at or below those seen with the 10 microns dose after 24 hours. The doses of HD used did not decrease viability as measured by trypan blue dye exclusion within 24 hr.

  13. DNA polymerase ? and ? activity in ?-irradiated HeLa S3 cells

    International Nuclear Information System (INIS)

    The acute effects (less than 2 hours) of ?-irradiation on DNA polymerase ? and ? activity in HeLa S3 cells were studied. The enzyme activities were measured in sonicates of the irradiated cells, using an exogenous DNA as template. Both DNA ?- and ?-polymerase activities decreased following irradiation of the cells. Doses as low as 100 rad significantly reduced the activities of the enzymes. While the activities of both DNA polymerases decreased as the dose received by the cells increased, the major reduction in enzyme activity occurred with doses of 100-200 rad. The reduction in DNA ?- and ?-polymerase activities was maximal by 30 min post-irradiation and recovered to control values by 2 hours post-irradiation. (author)

  14. The ubiquitin ligase UBE3A dampens ERK pathway signalling in HPV E6 transformed HeLa cells.

    Science.gov (United States)

    Aguilar-Martinez, Elisa; Morrisroe, Claire; Sharrocks, Andrew D

    2015-01-01

    Signalling through the ERK MAP kinase pathway plays an important role in many biological processes and it is often deregulated in disease states such as cancer. One major effect of MAP kinase signalling is to promote gene expression through the phosphorylation and activation of transcription factors like ELK1. ELK1 in turn controls the activity of immediate-early genes such as FOS. Here we have used ELK1 activation in HeLa cells as a read out to conduct a genome-wide siRNA screen to identify negative regulators of ERK-mediated immediate-early gene activation. One of the candidates that we identified was the E3 ubiquitin ligase UBE3A/E6-AP. Reductions in UBE3A levels cause increased basal levels of ERK activity, a loss of growth factor-mediated ERK activation and concomitant defects in immediate-early gene expression. Thus, UBE3A acts to dampen down basal level ERK activation and to prime the pathway for growth factor-mediated activation. Mechanistically, we demonstrate that UBE3A functions in HeLa cells through its binding partner, HPV18 E6 protein and the E6 target protein p53. Loss of either E6 or p53 blocks the effect of UBE3A depletion on ERK pathway signalling, indicating that in the context of oncogenic viral protein expression, UBE3A plays an important role in negating the consequences of p53 activation on ERK pathway signalling. PMID:25815718

  15. Citotoxicidad en células hela de extractos de tres especies de plantas medicinales de Hidalgo, México / Cytotoxicity in hela cells from extracts of three medicinal plants species from Hidalgo, Mexico

    Scientific Electronic Library Online (English)

    M.A., Villavicencio Nieto; B.E., Pérez Escandón; E., Mendoza Pérez; V., Maldonado Lagunas.

    Full Text Available Se evaluó la citotoxicidad en cultivos de células HeLa de los extractos etanólicos de tres especies de plantas, Juniperus dep-peana, Solanum rostratum y Bidens odorata, que se utilizan tradicionalmente en dos regiones del estado de Hidalgo, México, para el tratamiento de heridas, úlceras, tumores y [...] cáncer de matriz. La citotoxicidad más elevada la presentó el extracto de J. deppeana (CI50 = 4.63 µg/ml), el cual fue separado por cromatografía en placa de gel de sílice y la fracción principal (Rf = 0.28 ) mostró actividad citotóxica (CI50 = 0.79 µg/ ml). Aunque menor, el extracto de S. rostratum también presentó citotoxicidad (CI50 = 127.5 µg/ml). B. odorata fue inactiva. Abstract in english Ethanolic extracts of three medicinal plants, Juniperus deppeana, Solanum rostratum and Bidens odorata, which are used in folk medicine in Hidalgo, Mexico, for the treatment of wounds, ulcers, tumors and cancer, were tested in a HeLa cell line to evaluate their cytotoxic activity. The highest cytoto [...] xicity was found in the extract of J. deppeana (IC = 4.63 µg/ml); hence, this extract was separated via chromatography on a silica gel plate, from which the main fraction (Rf = 0.28) showed strong cyto-toxic activity (IC50 = 0.79 µg/ml). Whereas the extract of S. rostratum also exhibited cytotoxicity (IC50 = 127.5 µg/ml), that of B. odorata was inactive.

  16. PVA engineered microcapsules for targeted delivery of camptothecin to HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Galbiati, Alice; Rocca, Blasco Morozzo della; Tabolacci, Claudio; Beninati, Simone; Desideri, Alessandro [Dipartimento di Biologia, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Paradossi, Gaio, E-mail: paradossi@stc.uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy)

    2011-12-01

    Capsular microvectors are an important tool in the recent research field of nanomedicine to address a drug cargo for the therapeutic treatment of several pathologies. In this study we describe how the product of the conjugation of the polysaccharide chitosan with folate can be used as a coating of poly (vinyl alcohol), PVA, based microcapsules for an efficient targeting of HeLa cells. The influence of the coating on the bioadhesive properties of the vector and on its cargo capacity was also considered using camptothecin as an anticancer drug model. The coating strategy was finalized to exploit the good chemical versatility of PVA, used to form the shell of the vector. This study is a follow up of an investigation activity aiming to show the potentialities of PVA-shelled microcapsules or microbubbles as injectable microdevices supporting a theranostic approach for different types of tumour. Highlights: {yields}Coating of PVA-shelled microcapsules with chitosan-folate. {yields} Selective bioadhesion of microcapsules to HeLa Cells. {yields} Effective loading and release of camptothecin. {yields} In vitro anti-proliferative action of camptothecin loaded microcapsules.

  17. HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins.

    Science.gov (United States)

    Yadavalli, Raghavendra; Sam-Yellowe, Tobili

    2015-01-01

    Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed "in vitro human cell free expression systems". The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer's Cleft - 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford's assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be used for immunizations, immunoassays and protein sequencing. PMID:26131624

  18. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio [Hiroshima Univ., (Japan). Research Inst. for Radiation Biology and Medicine

    2002-03-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  19. Apoptotic effect on HeLa Cells produced by Chlamydia trachomatis-LPS / Efecto Apoptótico en Células HeLa Producido por el Lipopolisacárido (LPS) de Chlamydia trachomatis

    Scientific Electronic Library Online (English)

    Beatriz, Millán-Mendoza; Hamid, Hakimi; Adrian, Eley.

    2007-06-01

    Full Text Available La interacción entre el lipopolisacárido (LPS) de Chlamydia trachomatis y las células de mamíferos permanece sin ser dilucidado. Chlamydia trachomatis es una bacteria intracelular responsable de diversas enfermedades en los humanos y animales. En este trabajo mediante el aislamiento del lipopolisacá [...] rido de dos serovares de Chlamydia trachomatis (LGV1-LGV2) y usando una coloración Supravital fluorescente (Hoechst 33258) fue posible investigar la respuesta de las células HeLa. El efecto apoptótico que sufren este tipo de células fue visible cuando fueron expuestas a dicho LPS en concentraciones iguales o mayores que 0,5 µg/mL por un periodo de 48 horas, sin embargo se observó la falta de repuesta celular en su ausencia o en presencia de LPS de otras bacterias. Adicionalmente, el uso en iguales condiciones de polimyxina B conocido como un neutralizador de la acción del LPS demostró una disminución del efecto apoptótico en dichas células, indicando que la respuesta celular observada fue producida por C.trachomatis-LPS. Los resultados de este trabajo le dan fuerza a la teoría de que el LPS de C. trachomatis pudiera ser el responsable del efecto tóxico que se observa sobre las células cervicales infectadas con esta bacteria intracelular. Abstract in english The interaction between the lipopolysaccharide (LPS) of Chlamydia trachomatis and mammalian cells is still largely unknown. Chlamydia trachomatis is an obligate intracellular bacterium responsible for several diseases in humans and animals. In this work, thanks to the isolation of the lipopolysaccha [...] ride from two serovars of Chlamydia trachomatis (LGV1-LGV2) and using a nuclear supravital fluorescent stain (Hoechst 33258), it was possible to investigate the apoptotic effect on HeLa cells. This work shows the apoptotic effect on HeLa cells when they were exposed to C. trachomatis-LPS from two serovars at concentrations equal to or higher than 0.5 µg/mL for a period of 48h. and also the lack of cellular response in the absence of C. trachomatis-LPS or in the presence of LPS obtained from other bacteria. Additionally, the use in equal conditions of polymyxin B, known as an inhibitor of bacterial LPS, showed a decrease of the apoptotic effect in such cells indicating that the cellular response observed was produced by C. trachomatis-LPS. These results support the theory that the LPS from C. trachomatis could be responsible for the toxic effect on cervical cells infected by these bacteria.

  20. Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

    Science.gov (United States)

    Haddaji, N; Khouadja, S; Fdhila, K; Krifi, B; Ben Ismail, M; Lagha, R; Bakir, K; Bakhrouf, A

    2015-07-01

    Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures. PMID:25981066

  1. The influence of ?-irradiation in different modes on the isolated and united HeLa cells in culture

    International Nuclear Information System (INIS)

    It was shown that isolated and united HeLa cells in culture responded to single irradiation and repeated low dose irradiation by different ways. The effect on radiosensitivity was revealed in united cells only. 7 refs., 2 figs., 1 tab

  2. Do altered activities of superoxide dismutases and the level of NF-kB modulate the effects of gamma radiation in HeLaS3 cells?

    Directory of Open Access Journals (Sweden)

    ANA NICIFOROVIC

    2007-10-01

    Full Text Available Most experimental models, including cell culture studies, have demon­strated that over-expression of manganese superoxide dismutase (MnSOD in cells bearing a carcinoma phenotype has anti-proliferative and tumour suppression chara­cteristics. In contrast, when cervical carcinoma biopsies express MnSOD, there is a poor prognosis and resistance to radiation therapy. The results herein indicate that human cervical adenocarcinoma (HeLaS3 cells have increased MnSOD activity (up to 50 % of the total SOD activity due to low expression of its repressor p53 and a high level of oxidative stress arising from the cell culture conditions. High MnSOD activity may be related to HeLaS3 cell radioresistance, illustrated by a high IC50 of 3.4 Gy and by a relatively high level of cell viability after gamma irradiation. In contrast to MnSOD activity, cytosolic CuZnSOD activity decreased after ionising radiation. The catalase (Cat activity was unchanged. IR also increa­sed the nitric oxide synthase (NOS activity. Such conditions lead to increased con­centrations of the superoxide radical, hydrogen peroxide and NO., which together may be responsible for the decreased expression of NF-kB and unaltered Cat ac­tivity. Therefore, the disturbed redox balance within HeLaS3 cells may be respon­sible for the cytotoxicity observed at higher irradiation doses. It could be concluded that inhibition of the CuZnSOD activity may be an important target for the selective killing of radioresistant cancer cells.

  3. MiR-138 downregulates miRNA processing in HeLa cells by targeting RMND5A and decreasing Exportin-5 stability

    OpenAIRE

    Li, Jie; Chen, Ying; Qin, Xingliang; Wen, Junzhi; Ding, Hongmei; Xia, Wei; Li, Shaohua; Su, Xueting; Wang, Wei; Hui LI; Zhao, Qiang; Fang, Tao; Qu, Lianghu; Shao, Ningsheng

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding small RNAs that consist of ?22 nt and are involved in several biological processes by regulating target gene expression. MiR-138 has many biological functions and is often downregulated in cancers. Our results showed that overexpression of miR-138 downregulated target RMND5A (required for meiotic nuclear division 5 homolog A) and reduced Exportin-5 stability, which results in decreased levels of pre-miRNA nuclear export in HeLa cells. We also found...

  4. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    International Nuclear Information System (INIS)

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET – 290keV/?m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ? 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells

  5. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    Science.gov (United States)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/?m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  6. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post box-10502, New Delhi-110067 (India)

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  7. Evaluation of hela cell lineage response to ? radiation from Holmium-166 embedded in ceramic seeds

    Scientific Electronic Library Online (English)

    Eduardo Sarmento, Valente; Ethel Mizrahy, Cuperschmid; Tarcisio Passos Ribeiro de, Campos.

    2011-10-01

    Full Text Available This work studied the effects of ? radiation of Ho-166 embedded in ceramic seeds on HeLa cells. Methodology consisted in the production of ceramic seeds with holmium-165 by sol-gel route. Chemical and physical characterizations of the seeds were performed. Subsequently, nuclear characterization was [...] performed by gamma spectrometry. Experimental and theoretical activities were defined and initial dose rate were evaluated by MIRD (Medical Internal Radiation Dose Committee) methodology. The seeds were placed in confluent culture flasks and remained for six radionuclide half-lives. Biological results were represented by a clean 6 mm diameter area around the seed where the tumour cells were killed. The initial dose rate was 15.5 Gy. h-1. The maximum absorbed dose was 591.3 Gy. The features of the Ho-166 seeds suggested that such ceramic seeds were suitable for high dose rate brachytherapy.

  8. The cytostatic potential confirmation of some fungal autochthonous biopreparations upon HeLa neoplastic cells cultures

    Directory of Open Access Journals (Sweden)

    Surdu Stefania

    2010-01-01

    Full Text Available Some biopreparations of alkaloid-ergolinic nature have been extracted from hyphal and supernatant components, which were centrifugally separated from the submerged culture media of three strains of Claviceps purpurea (T1-3, T2-1 and T13-1, these being in different ontogenetic development stages (4, 6, 8, 10, and 12 days, respectively. In vitro testing of their interaction with cellular protein synthesis process of HeLa neoplastic cells cultures, has highlighted the cellular protein biosynthesis alteration, modifications of the protein dynamics sense and amplitude, as well as the cell cultures development inhibition. The protein synthesis inhibitory impact has confirmed the cytostatic action of these natural bioproducts, their cytostatic effectiveness being dependent of the Claviceps purpurea (T1-3, T2-1 and T13-1 strains specificity, the strain ontogenetic age, the biochemical nature of the intracellularly synthesized, stocked and extracellularly discharged substratum, as well as of their obtaining sources.

  9. Effects of a tumor promoter on phospholipid metabolism in HeLa cells

    International Nuclear Information System (INIS)

    The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) caused a marked stimulation of inorganic [32P]orthophosphate incorporation into HeLa-cell phosphatidylcholine (PC), phosphatidylethanolamine (PE), and lysophosphatidylethanolamine. The increased incorporation of inorganic [32P]orthophosphate into PE and lysophosphatidylethanolamine in the presence of TPA was not associated with an increase in PE synthesis as detected by the incorporation of [3H]serine or [3H]ethanolamine. The PC-specific exchange protein from beef liver was used to insert PC labeled with [3H]choline, inorganic [32P]orthophosphate, or [14C]arachidonic acid plus [3H]palmitic acid into the outer monolayer of intact HeLa cell membranes. Radioactivity from the latter two compounds was rapidly incorporated into PE and lysophosphatidylethanolamine; the incorporation was stimulated by TPA. It was concluded that TPA stimulated the formation of PE by base exchange between ethanolamine and PC

  10. Flow cytometry evaluation of hela S3 cell death induced by ?-radiation

    International Nuclear Information System (INIS)

    Evaluation of the form of radiation-induced cell death together with its time-course and dose dependence is of interest for both radiation protection and radiotherapy. The most statistically relevant results are achieved by flow-cytometry which permits simultaneous analysis of several characteristics of a large number of cells. Using this technique we analyzed the effect of 60Co ?-irradiation on HeLa S3 human uterine cervix carcinoma cells' viability, morphology and genomic DNA. Cells were irradiated with 2-10 Gy and analyzed 2-72 h post-treatment. The cell membrane was stained with Annexin V-FITC and cellular DNA with propidium iodide. Forward and side light scattering and stain-induced fluorescence of 20,000 cells per sample were used to determine the form of the radiation-induced cell death and to quantify its extent. The dominant form of cell death was necrosis which was most pronounced 72 h postirradiation when 37 % of the cells were affected. (author)

  11. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    International Nuclear Information System (INIS)

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy

  12. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    Energy Technology Data Exchange (ETDEWEB)

    Jeyaraj, M. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Arun, R. [Department of Biomedical Sciences, Bharathidasan University, Tiruchirappalli 620024 (India); Sathishkumar, G. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); MubarakAli, D. [Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry 607402 (India); Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M. [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Thajuddin, N. [Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024 (India); Ganapathi, A., E-mail: aganapathi2007@gmail.com [Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.

  13. Defective caspase-3 activation and caspase-independent apoptosis in UV-irradiated HeLa S3 cells

    International Nuclear Information System (INIS)

    Full text: Following exposure to radiation, most hematopoietic cells show a typical morphological characteristic of apoptosis and die quickly before the next mitosis. In contrast, death of non-hematopoietic cells, such as human tumor cells and fibroblasts, occurs after one or several cell divisions. Recently, it has been reported that many tumor cell lines die in interphase 12 h or longer after irradiation with relatively high doses of UV or ionizing radiation. However, the relationship between delayed interphase cell death and apoptosis is not clear. In this study, we used two kinds of cells, mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa S3 and MCF-7). When irradiated with UV, 3SB and Jurkat cells showed an extensive release of cytochrome c from mitochondria and exhibited a clear production of oligonucleosomal DNA fragments within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. In the case of HeLa S3 and MCF-7 cells, DNA fragmentation could be detected at 24 or 48 h of post-irradiation incubation, but relatively early release of cytochrome c was observed (within 6 h after exposure). Interestingly, UV-irradiated HeLa S3 cells exhibited extremely low levels of caspase-3 like activity, similar to those in caspase-3-deficient MCF-7 cells, suggesting that the inhibition of apoptosis in HeLa S3 cells occurs downstream of cytochrome c release. A similar cell type-specific apoptosis was also observed when irradiated with ?-rays. To confirm the existence of caspase-independent apoptosis, we examined the effect of a caspase inhibitor, Z-VAD-FMK, on the induction of DNA fragmentation by UV exposure, and found that Z-VAD-FMK completely blocked DNA fragmentation in 3SB and Jurkat cells but did not suppress the delayed production of oligonuclesomal DNA fragments in HeLa S3 and MCF-7 cells. These data indicate that the delayed form of apoptosis in HeLa S3 cells occurs in a caspase-independent pathway

  14. Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells

    Directory of Open Access Journals (Sweden)

    Bazowski Jessa

    2010-10-01

    Full Text Available Abstract Background Ephrin A1 (EFNA1 is a member of the A-type ephrin family of cell surface proteins that function as ligands for the A-type Eph receptor tyrosine kinase family. In malignancy, the precise role of EFNA1 and its preferred receptor, EPHA2, is controversial. Several studies have found that EFNA1 may suppress EPHA2-mediated oncogenesis, or enhance it, depending on cell type and context. However, little is known about the conditions that influence whether EFNA1 promotes or suppresses tumorigenicity. EFNA1 exists in a soluble form as well as a glycophosphatidylinositol (GPI membrane attached form. We investigated whether the contradictory roles of EFNA1 in malignancy might in part be related to the existence of both soluble and membrane attached forms of EFNA1 and potential differences in the manner in which they interact with EPHA2. Results Using a RNAi strategy to reduce the expression of endogenous EFNA1 and EPHA2, we found that both EFNA1 and EPHA2 are required for growth of HeLa and SK-BR3 cells. The growth defects could be rescued by conditioned media from cells overexpressing soluble EFNA1. Interestingly, we found that overexpression of the membrane attached form of EFNA1 suppresses growth of HeLa cells in 3D but not 2D. Knockdown of endogenous EFNA1, or overexpression of full-length EFNA1, resulted in relocalization of EPHA2 from the cell surface to sites of cell-cell contact. Overexpression of soluble EFNA1 however resulted in more EPHA2 distributed on the cell surface, away from cell-cell contacts, and promoted the growth of HeLa cells. Conclusions We conclude that soluble EFNA1 is necessary for the transformation of HeLa and SK-BR3 cells and participates in the relocalization of EPHA2 away from sites of cell-cell contact during transformation.

  15. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells

    DEFF Research Database (Denmark)

    Hao, Xian; Wu, Jiazhen

    2012-01-01

    Efficient intracellular delivery of gold nanoparticles (AuNPs) and unraveling the mechanism underlying the intracellular delivery are essential for advancing the applications of AuNPs toward in vivo imaging and therapeutic interventions. We employed fluorescence microscopy to investigate the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-?-cyclodextrin (M beta CD); in contrast, the sucrose that disrupts the formation of clathrin-mediated endocytosis did not block the endocytosis of AuNPs. Meanwhile, we examined the intracellular localization of AuNPs in endocytic vesicles by fluorescent colocalization. This work would provide a potential technique to study the intracellular delivery of small-size nanoparticles for biomedical applications.

  16. Mathematical modeling of the heat-shock response in HeLa cells.

    Science.gov (United States)

    Scheff, Jeremy D; Stallings, Jonathan D; Reifman, Jaques; Rakesh, Vineet

    2015-07-21

    The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model's ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response. PMID:26200855

  17. Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death

    International Nuclear Information System (INIS)

    Cells exposed to radiation may undergo death through apoptosis or mitotic death. HeLa cells predominantly undergo mitotic death after irradiation. Treatment of these cells with caffeine has been shown to shorten the G2 delay after irradiation, and to decrease their survival. The kinase inhibitor staurosporine also decreases the radiation-induced G2 delay in HeLa cells. Here we extend these findings to show that the decrease in radiation-induced G2 delay mediated by caffeine or staurosporine is accompanied by a shift in the pathway of cell death from mitotic death to apoptotic death. The increase in apoptosis is further accompanied by decreased clonogenic survival after irradiation. Based on these findings we propose the hypothesis that one mechanism of enhancing cell killing by radiation is to trigger apoptosis by decreasing the G2 delay induced by irradiation. (Author)

  18. Yeast CUP1 protects HeLa cells against copper-induced stress

    Scientific Electronic Library Online (English)

    X.X., Xie; Y.F., Ma; Q.S., Wang; Z.L., Chen; R.R., Liao; Y.C., Pan.

    Full Text Available As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. Yeast CUP1 is a member of the MT gene family. The aim of this study was to [...] determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study, CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P

  19. Yeast CUP1 protects HeLa cells against copper-induced stress

    Scientific Electronic Library Online (English)

    X.X., Xie; Y.F., Ma; Q.S., Wang; Z.L., Chen; R.R., Liao; Y.C., Pan.

    2015-07-01

    Full Text Available As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. Yeast CUP1 is a member of the MT gene family. The aim of this study was to [...] determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study, CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P

  20. NF-?B plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis.

    Science.gov (United States)

    Chen, Liang; Zhang, Xin; Chen, Jun; Zhang, Xuezhen; Fan, Huihui; Li, Shangchun; Xie, Ping

    2014-09-01

    Microcystins (MCs) are well-known cyanobacterial toxins produced in eutrophic waters and can act as potential carcinogens and have caused serious risk to human health. However, pleiotropic even paradoxical actions of cells exposure to MCs have been reported, and the mechanisms of MC-induced tumorigenesis and apoptosis are still unknown. In this study, we performed the first comprehensive in vitro investigation on carcinogenesis associated with nuclear factor kappa B (NF-?B) and its downstream genes in HeLa cells (Human cervix adenocarcinoma cell line from epithelial cells) exposure to MC-RR. HeLa cells were treated with 0, 20, 40, 60, and 80 µg/mL MC-RR for 4, 8, 12, and 24 h. HeLa cells presented dualistic responses to different doses of MCs. CCK8 assay showed that MC-RR exposure evidently enhanced cell viability of HeLa cells at lower MCs doses. Cell cycle and apoptosis analysis revealed that lower MCs doses promoted G1/S transition and cell proliferation while higher doses of MCs induced apoptosis, with a dose-dependent manner. Electrophoretic mobility shift assay (EMSA) revealed that MC-RR could increase/decrease NF-?B activity at lower/higher MC-RR doses, respectively. Furthermore, the expression of NF-?B downstream target genes including c-FLIP, cyclinD1, c-myc, and c-IAP2 showed the same variation trend as NF-?B activity both at mRNA and protein levels, which were induced by lower doses of MC-RR and suppressed by higher doses. Our data verified for the first time that NF-?B pathway may mediate MC-induced cell proliferation and apoptosis and provided a better understanding of the molecular mechanism for potential carcinogenicity of MC-RR. PMID:24932741

  1. Detection of Chlamydia trachomatis inclusions in McCoy and HeLa-229 cells: an alternative staining technique using toluidine blue.

    OpenAIRE

    Mohammed, N R; Hillary, I B

    1984-01-01

    Toluidine blue staining was used to detect Chlamydia trachomatis inclusions in both McCoy and HeLa-229 cells from clinical specimens. This method was more sensitive than iodine staining for detecting C trachomatis inclusions in both McCoy and HeLa-229 cells and also more sensitive than Giemsa staining for detecting chlamydial inclusions in HeLa-229 cells. While its sensitivity for detection of chlamydial inclusions in McCoy cells is equal to that of Giemsa staining, toluidine blue staining is...

  2. Effect of X-irradiation of clonogenic HeLa cells on the genome mutation frequencies in their progenies

    International Nuclear Information System (INIS)

    Irradiation of clonogenic Hela cells with 100-350 R doses results in the increase of general frequency of genome mutations from (20.7+-0.4)x10-2 up to (24.8+-0.4)x10-2-(31.9+-0.3)x10-2 on a cell per a generation. The increase occurs mainly at the expense of hyperploid mutants, whereas frequency of appearance of cells with reduced number of chromosomes (hypoploids) does not change reliably. For Hela culture, used in experiments, a very high heterogeneity of cells on DNA content in interfase nuclei and a very high level of spontaneous frequency of genome mutation are characteristical, that should be taken into account during the analysis of obtained results

  3. Ultrastructural effects of two phthalocyanines in CHO-K1 and HeLa cells after laser irradiation

    Scientific Electronic Library Online (English)

    Marcelo, de CastroPazos; Cristina, Pacheco-Soares; Newton, Soares da Silva; Renato Augusto, DaMatta; Marcos Tadeu T., Pacheco.

    2003-12-01

    Full Text Available The effects of Photodynamic Therapy using 2nd generation photosensitizers have been widely investigated aiming clinical application treatment of solid neoplasms. In this work, ultrastructure changes caused by the action of two 2nd generation photosensitizers and laser irradiation on CHO-K1 and HeLa [...] (neoplastic) cells were analyzed by transmission electron microscopy. Aluminum phthalocyanine chloride, aluminum phthalocyanine tetrasulfonate chloride and radiation from a semiconductor laser at a fluency of 0.5 J/cm² (Power=26mW; l=670nm) were used. The results showed induction of apoptosis. Such alterations where observed in HeLa but not in CHO-K1 cells after Aluminum phthalocyanine tetrasulfonate chloride (AlPcS4) photodynamic treatment. The Aluminum phthalocyanine chloride (AlPc) photodynamic treatment induced necrosis on the neoplastic cell line, and cytoplasm and nuclear alterations on the normal cell line.

  4. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Highlights: ? Depletion of cellular PABP level arrests mRNA translation in HeLa cells. ? PABP knock down leads to apoptotic cell death. ? PABP depletion does not affect transcription. ? PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  5. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  6. Isolation and structural characterization of cap-binding proteins from poliovirus-infected HeLa cells.

    OpenAIRE

    Lee, K A; Edery, I; Sonenberg, N

    1985-01-01

    In poliovirus-infected HeLa cells, poliovirus RNA is translated at times when cellular mRNA translation is strongly inhibited. It is thought that this translational control mechanism is mediated by inactivation of a cap-binding protein complex (comprising polypeptides of 24 [24-kilodalton cap-binding protein], 50, and approximately 220 kilodaltons). This complex can restore the translation of capped mRNAs in extracts from poliovirus-infected cells. We have previously shown that the virally in...

  7. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells.

    Science.gov (United States)

    Deng, Liwei; Li, Li; Yang, Hong; Li, Li; Zhao, Fenglong; Wu, Chunhui; Liu, Yiyao

    2014-04-01

    Microbubbles (MBs, usually 2-8 microm) as ultrasound contrast agent and drug carrier are promising for ultrasonic imaging and drug delivery. However, MBs posed some limitations due to their large diameters. In the current study, we developed a nanoscale bubbles (nanobubbles, NBs) by encapsulating the doxorubicin (DOX) into poly(lactic-co-glycolic acid) (PLGA) shells (denoted as DOX-PLGA NBs) for drug delivery into cancer cells. The size, morphology, particle stability, drug encapsulation efficiency, and drug payload were determined. The results showed that the DOX-PLGA NBs were uniform (270 +/- 3 nm) and spherical with a smooth surface, and were well dispersed and stable in water. The encapsulation efficiency and payload of DOX increased with its initial loading concentrations. The release behavior of DOX from the DOX-PLGA NBs exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous release at both pH 7.4 and pH 4.4, and also presented in a pH-triggered releasing profile. The qualitative analysis of cellular internalization into HeLa cells by inverted fluorescence microscope showed that the cellular uptake of DOX-PLGA NBs was both concentration- and time-dependent. Moreover, the cell viability was also investigated using CCK-8 assay. It was found that DOX-PLGA NBs showed greater HeLa cell growth inhibition effect in vitro compared with free DOX. It was concluded that the DOX-PLGA NBs were biocompatible and appropriate for anti-cancer drug delivery, and were potentially promising as a new therapeutic system for cancer treatment. PMID:24734715

  8. Effect of guinea pig or monkey colonic mucus on Shigella aggregation and invasion of HeLa cells by Shigella flexneri 1b and 2a.

    OpenAIRE

    Dinari, G; Hale, T L; Washington, O.; Formal, S B

    1986-01-01

    The effects of guinea pig and rhesus monkey colonic mucus preparations on Shigella aggregation and invasion of HeLa cell monolayers by Shigella flexneri serotype 1b, 2a, and 5 strains were investigated. Guinea pig mucus caused agglutination of S. flexneri serotype 1b but not of S. flexneri serotype 2a or 5. Guinea pig mucus also inhibited HeLa cell invasion by S. flexneri serotypes 1b and 2a. Monkey mucus neither agglutinated any Shigella strain nor inhibited HeLa cell invasion.

  9. Effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on phosphatidylethanolamine metabolism in HeLa cells

    International Nuclear Information System (INIS)

    The potent tumor promoter, TPA, exerts its earliest effects at the plasma membrane. Recent findings have shown that TPA stimulates a phospholipase C-mediated turnover of phosphatidyl-choline in several different cell types. The present study was undertaken to investigate whether TPA elicits a similar effect on the phosphatidylethanolamine (PE) pool of HeLa cells. Three different series of experiments were performed. First, in HeLa cells pulse-labeled with [3H]ethanolamine, TPA stimulated a 5-fold release of aqueous radiolabeled products into the extra-cellular medium after a 1-hour incubation. Second, when [3H]ethanolamine and TPA were added simultaneously to the cells, TPA stimulated a 2-fold incorporation of radiolabel into the cellular PE pool. In both the release and incorporation of [3H]ethanolamine, TPA had no significant effect on PE mass. Finally, when HeLa cells were incubated with exogenous 1-radyl-2-acyl-sn-glycero-3-phospho-[3H]ethanolamine, TPA stimulated the formation of an aqueous radiolabeled product in the medium, which was identified as phosphoethanolamine. These results provide evidence that TPA stimulates a phospholipase C-mediated turnover of PE

  10. Interferon stimulates cholesterol and phosphatidylcholine synthesis but inhibits cholesterol ester synthesis in HeLa-S3 cells.

    OpenAIRE

    Pfeffer, L M; Kwok, B C; Landsberger, F R; Tamm, I

    1985-01-01

    Treatment of human HeLa-S3 cells (an epidermoid carcinoma line) with human beta-interferon (640 units/ml) selectively alters lipid metabolism by increasing cholesterol synthesis per mg of cell protein as measured by 1-hr pulse-labeling of cells with [3H]acetate. Cholesterol synthesis in interferon-treated cells is increased approximately equal to 60% at 24 hr after the beginning of treatment and approximately equal to 450% at 48 hr. Continuous labeling of interferon-treated cells with [14C]ac...

  11. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells

    OpenAIRE

    Kaba, Said I; Egorova, Elena M

    2015-01-01

    In the last decade, much attention has been paid to studies of the effect of silver nanoparticles (Ag NPs) on tumor cells. Apart from elucidation of the mechanism of NPs’ interaction with mammalian cells, these studies are aimed at discovering new effective antitumor drugs. In this work, we report about the toxic effects of Ag NPs observed on two types of tumor cells: HeLa (adhesive cells) and U937 (suspension cells). The Ag NPs were obtained by an original method of biochemical synthesis. Pa...

  12. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Okadaic acid (OA) is the major component of diarrhetic shell fish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. We investigated the signal transduction pathways involved in OA induced cell death in HeLa cells. OA induced cytotoxicity and apoptosis at IC50 of 100 nM. OA treatment resulted in time dependent increase in reactive oxygen species and depleted intracellular glutathione levels. Loss of mitochondrial membrane permeability led to translocation of bax, cytochrome-c and AIF from mitochondria to cytosol. The cells under fluorescence microscope showed typical apoptotic morphology with condensed chromatin, and nuclear fragmentation. We investigated the mitochondrial-mediated caspase cascade. The time dependent activation and cleavage of of bax, caspases-8, 10, 9, 3 and 7 was observed in Western blot analysis. In addition to caspase-dependent pathway AIF mediated caspase-independent pathway was involved in OA mediated cell death. OA also caused time dependent inhibition of protein phosphatase 2A activity and phosphorylation of p38 and p42/44 MAP kinases. Inhibitor studies with Ac-DEVO-CHO and Z-VAD-FMK could not prevent the phosphorylation of p38 and p42/44 MAP kinases. Our experiments with caspase inhibitors Ac-DEVD-CHO, Z-IETD-FMK and Z-VAD-FMK inhibited capsase-3, 8 cleavages but did not prevent OA-induced apoptosis and DNA fragmentation. Similarly, pretreatment with cyclosporin-A and N-acetylcysteine could not prevent the DNA fragmentation. In summary, the results of our study show that OA induces multiple signal transduction pathways acting either independently or simultaneously leading to apoptosis

  13. Purification and characterization of the glycoprotein hormone ?-subunit-like material secreted by HeLa cells

    International Nuclear Information System (INIS)

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ?-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 105 ng of ?/mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-? had a composition very similar to that of the urinary hCG ?-subunit. However, comparison of hCG-? and HeLa-? demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ?-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ?-subunit from HeLa cultures labeled with [3H]fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-? hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ?-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors

  14. Human papillomavirus 18 E6 inhibits phosphorylation of p53 expressed in HeLa cells

    Directory of Open Access Journals (Sweden)

    Ajay Amrendra K

    2012-01-01

    Full Text Available Abstract Background In HPV infected cells p53 function is abrogated by E6 and even ectopically expressed p53 is unable to perform tumor suppressor functions. In addition to facilitating its degradation, E6 may also inhibit p53 transactivity, though the mechanisms are still poorly understood. It has been reported that inhibition of p300, an acetyltransferase responsible for p53 acetylation is inactivated by E6. Activation of overexpressed p53 to cause cell growth inhibition is facilitated by its phosphorylation. Previously, we reported that non-genotoxically overexpressed p53 in HeLa cells needs to be phosphorylated to perform its cell growth inhibitory functions. Since over expressed p53 by itself was not activated, we hypothesized an inhibitory role for E6. Results Majority of reports proposes E6 mediated degradation of p53 as a possible reason for its inactivation. However, results presented here for the first time demonstrate that overexpressed p53 is not directly associated with E6 and therefore free, yet it is not functionally active in HPV positive cells. Also, the stability of overexpressed p53 does not seem to be an issue because inhibition of proteasomal degradation did not increase the half-life of overexpressed p53, which is more than endogenous p53. However, inhibition of proteasomal degradation prevents the degradation of endogenous p53. These findings suggest that overexpressed p53 and endogenous p53 are differentially subjected to proteasomal degradation and the reasons for this discrepancy remain unclear. Our studies demonstrate that p53 over expression has no effect on anchorage independent cell-growth and E6 nullifies its cell growth inhibitory effect. E6 overexpression abrogates OA induced p53 occupancy on the p21 promoter and cell death as well. E6 did not decrease p53 protein but phospho-p53 level was significantly reduced. Conclusion We report for the first time that E6 de-activates p53 by inhibiting its phosphorylation. This prevents p53 binding to p21 promoter and thereby restraining its cell-growth inhibitory functions. Our study provides new evidence indicating that viral protein E6 inhibits p53 transactivity by mechanism independent of degradation pathway.

  15. Comparative experimental studies into radioimmunoscintigraphy using radioactive antibodies in animals with HeLa cell carcinomas and Yoshida sarcomas

    International Nuclear Information System (INIS)

    TPA-positive and TPA-negative tumour-bearing animal systems (HeLa cell carcinomas in RNU rats and Yoshida sarcomas in Wistar rats) were examined to show that the method of scanning can well be used to visualise tumour tissue. In this connection, further attempts were made to shed light on the specifity of immunoscintigraphy in the search for tumour tissue. 125-Iodine-anti-TPA was found to be a specific carcinoma-seeking substance. The amount of antibodies accumulating in the tumour was multiplied by previous intravenous treatment of test animals with unspecific immunoglobulin. In control studies using 125-iodine-immunoglobulin the site of the carcinomatous tissue could not be determined with sufficient diagnostic accuracy. It was found that the discriminating power of radioimmunoscintigraphy using 125-iodine-anti-TPA is quite unrelated to an increased circulation in the proliferating carcinomatous tissue. For the detection of TPA in HeLa cell carcinomas anti-TPA PAP stains were prepared. Radionuclide studies using 125-iodine-anti-TPA were also useful in the visualisation of the Yoshida sarcoma, even though this scores negative on TPA. Here, the amounts of radioactivity accumulating in the tumour were smaller than with the HeLa cell carcinoma. Moreover, peak levels were measured after no less than one day, as compared to the five days required for HeLa cell tumours to reach maximum levels. This finding would appear to provide presumptive evidence that there are other, unspecific mechanisms of tumour selectivity. (orig/MG)

  16. Resolution and purification of free primase activity from the DNA primase-polymerase alpha complex of HeLa cells.

    OpenAIRE

    Vishwanatha, J K; Baril, E F

    1986-01-01

    DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primas...

  17. Specific interactions of HeLa cell proteins with proposed translation domains of the poliovirus 5' noncoding region.

    OpenAIRE

    Gebhard, J R; Ehrenfeld, E

    1992-01-01

    To determine which sequences or structures in the poliovirus 5' noncoding region (5'NCR) are involved in binding proteins used for internal ribosome binding and protein synthesis initiation, translation competition assays were performed in rabbit reticulocyte lysates in the presence and absence of HeLa cell extract. The results revealed two functional domains in the poliovirus 5'NCR. One, requiring nucleotides (nts) 457 to 626, binds proteins that are required for translation of all mRNAs and...

  18. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Chen Zhaojun; Li Huanrong; Zhang Guanglin [The First Affiliated Hospital, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058 (China); Li Feng [The First Renmin Hospital, Houma, Shanxi 043000 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [The First Affiliated Hospital, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang 310036 (China)

    2012-03-01

    Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10 {mu}M benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10 {mu}M) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1 {mu}M and 10 {mu}M BaP-treated groups, 2 in the 0.1 {mu}M and 10 {mu}M BaP-treated groups, 4 in the 0.1 {mu}M and 1 {mu}M BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.

  19. Cell Cycle-Regulated Protein Abundance Changes in Synchronously Proliferating HeLa Cells Include Regulation of Pre-mRNA Splicing Proteins

    OpenAIRE

    Lane, Karen R.; Yu, Yanbao; Lackey, Patrick E.; Chen, Xian; Marzluff, William F.; Cook, Jeanette Gowen

    2013-01-01

    Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance cha...

  20. Unusual prolongation of radiation-induced G2 arrest in tumor xenografts derived from HeLa cells.

    Science.gov (United States)

    Kaida, Atsushi; Miura, Masahiko

    2015-10-01

    The effect of ionizing radiation on cell cycle kinetics in solid tumors remains largely unknown because of technical limitations and these tumors' complicated structures. In this study, we analyzed intratumoral cell cycle kinetics after X-irradiation of tumor xenografts derived from HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci), a novel system to visualize cell cycle kinetics in vivo. Cell cycle kinetics after X-irradiation was examined by using tumor sections and in vivo real-time imaging system in tumor xenografts derived from HeLa cells expressing Fucci. We found that G2 arrest was remarkably prolonged, up to 5 days after 10-Gy irradiation, in contrast to monolayer cultures where G2 arrest returned within 24 h. Cells isolated from tumors 5 days after irradiation exhibited a higher surviving fraction than those isolated immediately or one day after irradiation. In this study, we clearly demonstrated unusual post-irradiation cell cycle kinetics in tumor xenografts derived from HeLa-Fucci cells. Our findings imply that prolonged G2 arrest occurring in tumor microenvironments following irradiation may function as a radioresistance mechanism. PMID:26195156

  1. Observations of the first postirradiation division of HeLa cells following continuous or fractionated exposure to ? rays

    International Nuclear Information System (INIS)

    The first postirradiation division of synchronized S3 HeLa cells was studied using both continuous and fractionated irradiation treatments. Synchronized HeLa cells continuously irradiated at a dose rate of 37 rad/hr eventually accumulate in mitosis. If the continuous irradiation is stopped before the cells enter G2 or even after they have progressed for a limited time into the G2 arrest that develops, very little subsequent accumulation of cells in mitosis occurs. If they progress for a longer time into the G2 arrest, then some mitotic accumulation does occur after the irradiation is stopped. When synchronized cells were allowed to progress through G1 and S before the irradiation was started, very little cell division occurred during subsequent continuous irradiation and extensive mitotic accumulation was observed. Thus, for continuous irradiation of HeLa cells, the dose received by a cell during G2 or a G2 delay apparently determines whether it will be able to divide if it reaches mitosis. Arguing against the notion that continuous irradiation during G2 is required to produce a mitotic accumulation was the result of an expriment which showed that a similar effect was obtained using two acute doses: the first to produce a G2 delay and the second to give the necessary dose during the delay. The first dose alone resulted in little mitotic accumulation. The time of delivery of the second dose during the G2 delay affected the extent of mitotic accumulation observed. There was less mitotic accumulation when second acute doses were given early or at intermediate times during the delay than when they were given late during the G2 delay. An accumulation of cells in mitosis was also observed by using a combination of low-dose-rate irradiation to induce a G2 delay, followed immediately by an acute dose of either 500 or 1000 rad. The low-dose-rate treatment alone resulted in no mitotic accumulation

  2. Internalization and recycling of CD4 transfected into HeLa and NIH3T3 cells.

    OpenAIRE

    Pelchen-Matthews, A; Armes, J E; Marsh, M

    1989-01-01

    The internalization of CD4, a T cell differentiation antigen and the receptor for the human immunodeficiency viruses (HIV-1 and -2), has been examined in HeLa and murine 3T3 cells transfected with CD4 cDNA. Fab' fragments of the anti-CD4 monoclonal antibody Leu3a were generated by pepsin digestion and used as a specific monovalent, non-crosslinking ligand for CD4. These Fab' fragments were shown to bind to CD4 on the transfected cells with an affinity similar to that of HIV gp120, and inhibit...

  3. A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene Expression

    OpenAIRE

    Barco, Angel; Feduchi, Elena; Carrasco, Luis

    2000-01-01

    A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2Apro) under the control of tetracycline has been obtained. Synthesis of 2Apro induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2Apro cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethy...

  4. B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-? signaling pathway in HeLa cells.

    Science.gov (United States)

    Kim, Hyoung Kyu; Song, In-Sung; Lee, Sun Young; Jeong, Seung Hun; Lee, Sung Ryul; Heo, Hye Jin; Thu, Vu Thi; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Jeong, Dae Hun; Kim, Young Nam; Han, Jin

    2014-12-01

    B7-H4 is a B7 family coregulatory protein that inhibits T cell-mediated immunity. B7-H4 is overexpressed in various cancers; however, the functional role of B7-H4 in cancer metabolism is poorly understood. Because mitochondria play pivotal roles in development, proliferation, and death of cancer cells, we investigated molecular and functional alterations of mitochondria in B7-H4-depleted HeLa cells. In a human study, overexpression of B7-H4 was confirmed in the cervices of adenocarcinoma patients (n = 3) compared to noncancer patients (n = 3). In the cell line model, B7-H4 depletion was performed by transfection with small interfering RNA (siRNA). B7-H4 depletion suppressed oxygen consumption rate, ATP production, and mitochondrial membrane potential and mass and increased reactive oxygen species production. In particular, electron transport complex III activity was significantly impaired in siB7-H4-treated cells. Coincidently, depletion of B7-H4 suppressed major mitochondrial regulators (peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PGC1-?] and mitochondrial transcription factor A), a component of oxidative phosphorylation (ubiquinol-cytochrome c reductase core protein 1), and an antiapoptosis protein (Bcl-XL). Mitochondrial dysfunction in siRNA-treated cells significantly augmented oxidative stress, which strongly activated the JNK/P38/caspase axis in the presence of doxorubicin, resulting in increased apoptotic cell death. Investigating the mechanism of B7-H4-mediated mitochondrial modulation, we found that B7-H4 depletion significantly downregulated the cAMP/cAMP response element-binding protein/PGC1-? signaling pathway. Based on these findings, we conclude that B7-H4 has a role in the regulation of mitochondrial function, which is closely related to cancer cell physiology and drug sensitivity. PMID:24658911

  5. Visualisation of cell cycle modifications by X-ray irradiation of single HeLa cells using fluorescent ubiquitination-based cell cycle indicators.

    Science.gov (United States)

    Kaminaga, K; Noguchi, M; Narita, A; Sakamoto, Y; Kanari, Y; Yokoya, A

    2015-09-01

    To explore the effects of X-ray irradiation on mammalian cell cycle dynamics, single cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci) technique were tracked. HeLa cells expressing Fucci were used to visualise cell cycle modifications induced by irradiation. After cultured HeLa-Fucci cells were exposed to 5 Gy X-rays, fluorescent cell images were captured every 20 min for 48 h using a fluorescent microscope. Time dependence of the fluorescence intensity of S/G2 cells was analysed to examine the cell cycle dynamics of irradiated and non-irradiated control cells. The results showed that irradiated cells could be divided into two populations: one with similar cell cycle dynamics to that of non-irradiated cells, and another displaying a prolonged G2 phase. Based on these findings, it is proposed in this article that an underlying switch mechanism is involved in cell cycle regulation and the G2/M checkpoint of HeLa cells. PMID:25877544

  6. The isolation and characterization of nuclear ghosts from cultured HeLa cells.

    Science.gov (United States)

    Riley, D E; Keller, J M; Byers, B

    1975-07-01

    Macromolecular complexes, which appear as ghosts when viewed by phase contrast microscopy, have been isolated from the nuclei of HeLa cells grown in culture. The preparation of these ghosts involves a detergent wash which removes the unit membranes of the nuclear envelop structure but leaves intact both the nuclear pores and the dense structure conferring nuclear margins (possibly the dense lamella). Detergent-washed nuclei are subsequently treated with 0.5 M MgCl2 and fractionated on continuous sucrose gradients containing 0.5 M MgCl2. The ghosts are recovered as a sharp band at an apparent sucrose density of 47-52% and consist of 72% protein, 10% phospholipid, 14% DNA, And 4% RNA. The release of the majority of intranuclear components is indicated by the large loss of nuclear DNA (95%), RNA (71%), and protein (87%) contrasted to the small loss of phospholipid (27%) druing the conversion of detergent washed nuclei to isolated ghosts. Sodium dodecyl sulfate-polyacrylamide gel patterns of the ghost proteins consist of two major bands with approximate molecular weights of 20,000 and 35,000. The isolation of ghosts with a similar density and protein composition from nondetergent-washed nuclei indicates that the ghost is not an artifact induced by the detergent treatment. The absence of cytoplasmic contamination in the preparations of detergent washed nuclei and nuclear ghosts was demonstrated by chemical, enzymatic, and electron microscope studies. We suggest that the isolated ghosts represent a structural macromolecular complex which underlies and is probably attached to the inner nuclear membrane of intact nuclei. The possible additional presence of intranuclear network proteins has not been excluded. PMID:1096936

  7. Cell killing and division delay in asynchronous and synchronized HeLa cells irradiated with alpha particles or x rays

    International Nuclear Information System (INIS)

    HeLa cells irradiated with a single or two split doses of ? particles or X rays were observed with time-lapse photography or examined for their colony-forming ability. The cell cycle-dependent variation of cell killing and division delay were compared in synchronous and asynchronous cell populations. Cellular damage by ? particles was manifested in the form of cessation of division, or death, rather than partial division which was predominant for X irradiation. The pattern of cell killing with ? particles was similar to that found with X rays, in that high sensitivity was noted at or close to mitosis, while a resistant peak remained at late S but not in early G1. The pattern of division delay was similar for X rays and ? particles during G2-M, with a maximum delay at mid G2 and no delay past the transition point, but differed during G1-S. During this period, division delay increased with cell age, whereas it showed a broad peak at G1-S boundary and a trough at late S for X rays. However, such was not the case for ? particles

  8. Involvement of glyceraldehyde-3-phosphate dehydrogenase in the X-ray resistance of HeLa cells

    International Nuclear Information System (INIS)

    We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse

  9. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    International Nuclear Information System (INIS)

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells. (Author)

  10. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, J.C.; Kyriakidis, S.; Stevely, W.S. (Glasgow Univ. (UK))

    1982-01-01

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells.

  11. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements

    Energy Technology Data Exchange (ETDEWEB)

    Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Takeda, Michiaki; Murata, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Akiba, Uichi; Hamada, Fumio [Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita 010-8502 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan)

    2009-04-27

    Electrochemical assay using HeLa cell lines transfected with various plasmid vectors encoding SEAP (secreted alkaline phosphatase) as the reporter has been performed by using SECM (scanning electrochemical microscopy). The plasmid vector contains different responsive elements that include GRE (glucocorticoid response elements), CRE (cAMP responsive elements), or {kappa}B (binding site for NF{kappa}B (nuclear factor kappa B)) upstream of the SEAP sequence. The transfected HeLa cells were patterned on a culture dish in a 4 x 4 array of circles of diameter 300 {mu}m by using the PDMS (poly(dimethylsiloxane)) stencil technique. The cellular array was first exposed to 100 ng mL{sup -1} dexamethasone, 10 ng mL{sup -1} forskolin, or 100 ng mL{sup -1} TNF-{alpha} (tumor necrosis factor {alpha}) after which it was further cultured in an RPMI culture medium for 6 h. After incubation, the cellular array was soaked in a measuring solution containing 4.7 mM PAPP (p-aminophenylphosphate) at pH 9.5, following which electrochemical measurements were performed immediately within 40 min. The SECM method allows parallel evaluation of different cell lines transfected with pGRE-SEAP, pCRE-SEAP, and pNF{kappa}B-SEAP patterned on the same solid support for detection of the oxidation current of PAP (p-aminophenol) flux produced from only 300 HeLa cells in each stencil pattern. The results of the SECM method were highly sensitive as compared to those obtained from the conventional CL (chemiluminescence) protocol with at least 5 x 10{sup 4} cells per well.

  12. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    Science.gov (United States)

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  13. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  14. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    International Nuclear Information System (INIS)

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H2O2-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H2O2) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 ?M H2O2. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H2O2-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H2O2-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H2O2-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in the plasma-medium. These results showed that the medium irradiated with a non-lethal level of plasma flow altered various gene expressions of HeLa cells by giving not only common effects with H2O2 but also some distinctive actions. This study suggests that in addition to H2O2, other chemical species able to affect the cellular responses exist in the plasma-irradiated medium and provide unique features for it, probably increasing the oxidative stress level

  15. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    Scientific Electronic Library Online (English)

    Maria T. V., Romanos; Maria J., Andrada-Serpa; Paulo A. S., Mourão; Yocie, Yoneshigue-Valentin; Mariana S., Pereira; Norma, Santos; Marcia D., Wigg.

    2011-04-01

    Full Text Available A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the [...] nested-polymerase chain reaction (PCR). The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell monolayers. The proviral cDNA was only detected when the sulfated polysaccharide was added to the cells three hours post-infection, indicating that the inhibitory activity occurred in the initial stages of virus-cell interaction. Our results demonstrate, for the first time, the ability of a sulfated fucan from marine algae to inhibit virus transmission through free virus particles.

  16. The fibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor {alpha}-mediated superoxide dismutase induction in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguang; An, Zhengzhe; Song, Hye Jin; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Jang, Seong Soon [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) {alpha} and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofi brate (FF). Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. In HeLa cells total SOD activity was increased with increasing FF doses up to 30 {mu}M. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, PPAR{alpha} and PPAR{gamma} were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and PPAR{alpha} were not increased with FF. However, the mRNA of PPAR{gamma} was increased with FF. FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with PPAR{alpha}.

  17. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells.

    OpenAIRE

    N. Takeda; Kuhn, R J; Yang, C. F.; Takegami, T; Wimmer, E.

    1986-01-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrane fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing nucleotidyl proteins containing nine or ...

  18. Involvement of protein kinase C in the control of tRNA modification with queuine in HeLa cells.

    OpenAIRE

    Langgut, W; Reisser, T

    1995-01-01

    The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q). This unique tRNA modification process was investigated in HeLa cells grown under either aerobic (21% O2) or hypoxic conditions (7% O2) after addition of chemically synthesiz...

  19. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking.

    OpenAIRE

    Smith, P R; Morrison, I E; Wilson, K. M.; Fernández, N.; Cherry, R J

    1999-01-01

    Single-particle tracking (SPT) was used to determine the mobility characteristics of MHC (major histocompatibility complex) class I molecules at the surface of HeLa cells at 22 degrees C and on different time scales. MHC class I was labeled using the Fab fragment of a monoclonal antibody (W6/32), covalently bound to either R-phycoerythrin or fluorescent microspheres, and the particles were tracked using high-sensitivity fluorescence imaging. Analysis of the data for a fixed time interval sugg...

  20. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells

    Scientific Electronic Library Online (English)

    Özgür, Çakir; Murat, Pekmez; Elif, Çepni; Bilgin, Candar; Kerem, Fidan.

    2014-06-01

    Full Text Available Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berr [...] y) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL) and the shoot (0.5 mg/mL) extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.

  1. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells

    Directory of Open Access Journals (Sweden)

    Özgür Çakir

    2014-06-01

    Full Text Available Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL and the shoot (0.5 mg/mL extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.

  2. Cannabidiol Inhibits Cancer Cell Invasion Via Upregulation Of Tissue Inhibitor Of Matrix Metalloproteinases-1

    OpenAIRE

    Ramer, Robert; Merkord, Jutta; Rohde, Helga; Hinz, Burkhard

    2010-01-01

    Abstract Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB1 and CB2 r...

  3. Visualization of cell-cycle modification by ionizing irradiation in single HeLa cells using fluorescent ubiquitination-based cell-cycle indicator

    Science.gov (United States)

    Kaminaga, Kiichi; Sakamoto, Yuka; Kanari, Yukiko; Noguchi, Miho; Yokoya, Akinari

    2014-01-01

    It has been known that cell cycle is retarded or arrested when the cells are exposed to ionizing radiation. The cell-cycle modifications are thought to be controlled by check point mechanisms to ensure the time for DNA repair. Linear energy transfer (LET) dependence of cell-cycle modifications, however, has not been fully revealed. Considerably less is known about detailed cell-cycle arrest for a single-cell level after exposure. Our purpose is to explore high LET radiation effects on the mammalian cell cycle. To examine high LET radiation effects on mammalian cell cycle, it would be essential to track single cells as live cell images observed by time-lapse imaging technique. HeLa cells expressing fluorescent ubiquitination-based cell-cycle indicator (FUCCI) are one of the useful model cell lines to visualize cell cycle because their nuclei show different colors; orange indicating G1 (Cdt1 expression); green indicating S/G2 (Geminin expression) [ 1]. In order to establish a novel assay system to study cell-cycle modification by high LET irradiation such as ion beams, we have developed time-lapse protocol for the HeLa-FUCCI cells irradiated. As a preliminary experiment using conventional X-rays instead of high LET ion beams, we observed the cell cycles of the irradiated HeLa cells. Figure 1 shows a typical time-lapse dynamics of unirradiated cells acquired for 48 h. We establish a new method to decide the time of one cell cycle as shown in Fig. 1. We obtained an evidence that the irradiated (5 Gy) cells show prolonged cell-cycle period when compared with that of control cells (Table 1). We also revealed that the delay is mainly caused in the G2 (Geminin expressing) phase. These results suggest that S/G2, G2/M or M checkpoint mechanism regulate the cell cycle in the irradiated HeLa-FUCCI cells. In conclusion, single FUCCI cell exposure and live cell imaging are a powerful method to trace the single-cell effect of high LET irradiation on the cell cycle in future. Fig. 1.Typical time-lapse dynamics of an unirradiated HeLa-FUCCI cell monitored by geminin fluorescent intensity of the cell nucleus. Table 1.Distribution of the number of cells showing a specific cell cycle period.Cell cycle period, hNumber of cellsControl (unirradiated)5 Gy irradiated>146214–168316–1812918–20221620–2215822–245824–265726–281628–301030 <08Total7567

  4. Accurate identification of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors using UGT1A1-overexpressing HeLa cells.

    Science.gov (United States)

    Sun, Hua; Zhou, Xiaotong; Wu, Baojian

    2015-11-01

    1.?UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an irreplaceable role in detoxification of bilirubin and many drugs (e.g., SN-38). Here we aimed to explore the potential of UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells) as a tool to accurately identify UGT1A1 inhibitors. 2.?Determination of glucuronidation rates (?-estradiol and SN-38 as the substrates) was performed using HeLa1A1 cells and uridine diphosphoglucuronic acid (UDPGA)-supplemented cDNA expressed UGT1A1 enzyme (or microsomes). The inhibitory effects (IC50 values) of 20 structurally diverse compounds on the UGT1A1 activity were determined using HeLa1A1 cells and microsomal incubations. 3.?In HeLa1A1 cells, the IC50 values for inhibition of ?-estradiol glucuronidation by the tested compounds ranged from 0.33 to 94.6?µM. In the microsomal incubations, the IC50 values ranged from 0.47 to 155?µM. It was found that the IC50 values of all test compounds derived from the cells were well consistent with those from the microsomes (deviated by less than two-fold). Further, the IC50 values from the cells were strongly correlated with those from microsomes (r?=?0.944, p?IC50 values (0.37-77.3?µM) for inhibition of SN-38 glucuronidation in the cells were close to those (0.42-122?µM) for glucuronidation inhibition in microsomes. A strong correlation was also observed between the two sets of IC50 values (r?=?0.978, p?HeLa cells were an appropriate tool to accurately depict the inhibition profiles of chemicals against UGT1A1. PMID:26068529

  5. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  6. 3D printing of biomimetic microstructures for cancer cell migration

    OpenAIRE

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2014-01-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstruct...

  7. Doxorubicin-induced cell death requires cathepsin B in HeLa cells

    OpenAIRE

    Bien, S.; Rimmbach, C.; H. Neumann; Niessen, J.; Reimer, E.; Ritter, C.A.; Rosskopf, D.; Cinatl, J; Michaelis, M.; Schroeder, H.W.S.; Kroemer, H.K.

    2010-01-01

    Abstract The cysteine protease cathepsin B acts as a key player in apoptosis. Cathepsin B mediated cell death is induced by various stimuli such as ischemia, bile acids or TNF?. Whether cathepsin B can be influenced by anticancer drugs, however, has not been studied in detail. Here, we describe the modulation of doxorubicin induced cell death by silencing of cathepsin B expression. Previously, it was shown that doxorubicin, in contrast to other drugs, selectively regulates expressi...

  8. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-10-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T/sub 1/-resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized /sup 32/P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor.

  9. In vitro Evaluation of Cytotoxic Activities of Essential Oil from Moringa oleifera Seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines.

    Science.gov (United States)

    Elsayed, Elsayed Ahmed; Sharaf-Eldin, Mahmoud A; Wadaan, Mohammad

    2015-01-01

    Moringa oleifera Lam. (Moringaceae) is widely consumed in tropical and subtropical regions for their valuable nutritional and medicinal characteristics. Recently, extensive research has been conducted on leaf extracts of M. oleifera to evaluate their potential cytotoxic effects. However, with the exception of antimicrobial and antioxidant activities, little information is present on the cytotoxic activity of the essential oil obtained from M. oleifera seeds. Therefore, the present investigation was designed to investigate the potential cytotoxic activity of seed essential oil obtained from M. oleifera on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. The different cell lines were subjected to increasing oil concentrations ranging from 0.15 to 1 mg/mL for 24h, and the cytotoxicity was assessed using MTT assay. All treated cell lines showed a significant reduction in cell viability in response to the increasing oil concentration. Moreover, the reduction depended on the cell line as well as the oil concentration applied. Additionally, HeLa cells were the most affected cells followed by HepG2, MCF-7, L929 and CACO-2, where the percentages of cell toxicity recorded were 76.1, 65.1, 59.5, 57.0 and 49.7%, respectively. Furthermore, the IC50 values obtained for MCF-7, HeLa and HepG2 cells were 226.1, 422.8 and 751.9 ?g/mL, respectively. Conclusively, the present investigation provides preliminary results which suggest that seed essential oil from M. oleifera has potent cytotoxic activities against cancer cell lines. PMID:26107222

  10. Colorectal cancer stem cells.

    OpenAIRE

    Yeung, TM; Mortensen, NJ

    2009-01-01

    PURPOSE: The cancer stem cell hypothesis predicts that only a subpopulation of cells within a tumor is responsible for driving growth. If this hypothesis were true, it would have a significant impact on our current treatment of cancer because conventional chemotherapy and radiotherapy target rapidly proliferating cells making up the bulk of the tumor, not specifically cancer stem cells. The aims of this review are to highlight the current evidence supporting the existence of cancer stem cells...

  11. Prolonged cell cycle response of HeLa cells to low-level alkylation exposure

    OpenAIRE

    Schroering, Allen G.; Kothandapani, Anbarasi; Patrick, Steve M.; Kaliyaperumal, Saravanan; Sharma, Vishal P.; Williams, Kandace J.

    2009-01-01

    Alkylation chemotherapy has been a long-standing treatment protocol for human neoplasia. N-methyl-N’–nitro-N-nitrosoguanidine (MNNG) is a direct-acting monofunctional alkylator. Temozolomide is a clinical chemotherapeutic equivalent requiring metabolic breakdown to the alkylating agent. Both chemicals have similar mechanistic efficacy against DNA mismatch repair proficient tumor cells that lack expression of methylguanine methyltransferase (MGMT). Clinically relevant concentrations of both ag...

  12. Heat-enhanced reactivation of UV-irradiated adenovirus 2 is not associated with enhanced mutagenesis in HeLa cells

    International Nuclear Information System (INIS)

    The reversion frequency of an adenovirus 2 temperature-sensitive growth mutant irradiated with different doses of UV light was determined after infection of control, UV-irradiated and heat-shocked HeLa cells. No enhancement of mutagenesis by treatment of the cells was observed. Heat-enhanced viral reactivation does not therefore display a significant error-prone component. (orig.)

  13. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the “healthiness” of the cells in various in-cell NMR studies.

  14. Transcription of adenovirus and HeLa cell genes in the presence of drugs that inhibit topoisomerase I and II function.

    Science.gov (United States)

    Schaak, J; Schedl, P; Shenk, T

    1990-01-01

    The requirements for topoisomerases in transcription of adenovirus and HeLa cell genes were analyzed using drugs that specifically inhibit either topoisomerases I or II. Cleavage of viral DNA by topoisomerases in the presence of either camptothecin or VM26 was used to determine drug concentrations that led to maximal inhibition of ligation in the cleavage and ligation step of topoisomerase I or II respectively. Inhibition of topoisomerase II with VM26 did not cause a direct reduction in transcription of adenoviral genes or HeLa cell heat shock genes. VM26 did, however, interfere with other cellular processes. It reduced nucleoside uptake into HeLa cells from the medium, and it altered the normal nuclear to cytoplasmic ratio of specific RNAs. Treatment of cells with camptothecin to inhibit topoisomerase I reduced but did not abolish transcription of viral and HeLa cell genes. Transcription mediated by both RNA polymerases I and II was reduced. Topoisomerase II did not appear to substitute for topoisomerase I in transcription since treatment of cells with VM26 and camptothecin did not reduce transcript accumulation relative to cells treated with camptothecin alone. Images PMID:2158079

  15. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock

    International Nuclear Information System (INIS)

    Ubiquitin was radiolabeled by reaction with 125I-Bolton-Hunter reagent and introduced into HeLa cells using erythrocyte-mediated microinjection. The injected cells were then incubated at 45 degrees C for 5 min (reversible heat-shock) or for 30 min (lethal heat-shock). After either treatment, there were dramatic changes in the levels of ubiquitin conjugates. Under normal culture conditions, approximately 10% of the injected ubiquitin is linked to histones, 40% is found in conjugates with molecular weights greater than 25,000, and the rest is unconjugated. After heat-shock, the free ubiquitin pool and the level of histone-ubiquitin conjugates decreased rapidly, and high molecular weight conjugates predominated. Formation of large conjugates did not require protein synthesis; when analyzed by two-dimensional electrophoresis, the major conjugates did not co-migrate with heat-shock proteins before or after thermal stress. Concomitant with the loss of free ubiquitin, the degradation of endogenous proteins, injected hemoglobin, BSA, and ubiquitin was reduced in heat-shocked HeLa cells. After reversible heat-shock, the decrease in proteolysis was small, and both the rate of proteolysis and the size of the free ubiquitin pool returned to control levels upon incubation at 37 degrees C. In contrast, neither proteolysis nor free ubiquitin pools returned to control levels after lethal heat-shock. However, lethally heat-shocked cells degraded denatured hemoglobin more rapidly than native hemoglobin and ubiquitin-globin conjugates formed within them. Therefore, stabilization of proteins after heat-shock cannot be due to the loss of ubiquitin conjugation or inability to degrade proteins that form conjugates with ubiquitin

  16. Pancreatic cancer stem cells

    OpenAIRE

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchicall...

  17. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Highlights: • As2O3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As2O3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As2O3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As2O3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer

  18. Anticancer-cytotoxic activity of saponins isolated from the leaves of Gymnema sylvestre and Eclipta prostrata on HeLa cells

    Directory of Open Access Journals (Sweden)

    Khanna Venkatesan

    2009-01-01

    Full Text Available The anticancer-cytotoxic activities of isolated saponins, gymnemagenol (C 30 H 50 O 4 from Gymnema sylvestre and dasyscyphin C (C 28 H 40 O 8 from Eclipta prostrata leaves were tested under in vitro conditions in HeLa cells. The gymnemagenol and dayscyphin C at 50 ?g/ml showed a good cytotoxic activity (63% and 52%, respectively in HeLa cells at 48 hours with the IC50 value of 37 and 50 ?g/ml, respectively. 5-Fluorouracil (5-FU, a positive control, showed 57.5 % cell death with the IC50 value of 36 ?g/ml. The percentage of HeLa cell death was maximum (73% after 96 hours with gymnemagenol, whereas dasyscyphin C showed only 53%. The isolated saponins were not toxic to Vero cells. From this study, it can be concluded that the saponins, gymnemagenol, and dayscyphin C have significant anticancer-cytotoxic activity on HeLa cells under in vitro conditions.

  19. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  20. Detecção da citotoxicidade de materiais biocompatíveis nas linhagens celulares MRC-5, HeLa e RC-IAL / MRC-5, HeLa and RC-IAL cell lines sensitivity for detection of cytotoxicity of biocompatible materials

    Scientific Electronic Library Online (English)

    Aurea S., Cruz; Cristina A., Figueiredo; Clélia H. O., Martinez; Luís F. de, Salles Gomes.

    1992-04-01

    Full Text Available A sensibilidade de uma linhagem celular diplóide e duas heteroplóides, para a detecção de citotoxicidade através do método de difusão em camada de ágar sobre culturas celulares, foi avaliada experimentalmente com solução de ácido ascórbico em diferentes concentrações e, na prática, frente a 562 amos [...] tras de 21 diferentes materiais industriais enviados para análise na Seção de Culturas Celulares do Instituto Adolfo Lutz. A linhagem celular heteroplóide designada RC-IAL apresentou, em relação às linhagens MRC-5 e HeLa, maior sensibilidade porque revelou a presença de efeito citotóxico nas menores concentrações utilizadas (10 e 25 ug/ml) do ácido ascórbico e apresentou maior diâmetro do halo citotóxico em 15 amostras e igual diâmetro em 16 das 43 amostras (7,6%) que resultaram positivas. Nas 43 amostras positivas, a linhagem MRC-5 não revelou citotoxicidade em 3 amostras de espuma e 1 de resina acrílica. O polivinilcloreto (PVC) e o polietileno, raramente revelaram positividade, enquanto plástico, algodão e resinas acrílicas revelaram citotoxicidade ao redor de 5%. Em vista dos resultados é discutida a proposta da utilização da linhagem RC-IAL e HeLa para a continuidade das futuras análises solicitadas ao Instituto Adolfo Lutz Abstract in english The sensitivity of diploid and heteroploid cell lines for detection of cytotoxicity using the agar diffusion method on cell culture, was tested with ascorbic acid solution of different concentrations. A total of 562 samples of 21 various materials were tested. The heteroploid cell line, RC-IAL, show [...] ed in relation to the MRC-5 and HeLa cell lines, greater sensitivity because it showed the presence of cytotoxic effect with the lowest concentration used (10 and 25ug/ml) of ascorbic acid and showed greater diameter of cytotoxic halo in 15 samples and equal diameter in 16 of the 43 positive samples (7.6%). Out of 43 positive samples, the MRC-5 line did not show cytotoxicity in 3 sponge samples and 1 of acrylic resin. The PVC (polyvinylchloride) and polyethylene rarely showed positivity, while, the plastic, cotton and acrylic resin demonstrated cytotoxicity in about 5% of samples. We thus suggest the use of the RC-IAL and HeLa cell lines for continuation of this type of analysis at Adolfo Lutz Institute

  1. Detecção da citotoxicidade de materiais biocompatíveis nas linhagens celulares MRC-5, HeLa e RC-IAL MRC-5, HeLa and RC-IAL cell lines sensitivity for detection of cytotoxicity of biocompatible materials

    Directory of Open Access Journals (Sweden)

    Aurea S. Cruz

    1992-04-01

    Full Text Available A sensibilidade de uma linhagem celular diplóide e duas heteroplóides, para a detecção de citotoxicidade através do método de difusão em camada de ágar sobre culturas celulares, foi avaliada experimentalmente com solução de ácido ascórbico em diferentes concentrações e, na prática, frente a 562 amostras de 21 diferentes materiais industriais enviados para análise na Seção de Culturas Celulares do Instituto Adolfo Lutz. A linhagem celular heteroplóide designada RC-IAL apresentou, em relação às linhagens MRC-5 e HeLa, maior sensibilidade porque revelou a presença de efeito citotóxico nas menores concentrações utilizadas (10 e 25 ug/ml do ácido ascórbico e apresentou maior diâmetro do halo citotóxico em 15 amostras e igual diâmetro em 16 das 43 amostras (7,6% que resultaram positivas. Nas 43 amostras positivas, a linhagem MRC-5 não revelou citotoxicidade em 3 amostras de espuma e 1 de resina acrílica. O polivinilcloreto (PVC e o polietileno, raramente revelaram positividade, enquanto plástico, algodão e resinas acrílicas revelaram citotoxicidade ao redor de 5%. Em vista dos resultados é discutida a proposta da utilização da linhagem RC-IAL e HeLa para a continuidade das futuras análises solicitadas ao Instituto Adolfo LutzThe sensitivity of diploid and heteroploid cell lines for detection of cytotoxicity using the agar diffusion method on cell culture, was tested with ascorbic acid solution of different concentrations. A total of 562 samples of 21 various materials were tested. The heteroploid cell line, RC-IAL, showed in relation to the MRC-5 and HeLa cell lines, greater sensitivity because it showed the presence of cytotoxic effect with the lowest concentration used (10 and 25ug/ml of ascorbic acid and showed greater diameter of cytotoxic halo in 15 samples and equal diameter in 16 of the 43 positive samples (7.6%. Out of 43 positive samples, the MRC-5 line did not show cytotoxicity in 3 sponge samples and 1 of acrylic resin. The PVC (polyvinylchloride and polyethylene rarely showed positivity, while, the plastic, cotton and acrylic resin demonstrated cytotoxicity in about 5% of samples. We thus suggest the use of the RC-IAL and HeLa cell lines for continuation of this type of analysis at Adolfo Lutz Institute

  2. Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells.

    Science.gov (United States)

    Pan, Tai-Long; Hung, Yu-Chiang; Wang, Pei-Wen; Chen, Shui-Ten; Hsu, Teng-Kuei; Sintupisut, Nardnisa; Cheng, Chao-Sheng; Lyu, Ping-Chiang

    2010-03-01

    Certain antitumor agents have recently been extracted from the roots of Salvia miltiorrhiza Bunge. The diterpene derivative, tanshinone IIA, possesses cytotoxic activity against several human carcinoma cell lines. It also inhibits invasion and metastasis of cancer cells. In the present study, we isolated tanshinone IIA from S. miltiorrhiza, and it exhibited strong growth inhibition against human cervical cancer cells in dose- and time-dependent manners with a 50% cell growth inhibition value of 2.5 microg/mL (8.49 microM). Flow cytometric analysis of cell cycle progression revealed that G(2)/M arrest was initiated after a 24 h exposure to the drug. It also resulted in DNA fragmentation and degradation of poly (ADP-ribose) polymerase indicating that tanshinone IIA may be a potential antitumor agent. Furthermore, we performed a comprehensive proteomic analysis to survey global protein changes induced by tanshinone IIA treatment on HeLa cells. Significant changes in the levels of cytoskeleton proteins as well as stress-associated proteins were observed. Immunoblot analysis and immunofluorescence staining were used to confirm the levels of protein expression. Overexpression of the vimentin rescued these tanshinone IIA-induced events. Computational docking methods indicated that tanshinone IIA could stably bind to the beta-subunit of the microtubule protein. An interaction network analysis of these 12 proteins using MetaCore software suggested that tanshinone IIA treatment regulated the expressions of proteins involved in apoptotic processes, spindle assembly, and p53 activation, including vimentin, Maspin, alpha- and beta-tubulin, and GRP75. Taken together, our results suggest that tanshinone IIA strongly inhibited the growth of cervical cancer cells through interfering in the process of microtubule assembly, leading to G(2)/M phase arrest and sequent apoptosis. The success of this large-scale effort was assessed by a bioinformatics analysis of proteins through predictions of protein domains and possible functional roles. The possible contributions of these proteins to the cytotoxicity of tanshinone IIA provide potential opportunities for the development of cancer therapeutics. PMID:20049856

  3. Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells

    International Nuclear Information System (INIS)

    HeLa cells expressed 3.4- and 1.6-kilobase (kb) transcripts of the integrated human papillomavirus (HPV) type 18 genome. Two types of cDNA clones representing each size of HPV type 18 transcript were isolated. Sequence analysis of these two types of cDNA clones revealed that the 3.4-kb transcript contained E6, E7, the 5' portion of E1, and human sequence and that the 1.6-kb transcript contained spliced and frameshifted E6 (E6*), E7, and human sequence. There was a common human sequence containing a poly(A) addition signal in the 3' end portions of both transcripts, indicating that they were transcribed from the HPV genome at the same integration site with different splicing. Furthermore, the 1.6-kb transcript contained both of the two viral TATA boxes upstream of E6, strongly indicating that a cellular promoter was used for its transcription

  4. Phenol-soluble modulin ? induces G2/M phase transition delay in eukaryotic HeLa cells.

    Science.gov (United States)

    Deplanche, Martine; Filho, Rachid Aref El-Aouar; Alekseeva, Ludmila; Ladier, Emilie; Jardin, Julien; Henry, Gwénaële; Azevedo, Vasco; Miyoshi, Anderson; Beraud, Laetitia; Laurent, Frederic; Lina, Gerard; Vandenesch, François; Steghens, Jean-Paul; Le Loir, Yves; Otto, Michael; Götz, Friedrich; Berkova, Nadia

    2015-05-01

    Staphylococcus aureus is a gram-positive bacterium responsible for a wide range of infections. Host cell cycle alteration is a sophisticated mechanism used by pathogens to hijack the defense functions of host cells. We previously demonstrated that S. aureus MW2 (USA400) bacteria induced a G2/M phase transition delay in HeLa cells. We demonstrate here that this activity is triggered by culture supernatant compounds. Using size exclusion chromatography of the MW2 supernatant, followed by mass spectroscopy analysis of corresponding peaks, we identified phenol-soluble modulin ? (PSM?) peptides as the likely candidates for this effect. Indeed, synthetic PSM?1 and PSM?3 caused a G2/M phase transition delay. The implication of PSM? in cell cycle alteration was confirmed by comparison of S. aureus Los Angeles County clone (LAC) wild-type with the isogenic mutant LAC?psm?, which lacks the psm? operon encoding PSM?1-4. PSM?-induced G2/M transition delay correlated with a decrease in the defensin genes expression suggesting a diminution of antibacterial functions of epithelial cells. By testing the supernatant of S. aureus human clinical isolates, we found that the degree of G2/M phase transition delay correlated with PSM?1 production. We show that PSMs secreted by S. aureus alter the host cell cycle, revealing a newly identified mechanism for fostering an infection. PMID:25648996

  5. S-adenosyl-L-methionine counteracts mitotic disturbances and cytostatic effects induced by sodium arsenite in HeLa cells.

    Science.gov (United States)

    Ramírez, Tzutzuy; Stopper, Helga; Fischer, Thomas; Hock, Robert; Herrera, Luis A

    2008-01-01

    Aneuploidy represents a serious problem for human health. Toxicological data have shown that aneuploidy can be caused by exposure to chemical agents known as mitotic spindle poisons, since they arrest cell cycle in mitosis through their interaction with tubulin. Among these agents is arsenic. In previous reports, we demonstrated that the aneugenic events induced by sodium arsenite can be abolished by the exogenous addition of S-adenosyl-l-methionine (SAM). Nevertheless, the mechanisms involved are still unknown. The aim of the present work was to study the influence of SAM on the mitotic disturbances caused by sodium arsenite. To achieve this goal, we analyzed microtubule (MT) polymerization by immunolocalization and live cell microscopy of mitotic cells. Our findings indicate that sodium arsenite alters the dynamics of MT polymerization, induces centrosome amplification and delays mitosis. Furthermore, SAM reduces the alterations on MT dynamics, as well as centrosome amplification, and therefore diminishes the formation of multipolar spindles in treated HeLa cells. In addition, SAM decreases the progression time through mitosis. Taking these data together, we consider that the mechanism by which SAM reduces the frequency of aneuploid cells must be related to the modulation of the dynamics and organization of MT, suggesting a role of SAM on chromosome segregation, which should be further investigated in primary cells. PMID:17888458

  6. Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-?.

    Science.gov (United States)

    Yamazaki, Tomohiro; Matsuo, Junji; Nakamura, Shinji; Oguri, Satoshi; Yamaguchi, Hiroyuki

    2014-08-01

    Chlamydia trachomatis is an obligate intracellular bacterium that causes a sexually transmitted disease. Ureaplasma parvum is commensal in the human genital tract, with a minimal contribution to urogenital infection. We have recently found that U. parvum has a significant effect on the presence of C. trachomatis in the genital tract of healthy women. We therefore assessed the effect of U. parvum co-incubation on C. trachomatis maturation from reticulate bodies (RBs) to elementary bodies (EBs) in HeLa cells in the absence or presence of interferon (IFN)-?, which is a critical host defense factor. IFN-? stimulation of viable U. parvum significantly prompted chlamydial growth with an increase in infectious particles, EBs, in HeLa cells. IFN-? treatment of killed U. parvum had a similar effect on C. trachomatis maturation in HeLa cells. There was no change in expression of indoleamine 2,3-dioxygenase (IDO) in cultures of viable or killed U. parvum. We concluded that U. parvum co-incubation by IFN-? helped C. trachomatis to mature from RBs to EBs in HeLa cells, independent of IDO expression. This suggests a novel survival strategy of C. trachomatis against IFN-? exposure, prompting secondary infection of the genital mucosa, with possible clinical implications. PMID:24855914

  7. RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells

    Directory of Open Access Journals (Sweden)

    Nazli C

    2012-04-01

    Full Text Available Caner Nazli1, Tugba Ipek Ergenc2, Yasemin Yar1, Havva Yagci Acar1,3, Seda Kizilel1,21Graduate School of Sciences and Engineering, Koç University, 2Department of Chemical and Biological Engineering, College of Engineering, Koç University, 3Department of Chemistry, Faculty of Arts and Sciences, Koç University, Istanbul, TurkeyAbstract: The objective of this study was to develop thin, biocompatible, and biofunctional hydrogel-coated small-sized nanoparticles that exhibit favorable stability, viability, and specific cellular uptake. This article reports the coating of magnetic iron oxide nanoparticles (MIONPs with covalently cross-linked biofunctional polyethylene glycol (PEG hydrogel. Silanized MIONPs were derivatized with eosin Y, and the covalently cross-linked biofunctional PEG hydrogel coating was achieved via surface-initiated photopolymerization of PEG diacrylate in aqueous solution. The thickness of the PEG hydrogel coating, between 23 and 126 nm, was tuned with laser exposure time. PEG hydrogel-coated MIONPs were further functionalized with the fibronectin-derived arginine-glycine-aspartic acid-serine (RGDS sequence, in order to achieve a biofunctional PEG hydrogel layer around the nanoparticles. RGDS-bound PEG hydrogel-coated MIONPs showed a 17-fold higher uptake by the human cervical cancer HeLa cell line than that of amine-coated MIONPs. This novel method allows for the coating of MIONPs with nano-thin biofunctional hydrogel layers that may prevent undesirable cell and protein adhesion and may allow for cellular uptake in target tissues in a specific manner. These findings indicate that the further biofunctional PEG hydrogel coating of MIONPs is a promising platform for enhanced specific cell targeting in biomedical imaging and cancer therapy.Keywords: PEG hydrogel, surface-initiated photopolymerization, nanoparticle encapsulation, agglomeration

  8. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: Neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3

    International Nuclear Information System (INIS)

    Physiological modifications of intracellular Ca2+ ([Ca2+]i) levels trigger and/or regulate a diversity of cellular activities (e.g. neurotransmitter release, synaptic plasticity, muscular contraction, cell proliferation), while calcium overloads could result in cytotoxicity. Previously, we have shown that trimethyltin chloride (Me3SnCl; TMT) modulates calcium homeostasis in cervix adenocarcinoma (HeLa S3) cells [Florea, A.-M., Dopp, E., Buesselberg, D., 2005. TMT induces elevated calcium transients in HeLa cells: types and levels of response. Cell Calcium 37, 252-258]. Here we compare [Ca2+]i-changes induced by trimethyltin chloride in neuroblastoma SY5Y and HeLa S3 cells using calcium-sensitive dyes (fluo-4/AM (fluo-4) and rhod-2/AM (rhod-2)) and laser scanning microscopy (LSM). TMT-induced calcium elevations in neuroblastoma SY5Y as well as in HeLa S3 cells. [Ca2+]i rose to a sustained plateau or to transient spikes. Overall, the detected averaged increase of the maximum calcium elevation were: 0.5 ?M ?125.6%; 5 ?M ?130.1%; 500 ?M ?145% in HeLa S3 cells and 0.5 ?M ?133.3%; 5 ?M ?136.1%; 500 ?M ?147.1% in neuroblastoma SY5Y cells. The calcium rise derived from internal stores did not significantly depend on the presence of calcium in the external solution: ?109% (no calcium added) versus ?117% (2 mM calcium; 5 ?M TMT) in HeLa cells. This difference was similar in neuroblastoma SY5Y cells, were ?127% versus ?136% increase (5 ?M TMT) were measured. Staining of calcium stores with rhod-2 showed a TMT-induced [Ca2+]i-decrease in the stores followed by an increase of the calcium concentration in the nuclei of the two cell lines tested. Our results suggest that toxic effects in human tumour cells after exposure to trimethyltin compounds might be due to an elevation of [Ca2+]i

  9. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  10. Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes

    Directory of Open Access Journals (Sweden)

    de Mello Samanta M

    2008-12-01

    Full Text Available Abstract Background As an obligatory intracellular parasite, Trypanosoma cruzi, the etiological agent of Chagas' disease, must invade and multiply within mammalian cells. Cytokeratin 18 (CK18 is among the host molecules that have been suggested as a mediator of important events during T. cruzi-host cell interaction. Based on that possibility, we addressed whether RNA interference (RNAi-mediated down regulation of the CK18 gene could interfere with the parasite life cycle in vitro. HeLa cells transiently transfected with CK18-RNAi had negligible levels of CK18 transcripts, and significantly reduced levels of CK18 protein expression as determined by immunoblotting or immunofluorescence. Results CK18 negative or positive HeLa cells were invaded equally as well by trypomastigotes of different T. cruzi strains. Also, in CK18 negative or positive cells, parasites recruited host cells lysosomes and escaped from the parasitophorous vacuole equally as well. After that, the growth of amastigotes of the Y or CL-Brener strains, was drastically arrested in CK18 RNAi-treated cells. After 48 hours, the number of amastigotes was several times lower in CK18 RNAi-treated cells when compared to control cells. Simultaneous staining of parasites and CK18 showed that in HeLa cells infected with the Y strain both co-localize. Although the amastigote surface protein-2 contains the domain VTVXNVFLYNR previously described to bind to CK18, in several attempts, we failed to detect binding of a recombinant protein to CK-18. Conclusion The study demonstrates that silencing CK18 by transient RNAi, inhibits intracellular multiplication of the Y and CL strain of T. cruzi in HeLa cells, but not trypanosome binding and invasion.

  11. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  12. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W; Matthew J. Naylor

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  13. Breast cancer stem cells

    OpenAIRE

    MatthewJNaylor

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to t...

  14. Adenovirus proteins associated with mRNA and hnRNA in infected HeLa cells

    International Nuclear Information System (INIS)

    The proteins that interact with cytoplasmic and nuclear polyadenylated RNA in adenovirus type 5 (Ad5) infection of HeLa cells were examined by UV-induced RNA-protein cross-linking in intact cells. The Ad5 100-kilodalton late nonvirion protein (100K protein) was cross-linked to both host and viral polyadenylated cytoplasmic RNA (mRNA). The cross-linking of the 100K protein to mRNA appears to correlate with productive infection, because the protein is not cross-linked to mRNA in abortive infection of wild-type Ad5 in monkey cells (CV-1) even though normal amounts of it are produced. However, when CV-1 cells are infected with Ad5 hr404, and Ad5 mutant which overcomes the host restriction to wild-type Ad5 infection in these cells, the 100K protein is cross-linked to mRNA. To identify and obtain antibodies to RNA-contacting proteins, a mouse was immunized with oligo(dT)-selected cross-linked RNA-protein complexes from Ad5-infected cells and the serum was used for immunoblotting experiments. It was found that in addition to the 100K protein, the Ad5 72K DNA-binding protein is also associated with RNA in the infected cells. The 72K DNA-binding protein is cross-linked to polyadenylated nuclear RNA sequences. These findings indicate that adenovirus proteins interact with RNAs in the infected cell and suggest possible mechanisms for the effects of the virus on mRNA metabolism

  15. ANTICANCER ACTIVITY OF PONGAMIA GLABRA V. SEED OIL EXTRACT AGAINST SELECTED HUMAN CANCER CELL LINES

    Directory of Open Access Journals (Sweden)

    Chinnasamy Arulvasu

    2012-08-01

    Full Text Available Screening of the seed oil extract from Pongamia glabra V. (Fabaceae has been carried out for antiproliferative activity of cancer cells. The seed oil was extracted with methanol and then persuasive activity was tested on human cancer cell lines MCF-7 and HeLa. The cell growth inhibitory effects of seed oil extract was observed. The cell viability was assessed using trypan blue dye exclusion method and 3-(4, 5- Dimethyl thiazol-2yl-2, 5-dimethyltetrazolium bromide (MTT assay. The IC50 value of the methanolic seed oil extract against MCF-7 and HeLa was found to be 6 mg/ml and 6 mg/ml respectively after 48 hours of incubation. The P.glabra seed oil extract increased the proportion of DNA fragmentation in MCF-7 and HeLa cancer cell lines. Moreover, the inhibitory effect is correlated with DNA fragmentation. These results suggest that the P.glabra seed oil extract has an inhibitory effect on human cancer cell lines MCF-7 and HeLa.

  16. Compatibility of cancer cells with nanostructured oxidized porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, Tal; Parush, Ran; Massad, Na' ama [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Segal, Ester [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2011-06-15

    The attachment and long-term viability of three types of human cancer cell lines (glioma U87, breast cancer MDA-MB-231, and cervical cancer HeLa) onto nanostructured oxidized porous Si substrates is investigated. The porous layers are fabricated to give cylindrically-shaped structures with pore diameters in the tunable range of 10 to 150 nm by anodizing a heavily-doped p-type Si. The Alamar Blue viability assay and optical microscopy are employed to assess the attachment, viability and the morphology of the cells. The results show that cells remain viable and proliferate on all surfaces. The nano-architecture of the studied scaffolds does not exert a deleterious effect on cancer cells. Cell coverage levels comparable to standard culture preparations on tissue culture polystyrene are observed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of misonidazole on formation of thymine base damage by gamma rays in HeLa cells

    International Nuclear Information System (INIS)

    The effect of the radiosensitizer misonidazole on the formation of thymine base damage of the 5,6-dihydroxydihydro-thymine-type by gamma rays was measured under aerobic and hypoxic conditions. HeLa cells, prelabled with [3H-methyl]-thymidine, were suspended in phosphate buffered saline in the presence and absence of misonidazole. Concentrations up to 20 mM were used. The cell suspensions were irradiated at 12-140 with 60Co gamma rays. Dose response curves under aerobic and hypoxic conditions showed a much-depressed base damage formation under hypoxia, which was created by blowing a stream of nitrogen across the cell suspensions for 30 minutes on ice. The presence of higher concentrations of misonidazole decreased the formation of thymine based damage under aerobic conditions but had little or no detectable effect under hypoxia. It is concluded that an effect on the level of formation of thymine base damage is not primarily responsible for the radiosensitization of misonidazole under hypoxic conditions. 12 references, 3 figures

  18. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; OKUMURA, TOMOYUKI; Wang, Timothy C

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  19. Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe.

    OpenAIRE

    Georgiou, George(Institute of Nuclear and Particle Physics, N.C.S.R. “Demokritos”, 15310, Agia Paraskevi, Greece); Bahra, Sukhvinder S; Mackie, Alan R; Wolfe, Caroline A; O'Shea, Paul; Ladha, Shab; Fernandez, Nelson; Cherry, Richard J

    2002-01-01

    The mobility of cell surface MHC class I molecules on HeLa cells was measured by fluorescence recovery after photobleaching (FRAP). The probe used for these studies was the phycobiliprotein R-phycoerythrin coupled to Fab fragments of a monoclonal antibody specific for human monomorphic MHC class I molecules. It was found that the recovery curves could be equally well fitted by either a random diffusion model with an immobile component or by an anomalous diffusion model. In the latter case, th...

  20. Genistein Inhibition of Topoisomerase II? Expression Participated by Sp1 and Sp3 in HeLa Cell

    OpenAIRE

    Yunzhi Li; Shuo Han; Yongxin Yan; Lifen Zheng; Yanling Wang; Wenling Li; Yunli Yan; Najing Zhou

    2009-01-01

    Genistein (4?, 5, 7-trihydroxyisoflavone) is an isoflavone compound obtained from plants that has potential applications in cancer therapy. However, the molecular mechanism of the action of genistein on cancer cell apoptosis is not well known. In this study, we investigated the effect of genistein on topoisomerase II-? (Topo II?), an important protein involved in the processes of DNA replication and cell proliferation. The results revealed that inhibition of Topo II? expression through the re...

  1. Breast Cancer Stem Cells

    OpenAIRE

    Velasco-Velázquez, Marco A; Homsi, Nora; De La Fuente, Marisol; PESTELL, RICHARD G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24?/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy,...

  2. Carbon nanowall scaffold to control culturing of cervical cancer cells

    Science.gov (United States)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  3. Correlation between ?-ray-induced G2 arrest and radioresistance in two human cancer cells

    International Nuclear Information System (INIS)

    Purpose: The correlation between radioresistance and ?-ray-induced G2 arrest was examined in two human cancer cell lines, HeLa (cervical carcinoma) and MeWo (melanoma). Methods and Materials: Cellular radioresistance was examined by a colony formation assay and Hoechst 33342 staining. G2 arrest induced by ?-rays was examined by flow cytometry, and the accumulation of cyclin B1 and cdc2 proteins was analyzed using Western blotting. Results: HeLa was more resistant (10% survival dose[D10] 10 Gy) than MeWo (D10 = 4 Gy) to ?-rays. In HeLa, cell cycle analysis showed that G2 arrest was induced 10 or 24 h after irradiation of 10 or 4 Gy, respectively. In contrast, no clear G2 arrest in MeWo was observed after irradiation. Western blot analysis showed that cell cycle regulators, cyclin B1 and cdc2, were accumulated in HeLa but not in MeWo. The accumulation of cyclin B1 and cdc2 reached peak levels 24-34 h after irradiation of 10 Gy, and 24 h after irradiation of 4 Gy. In addition, Hoechst staining revealed similar increase in apoptotic bodies with time after irradiation in HeLa and MeWo at isosurvival doses. Conclusion: Radioresistance of these human cancer cells is closely correlated with ?-ray-induced G2 arrest, and cyclin B1 and cdc2 are possible regulators of G2 arrest

  4. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    ?im?ek, Ece; Aydemir, Esra Arslan; ?mir, Nilüfer; Koçak, Orhan; Kuruo?lu, Aykut; F??k?n, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFN? respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFN? levels were corrected both by western blot and real time PCR. Treatment with 1.4?M DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72h. 1.4?M DMSO caused a significant reduction in VEGF levels at 72h of incubation and sharp increases in IFN? levels at both 48 and 72h of incubation. According to real time PCR analyses, DMSO (1.4?M) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFN? release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFN? in vitro. PMID:26275957

  5. Phytate decreases oxidative damage caused by labile forms of iron in solution, blood plasma and in HeLa cells

    Scientific Electronic Library Online (English)

    Frederico A., Schleh; Orlando, Chiarelli-Neto; Mayara N., Fontes; Renato, Najjar; Breno P., Espósito.

    2014-06-01

    Full Text Available Fitato (PHYT, mio-inositol 1,2,3,4,5,6-hexakisfosfato) é um produto natural com forte efeito sobre a biodisponibilidade de minerais, especialmente o ferro. Neste trabalho, investigamos os efeitos antioxidantes do PHYT em modelos de transtornos de sobrecarga de ferro (ferro lábil plasmático e reserva [...] tório de ferro lábil). PHYT apresentou um efeito antioxidante considerável, com a vantagem de ser permeável às células e ser um constituinte normal da dieta humana. Nossos resultados sugerem que o PHYT pode auxiliar as defesas do organismo contra estresse induzido por sobrecarga de ferro. Abstract in english Phytate (PHYT, myo-inositol 1,2,3,4,5,6-hexakisphosphate) is a natural product with strong effect on the bioavailability of minerals, especially iron. In this work, we investigated the antioxidant effects of PHYT on models of iron overload disorders (labile plasma iron and labile iron pool) both in [...] solution and in HeLa cells. PHYT has a considerable antioxidant effect, with the benefit of being cell permeant and a normal constituent of human diet. Our results suggest that PHYT may assist organism defenses against iron-overload stress.

  6. Induction of the multixenobiotic/multidrug resistance system in HeLa cells in response to imidazolium ionic liquids.

    Science.gov (United States)

    Rusiecka, Izabela; Sk?adanowski, Andrzej C

    2011-01-01

    The multixenobiotic/multidrug resistance (MXR/MDR) system controls transport of foreign molecules across the plasma membrane as a preventive measure before toxicity becomes apparent. The system consists of an efflux pump, ABCB1, and/or a member of the ABCC family. Ionic liquids are broadly used solvents with several unique properties such as wide liquid range, negligible vapor pressure, good thermal and chemical stability and extraordinary dissolution properties for organic and inorganic compounds. Ionic liquids containing imidazolium ring are frequently used as solvents in drug synthesis. Constitutive and induced amounts of ABCB1 and ABCC1 proteins were estimated here by Western blotting and quantified by flow cytometry in HeLa cells exposed to three homologous 1-alkyl-3-methylimidazolium and one benzyl ring substituted salts. Aliphatic substituents in position 1 of the salts caused a weak toxicity but 1-benzyl ring was strongly toxic. An 8-day long treatment with 10(-4) M 1-hexyl-3-methylimidazolium chloride resulted in an about 1.5-fold increase of ABCB1 level and over 2-fold increase of ABCC1 level. The amounts of both investigated ABC-proteins were linearly dependent on the length of the imidazolium ring side chain. Such distinctive changes of the amount of MXR/MDR proteins measured in cultured cells may be a useful marker when screening for potential toxicity of various chemicals. PMID:21584288

  7. Effect of troglitazone on radiation sensitivity in cervix cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Zheng Zhe; Liu, Xian Guang; Song, Hye Jin; Choi, Chi Hwan; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma} ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu{sup 2+}/Zn{sup 2+} -superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 {mu}M of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 {mu}M TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0- G1 phase cells were increased in HeLa and Me180 by 5 {mu}M TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 {mu}M TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 {mu}M TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalasemediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR {gamma} expression level.

  8. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... another part of the body, it is called metastasis . Cancer cells break away from where they began (the ... renal cells. The disease is metastatic renal cell cancer, not bone cancer. The following stages are used for renal ...

  9. Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a.

    Science.gov (United States)

    Zhang, Lirui; Yang, Xiaofeng; Li, Xu; Li, Chen; Zhao, Le; Zhou, Yuanyuan; Hou, Huilian

    2015-10-01

    Drug resistance remains a major challenge in cancer therapy. Butein, a polyphenolic compound, has been shown to exhibit anticancer activity through the inhibition of the activation of the protein kinase B (PKB/AKT) and mitogen-activated protein kinase (MAPK) pathways, which are two pathways known to be involved in resistance to cisplatin. Hence, we hypotheiszed that butein may be a chemosensitizer to cisplatin. In the present study, we demonstrated that butein synergistically enhanced the growth inhibitory and apoptosis-inducing effects of cisplatin on HeLa cells. Moreover, the combination of butein and cisplatin led to G1 phase arrest. We then aimed to explore the underlying mechanisms. We found that butein inhibited the activation of AKT, extracellular signal-regulated kinase (ERKs) and p38 kinases in the presence of cisplatin. The use of the AKT inhibitor, LY294002, in combination with cisplatin, induced an increase in apoptosis compared to treatment with cisplatin alone, although this effect was not as prominent as that exerted by butein in combination with cisplatin. Of note, the inhibition of ERK or p38 MAPK by U0126 or SB203580, respectively, decreased the apoptosis induced by cisplatin; however, enhanced apoptotic effects were observed with the use of ERK/p38 MAPK inhibitor in combination with butein. These data suggest that the AKT and ERK/p38 MAPK pathways are involved in the synergistic effects of butein and cisplatin. Furthermore, co-treatment with butein and cisplatin promoted the nuclear translocation and expression of forkhead box O3a (FoxO3 or FoxO3a). FoxO3a may be the key molecule on which these pathways converge and is thus implicated in the synergistic effects of butein and cisplatin. This was further confirmed by the RNAi-mediated suppression of FoxO3a. FoxO3a target genes involved in cell cycle progression and apoptosis were also investigated, and combined treatment with butein and cisplatin resulted in the downregulation of cyclin D1 and Bcl-2 and the upregulation of p27 and Bax. In addition, the combination of both agents markedly inhibited tumor growth and increased the expression of FoxO3a in mouse tumor xenograft models of cervical cancer. Taken together, to the best of our knowledge, our results reveal for the first time that butein sensitizes cervical cancer cells to cisplatin in vitro and in vivo, and these effects of butien may be related to the inhibition of the activation of the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. PMID:26310353

  10. FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer cells

    OpenAIRE

    Liu, Xing-Long; Meng, Yu-Han; Jian-li WANG; Yang, Biao-Bing; Zhang, Fan; Tang, Sheng-Jian

    2014-01-01

    FOXL2 is a transcription factor that is essential for ovarian function and maintenance, the germline mutations of which give rise to the blepharophimosis ptosis epicanthus inversus syndrome (BPES), often associated with premature ovarian failure. Recently, its mutations have been found in ovarian granulosa cell tumors (OGCTs). In this study, we measured the expression of FOXL2 in cervical cancer by immunohistochemistry and its mRNA level in cervical cancer cell lines Hela and Siha by RT-PCR. ...

  11. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC50) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 ?g/mL of VCR, the respective IC50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  12. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Atsushi; Miura, Masahiko, E-mail: masa.mdth@tmd.ac.jp

    2013-10-04

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ?500 ?m, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 ?m. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.

  13. Mechanism of derivation of radioresistance in HeLa cell population after repeated x-irradiation

    International Nuclear Information System (INIS)

    The Radioresistant strain (X-8-5) was obtained from HeLa-SC population X-irradiated repeatedly for five times with 800 rad. The mean lethal dose (D0) was 196 rad for X-8-5 cells, while it was 166 rad for control HeLa-SC cells. The fraction of cells containing an unusually long acrocentric chromosome (LA 2) exclusively increased with increasing number of irradiation of HeLa-SC population. A clonal strain with LA 2 marker was isolated from X-8-5 population and named RC-355. Since the RC-355 cells were more resistant (D0 = 220 rad)than parental X-8-5 cells (D0 = 196 rad), it was suggested that the cells with LA 2 were responsible for the radioresistance of X-8-5 population. The RC-355 cells were further subjected to the analysis of Q-banded karyotypes and it was observed that 18 types of specific markers (rm 1-17 and LA 2) were included in RC-355 cells in addition to 12 types of markers observed in most of HeLa-SC cells. Since the analysis of Q-banded karyotypes of RC-355 cells showed that RC-355 specific markers were not produced by radiation-induced rearrangements of HeLa-SC chromosomes, because twelve kinds of HeLa-SC markers were presented in RC-355 cells without any change, it was concluded that a small number of cells with LA 2 marker were originally presented in the control population and the relative fraction of them occupied increased after irradiation. (author)

  14. Prostate cancer stem cells

    OpenAIRE

    Lang, SH; Frame, FM; Collins, AT

    2009-01-01

    Despite the discovery over 60 years ago by Huggins and Hodges 1 that prostate cancers respond to androgen deprivation therapy, hormone-refractory prostate cancer remains a major clinical challenge. There is now mounting evidence that solid tumours originate from undifferentiated stem cell-like cells coexisting within a heterogeneous tumour mass that drive tumour formation, maintain tumour homeostasis and initiate metastases. This review focuses upon current evidence for prostate cancer stem c...

  15. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®) General Information About Small Cell Lung Cancer ... Treatment Options by Stage Limited-Stage Small Cell Lung Cancer Treatment of limited-stage small cell lung cancer may ...

  16. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®) General Information About Small Cell Lung Cancer ... Treatment Options by Stage Limited-Stage Small Cell Lung Cancer Treatment of limited-stage small cell lung cancer may ...

  17. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®) General Information About Small Cell Lung Cancer ... Treatment Options by Stage Limited-Stage Small Cell Lung Cancer Treatment of limited-stage small cell lung cancer may ...

  18. Analysis of Replication Foci and Replication Domains in HeLa Cells.

    Czech Academy of Sciences Publication Activity Database

    Ligasová, Anna; Malínský, Jan; Raška, Ivan; Koberna, Karel

    Lisboa : organizer, 2005. PB-09. [XLth Meeting of the Portuguese Society for Electron Microscopy and Cell Biology. 08.12.2005-09.12.2005, Lisboa] R&D Projects: GA ?R GA304/03/1121 Institutional research plan: CEZ:AV0Z50390512 Keywords : cells Subject RIV: EB - Genetics ; Molecular Biology

  19. Cytotoxic and Apoptotic Potentials of Ganoderma lucidum and Curculigo pilosa on Human Cervical Adenocarcinoma Cell Line, HeLa

    Directory of Open Access Journals (Sweden)

    James Ayorinde Babatunde

    2013-01-01

    Full Text Available Many African natural products have been hypothesized to have phytochemicals that makes them effective anti-tumour agents. This research study looks at two out of the numerous hypothesized medicinal plants-Curculigo pilosa and Ganoderma lucidum. Caspase-3, Neutral red and DNA fragmentation assays were carried out on HeLa cell lines cultured in Dulbecco’s Modified Eagles Medium (DMEM in (95% O2 + 5% CO2 at 35°C. The apoptotic, cytotoxic capacities and DNA fragmentation assays were carried out on the medicinal plants. Both plant samples were extracted in both organic (mixture of ethanol and ethylacetate in the ratio 50:50 and aqueous solution (mixture of methanol and distilled water in the ratio 70:30. It was observed that both plant samples had apoptotic effects but below 50% of comparative levels with the exception of the aqueous extract of Ganoderma lucidum which could pass as an antitumour agent (showing apoptotic effect above 50%. Conclusively, the aqueous extract of Ganoderma lucidum proves to be suitable for the development of an antitumour agent as shown by its apoptotic effect reported in this study.

  20. RNA splicing products formed with isolated fractions from HeLa cells are associated with fast-sedimenting complexes

    International Nuclear Information System (INIS)

    Three fractions (designated Ia, Ib, and II) have been isolated from HeLa cell nuclear extracts that are required for splicing of adenovirus and human ?-globin RNA transcripts in vitro. The incubation of two of the fractions (Ib and II) in the presence of ATP resulted in cleavage of precursor mRNA at the 5' splice site and formation of the intron-exon lariat. Addition of fraction Ia to the combination of Ib and II resulted in the formation of spliced RNA and the intron lariat 32P-labelled 40s ribosomes were utilized. When fraction II was incubated with precursor RNA in the presence of ATP and the resulting products were sedimented through sucrose gradients, a 30S complex was detected that contained precursor RNA. The combination of fractions Ib and II resulted in the production of a 55S complex that contained the 5' exon as a prominent RNA species. The combination of fractions I (containing Ia and Ib) and II resulted in the formation of the 55S complex and material sedimenting between 40 S and 20 S, in which the predominant RNA species was spliced RNA

  1. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. PMID:22421313

  2. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells

    OpenAIRE

    Okada, Tomoko; Murata, Kazuhiro; Hirose, Ryoma; Matsuda, Chie; Komatsu, Tsunehiko; Ikekita, Masahiko; Nakawatari, Miyako; Nakayama, Fumiaki; Wakatsuki, Masaru; Ohno, Tatsuya; Kato, Shingo; Imai, Takashi; Imamura, Toru

    2013-01-01

    Cancer cells often develop drug resistance. In cisplatin-resistant HeLa cisR cells, fibroblast growth factor 13 (FGF13/FHF2) gene and protein expression was strongly upregulated, and intracellular platinum concentrations were kept low. When the FGF13 expression was suppressed, both the cells' resistance to platinum drugs and their ability to keep intracellular platinum low were abolished. Overexpression of FGF13 in parent cells led to greater resistance to cisplatin and reductions in the intr...

  3. Transcription of adenovirus and HeLa cell genes in the presence of drugs that inhibit topoisomerase I and II function.

    OpenAIRE

    Schaak, J; Schedl, P; Shenk, T

    1990-01-01

    The requirements for topoisomerases in transcription of adenovirus and HeLa cell genes were analyzed using drugs that specifically inhibit either topoisomerases I or II. Cleavage of viral DNA by topoisomerases in the presence of either camptothecin or VM26 was used to determine drug concentrations that led to maximal inhibition of ligation in the cleavage and ligation step of topoisomerase I or II respectively. Inhibition of topoisomerase II with VM26 did not cause a direct reduction in trans...

  4. mRNAs containing the unstructured 5' leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells.

    OpenAIRE

    Hann, L E; Gehrke, L

    1995-01-01

    Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nu...

  5. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  6. Effects of activated aflatoxin B1 and caffeine on DNA replicon initiation in HeLa cells

    International Nuclear Information System (INIS)

    Afatoxin B1 (AFB1) is activated by a rat microsomal extract (S-9) to form a product that inhibits DNA synthesis in HeLa cells. At 10-7 M, AFB1 inhibited initiation of replicons, as shown in alkaline sucrose gradient profiles 30 min after incubation with the drug. Ninety minutes later, the profile of treated cells was similar to that of control, but 4 h later there was another effect on replicon initiation. At 10-6 M, the inhibition of initiation was greater than at 10-7 M and increased progressively. Four hours after removal of the drug, the gradient profile showed low amounts of radioactivity in all size classes of DNA. When cells were incubated in medium containing caffeine (2 mM) even as late as 60 min after incubation with AFB1, the inhibition of replicon initiation was prevented. If caffeine was later removed from the medium, replicon initiation was then inhibited. At 10-7 M or 10-6 M, AFB1 had little immediate effect on chain elongation, but at 10-5 M, the gradient profiles showed an accumulation of low molecular weight DNA molecules, with no radioactivity in the region of high molecular weight DNA, owing to a block to chain elongation; this was not affected by caffeine. These results suggest that AFB1 induces damage that changes the fonformation of chromatin so that initiation of new replicons cannot occur; in the presence of caffeine this change does not occur and DNA replication is not inhibited

  7. Hyperthermic enhancement of radiation cell killing in HeLa S3 cells and its effect on the production and repair of DNA strand breaks

    International Nuclear Information System (INIS)

    Cell killing and the induction and repair of DNA strand breaks have been examined after hyperthermia and electron irradiation treatments of HeLa S3 cells. Heat alone did not produce any detectable DNA strand breaks. Preirradiation heat treatment did not alter the initial levels of radiation-induced DNA strand breaks. However, the subsequent rate and extent of DNA strand break repair were significantly reduced by preirradiation heat treatments of 440C for 30 or 60 min. When a time gap of up to 1 h was introduced between heating and irradiation there was no significant reduction of the thermal enhancement effect for cell killing or recovery from the reduced ability to repair DNA strand breaks

  8. Synergic effect of human IL-21 gene transfer combined with ?-ray irradiation on the growth of cervical carcinoma HeLa cells

    International Nuclear Information System (INIS)

    Objective: To study the combined effect of interleukin-21 gene transfer and ionizing radiation on the growth of cervical carcinoma HeLa cells. Methods: Previously constructed Ad-IL-21 gene was amplified by infecting 293A cells and the titer was measured by TCID50 method. HeLa cells were transfected with Ad-IL-21 and then irradiated with 6 Gy 137Cs ?-rays. The cells were divided into 5 groups, including blank control, Ad-LacZ group, Ad-IL-21 group,radiation group and Ad-IL-21 combined with radiation group (combination group). The cell growth, cell cycle, apoptosis, and the expressions of IL-21 gene and protein in HeLa cells were detected. Results: Ad-IL-21 was successfully amplified and the titer of Ad-11.-21 was 9 × 1010 pfu/ml. Compared with Ad-IL-21 group and radiation group,the cell growth of combination group was significantly inhibited at 96 h after transfection (F=85.26, 72.98, P<0.05). The cells in combination group were arrested in G1 phase and decreased at S phase (F=36.69, 34.83, P<0.05), while the cellular apoptosis increased markedly (F=28.23, 25.57, Pcell growth. (authors)

  9. Instant Response of Live HeLa Cells to Static Magnetic Field and Its Magnetic Adaptation

    CERN Document Server

    Raja, Sufi O

    2014-01-01

    We report Static Magnetic Field (SMF) induced altered sub-cellular streaming, which retains even after withdrawal of the field. The observation is statistically validated by differential fluorescence recovery after photo-bleaching (FRAP) studies in presence and absence of SMF, recovery rate being higher in presence of SMF. This instant magneto-sensing by live cells can be explained by inherent diamagnetic susceptibility of cells and alternatively by spin recombination, e.g., by the radical pair mechanism. These arguments are however insufficient to explain the retention of the SMF effect even after field withdrawal. Typically, a relaxation time scale at least of the order of minutes is observed. This long duration of the SMF effect can be explained postulating a field induced coherence that is followed by decoherence after the field withdrawal. A related observation is the emergence of enhanced magnetic susceptibility of cells after magnetic pre-incubation. This implies onset of a new spin equilibrium state a...

  10. Adherence to HeLa cells, typing by killer toxins and susceptibility to antifungal agents of Candida dubliniensis strains Adesão a células HeLa, tipagem pelas toxinas "killer" e sensibilidade a antifúngicos de cepas de Candida dubliniensis

    Directory of Open Access Journals (Sweden)

    Gismari Miranda da Silva

    2007-03-01

    Full Text Available The aim of this study was to evaluate the adherence capability to HeLa cells, the susceptibility to killer toxins and the in vitro susceptibility to antifungal agents (eTest? method - AB Biodisk, Solna, Sweden of 9 Candida dubliniensis isolates recovered from HIV+ and AIDS patients. The adherence test was strongly positive for strain ATCC 777 and positive for all other strains. Typing by killer toxins revealed two different biotypes among the 9 isolates studied: 888 and 688. Only biotype 688 (ATCC 777 was susceptible to the K2 toxin. There was a significant inverse correlation between adherence and killer toxin susceptibility (r = -0.8525 - p = 0.0035. No strains presented resistance to fluconazole, itraconazole, ketoconazole, voriconazole, flucytosine or amphotericin-B. With the exception of ATCC 777, all the other isolates presented similar behavior.O objetivo do presente trabalho foi avaliar o comportamento de cepas de Candida dubliniensis recuperadas de pacientes HIV+ e com AIDS por meio da pesquisa de capacidade de adesão a células HeLa, susceptibilidade a toxinas "Killer" e resistência in vitro a antifúngicos (eTest® AB Biodisk, Solna, Suécia. O ensaio de adesão foi fortemente aderente para a amostra padrão ATCC 777, e aderente para os demais isolados. Os testes de tipagem das amostras frente às cepas-padr??o produtoras de toxinas "Killer" mostraram dois biótipos diferentes dos 9 isolados estudados: 888 e 688. Somente o biótipo 688 (ATCC 777 de C. dubliniensis foi sensível à toxina K2. Houve correlação inversa significativa entre adesão e sensibilidade a toxinas "killer" (r = -0,8525 - p = 0,0035. Em relação à pesquisa de resistência a antifúngicos, as amostras de C. dubliniensis foram sensíveis ao fluconazol, itraconazol, cetoconazol, voriconazol, à flucitosina e anfotericina B. Com exceção da amostra ATCC 777, todas as demais mostraram comportamento similar.

  11. Adherence to HeLa cells, typing by killer toxins and susceptibility to antifungal agents of Candida dubliniensis strains / Adesão a células HeLa, tipagem pelas toxinas "killer" e sensibilidade a antifúngicos de cepas de Candida dubliniensis

    Scientific Electronic Library Online (English)

    Gismari Miranda da, Silva; Fernando Ricardo Xavier da, Silveira; Maria de Fátima Costa, Pires.

    2007-03-01

    Full Text Available O objetivo do presente trabalho foi avaliar o comportamento de cepas de Candida dubliniensis recuperadas de pacientes HIV+ e com AIDS por meio da pesquisa de capacidade de adesão a células HeLa, susceptibilidade a toxinas "Killer" e resistência in vitro a antifúngicos (eTest® AB Biodisk, Solna, Suéc [...] ia). O ensaio de adesão foi fortemente aderente para a amostra padrão ATCC 777, e aderente para os demais isolados. Os testes de tipagem das amostras frente às cepas-padrão produtoras de toxinas "Killer" mostraram dois biótipos diferentes dos 9 isolados estudados: 888 e 688. Somente o biótipo 688 (ATCC 777) de C. dubliniensis foi sensível à toxina K2. Houve correlação inversa significativa entre adesão e sensibilidade a toxinas "killer" (r = -0,8525 - p = 0,0035). Em relação à pesquisa de resistência a antifúngicos, as amostras de C. dubliniensis foram sensíveis ao fluconazol, itraconazol, cetoconazol, voriconazol, à flucitosina e anfotericina B. Com exceção da amostra ATCC 777, todas as demais mostraram comportamento similar. Abstract in english The aim of this study was to evaluate the adherence capability to HeLa cells, the susceptibility to killer toxins and the in vitro susceptibility to antifungal agents (eTest? method - AB Biodisk, Solna, Sweden) of 9 Candida dubliniensis isolates recovered from HIV+ and AIDS patients. The adherence t [...] est was strongly positive for strain ATCC 777 and positive for all other strains. Typing by killer toxins revealed two different biotypes among the 9 isolates studied: 888 and 688. Only biotype 688 (ATCC 777) was susceptible to the K2 toxin. There was a significant inverse correlation between adherence and killer toxin susceptibility (r = -0.8525 - p = 0.0035). No strains presented resistance to fluconazole, itraconazole, ketoconazole, voriconazole, flucytosine or amphotericin-B. With the exception of ATCC 777, all the other isolates presented similar behavior.

  12. Estrogenic Activity of Coumestrol, DDT, and TCDD in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Ndebele

    2010-05-01

    Full Text Available Endogenous estrogens have dramatic and differential effects on classical endocrine organ and proliferation. Xenoestrogens are environmental estrogens that have endocrine impact, acting as both estrogen agonists and antagonists, but whose effects are not well characterized. In this investigation we sought to delineate effects of xenoestrogens. Using human cervical cancer cells (HeLa cells as a model, the effects of representative xenoestrogens (Coumestrol-a phytoestrogen, tetrachlorodioxin (TCDD-a herbicide and DDT-a pesticide on proliferation, cell cycle, and apoptosis were examined. These xenoestrogens and estrogen inhibited the proliferation of Hela cells in a dose dependent manner from 20 to 120 nM suggesting, that 17-?-estrtadiol and xenoestrogens induced cytotoxic effects. Coumestrol produced accumulation of HeLa cells in G2/M phase, and subsequently induced apoptosis. Similar effects were observed in estrogen treated cells. These changes were associated with suppressed bcl-2 protein and augmented Cyclins A and D proteins. DDT and TCDD exposure did not induce apoptosis. These preliminary data taken together, suggest that xenoestrogens have direct, compound-specific effects on HeLa cells. This study further enhances our understanding of environmental modulation of cervical cancer.

  13. Effects of combined X-radiation and UV-radiation on HeLa cells

    International Nuclear Information System (INIS)

    A combined X-ray-UV irradiation was performed in nonsynchronized HeLa-cells. A pre-irradiation with UV-light, that reduced the survival rate to 42% and the following X-ray radiation yielded a similar dose-effect characteristic as with ordinary X-ray irradiation, only its shoulder was smaller. An additive radiation interaction with the cellular molecular structure was observed. A pre-irradiation with X-rays followed by step-wise UV-irradiation yielded a function similar to the UV-action curve but also with a narrower shoulder. A additive effect could be observed. One can conclude from this that in combined irradiation two interacting processes cause the death of the cells. The gene mutations caused by UV-light lead to cell death. X-rays however cause chromosome breaks, that in an unfavourable combination also lead to cell death. The DNA distorsion caused by the UV-light increases the possibility of misrepair. (orig.)

  14. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  15. Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins.

    Science.gov (United States)

    Lane, Karen R; Yu, Yanbao; Lackey, Patrick E; Chen, Xian; Marzluff, William F; Cook, Jeanette Gowen

    2013-01-01

    Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance changes in response to pharmacological inhibition of the proteasome. Our analysis reveals not only the expected changes in proteins required for DNA replication and mitosis but also cell cycle-associated changes in proteins required for biological processes not known to be cell-cycle regulated. For example, many pre-mRNA alternative splicing proteins are down-regulated in S phase. Comparison of this dataset to several other proteomic datasets sheds light on global mechanisms of cell cycle phase transitions and underscores the importance of both phosphorylation and ubiquitination in cell cycle changes. PMID:23520512

  16. Evaluation and comparison of Hela, Hep2C and Vero cell lines sensitivity to polio vaccinal virus using micro and macro vaccine potency tests

    Directory of Open Access Journals (Sweden)

    Soleimani, S.,

    2012-11-01

    Full Text Available Poliomyelitis, an acute viral infectious disease caused by poliovirus, still remains a public health problem in developing countries. Despite the global effort to eradicate polio, continuing the polio immunization with a potent and safe vaccine is essential. For accurate vaccine evaluation, three types of cell lines including Hela, Hep2C and Vero were evaluated and compared using two methods of polio vaccine potency tests (micro & macro. For cells comparison, five different batches from polio vaccines were tested and to develop the test, five variables including viruses, cells, serum, media and Co2 were studied. For validation, the titer of which has been well established as a working reference preparation (WRP was applied to control the accuracy and reproducibility of the testing system. Multiple comparisons were performed by analysis of variance (ANOVA followed by Tokey HDS and LSD. No significant differences were found between the potency of vaccine batches and between macro and micro methods. Reduction in cells sensitivity and potency of vaccines was found with increasing passage number. Significant differences were found between the sensitivity of the cell lines. The highest potency of polio vaccines was obtained using Hela cells (GMT in macro and micro test = 10 6.35; Hep2C cells were afterwards (GMT in macro= 10 6.01 and in micro test= 10 5.94; Vero cells were lowest (GMT in macro= 10 5.78 and in micro test= 10 5.72. So, the sensitivity and accuracy of the potency test for evaluation of the polio vaccine in immunization program in Iran will be assured using the Hela cell line with low passage number in macro and micro methods.

  17. Identification of a set of miRNAs differentially expressed in transiently TIA-depleted HeLa cells by genome-wide profiling

    OpenAIRE

    Sánchez-Jiménez, Carmen; Carrascoso, Isabel; Barrero, Juan; Izquierdo, José M

    2013-01-01

    Abstract Background T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis. These proteins control gene expression globally at multiple levels in response to dynamic regulatory changes and environmental stresses. Herein we identified a micro(mi)RNA signature associated to transiently TIA-depleted HeLa cells and analyzed the potential role of miRNAs combining genome-wide analysis data on mRNA and miRNA profiles. Results Using high-throughput miRNA expression pro...

  18. Effect of dihydroartemisinin on the cell cycle progress of irradiated human cervical cancer cell line and its mechanism

    International Nuclear Information System (INIS)

    Objective: To observe the changes of cell cycle on cancer cells after dihydroartemisinin and X-ray irradiation. Methods: Human HeLa cells of cervical cancer with p53 mutation was used and human SiHa cells of cervical cancer with wild p53 was used as control. Flow cytometry was used to detect the effect of dihydroartemisinin (20 and 100 ?mol/L) and irradiation (6 Gy)on cell cycle. Western blot was used to measure the levels of cell cycle protein. Results: G2 arrest was observed in irradiated HeLa cells, which the proportion of cells in G2 phase was increased from 14.45% to 73.58% after 6 Gy X-ray irradiation, but it was abrogated by dihydroartemisinin from 73. 58% to 48.31% in HeLa cells, and it had no change on the SiHa cells. The elevated Wee1 protein and the lowered Cyclin B1 protein were observed with the G2 arrest severity. The expression of radiation-induced Wee1 protein was suppressed and the Cyclin B1 protein was increased after dihydroartemisinin treatment, which was in accordance with the abrogation of radiation-induced G2 delay. Conclusions: The main effect of irradiation on cell cycle of p53 mutated HeLa cells is G2 arrest. Dihydroartemisinin could abrogate it, which is associated with the changes of Wee1 protein and Cyclin B1 protein. In Siha cells, the main effect of irradiation on cell cycle is G1 arrest, and dihydroartemisinin has no effect on it. (authors)

  19. Photothermal therapy of cancer cells using novel hollow gold nanoflowers

    Directory of Open Access Journals (Sweden)

    Han J

    2014-01-01

    Full Text Available Jing Han,1 Jinru Li,1 Wenfeng Jia,1 Liangming Yao,2 Xiaoqin Li,1 Long Jiang,1 Yong Tian21Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, 2Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: This article presents a new strategy for fabricating large gold nanoflowers (AuNFs that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanoparticles (AuNPs and growing their crystallites on the surface of vesicles. The localized surface plasmon-resonance spectrum of this type of AuNF can be easily modulated to the NIR region by controlling the size of the AuNFs. When the size of the AuNFs increased, biosafety under visible light improved and cytotoxicity increased under NIR irradiation. Experiments in vitro with HeLa cells and in vivo with small mice have been carried out, with promising results. The mechanism for this phenomenon is based on the hypothesis that it is difficult for larger AuNFs to enter the cell without NIR irradiation, but they enter the cell easily at the higher temperatures caused by NIR irradiation. We believe that these effects will exist in other types of noble metallic NPs and cancer cells. In addition, the affinity between AuNPs and functional biomolecules, such as aptamers and biomarkers, will make this type of AuNF a good recognition device in cancer diagnosis and therapy.Keywords: HeLa cells, endocytosis, cytotoxicity, AuNFs, NIR, cancer therapy

  20. The cyclin B1 gene is actively transcribed during mitosis in HeLa cells

    OpenAIRE

    Sciortino, Selvaggia; Gurtner, Aymone; Manni, Isabella; Fontemaggi, Giulia; Dey, Anup; Sacchi, Ada; Ozato, Keiko; Piaggio, Giulia

    2001-01-01

    In mammalian cells, the expression level of the cyclin B1 gene plays a critical role in the progression through mitosis. Here we demonstrate that the transcriptional activity of the human cyclin B1 promoter, as well as the rate of gene transcription, is high during mitosis. Indeed, the cyclin B1 promoter maintains an open chromatin configuration at the mitotic stage. Consistent with this, we show that the cyclin B1 promoter is occupied and bound to NF-Y during mitosis in vivo. Our results pro...

  1. Oxidative stress-mediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells

    DEFF Research Database (Denmark)

    Ramkumar, Kunga Mohan; Manjula, Chinnasamy

    2012-01-01

    Titanium dioxide nanoparticles are increasingly being used in pharmaceutical and cosmetic products. The high aspect ratio of fibrous nanomaterials, such as carbon nanotubes and TiO2 nanofibers (TiO2NFs), similar to the one used in this study makes them an attractive structural material and has attracted a lot of attention due to their possible negative health effects as suggested by their morphological similarities with asbestos. In the present study, therefore, toxicity of TiO2NFs was evaluated in human cervical adenocarcinoma HeLa cells. The TEM and XRD analyses showed that TiO2NFs used in this study are pure with uniform diameter of around 200 nm, and their length to width aspect ratio ranged between 5 and 15. Exposure of HeLa cells to TiO2NFs induced significant cytotoxicity even at doses as low as 2 ?g/ml. The intracellular uptake of TiO2NFs in cells was shown by Alizarin Red S (ARS) labeled nanofibers. The mechanism of toxicity is mainly due to the induction of cellular oxidative stress, as revealed by elevated ROS levels, reduced antioxidant levels, and increased lipid peroxidation leading to apoptosis. The cell cycle analysis indicated G2/M cell cycle arrest in the cells exposed to TiO2NF. TiO2NFs treatment to HeLa cells resulted in increased expression of proapoptotic proteins Bax with an increase in cytosolic Cytochrome-C and inhibition of anti-apoptotic protein Bcl-2. Our results revealed the potential mechanism of cellular effects of TiO2NFs.

  2. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.; Hickmann, J. M.; Rodarte, R.; Barreto, E.; Jalkanen, Karl J.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been...

  3. Mitochondrial free fatty acid ?-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    Science.gov (United States)

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial ?-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (??m) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of ?-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ??m values. The contents of ?-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the ?-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA ?-oxidation are essential for the accelerated cancer cell proliferation and hence anti-?-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. PMID:26073129

  4. Silencing Bcl-2 Expression in Epithelial Cancer Cells Using “Smart” Particles

    Directory of Open Access Journals (Sweden)

    Yen-Ling Lin

    2014-09-01

    Full Text Available Short interfering RNA (siRNA targeted against anti-apoptotic Bcl-2 protein proved to knockdown its expression and trigger cancer cell death. We used degradable, pH-sensitive, comb-like [P(EAA-co-BMA-b-PNASI-g-P(HMA-co-TMAEMA] polymer to condense anti-Bcl-2 siRNA into “smart” particles, which proved to shuttle their cargo past the endosomal membrane and into the cytoplasm of HeLa and UM-SCC-17B cancer cells. HeLa and UM-SCC-17B cancer cells were treated with anti-Bcl-2 particles followed by quantifying Bcl-2 mRNA and protein levels using qRT-PCR and western blotting, respectively. “Smart” anti-Bcl-2 particles selectively suppress Bcl-2 mRNA and protein levels in HeLa cells by 50%–60% and 79%–81%, respectively. Similarly, “smart” anti-Bcl-2 particles inhibited Bcl-2 mRNA levels by 30%, 40%, and 20% upon incubation with UM-SCC-17B cancer cells for 48, 72, and 96 h, respectively. Bcl-2 protein expression in UM-SCC-17B cancer cells was inhibited by 30% after treatment for 72 h. Results show that pH-sensitive comb-like polymer complex anti-Bcl-2 siRNA forming “smart” nanoparticles that deliver their cargo into the cytoplasm of HeLa and UM-SCC-17B cancer cells causing Bcl-2 knockdown at the mRNA and protein levels.

  5. The histone genes in HeLa cells are on individual transcriptional units

    International Nuclear Information System (INIS)

    The distances of the five major histone genes from their promotors have been investigated in order to determine whether in human cells these genes could be transcribed as a single polycistronic transcriptional unit. By measuring the decreases of both histone protein and histone mRNA synthesis as functions of the ultraviolet light dosage, it was possible to calculate the distances of the histone genes from their promotors. The inactivation kinetics for histone genes H1 and H3 are first-order, indicating a single type of transcriptional unit for each gene. The dose-response kinetics for genes H2A, H2B and H4 are first-order with two distinct rates; 10 to 15% of the genes for each of these histones appear to be much more sensitive to ultraviolet light inactivation than are the majority. It is concluded that the transcriptional units for 85 to 90% of the genes for H2A, H2B and H4 are similar. As determined by the inhibition of protein synthesis, the inactivation coefficients for the major component of each histone are: H1, 907 mm2/erg; H2A, 878 mm2/erg; H2B, 871 mm2/erg; H3, 965 mm2/erg; and H4, 792 mm2/erg. The sensitivities of histone mRNA synthesis to irradiation were measured by translation in vitro with similar results. The calculated target sizes for the genes (in base-pairs) are: H1, 1190; H2A, 1240; H2B, 1250; H3, 1130; and H4, 1380. This similarity in target sizes for all five of the histones genes indicates that they are primarily transcribed from individual transcriptional units. (author)

  6. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR? status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  7. Improvement in antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells.

    Science.gov (United States)

    Jiang, Yunyao; Piao, Jingpei; Cho, Hyun-Jong; Kang, Wie-Soo; Kim, Hye-Young

    2015-01-01

    Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry. PMID:26057458

  8. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    International Nuclear Information System (INIS)

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G1 is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while there is no concentration threshold for the slowing of progression through G1. Progression through G2 appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G2 is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G1 cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G1 and G2 cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders

  9. Using HeLa cell stress response to introduce first year students to the scientific method, laboratory techniques, primary literature, and scientific writing.

    Science.gov (United States)

    Resendes, Karen K

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. PMID:25726932

  10. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  11. (?)-Epigallocatechin-3-Gallate Induces Non-Apoptotic Cell Death in Human Cancer Cells via ROS-Mediated Lysosomal Membrane Permeabilization

    OpenAIRE

    Yin ZHANG; Yang, Nai-Di; ZHOU, FAN; Shen, Ting; Duan, Ting; Zhou, Jing; Shi, Yin; Zhu, Xin-Qiang; Shen, Han-Ming

    2012-01-01

    (?)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium...

  12. Linear energy transfer-dependent radiosensitivity of Burkitt lymphoma cells, with special references to human melanoma HMV, HeLa-S3, and L5178Y cells

    International Nuclear Information System (INIS)

    Dependence of the survival curves of Burkitt lymphoma cells, which were featured by their small n(x-ray 1.1 rad, ?-ray 1.2 rad, neutrons 1.0 rad) or Dsub(q) values, on linear energy transfer (LET) obtained for different quality of radiation was revealed markedly in the change of D0 value (125, 165, 55) together with a small change in n value. Relative biological effectiveness (RBE) compared with Dsub(q), n, and D37 (132, 190, 55) values of Burkitt lymphoma cells for high LET radiation was smaller than that of other cell lines. This finding supports the hypothesis that in Burkitt lymphoma cells the recovery capacity from sublethal damage (Dsub(q)) is so small even after low LET irradiation that LET does not modify the suppression of recovery. Similar survival curves with n value closely equal to 1 were obtained for four different mammalian cell lines (Burkitt lymphoma P3HR-1, human melanoma HMV, HeLa-S3, and L5178Y) after 2 MeV neutron irradiation. This fact may suggest that the radiation which has an LET value at which n value of the survival curve is to be 1 will be optimum for therapeutic purpose to the radioresistant tumors. (auth.)

  13. Effects of natural flavones on membrane properties and citotoxicity of HeLa cells / Efeitos de flavonas naturais em propriedades de membranas e em citotoxicidade de células HeLa

    Scientific Electronic Library Online (English)

    Tatiana, Herrerias; Alexandre A., Oliveira; Maurício L., Belem; Brás H., Oliveira; Eva G. S., Carnieri; Sílvia M. S. C., Cadena; Guilhermina R., Noleto; Glaucia R., Martinez; Maria B. M., Oliveira; Maria E. M., Rocha.

    2010-07-01

    Full Text Available O objetivo deste estudo foi avaliar se eupafolina e hispidulina, flavonas extraídas do Eupatorium littorale Cabrera, Asteraceae, possuíam a capacidade de alterar propriedades das membranas biológicas e promover efeitos citotóxicos. Eupafolina (50-200 µM) reduziu em aproximadamente 30% a velocidade e [...] amplitude do inchamento mitocondrial induzido por valinomicina e 60-100% o inchamento mitocondrial dependente de substrato. Além disso, eupafolina na dose de 200 µM reduziu a transição de permeabilidade mitocondrial em 35% entretanto, a hispidulina não alterou este parâmetro em todas as doses testadas. A avaliação da transição de fase dos lipossomas de DMPC com a sonda DPH demonstrou que ambas as flavonas afetam a fase gel e fluida. Quando lipossomas de membranas mitocondriais e a sonda DPH-PA foram utilizados, houve aumento da polarização de fluorescência promovido pela hispidulina. Eupafolina e hispidulina, na dose de 100 µM, promoveram 40% de redução da viabilidade de células HeLa em 24 h. Nossos resultados sugerem que eupafolina e hispidulina têm efeitos citotóxicos que podem ser explicados em parte pelas alterações promovidas por estas flavonas sobre propriedades de membranas biológicas e sobre a bioenergética mitocondrial. Abstract in english The aim of this study was to determine whether eupafolin and hispidulin, flavones extracted from Eupatorium littorale Cabrera, Asteraceae, have the ability to change properties of biological membranes and promote cytotoxic effects. Eupafolin (50-200 µM) decreased approximately 30% the rate and total [...] amplitude of valinomycin induced swelling and 60-100% the energy-dependent mitochondrial swelling. Moreover, eupafolin (200 µM) reduced 35% the mitochondrial permeability transition, and hispidulin did not change this parameter in any of the doses tested. The evaluation of phase transition of DMPC liposomes with the probe DPH demonstrated that hispidulin and eupafolin affect gel and fluid phase. With mitochondrial membrane as model, hispidulin increased the polarization of fluorescence when used DPH-PA probe. Eupafolin and hispidulin (100 µM) promoted a reduction of 40% in cellular viability of HeLa cells in 24 h. Our results suggest that eupafolin and hispidulin have cytotoxic effects that can be explained, in part, by alterations promoted on biological membranes properties and mitochondrial bioenergetics.

  14. Effects of natural flavones on membrane properties and citotoxicity of HeLa cells Efeitos de flavonas naturais em propriedades de membranas e em citotoxicidade de células HeLa

    Directory of Open Access Journals (Sweden)

    Tatiana Herrerias

    2010-07-01

    Full Text Available The aim of this study was to determine whether eupafolin and hispidulin, flavones extracted from Eupatorium littorale Cabrera, Asteraceae, have the ability to change properties of biological membranes and promote cytotoxic effects. Eupafolin (50-200 µM decreased approximately 30% the rate and total amplitude of valinomycin induced swelling and 60-100% the energy-dependent mitochondrial swelling. Moreover, eupafolin (200 µM reduced 35% the mitochondrial permeability transition, and hispidulin did not change this parameter in any of the doses tested. The evaluation of phase transition of DMPC liposomes with the probe DPH demonstrated that hispidulin and eupafolin affect gel and fluid phase. With mitochondrial membrane as model, hispidulin increased the polarization of fluorescence when used DPH-PA probe. Eupafolin and hispidulin (100 µM promoted a reduction of 40% in cellular viability of HeLa cells in 24 h. Our results suggest that eupafolin and hispidulin have cytotoxic effects that can be explained, in part, by alterations promoted on biological membranes properties and mitochondrial bioenergetics.O objetivo deste estudo foi avaliar se eupafolina e hispidulina, flavonas extraídas do Eupatorium littorale Cabrera, Asteraceae, possuíam a capacidade de alterar propriedades das membranas biológicas e promover efeitos citotóxicos. Eupafolina (50-200 µM reduziu em aproximadamente 30% a velocidade e amplitude do inchamento mitocondrial induzido por valinomicina e 60-100% o inchamento mitocondrial dependente de substrato. Além disso, eupafolina na dose de 200 µM reduziu a transição de permeabilidade mitocondrial em 35% entretanto, a hispidulina não alterou este parâmetro em todas as doses testadas. A avaliação da transição de fase dos lipossomas de DMPC com a sonda DPH demonstrou que ambas as flavonas afetam a fase gel e fluida. Quando lipossomas de membranas mitocondriais e a sonda DPH-PA foram utilizados, houve aumento da polarização de fluorescência promovido pela hispidulina. Eupafolina e hispidulina, na dose de 100 µM, promoveram 40% de redução da viabilidade de células HeLa em 24 h. Nossos resultados sugerem que eupafolina e hispidulina têm efeitos citotóxicos que podem ser explicados em parte pelas alterações promovidas por estas flavonas sobre propriedades de membranas biológicas e sobre a bioenergética mitocondrial.

  15. Crude aqueous extracts of Pluchea indica (L. Less. inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death

    Directory of Open Access Journals (Sweden)

    Cho Jonathan J

    2012-12-01

    Full Text Available Abstract Background Pluchea indica (L. Less. (Asteraceae is a perennial shrub plant with anti-inflammatory and antioxidant medicinal properties. However, the anti-cancer properties of its aqueous extracts have not been studied. The aim of this study was to investigate the anti-proliferation, anti-migration, and pro-apoptotic properties of crude aqueous extracts of P. indica leaf and root on human malignant glioma cancer cells and human cervical cancer cells, and the underlying molecular mechanism. Methods GBM8401 human glioma cells and HeLa cervical carcinoma cells were treated with various concentrations of crude aqueous extracts of P. indica leaf and root and cancer cell proliferation and viability were measured by cell growth curves, trypan blue exclusions, and the tetrazolium reduction assay. Effects of the crude aqueous extracts on focus formation, migration, and apoptosis of cancer cells were studied as well. The molecular mechanism that contributed to the anti-cancer activities of crude aqueous extracts of P. indica root was also examined using Western blotting analysis. Results Crude aqueous extracts of P. indica leaf and root suppressed proliferation, viability, and migration of GBM8401 and HeLa cells. Treatment with crude aqueous extracts of P. indica leaf and root for 48 hours resulted in a significant 75% and 70% inhibition on proliferation and viability of GBM8401 and HeLa cancer cells, respectively. Crude aqueous extracts of P. indica root inhibited focus formation and promoted apoptosis of HeLa cells. It was found that phosphorylated-p53 and p21 were induced in GBM8401 and HeLa cells treated with crude aqueous extracts of P. indica root. Expression of phosphorylated-AKT was decreased in HeLa cells treated with crude aqueous extracts of P. indica root. Conclusion The in vitro anti-cancer effects of crude aqueous extracts of P. indica leaf and root indicate that it has sufficient potential to warrant further examination and development as a new anti-cancer agent.

  16. New polyhydroxylated sterols from Palythoa tuberculosa and their apoptotic activity in cancer cells.

    Science.gov (United States)

    Elbagory, Abdulrahman M; Meyer, Mervin; Ali, Abdel-Hamid A M; Ameer, Farouk; Parker-Nance, Shirley; Benito, Maria Teresa; Doyagüez, Elisa Garcia; Jimeno, Maria Luisa; Hussein, Ahmed A

    2015-09-01

    The chemical study on the total extract of the zoanthid Palythoa tuberculosa, collected from the Red Sea, resulted in the isolation of seven polyhydroxylated sterols (1-7), six of which, palysterols A-F (2-7), are new. Their chemical structures were elucidated on the basis of extensive analysis of their 1-, 2D NMR and MS spectroscopic data. This is the first chemical investigation on the species collected from Red Sea. We studied the cytotoxic effects of the total extract and some of the new polyhydroxylated sterols in three human cancer cell lines (MCF-7, HeLa, and HT-29) and one non-cancerous human cell line (KMST-6). Palysterol F (7), in particular, was able to selectively induce high levels of apoptosis (>75%) in breast adenocarcinoma (MCF-7) cells but not HeLa, HT-29 and KMST-6 cells. PMID:26095205

  17. Cancer Stem Cells

    OpenAIRE

    Aurelio Lorico; Eric Deutsch; Bo Lu; Shih-Hwa Chiou

    2011-01-01

    Cancer Stem Cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/?-catenin, Notch, and Hedgehog signaling pathways controls the CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence,...

  18. Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells

    International Nuclear Information System (INIS)

    This paper presents a platform technology with experimental results that show the scientists and biologists a way to rapidly investigate and analyze the biological effects of localized extremely low frequency (ELF) electromagnetic field (EMF) on living cells. The proximity effect of the localized ELF-EMF on living cells is revealed using the bio-compatible microplatform on which an on-glass inductive coil array, the source of the localized ELF-EMF in micro scale, is designed, fabricated and operated with a field strength of 1.2 ± 0.1 mT at 60 Hz for cell culturing study. After a 72 h ELF-EMF exposure, HeLa (human cervical cancer) and PC-12 (rat pheochromocytoma) cells exhibit about 18.4% and 12.9% cell proliferation rate reduction, respectively. Furthermore, according to the presented dynamic model, the reduction of the proliferation can be attributed to the interference of signal transduction processes due to the tangential currents induced around the cells

  19. Colon Cancer Stem Cells

    OpenAIRE

    Khalek, Feras J Abdul; Gallicano, G. Ian; Mishra, Lopa

    2010-01-01

    Colorectal cancer (CRC) is the second leading cause of death from cancer in the United States. Aggressive research in the last decade has led to a wealth of information about this disease; for example, we now know that more than 80% of sporadic colon tumors contain mutations in the Wnt and TGF? signaling pathways. The latest avenue of research is revealing the existence of and role for the cancer stem cell (CSC) model, which promotes the idea that malignancies originate from a small fraction ...

  20. Cytotoxic and Apoptotic Potentials of Ganoderma lucidum and Curculigo pilosa on Human Cervical Adenocarcinoma Cell Line, HeLa

    OpenAIRE

    James Ayorinde Babatunde; Odesanmi O. Selina; Samuel Titilola Aderonke; Tafida Mundi; Olubunmi A. Magbagbeola

    2013-01-01

    Many African natural products have been hypothesized to have phytochemicals that makes them effective anti-tumour agents. This research study looks at two out of the numerous hypothesized medicinal plants-Curculigo pilosa and Ganoderma lucidum. Caspase-3, Neutral red and DNA fragmentation assays were carried out on HeLa cell lines cultured in Dulbecco’s Modified Eagles Medium (DMEM) in (95% O2 + 5% CO2) at 35°C. The apoptotic, cytotoxic capacities and DNA fragmentation assays were carried out...

  1. CENP-A, -B, and -C Chromatin Complex That Contains the I-Type ?-Satellite Array Constitutes the Prekinetochore in HeLa Cells

    OpenAIRE

    Ando, Satoshi; Yang, Hua; Nozaki, Naohito; Okazaki, Tuneko; Yoda, Kinya

    2002-01-01

    CENP-A is a component of centromeric chromatin and defines active centromere regions by forming centromere-specific nucleosomes. We have isolated centromeric chromatin containing the CENP-A nucleosome, CENP-B, and CENP-C from HeLa cells using anti-CENP-A and/or anti-CENP-C antibodies and shown that the CENP-A/B/C complex is predominantly formed on ?-satellite DNA that contains the CENP-B box (?I-type array). Mapping of hypersensitive sites for micrococcal nuclease (MNase) digestion indicated ...

  2. Demonstration in vitro that eucaryotic initiation factor 3 is active but that a cap-binding protein complex is inactive in poliovirus-infected HeLa cells.

    OpenAIRE

    Etchison, D; Hansen, J; Ehrenfeld, E; Edery, I; Sonenberg, N; Milburn, S; Hershey, J W

    1984-01-01

    Protein synthesis initiation factor preparations from poliovirus-infected HeLa cells have reduced ability to initiate translation on capped mRNA. The defect in initiation factors has been variously attributed to inactivation of eucaryotic initiation factor 3 (eIF3), eIF4B, or a cap-binding protein (CBP) complex. We have developed a series of in vitro protein synthesis assays to show that eIF3 is active but a CBP complex activity is inactivated after poliovirus infection. eIF3 activity, when d...

  3. Binding ability of LHRH-PE40 to LHRH receptors on cancer cell line

    International Nuclear Information System (INIS)

    Objective: To evaluate the binding ability of LHRH-PE40, a fusion protein, to the LHRH receptors on cancer cell line. Methods: The radioligand binding assay of receptors was used to calculate the Kd and Bmax. Results: Hela cell line: Kd=(0.36 +- 0.12) nmol, Bmax=(0.23+-0.15) ?mol·g-1; Hep2 cell line: Kd=(0.33 +- 0.11) nmol, Bmax=(0.46 +- 0.12)?mol·g-1. Conclusion: LHRH-PE40 has a high binding affinity to the LHRH receptors on cancer cell line, which is the same as the natural LHRH

  4. ANTICANCER ACTIVITY OF PONGAMIA GLABRA V. SEED OIL EXTRACT AGAINST SELECTED HUMAN CANCER CELL LINES

    OpenAIRE

    Chinnasamy Arulvasu; Subramanian Vasantha suppriya; Gajendran Babu

    2012-01-01

    Screening of the seed oil extract from Pongamia glabra V. (Fabaceae) has been carried out for antiproliferative activity of cancer cells. The seed oil was extracted with methanol and then persuasive activity was tested on human cancer cell lines MCF-7 and HeLa. The cell growth inhibitory effects of seed oil extract was observed. The cell viability was assessed using trypan blue dye exclusion method and 3-(4, 5- Dimethyl thiazol-2yl)-2, 5-dimethyltetrazolium bromide (MTT) assay. The IC50 value...

  5. Antitumor effects of a natural anthracycline analog (Aloin) involve altered activity of antioxidant enzymes in HeLaS3 cells.

    Science.gov (United States)

    Ni?iforovi?, Ana; Adzi?, Miroslav; Spasi?, Snezana D; Radojci?, Marija B

    2007-08-01

    The antiproliferative and cytotoxic potential of the natural anthracycline aloin from Aloe vera was tested on human uterine carcinoma HeLaS3 cells. Aloin showed a pronounced antiproliferative effect at physiological concentration (IC50 = 97 microM), caused cell cycle arrest in the S phase and markedly increased HeLaS3 cell apoptosis (to 24%). In the concentration range of 20-100 microM, its action was accompanied by remarkable changes in the activity of almost all antioxidant enzymes: MnSOD activity was increased many fold, while CuZnSOD and iNOS activities were inhibited. Moreover, inhibition of CuZnSOD was shown to occur by direct aloin interaction with the enzyme. As catalase activity was not changed, it is suggested that such conditions were responsible for antiproliferative and cytotoxic effects owing to accumulation of H2O2. Aloin alone was a more potent proapoptotic agent than a 2 Gy fractional dose of ionizing radiation or a combination of the two. Compared to other currently used therapeutics, aloin, due to its less undesirable side effects and antimetastatic potential, may prove to be the agent of choice on which clinical protocols for the treatment of human cervical carcinoma should rely in future. PMID:17726368

  6. Cytotoxicologic Studies of the Extracts of Iranian Juniperus Sabina and Platycladus Orientalis on Cancer Cells

    Directory of Open Access Journals (Sweden)

    A Jafarian-Dehkordi

    2004-10-01

    Full Text Available Background: Isolation and identification of some potent anti-tumor compounds from medicinal plants, has motivated researchers to screen different parts of plant species for anti-tumor effects. It has been reported that several conifers posses cytotoxic activities on some human tumor cell lines. Methods: In this study male and female branchlets or fruits of two different species of Iranian conifers were collected from the northern parts of Iran and identified. Hydroalcoholic extracts of them were prepared by perculation. The cytotoxic effects of the extracts on three human tumor cell lines (Hela, KB, and MDA-MB-468 were determined. Different concentrations of extracts were added to cultured cells and incubated for 72 h. Cell survival was evaluated using MTT-based cytotoxicity assay. Cytotoxicity was considered when mor than 50% decrese was seen in cell survival. Results: Although the extracts from Platycladus orientalis significantly decreased Hela and MDA-MB-468 cell curvival, their effects were not considerable. Extracts from fruit and branchlets of male and female Juniperus sabina showed cytotoxic activities against Hela and MDA-MB-468 cells. Conclusion: It is concluded that extracts of J. sabin have cytotoxic effects on cancer cells. Keywords: Juniperus sabina, Platycladus orientalis, Cytotoxicity, MTT assay, Cancer cells.

  7. Studies on sister chromatid exchange (SCE) induction by ?-irradiation and protective effect of L-cysteine in HeLa cells

    International Nuclear Information System (INIS)

    Effect of different doses of ?-irradiation on SCE induction in unifiliarly 5-bromo 2-deoxyuridine substituted DNA was studied in various phases of cell cycle. Changes in ?-irradiation induced SCE frequency was measured by post-irradiation treatment with antimutagen L-cysteine. Perturbation in cellular proliferation kinetics due to ?-irradiation and ?-irradiation plus L-cysteine was also studied. It was observed that ?-irradiation is an efficient inducer of SCE and is most effective in S phase. L-cysteine also causes SCE induction which is slightly higher than the spontaneous level of SCEs found in HeLa cells. However, post-irradiation addition of L-cysteine reduces SCE frequency in ?-irradiated cultures and this reduction is maximum in G1 phase irradiated cells. ?-irradiation delayed the mitosis considerably and this delay continued to increase with increasing doses. L-cysteine reduced the delay in cell cycle caused by ?-irradiation. (orig.)

  8. Traditional Chinese medicine herbal mixture LQ arrests FUCCI-expressing HeLa cells in G0/G1 phase in 2D plastic, 2.5D Matrigel®, and 3D Gelfoam® culture visualized with FUCCI imaging

    Science.gov (United States)

    Bouvet, Michael; Yano, Shuya; Hoffman, Robert M.

    2015-01-01

    We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G2/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G0/G1 (>90%) after 72 hours. After treatment with paclitaxel (0.01 ?m), for 72 hours, 95% of the cells were in S/G2/M. In 2.5D Matrigel® culture, the colonies in the untreated control group had 40% of the cells in S/G2/M. LQ arrested the cells in G0/G1 after 72 hours. Paclitaxel arrested almost all the cells in S/G2/M after 72 hours. In 3D Gelfoam® culture, the untreated control culture had approximately 45% of cells in G2/M. In contrast, the LQ-treated cells were mostly in G0/G1 phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G2/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time. PMID:25779660

  9. Cancer Stem Cells in Pancreatic Cancer

    OpenAIRE

    Karl-Walter Jauch; Hendrik Seeliger; Hanno Niess; Qi Bao; Andrea Renner; Yue Zhao; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC t...

  10. Biocompatible ZnS:Mn(2+) quantum dots/SiO2 nanocomposites as fluorescent probe for imaging HeLa cell.

    Science.gov (United States)

    Cao, Jian; Niu, Haifeng; Han, Donglai; Yang, Shuo; Liu, Qianyu; Wang, Tingting; Yang, Jinghai

    2015-09-01

    ZnS:Mn(2+) quantum dots (QDs) were successfully embedded in SiO2 spheres by a reverse microemulsion method. The results showed that the monodispersed core/shell nanocomposites were uniform in size, with the majority of the SiO2 nanoparticles containing one QD in the center of the sphere. The shell thickness of SiO2 increased from 7 to 18 nm as the hydrolysis time of TEOS increased from 20 to 40 h. The quantum yield (QY) of the yellow-orange emission (coming from the Mn(2+) ions (4)T1-(6)A1 transition) for the ZnS:Mn(2+)(3 %) QDs and ZnS:Mn(2+)(3 %) QDs@SiO2 (when t = 40 h) nanocomposites was measured to be 34.5 and 22.4 %, respectively. All samples showed no significant cytotoxicity against the HeLa cells even at a high concentration of 500 ?g/ml after incubation for 24 h. The red fluorescence can be observed in the cytoplasm of the HeLa cell, further proving its biolabeling applications. PMID:26395361

  11. Chelidonine isolated from ethanolic extract of Chelidonium majus promotes apoptosis in HeLa cells through p38-p53 and PI3K/AKT signalling pathways

    Directory of Open Access Journals (Sweden)

    Avijit Paul

    2012-09-01

    Full Text Available OBJECTIVE: To evaluate the role of chelidonine isolated from ethanolic extract of Chelidonium majus in inducing apoptosis in HeLa cells and to assess the main signalling pathways involved.METHODS: Cells were initially treated with different concentrations of chelidonine for 48 h and the median lethal dose (LD50 value was selected by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Morphological analysis of nuclear condensation and DNA damage and fragmentation were measured by 4?,6-diamidino-2-phenylindole staining and comet assay. Further, reactive oxygen species (ROS generation, cell cycle arrest and change in mitochondrial membrane potential were also examined and analyzed by flow cytometry. Evaluation of interaction of drug with CT DNA was investigated by circular dichroism (CD spectral analysis to find any possible drug-CT DNA interaction. The mRNA and protein expressions of major signal proteins like p38, p53, protein kinase B (AKT, phosphatidylinositol 3-kinases (PI3K, Janus kinase 3 (JAK3, signal transducer and activator of transcription 3 (STAT3 and E6 and E7 oncoproteins as well as the pro-apoptotic genes and antiapoptotic genes were also estimated by reverse transcriptase-polymerase chain reaction and Western blotting.RESULTS: Based on LD50 value (30 ?g/mL of chelidonine, three doses were selected, namely, 22.5 ?g/mL (D1, 30.0 ?g/mL (D2 and 37.5 ?g/mL (D3. Results showed that chelidonine inhibited proliferation and induced apoptosis in HeLa cells through generation of ROS, cell cycle arrest at sub-G1 and G0/G1 stage, change in mitochondrial membrane potential and fragmentation of DNA. Results of CD spectra showed effective interaction between chelidonine and calf thymus DNA. Studies of signalling pathway revealed that chelidonine could efficiently induce apoptosis through up-regulation of expressions of p38, p53 and other pro-apoptotic genes and down-regulation of expressions of AKT, PI3K, JAK3, STAT3, E6, E7 and other antiapoptotic genes.CONCLUSION: Chelidonine isolated from Chelidonium majus efficiently induced apoptosis in HeLa cells through possible alteration of p38-p53 and AKT/PI3 kinase signalling pathways.

  12. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles

    OpenAIRE

    Sugahara, Takuya; Ohama, Yumi; Fukuda, Aya; Hayashi, Miho; Kawakubo, Akihiro; Kato, Keiichi

    2001-01-01

    Eucheuma serra agglutinin (ESA) derived from a marine red alga, Eucheuma serra, is a lectin that specifically binds to mannose-rich carbohydrate chains. ESA is a monomeric molecule, with a molecular weight of29,000. ESA induced cell death against several cancer cell lines, such as colon cancer Colo201 cells and cervix cancer HeLa cells. DNA ladder detection and the induction of caspase-3 activity suggested that the cell death induced by ESA against cancer cells was apoptosis. ESA bound to the...

  13. Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation

    OpenAIRE

    Ruchika Kaul-Ghanekar; Snehal Suryavanshi; Rashmi Deshpande; Prakash Mansara

    2013-01-01

    In the present work, we have analyzed the effect of the essential fatty acid, alpha linolenic acid (ALA) on nitric oxide release as well as induction of lipid peroxidation in breast (MCF-7 and MDA-MB-231) and cervical (SiHa and HeLa) cancer cell lines. ALA-treated cells showed a dose-dependent decrease in cell viability in both breast and cervical cancer cell lines without affecting the viability of non-cancerous transformed HEK 293 cells. Both types of cancer cells treated with ALA demonstra...

  14. Anticancer-cytotoxic activity of saponins isolated from the leaves of Gymnema sylvestre and Eclipta prostrata on HeLa cells

    OpenAIRE

    Khanna Venkatesan; Kannabiran Krishnan

    2009-01-01

    The anticancer-cytotoxic activities of isolated saponins, gymnemagenol (C 30 H 50 O 4 ) from Gymnema sylvestre and dasyscyphin C (C 28 H 40 O 8 ) from Eclipta prostrata leaves were tested under in vitro conditions in HeLa cells. The gymnemagenol and dayscyphin C at 50 ?g/ml showed a good cytotoxic activity (63% and 52%, respectively) in HeLa cells at 48 hours with the IC50 value of 37 and 50 ?g/ml, respectively. 5-Fluorouracil (5-FU), a positive control, showed 57....

  15. Regulated Necrosis in HeLa Cells Induced by ZnPc Photodynamic Treatment: A New Nuclear Morphology

    Directory of Open Access Journals (Sweden)

    Jorge Soriano

    2014-12-01

    Full Text Available Photodynamic therapy (PDT is a cancer treatment modality based on the administration of a photosensitizer (PS, which accumulates preferentially in tumor cells. Subsequent irradiation of the neoplastic area triggers a cascade of photochemical reactions that leads to the formation of highly reactive oxygen species responsible for cell inactivation. Photodynamic treatments in vitro are performed with the PS, zinc-phthalocyanine (ZnPc. The PS is near the plasma membrane during uptake and internalization. Inactivation clearly occurs by a necrotic process, manifested by nuclear pyknosis, negative TUNEL and Annexin V assays and non-relocation of cytochrome c. In contrast, by increasing the incubation time, ZnPc is accumulated in the Golgi apparatus and produces cell inactivation with characteristics of apoptosis and necrosis: TUNEL positive, relocated cytochrome c and negative Annexin V assay. This type of death produces a still undescribed granulated nuclear morphology, which is different from that of necrosis or apoptosis. This morphology is inhibited by necrostatin-1, a specific inhibitor of regulated necrosis.

  16. Cytotoxicity of Trichoderma spp. cultural filtrate against human cervical and breast cancer cell lines.

    Science.gov (United States)

    Abd El-Rahman, Atef Abd El-Mohsen; El-Shafei, Sally Mohamed Abd El-Aziz; Ivanova, Elena Vladimirovna; Fattakhova, Alfia Nurlimanovna; Pankova, Anna Victorovna; El-Shafei, Mohamed Abd El-Aziz; El-Morsi, El-Morsi Abu El-Fotouh; Alimova, Farida Kashifovna

    2014-01-01

    Trichoderma spp. are known as a rich source of secondary metabolites with biological activity belonging to a variety of classes of chemical compounds. These fungi also are well known for their ability to produce a wide range of antibiotic substances and to parasitize other fungi. In search for new substances, which might act as anticancer agents, the overall objective of this study was to investigate the cytotoxic effects of Trichoderma harzianum and Trichoderma asperellum cultural filtrates against human cervical and breast cancer cell lines (HeLa and MCF-7 cells respectively). To achieve this objective, cells were exposed to 20, 40, 60, 80 and 100 mg/ ml of both T. harzianum cultural filtrate (ThCF) and T. asperellum cultural filtrate (TaCF) for 24h, then the cell viability and the cytotoxic responses were assessed by using trypan blue and 3-(4,5-dimethylthiazol-2yl)- 2,5-biphenyl tetrazolium bromide (MTT) assays. Morphological changes in cells were investigated by phase contrast inverted microscopy. The results showed that ThCF and TaCF significantly reduce the cell viability, have cytotoxic effects and alter the cellular morphology of HeLa and MCF-7 cells in a concentration dependent manner. A concentration of 80 and 100mg/ml of ThCF resulted in a sharp decline in the cell viability percent of HeLa and MCF-7 respectively (25.2%, 26.5%) which was recorded by trypan blue assay. The half-maximal inhibitory concentrations (IC50) of ThCF and TaCF in HeLa and MCF-7 were recorded as 16.6, 12.0, 19.6 and 0.70 mg/ml respectively by MTT assay. These results revealed that ThCF and TaCF have a substantial ability to reduce the viability and proliferation of human cervical and breast cancer cells. PMID:25227819

  17. Metastatic renal cell cancer

    DEFF Research Database (Denmark)

    Rasmussen, Finn

    2013-01-01

    Targeted therapy is the treatment of choice in patients with metastatic renal cell cancer (mRCC) at most institutions although a combination of cytokine therapy and targeted therapy still is being investigated. Morphological size-based criteria (RECIST) has failed in monitoring the effect of targeted therapy in patients with mRCC, as successful therapy often does not result in a decrease in tumour size. Modifications of size-based criteria and criteria based on computed tomography (CT) contrast ...

  18. Mapping and identification of HeLa cell proteins separated by immobilized pH-gradient two-dimensional gel electrophoresis and construction of a two-dimensional polyacrylamide gel electrophoresis database.

    DEFF Research Database (Denmark)

    Shaw, AC; Rossel Larsen, M

    1999-01-01

    The HeLa cell line, a human adenocarcinoma, is used in many research fields, since it can be infected with a wide range of viruses and intracellular bacteria. Therefore, the mapping of HeLa cell proteins is useful for the investigation of parasite host cell interactions. Because of the recent improvements of two-dimensional gel electrophoresis with immobilized pH gradients (IPG) compared to isoelectric focusing with carrier ampholytes, a highly reproducible method for examining global changes in HeLa cell protein expression due to different stimuli is now available. Therefore, we have initiated the mapping of [35S]methionine/cysteine-labeled HeLa cell proteins with the 2-D PAGE (IPG)-system, using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and N-terminal sequencing for protein identification. To date 21 proteins have been identified and mapped. In order to make these and future data accessible for interlaboratory comparison, we constructed a 2-D PAGE database on the World Wide Web.

  19. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, SiHa, Ca Ski and C-4 I) and found that they express characteristic markers of stem cell, EMT and radioresistance. The fact that CICs demonstrated a higher degree of resistance to radiation than differentiated cells suggests that specific detection and targeting of CICs could be highly valuable for the therapy of tumors from the uterine cervix

  20. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    OpenAIRE

    Yi-Min Zhu; Li-Hua Yuan; Ke-Feng Pu; Bing Dong; An-Xin Wang; Li-Sha Chen

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell resea...

  1. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Directory of Open Access Journals (Sweden)

    Yi-Min Zhu

    2012-12-01

    Full Text Available According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  2. Curcumin and emodin down-regulate TGF-? signaling pathway in human cervical cancer cells.

    Science.gov (United States)

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-? signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-? signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-? and Wnt/?-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-? on ?-catenin (an important player in Wnt/?-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-? signaling pathway by decreasing the expression of TGF-? Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-? by inhibiting the TGF-?-induced migration and invasion. Expression of downstream effectors of TGF-? signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-? activates Wnt/?-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting ?-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer. PMID:25786122

  3. Effects of aphidicolin and/or 2',3'-dideoxythymidine on DNA repair induced in HeLa cells by four types of DNA-damaging agents

    International Nuclear Information System (INIS)

    The alkaline sucrose density gradient centrifugation method was modified to permit detection of 1 lesion/10(9) daltons of DNA. With this technique, the involvements of DNA polymerases in DNA repair of damage by dimethyl sulfate, UV irradiation, neocarzinostatin, and bleomycin were studied in HeLa cells with the aid of the DNA polymerase inhibitors aphidicolin and 2',3'-dideoxythymidine. DNA repair after UV-induced damage seemed to involve only polymerase alpha, while repair of damage by the other three agents involved both polymerase alpha and a non-alpha polymerase, probably polymerase beta. But repair after damage by dimethyl sulfate differed from that after damage by neocarzinostatin or bleomycin with respect to the co-operations of polymerase alpha and polymerase beta: in repair of dimethyl sulfate-induced damage, both polymerases operated on the same lesions, whereas after damage by neocarzinostatin or bleomycin, polymerase alpha and polymerase beta functioned independently on different lesions

  4. Tumor-associated lymphatic endothelial cell promotes invasion of cervical cancer cells.

    Science.gov (United States)

    Cai, Liqiong; Yang, Shouhua; Ding, Hui; Cai, Jing; Wang, Zehua

    2013-12-01

    The most common way for cervical cancer to spread is through the lymphatic system. Tumor-associated lymphatic endothelial cell (TLEC) has been considered to play a crucial role in metastasis of certain cancers. The aim of this study was to isolate TLEC from human cervical cancers and explore its involvement in metastasis-associated behaviors in vitro. Lymphatic vessels in 62 cervix tissue specimens ranging from cervical intraepithelial neoplasia (CIN) to advanced invasive cancer were detected using immunochemical staining with D2-40 antibody. Relation of lymphatic vessel density (LVD) to clinicopathological characters was analyzed. Primary TLECs were isolated by LYVE-1 immuno-magnetic beads from cervical cancer tissues and verified through expression of LEC markers Prox-1 and D2-40, and then cultured in vitro. Invasiveness and viability of cells were assessed by transwell assay and typan blue exclusion, respectively. Our results showed that higher LVD was significantly associated with advanced FIGO stage, pelvic lymphatic nodal metastasis (LNM), and poorer cell differentiation. TLECs were successfully primarily isolated and cultured in vitro. Supernatant of TLEC enhanced invasiveness of Hela cell, but did not significantly affect cell viability. In conclusion, TLECs might actively promote lymphatic metastasis of cervical cancer. Further studies are needed to demonstrate the underlying mechanisms. PMID:23566114

  5. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    OpenAIRE

    Yang Zhen-Zhou; Li Zeng-Peng; Xiang De-Bing; Li Meng-Xia; Xie Jia-Yin; Lei Xin; Zhong Zhao-Yang; Yang Xue-Qin; Qing Yi; Wang Ge; Wang Dong

    2010-01-01

    Abstract Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant chara...

  6. Studies on cellular resilience and adaptation following acute and repetitive exposure to ozone in cultured human epithelial (HeLa) cells.

    Science.gov (United States)

    Brink, Christiaan B; Pretorius, Anita; van Niekerk, Barend P J; Oliver, Douglas W; Venter, Daniel P

    2008-01-01

    Ozone is used to treat several medical conditions, while the underlying mechanisms of action are sometimes poorly understood. In the current study, we exposed cultured human epithelial (HeLa) cells acutely and repeatedly to ozone and investigated the effects thereof on cell viability. The involvement of anti-apoptotic pathways in observed adaptive responses to ozone were investigated by employing the Akt inhibitor (-)-deguelin. Cells were exposed to an ozone-saturated physiological solution using various dosing regimens, including acute exposure and various repetitive exposures. Cell viability was determined with Trypan Blue or MTT tests, or by a DNA-fragmentation (comet) assay. Acute ozone exposure compromised cell membrane integrity severely, while adaptation to reverse an initial reduction in mitochondrial activity was observed. Repetitive, short-duration exposures followed by a single long-duration exposure to ozone furnished a protective adaptation that was reversed by Akt inhibition. Extracellular and intracellular damage (and adaptation) occurs differentially. While acute ozone may decrease cell viability, multiple preexposures up-regulates cellular plasticity via induction of anti-apoptotic pathways in a treatment regimen-specific manner. PMID:18339251

  7. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    International Nuclear Information System (INIS)

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and in caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage

  8. Ovarian cancer: emerging concept on cancer stem cells

    OpenAIRE

    Ponnusamy Moorthy P; Batra Surinder K

    2008-01-01

    Abstract Emerging evidence suggests that the capacity of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. In fact, cancer cells, like stem cells, can proliferate indefinitely through a dysregulated cellular self-renewal capacity. Cancer stem cells may originate due to the distribution into self-renewal and differentiation pathways occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells and cancer cell...

  9. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    Science.gov (United States)

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties. PMID:20701966

  10. Proliferative activity of Echinacea angustifolia root extracts on cancer cells: Interference with doxorubicin cytotoxicity.

    Science.gov (United States)

    Huntimer, Eric D; Halaweish, Fathi T; Chase, Christopher C L

    2006-06-01

    Doxorubicin is an anticancer drug that causes apoptosis in cells, but cardiotoxicity limits the cumulative dose that can remain in the blood. Echinacea extracts have been prescribed to supplement cancer chemotherapy. In a recent study, it was reported that Echinacea purpurea extracts protected noncancerous cells from apoptosis. Our study aimed to determine interference with doxorubicin chemotherapy, and if fractions and compounds from Echinacea angustifolia roots protected the cells. Cervical and breast cancer cells were treated with the Echinacea samples and doxorubicin. At 0.05 and 0.5 microM doxorubicin concentration, cynarine increased HeLa cell growth by 48-125% and 29-101%, respectively (pCynarine showed proliferative activity on HeLa cells, but showed antiproliferative activity on MCF-7 cells. Results indicate that phenolic compounds are responsible for proliferative activity. Studies with individual compounds show that chicoric acid and cynarine interfered with cells treated with 0.5 microM doxorubicin. The results of this study show that Echinacea herbal medicines affect cell proliferation despite cancer treatment, and that herbal medicines require further study with respect to anticancer drugs. PMID:17193302

  11. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G2 arrest

    International Nuclear Information System (INIS)

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weakly on when the cells are irradiated. If cells are irradiated in early G1, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G2; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G2, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G2 arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G1 lose sensitivity to caffeine in about 9 hr; they do so faster in G2. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G2-arrested cells

  12. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer.

    Science.gov (United States)

    Loebinger, Michael R; Eddaoudi, Ayad; Davies, Derek; Janes, Sam M

    2009-05-15

    Cancer is a leading cause of mortality throughout the world and new treatments are urgently needed. Recent studies suggest that bone marrow-derived mesenchymal stem cells (MSC) home to and incorporate within tumor tissue. We hypothesized that MSCs engineered to produce and deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a transmembrane protein that causes selective apoptosis of tumor cells, would home to and kill cancer cells in a lung metastatic cancer model. Human MSCs were transduced with TRAIL and the IRES-eGFP reporter gene under the control of a tetracycline promoter using a lentiviral vector. Transduced and activated MSCs caused lung (A549), breast (MDAMB231), squamous (H357), and cervical (Hela) cancer cell apoptosis and death in coculture experiments. Subcutaneous xenograft experiments confirmed that directly delivered TRAIL-expressing MSCs were able to significantly reduce tumor growth [0.12 cm(3) (0.04-0.21) versus 0.66 cm(3) (0.21-1.11); P metastasis model, systemically delivered MSCs localized to lung metastases and the controlled local delivery of TRAIL completely cleared the metastatic disease in 38% of mice compared with 0% of controls (P disease following primary tumor resection. PMID:19435900

  13. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... another part of the body, it is called metastasis . Cancer cells break away from where they began (the ... renal cells. The disease is metastatic renal cell cancer, not bone cancer. The following stages are used for renal ...

  14. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... another part of the body, it is called metastasis . Cancer cells break away from where they began (the ... renal cells. The disease is metastatic renal cell cancer, not bone cancer. The following stages are used for renal ...

  15. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  16. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... Cancer Research Renal Cell Cancer Treatment (PDQ®) General Information About Renal Cell Cancer Key Points Renal cell ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  17. Learning about Cancer by Studying Stem Cells

    Science.gov (United States)

    ... Science Home Page Learning About Cancer by Studying Stem Cells By Sharon Reynolds Posted January 8, 2014 Normally, ... of them are exploring the process by studying stem cells. Modeling Early Pancreatic Cancer Pancreatic cancer cells grown ...

  18. Cytotoxic effects of essential oils from three Lippia gracilis Schauer genotypes on HeLa, B16, and MCF-7 cells and normal human fibroblasts.

    Science.gov (United States)

    Melo, J O; Fachin, A L; Rizo, W F; Jesus, H C R; Arrigoni-Blank, M F; Alves, P B; Marins, M A; França, S C; Blank, A F

    2014-01-01

    This study aimed to evaluate the chemical composition of the essential oils from three genotypes of Lippia gracilis Schauer (Verbenaceae) and investigate the cytotoxic activities of these oils. Essential oils were extracted from the leaves using a Clevenger-type apparatus, and chemical analysis was performed using a gas chromatograph coupled to a mass spectrometer and flame ionization detector. 3T3, MRC5, B16, HeLa, and MCF-7 cell lines were used to study the in vitro cytotoxicity of the essential oils, and the level of cell death was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test with three replicates. The cytotoxic activity was expressed as the concentration that inhibited 50% of cell growth. The main compound in the essential oil of LGRA-106 was thymol (40.52%), while LGRA-109 and LGRA-201 contained 45.84 and 32.60% carvacrol, respectively, as their major compound. The essential oils of L. gracilis showed cytotoxic activity against both normal and tumor cells at concentrations below 100 ?g/mL; this demonstrated the antitumor potential of these essential oils, which should be further investigated. PMID:24782082

  19. Non-biased enrichment does not improve quantitative proteomic delineation of reovirus T3D-infected HeLa cell protein alterations

    Directory of Open Access Journals (Sweden)

    KevinM.Coombs

    2012-09-01

    Full Text Available Mass spectrometry-based methods have allowed elucidation of alterations in complex proteomes, such as eukaryotic cells. Such studies have identified and measured relative abundances of thousands of host proteins after cells are infected with a virus. One of the potential limitations in such studies is that generally only the most abundant proteins are identified, leaving the deep richness of the cellular proteome largely unexplored. We differentially labeled HeLa cells with light and heavy stable isotopic forms of lysine and arginine (SILAC and infected cells with reovirus strain T3D. Cells were harvested at 24 hours post-infection. Heavy-labeled infected and light-labeled mock-infected cells were mixed together 1:1. Cells were then divided into cytosol and nuclear fractions and each fraction analyzed, both by standard 2D-HPLC/MS, and also after each fraction had been reacted with a random hexapeptide library (Proteominer® beads to attempt to enrich for low-abundance cellular proteins. A total of 2736 proteins were identified by 2 or more peptides at >99% confidence, of which 66 were significantly up-regulated and 67 were significantly down-regulated. Up-regulated proteins included those involved in antimicrobial and antiviral responses, GTPase activity, nucleotide binding, interferon signaling, and enzymes associated with energy generation. Down-regulated proteins included those involved in cell and biological adhesion, regulation of cell proliferation, structural molecule activity, and numerous molecular binding activities. Comparisons of the r2 correlations, degree of dataset overlap, and numbers of peptides detected suggest that non-biased enrichment approaches may not provide additional data to allow deeper quantitative and comparative mining of complex proteomes.

  20. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  1. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®) General Information About Small Cell Lung Cancer ... Treatment Options by Stage Limited-Stage Small Cell Lung Cancer Treatment of limited-stage small cell lung cancer may ...

  2. Suppression of malignancy in human cancer cells: issues and challenges.

    Science.gov (United States)

    Sabin, A B

    1981-11-01

    Analysis of the many, sometimes seemingly contradictory, reports on the partial suppression of malignancy in highly unstable rodent intraspecies and rodent--human hybrid cells emphasizes the limitations of this approach to the analysis of the basic nature of malignancy, especially in naturally occurring human cancers. During the past 5 years, Stanbridge and then Klinger reported complete suppression, not elimination, of malignancy [defined as capacity to produce progressively growing tumors in athymic (nude) mice] in stable hybrids of different human cancer cells with normal human fibroblasts or with differentiating epithelial keratinocytes and, importantly, also in stable hybrids of two parental cancers of different somatic cell origin. The nontumorigenic human hybrid cells are not rejected by some nonthymic immune mechanism of nude mice and survive in vascularized foci; the initial multiplication of these cells is stopped by some unknown proliferation controlling substance(s) to which their malignant parent(s) do not respond. The heritable properties of infinite multiplication in vitro, loss of contact inhibition, etc. remained in the nontumorigenic hybrids but, remarkably, the in vitro production of alpha human choriogonadotropin by HeLa cells was suppressed along with tumorigenicity and reappeared in the tumorigenic revertants. If it is assumed that human cancers of different somatic cell origin are caused by a loss of different specific regulatory genes, as the most recent data reviewed here suggest, the challenge is to determine in molecular terms what those missing genes are, how they function, and whether it may be possible to restore to the cancer cells what they have lost. PMID:6273913

  3. Involvement of reactive oxygen species and calcium in photo-induced membrane damage in HeLa cells by a bis-methanophosphonate fullerene.

    Science.gov (United States)

    Qiao, Xinge; Huang, Cheng; Ying, Yabing; Yang, Xinlin; Liu, Yang; Tian, Qiu

    2010-03-01

    Photo-excited bioactivities of fullerene derivatives are attracting much attention. In this report, a bis-methanophosphonate fullerene (BMPF) and the other two fullerene derivatives, a bis-malonic acid fullerene (BMAF) and a fullerol were incubated with HeLa cells and irradiated with a green light emitted from a mercury lamp on a fluorescent microscopy. By using DNA fluorescent probe propidium iodide staining method, damage towards cell membrane could be detected when cells were treated by irradiation altogether with BMPF or BMAF at a low concentration (4 microM), and the damage was dose-dependent. The activity of BMPF was much higher than that of BMAF, while fullerol had no effects under the same condition. It was also revealed that different kinds of reactive oxygen species (ROS) correlated to BMPF and BMAF. Additionally, presence of extracellular calcium could promote the activities of both derivatives, while removal of extracellular calcium could not abort their membrane-damaged activities. These results indicated that ROS and calcium were involved in the photosensitization of fullerene derivatives, and BMPF was a superior photosensitizer which would find potential application in biomedical field. PMID:20144875

  4. Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines.

    Science.gov (United States)

    Malaekeh-Nikouei, Bizhan; Mousavi, Seyed Hadi; Shahsavand, Shabnam; Mehri, Soghra; Nassirli, Horiyeh; Moallem, Seyed Adel

    2013-12-01

    Saffron (Crocus sativus) is a widely used food additive used for its color and taste. It has been reported that saffron possesses significant in vivo and in vitro anti-tumor activity. In the present study, anti-tumor effects of safranal, the major aromatic compound in saffron, and its liposomal form were investigated. The role of apoptosis has also been explored in this toxicity. HeLa, MCF7 and L929 cell lines were cultured and exposed to safranal (0.01-3?mM) or liposomal safranal (0.04-0.32?mM). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay was performed to assess cytotoxicity. Apoptosis was evaluated by staining cells with propidium iodide and quantifying sub-Gl peak by flow cytometry. MTT assay revealed a significant and concentration-dependent cytotoxic effect of safranal on HeLa and MCF7 cell lines. Liposomal safranal showed enhanced effect compared to the safranal solution, as compared by their IC50 concentrations. Flow cytometry results revealed induction of apoptosis by safranal. It might be concluded that safranal could be involved in saffron-induced cell death in HeLa and MCF7 cells. Liposome encapsulation improved anti-tumor effect of safranal. Safranal and particularly its liposomal form could be investigated as promising chemotherapeutic agents in cancer treatment. PMID:23494763

  5. Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells

    Directory of Open Access Journals (Sweden)

    Asselin Eric

    2006-10-01

    Full Text Available Abstract Background Endometrial cancer is the fourth most prominent cancer among all feminine cancers in the Western world. Resveratrol, a natural anti-oxidant found in red wine emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on uterine cancer cells is poorly understood. At the molecular level, resveratrol has been reported to inhibit cyclooxygenase (COX expression and/or activity; in endometrial cancer cells, COX-2 is overexpressed and confers cellular resistance to apoptosis. The aim of the present study was to determine if resveratrol could exert anti-proliferative and pro-apoptotic activity over uterine cancer cells upon inhibition of COX-2 expression and/or activity. Six different human uterine cancer cell lines were used as a model (HeLa, Hec-1A, KLE, RL95-2, Ishikawa and EN-1078D. Results and discussion High-dose of resveratrol triggered apoptosis in five out of six uterine cancer cell lines, as judged from Hoechst nuclear staining and effector caspase cleavage. In accordance, uterine cancer cell proliferation was decreased. Resveratrol also reduced cellular levels of the phosphorylated/active form of anti-apoptotic kinase AKT. Endogenous COX-2 protein levels were decreased, concomitant with a decrease in production of COX metabolites PGE2 and PGF2?, in each uterine cancer cell line expressing detectable levels of COX-1 and/or COX-2 in presence of resveratrol. Although COX expression was identified as a target of resveratrol in uterine cancer cells, inhibition of COX activity or exogenously added PGE2 did not modulate the effect of resveratrol on cellular proliferation. Conclusion High-dose of resveratrol exerts tumoricidal activity over uterine cancer cells and regulates COX expression. In these cells, resveratrol would not directly target COX activity, but possibly other enzymes involved in prostaglandin synthesis that act downstream of the COXs.

  6. Efecto fotocatalítico del TiO2-Au sobre células de cáncer de cuello uterino / Photocatalytic Effect of TiO2-Au on cells of cervical cancer

    Scientific Electronic Library Online (English)

    R. J., Camargo-Amado.

    2012-12-01

    Full Text Available Los fotocatalizadores han abierto las puertas a múltiples aplicaciones en ciencia y medicina, entre ellas el TiO2 en presencia de luz ultravioleta UV-A se está abriendo espacio en el futuro tratamiento de diferentes tipos de cáncer. En este trabajo se determinó el efecto fotocatalítico de los compue [...] sto TiO2 y TiO2-Au sobre células de cáncer de cuello uterino (HeLa) y células sanas de ovario de hámster chino (CHO). Se variaron las concentraciones de los compuestos, los tiempos de exposición a la luz UV-A y la presencia o ausencia de luz UV-A. Para cada caso se midió la citotoxicidad de los compuestos sobre las células HeLa y CHO a través de la prueba lactatodeshidrogenasa (LDH). El mayor porcentaje de citotoxicidad en células HeLa fue 43.2 %, mientras la citotoxicidad en células CHO fue negativa en todos los casos. Los compuestos no causan efecto citotóxico sobre la línea celular CHO Abstract in english Photocatalysts have opened the possibilities to many applications in science and medicine. The TiO2 in presence of ultraviolet UV-A is opening up space in the future treatment of various cancers. In this work we determined the effect of the composite photocatalytic TiO2 and TiO2-Au on cells of cervi [...] cal cancer (HeLa) and healthy cells of Chinese hamster ovary (CHO) cell lines. Was varied compound concentration, the exposure time to UV-A and the presence or absence of UV-A. Was measured cytotoxicity of the compounds on HeLa and CHO cells with Lactatedeshydrogenase test (LDH). The highest cytotoxicity in HeLa cells was 43.2 %, while the cytotoxicity in CHO cells in all cases was negative. The compounds causes no cytotoxic effect on CHO cell lines

  7. Eradicating cancer cells: struggle with a chameleon

    OpenAIRE

    Di, Jiabo; Boer, Tjitske Duiveman-de; Carl G Figdor; Torensma, Ruurd

    2011-01-01

    Eradication of cancer stem cells to abrogate tumor growth is a new treatment modality. However, like normal cells cancer cells show plasticity. Differentiated tumor stem cells can acquire stem cell properties when they gain access to the stem cell niche. This indicates that eradicating of stem cells (emptying of the niche) alone will not lead to eradication of the tumor. Treatment should be directed to cancer stem cells ànd more mature cancer cells.

  8. Metastatic renal cell cancer

    DEFF Research Database (Denmark)

    Rasmussen, Finn

    2013-01-01

    Targeted therapy is the treatment of choice in patients with metastatic renal cell cancer (mRCC) at most institutions although a combination of cytokine therapy and targeted therapy still is being investigated. Morphological size-based criteria (RECIST) has failed in monitoring the effect of targeted therapy in patients with mRCC, as successful therapy often does not result in a decrease in tumour size. Modifications of size-based criteria and criteria based on computed tomography (CT) contrast enhancement has been introduced. Different imaging modalities that rely on characteristics other than size such as dynamic contrast-enhanced (DCE) ultrasonography, DCE CT, DCE magnetic resonance imaging (MRI), diffusion-weighted MRI, positron emission tomography and texture analysis seem to contribute with prognostic information, even at baseline scans, and can predict tumour response early after initiating therapy. No new standard for the imaging follow-up of targeted therapy in mRCC has been established.

  9. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    International Nuclear Information System (INIS)

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, ?-sarcoglycan, ?-dystroglycan, ?- and ?-syntrophin, ?1- and ?-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, ?-dystroglycan, nNOS, ?-sarcoglycan, ?/? syntrophin, ?1-dystrobrevin and ?-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, ?-dystroglycan and ?-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture

  10. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci)

    Energy Technology Data Exchange (ETDEWEB)

    Honda-Uezono, Asumi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Kaida, Atsushi [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Michi, Yasuyuki; Harada, Kiyoshi [Section of Maxillofacial Surgery, Department of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Hayashi, Yoshiki; Hayashi, Yoshio [Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Miura, Masahiko, E-mail: masa.mdth@tmd.ac.jp [Section of Oral Radiation Oncology, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Fucci visualizes cell cycle by green and red fluorescence. Black-Right-Pointing-Pointer Plinabulin, induced unusual red fluorescence at M-phase in HeLa-Fucci cells. Black-Right-Pointing-Pointer The unusual pattern was followed by mitotic catastrophe. Black-Right-Pointing-Pointer The unusual pattern may be an early indicator of cell death in HeLa cells. -- Abstract: Plinabulin (NPI-2358) is a novel microtubule-depolymerizing agent. In HeLa cells, plinabulin arrests the cell-cycle at M phase and subsequently induces mitotic catastrophe. To better understand the effects on this compound on the cell-cycle, we used the fluorescent ubiquitination-based cell cycle indicator (Fucci), which normally enables G1 and S/G2/M cells to emit red and green fluorescence, respectively. When HeLa-Fucci cells were treated with 50 nM plinabulin, cells began to fluoresce both green and red in an unusual pattern; most cells exhibited the new pattern after 24 h of treatment. X-irradiation efficiently induced G2 arrest in plinabulin-treated cells and significantly retarded the emergence of the unusual pattern, suggesting that entering M phase is essential for induction of the pattern. By simultaneously visualizing chromosomes with GFP-histone H2B, we established that the pattern emerges after nuclear envelope breakdown but before metaphase. Pedigree assay revealed a significant relationship between the unusual expression and mitotic catastrophe. Nocodazole, KPU-133 (a more potent derivative of plinabulin), and paclitaxel also exerted similar effects. From these data, we conclude that the unusual pattern may be associated with dysregulation of late M phase-specific E3 ligase activity and mitotic catastrophe following treatment with anti-microtubule agents.

  11. JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway

    International Nuclear Information System (INIS)

    Arsenic trioxide, emerging as a standard therapy for refractory acute promyelocytic leukemia, induces apoptosis in a variety of malignant cell lines. JWA, a novel retinoic acid-inducible gene, is known to be involved in apoptosis induced by various agents, for example, 12-O-tetradecanoylphorbol 13-acetate, N-4-hydroxy-phenyl-retinamide and arsenic trioxide. However, the molecular mechanisms underlying how JWA gene is functionally involved in apoptosis remain largely unknown. Herein, our studies demonstrated that treatment of arsenic trioxide produced apoptosis in HeLa and MCF-7 cells in a dose-dependent manner and paralleled with increased JWA expression. JWA expression was dependent upon generation of intracellular reactive oxygen species induced by arsenic trioxide. Knockdown of JWA attenuated arsenic trioxide induced apoptosis, and was accompanied by significantly reduced activity of caspase-9, enhanced Bad phosphorylation and inhibited MEK1/2, ERK1/2 and JNK phosphorylations. Arsenic trioxide induced loss of mitochondrial transmembrane potential was JWA-dependent. These findings suggest that JWA may serve as a pro-apoptotic molecule to mediate arsenic trioxide triggered apoptosis via a reactive oxygen species and mitochondria-associated signal pathway

  12. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    Science.gov (United States)

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity. PMID:16595161

  13. Low white blood cell count and cancer

    Science.gov (United States)

    ... person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ... quickly, so the treatment can attack the white blood cells as well as the cancer. Other causes of a low white blood cell ...

  14. Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity

    International Nuclear Information System (INIS)

    To obtain an active-targeting carrier to cancer cells, folate-conjugated stearic acid grafted chitosan oligosaccharide (Fa-CSOSA) was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The substitution degree is 22.1%. The critical micelle concentrations (CMCs) of Fa-CSOSA were 0.017 and 0.0074 mg ml-1 in distilled water and PBS (pH 7.4), respectively. The average volume size range of Fa-CSOSA micelles was 60-120 nm. The targeting ability of Fa-CSOSA micelles was investigated against two kinds of cell lines (A549 and Hela), which have different amounts of folate receptors in their surface. The results indicated that Fa-CSOSA micelles presented a targeting ability to the cells (Hela) with a higher expression of folate receptor during a short-time incubation (50 of Taxol (a clinical formulation containing PTX) on A549 and Hela cells was 7.0 and 11.0 ?g ml-1, respectively. The cytotoxicity of PTX-loaded micelles was improved sharply (IC50 on A549: 0.32 ?g ml-1; IC50 on Hela: 0.268 ?g ml-1). This is attributed to the increased intracellular delivery of the drug. The Fa-CSOSA micelles that are presented may be a promising active-targeting carrier candidate via folate mediation

  15. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.

    Science.gov (United States)

    Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul

    2015-01-01

    Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies. PMID:25854386

  16. Establishment of the cell line, HeLa-CD14, transfected with the human CD14 gene

    OpenAIRE

    NING, BO-TAO; Tang, Yong-Min

    2012-01-01

    CD14 is the pivotal molecule in the diagnosis and therapy of CD14-associated diseases, and is important in bacteremia. The HeLa cell line is regarded as immortal due to its prolific character. The HeLa cell line is derived from human cervical cancer cells and has been widely used in cancer research and gene transfection. In the present study, we established the expression plasmid pcDNA3.1(+)-CD14, and transfected it into the human cervical cancer cell line HeLa to establish a stable cell line...

  17. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine; Ande, Sudharsana R.; Wesselborg, Sebastian; Schulze-Osthoff, Klaus; Los, Marek

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues (colon, breast, liver, pancreas, and prostate). It is becomingevident that successful cancer therapies have to eradicate CSC. Thus, strategies aimed at efficient targeting of CSC are becoming vital for moni...

  18. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells

    Science.gov (United States)

    Liu, Ting; Tian, Jiguang; Chen, Zhaolong; Liang, Ying; Liu, Jiao; Liu, Si; Li, Huihui; Zhan, Jinhua; Yang, Xingsheng

    2014-08-01

    Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3-3 nmol L-1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment.

  19. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Yao [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Hsieh, Tsai-Yuan [Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Liu, Shu-Ting; Chang, Yung-Lung [Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Lin, Wei-Shiang [Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Wang, Wei-Ming, E-mail: ades0431@ms38.hinet.net [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Huang, Shih-Ming, E-mail: shihming@ndmctsgh.edu.tw [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China)

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  20. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells.

    Science.gov (United States)

    Muñoz-Braceras, Sandra; Calvo, Rosa; Escalante, Ricardo

    2015-01-01

    Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA(-), tipB(-), tipC(-), and tipD(-)). We found a clear autophagic dysfunction in tipC(-) and tipD(-) while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. PMID:25996471

  1. Proteomic analysis of cervical cancer cells treated with suberonylanilide hydroxamic acid

    Indian Academy of Sciences (India)

    Jianxiong He; Canhua Huang; Aiping Tong; Bin Chen; Zhi Zeng; Peng Zhang; Chunting Wang; Yuquan Wei

    2008-12-01

    Suberonylanilide hydroxamic acid (SAHA) is an orally administered histone deacetylase inhibitor (HDACI) that has shown significant antitumour activity in a variety of tumour cells. To identify proteins involved in its antitumour activity, we utilized a proteomic approach to reveal protein expression changes in the human cervical cancer cell line HeLa following SAHA treatment. Protein expression profiles were analysed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. As a result, a total of nine differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue (CBB) staining. Further, all the changed proteins were positively identified via mass spectrometry (MS)/MS analysis. Of these, PGAM1 was significantly downregulated in HeLa cells after treatment with SAHA. Moreover, PGAM1 has been proven to be downregulated in another cervical cancer cell line (CaSki) by western blot analysis. Together, using proteomic tools, we identified several differentially expressed proteins that underwent SAHA-induced apoptosis. These changed proteins may provide some clues to a better understanding of the molecular mechanisms underlying SAHA-induced apoptosis in cervical cancer.

  2. The experimental study of radionuclide imaging and treatment of cervical cancer mediated by hNIS gene transfection

    International Nuclear Information System (INIS)

    Objective: To explore the feasibility of imaging and treatment of cervical cancer xenograft model using 131I mediated by hNIS gene transfection. Methods: The cervical cancer xenograft models were established with Hela-NIS( +) cells and Hela cells, respectively. Five Hela-NIS(+) xenograft models and five Hela xenograft models were dynamically imaged at 0.5, 1, 2, 4, 8, 16 and 20 h postinjection of 131I (7.4 MBq). Five Hela-NIS(+) xenograft models were imaged at 0.5, 1, 2, 4, 8, 16, 20 and 25 h postinjection of 99TcmO4- (11.1 MBq). Twenty Hela-NIS(+) cervical cancer xenograft models were randomly divided into four groups: Three 131I treating groups and one control group. The therapeutic effects of 131I at three levels (74, 111, 148 MBq) were investigated following intraperitoneal injection. Results: Hela-NIS(+)human cervical cancer xenografts were established successfully in nude mice. The Hela-NIS(+) xenografts significantly accumulated radioactivity after intraperitoneal injection of 131I, and the radioactivity was persistently present until 20 h postinjection, but Hela xenografts had no radioactive accumulation. The T/B value of the Hela-NIS(+) xenografts reached 17.34 at 8 h postinjection. The imaging with 99TcmO4- showed that the radioactivity was persistently present in Hela-NIS(+) xenografts for almost 25 h. The Hela-NIS(+)xenografts shrinked after 131I treatment. The inhibition ratios of tumor growth in 111 MBq and 148 MBq groups were both significantly higher than that of 74 MBq group (t: 2.74-5.75, P131I and 99TcmO4- and could be treated successfully with 131I. 131I treatment mediated by hNIS gene transfection could be a promising cancer treatment method. (authors)

  3. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    International Nuclear Information System (INIS)

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells

  4. Does butylphenyl-deoxyguanosine triphosphate differentially inhibit DNA polymerase alpha and delta activities in permeabilized HeLa cells?

    OpenAIRE

    Jackson, D.A.

    1990-01-01

    In eukaryotic cells, two enzymes, DNA polymerases alpha and delta, are thought to play major roles in DNA synthesis. I have used butylphenyl dGTP (BuPdGTP), a potent inhibitor of purified DNA polymerase alpha, to assess the relative activities of these enzymes in two permeabilized cell systems. In both instances BuPdGTP eliminated all of the activity which was sensitive to aphidicolin. However, no conditions were found where BuPdGTP preferentially inhibited the synthesis of Okazaki fragments-...

  5. Apoptosis Induction of Salvia chorassanica Root Extract on Human Cervical Cancer Cell Line.

    Science.gov (United States)

    Parsaee, Heydar; Asili, Javad; Mousavi, Seyed Hadi; Soofi, Hojjat; Emami, Seyed Ahmad; Tayarani-Najaran, Zahra

    2013-01-01

    Salvia chorassanica Bunge is one of the Iranian endemic species of Salvia. There is not any reported literature on S. chorassanica. This study was designed to examine the in-vitro anti-proliferative and proapoptotic effects of the methanol extract of S. chorassanica and its fractions on HeLa cell line. Cells were cultured in EX-CELL®, an animal free medium specially designed for HeLa cell line and incubated with different concentrations of plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Activity of caspase -3, -8 and -9 was measured by the caspase colorimetric kit assay. S. chorassanica inhibited the growth of malignant cells and the CH2Cl2 fraction was determined as the most cytotoxic fraction in comparison with other fractions. The calculated IC50 values for methanol extract, n-hexane, CH2Cl2 and EtOAc fractions were 8.841, 5.45, 2.38, and 58.03 ?g/mL, respectively. S. chorassanica induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that the cytotoxic mechanism is characterized by apoptosis induction. The activity of caspase-3 and 8 proteins in treated HeLa cells was significantly higher than that of the control while caspase-9 activity did not change significantly. Based on the result obtained from our study, the apoptosis pathway involved in S. chorassanica-induced cell death may be through the extrinsic pathway and it can be a novel promising candidate in the treatment of cancer. PMID:24250574

  6. Coordinate turnover of nuclear and cytoplasmic histone messenger RNA following inhibition of DNA replication of HeLa S3 cells

    International Nuclear Information System (INIS)

    The authors have examined the metabolism of human H4 histone mRNA in the nucleus and cytoplasm of HeLa S3 cells following inhibition of DNA synthesis to address the extent to which histone mRNA stability in these cellular compartments is coupled to DNA replication. The nuclear and cytoplasmic levels of histone mRNAs encoded by the pF0108A human H4 histone gene were determined by S1 nuclease analysis using a 32P-labeled probe that could distinguish pF0108A transcripts from those of other members of the H4 histone multigene family. Hydroxyurea treatment resulted within 15 min in a 75% reduction in the level of histone H4 mRNA in the nucleus, which corresponds to the 85% decrease observed for H4 histone mRNA in the cytoplasm. The kinetics of nuclear and cytoplasmic H4 mRNA turnover following hydroxyurea treatment were also similar. Northern blot analysis using a 32P-labeled mitochondrial cytochrome b probe indicated that the association of cytoplasmic RNA with the nuclear fraction was less than 0.5%. Treatment of cells with a protein synthesis inhibitor resulted in a 1.3-fold increase in nuclear H4 histone mRNA levels and a 1.5-fold increase of H4 mRNA in the cytoplasm after 45 min. Together, these results indicate that nuclear and cytoplasmic H4 histone mRNAs respond similarly to metabolic perturbations that influence message stability and that mechanisms operative in the turnover of histone mRNAs in the nucleus and cytoplasm may be similar

  7. Dual-modality fiber-optic imager (DFOI) for intracellular gene delivery in human cervical cancer cell

    Science.gov (United States)

    Cha, Jaepyeong; Zhang, Jing; Gurbani, Saumya; Li, Min; Kang, Jin U.

    2013-03-01

    The most common optical method to validate intracellular gene delivery in cancer is to detect tagged fluorescence signals from the cells. However, fluorescent detection is usually performed in vitro due to the limitation of standard microscopes. Herein, we propose a highly sensitive dual-modality fiber-optic imager (DFOI), which enables in vivo fluorescence imaging. Our system uses a coherent fiber bundle based imager capable of simultaneously performing both confocal reflectance and fluorescent microscopy. Non-viral vectors targeting human cervical cancer cells (HeLa) were used to evaluate the performance. Preliminary results demonstrated the DFOI is promising for in vivo evaluation of intracellular gene delivery.

  8. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines

    OpenAIRE

    Díaz-García, Alexis; Morier-Díaz, Luis; Frión-Herrera, Yahima; Rodríguez-Sánchez, Hermis; Caballero-Lorenzo, Yamira; Mendoza-Llanes, Dianeya; Riquenes-Garlobo, Yanelis; Fraga-Castro, José A

    2013-01-01

    In Cuba the endemic species of scorpion Rhopalurus junceus has been used in traditional medicine for cancer treatment. However, there is little scientific evidence about its potential in cancer therapy. The effect of a range of scorpion venom concentrations (0.1, 0.25, 0.5, 0.75 and 1mg/ml) against a panel of human tumor cell lines from epithelial (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, HT-29), hematopoietic origins (U937, K562, Raji) and normal cells (MRC-5, MDCK, Vero) w...

  9. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-? therapy

    Directory of Open Access Journals (Sweden)

    Kanwar Jagat R

    2010-10-01

    Full Text Available Abstract Background Survivin is a member of the inhibitor-of-apoptosis (IAP family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture. Results A dominant-negative survivin (C84A protein fused to the cell penetrating peptide poly-arginine (R9 was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-? via by a mechanism involving activation of caspase-8. Conclusions The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-?, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-? therapy warrants consideration as an approach to cancer therapy.

  10. Hybrid proteins between Pseudomonas aeruginosa exotoxin A and poliovirus 2Apro cleave p220 in HeLa cells.

    OpenAIRE

    Novoa, I; Cotten, M.; Carrasco, L.

    1996-01-01

    Cleavage of p220, a component of the initiation factor eIF-4F, has been correlated with the inhibition of host translation during poliovirus infection. To obtain p220 cleavage in the absence of any other poliovirus gene products, hybrid proteins containing Pseudomonas aeruginosa exotoxin A and poliovirus protease 2Apro have been constructed. The addition of the hybrid molecules to cultured cells did not lead to substantial p220 cleavage. However, the simultaneous presence of the hybrid toxin ...

  11. Visualization of cell-cycle modification by ionizing irradiation in single HeLa cells using fluorescent ubiquitination-based cell-cycle indicator

    OpenAIRE

    Kaminaga, Kiichi; Sakamoto, Yuka; Kanari, Yukiko; Noguchi, Miho; Yokoya, Akinari

    2014-01-01

    It has been known that cell cycle is retarded or arrested when the cells are exposed to ionizing radiation. The cell-cycle modifications are thought to be controlled by check point mechanisms to ensure the time for DNA repair. Linear energy transfer (LET) dependence of cell-cycle modifications, however, has not been fully revealed. Considerably less is known about detailed cell-cycle arrest for a single-cell level after exposure. Our purpose is to explore high LET radiation effects on the mam...

  12. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    International Nuclear Information System (INIS)

    Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis

  13. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  14. Confocal fluorescence microscopy: An ultra-sensitive tool used to evaluate intracellular antiretroviral nano-drug delivery in HeLa cells

    Science.gov (United States)

    Mandal, Subhra; Zhou, You; Shibata, Annemarie; Destache, Christopher J.

    2015-08-01

    In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs) fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) is still one of the world's major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV) therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid) (PLGA) nanoparticles (cARV-NPs) as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye) loaded NPs (Rho6G NPs) have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.

  15. Confocal fluorescence microscopy: An ultra-sensitive tool used to evaluate intracellular antiretroviral nano-drug delivery in HeLa cells

    Directory of Open Access Journals (Sweden)

    Subhra Mandal

    2015-08-01

    Full Text Available In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS is still one of the world’s major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid (PLGA nanoparticles (cARV-NPs as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye loaded NPs (Rho6G NPs have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (<500 ng/ml and that release was sustained for a minimum of 4 days of treatment. Therefore, high drug assimilation and sustained release properties of PLGA-NPs make them an attractive vehicle for cARV nano-drug delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.

  16. Dependence of the rate of DNA synthesis in x-irradiated HeLa S3 cells on dose and time after exposure

    International Nuclear Information System (INIS)

    After irradiation of randomly dividing cultures of HeLa S3 cells with 220-kV x rays, the rate of DNA synthesis, measured by pulsed incorporation of labeled thymidine, falls nearly exponentially with time (t/sub 1/2/ approximately 1.3 hr), in a dose-independent fashion. The fall is less rapid than that observed after addition of inhibitors of protein synthesis. With doses up to 8 krad, the rate reaches a minimum and begins to increase after 1-3 hr, the minima occurring at lower values and at slightly later times with increasing dose. The increase appears to be roughly linear for about 6 hr, with the slope an inverse function of dose in the range 1-8 krad. About 7-9 hr after the completion of irradiation, the rate again falls, although no more than 10 percent of the cells die sooner than 14 hr after irradiation with 8 krad (and later with smaller doses). Fluorodeoxyuridine-mediated delay in expression of the depression, described previously for doses up to 1 krad, occurs also at higher doses. During the period when the rate per culture rises, the rate in the individual cells, measured autoradiographically, appears to increase also, i.e., the rise presumably does not merely reflect populational shifts. The initial descending portion of the rate curve can be at least partially separated from the ascending portion by administering the total dose in suitably spaced fractions. If interpreted in terms of the model that attributes the initial depression in rate of synthesis to a temporary absence of replicon initiation, the results indicate that initiation is halted by an x-ray dose smaller than 1 krad; that it begins again after a dose-dependent delay amounting to about 0.7 hr after 1 krad and 1.5 hr after 7 krad; and that once begun, the rate of synthesis increases in a dose-dependent fashion. The second depression might derive from synchronization and/or from the imminence of cell death

  17. Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Ruchika Kaul-Ghanekar

    2013-02-01

    Full Text Available In the present work, we have analyzed the effect of the essential fatty acid, alpha linolenic acid (ALA on nitric oxide release as well as induction of lipid peroxidation in breast (MCF-7 and MDA-MB-231 and cervical (SiHa and HeLa cancer cell lines. ALA-treated cells showed a dose-dependent decrease in cell viability in both breast and cervical cancer cell lines without affecting the viability of non-cancerous transformed HEK 293 cells. Both types of cancer cells treated with ALA demonstrated a significant reduction in nitric oxide (NO release with a simultaneous increase in lipid peroxidation (LPO. This was followed by a decrease in the mitochondrial membrane potential as well as activation of caspase 3 leading to apoptosis. Thus, ALA regulated the growth of cancer cell lines through induction of lipid peroxidation and modulation of nitric oxide release resulting in apoptosis.

  18. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    International Nuclear Information System (INIS)

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  19. Targeting of a chimeric human histone fusion mRNA to membrane-bound polysomes in HeLa cells

    International Nuclear Information System (INIS)

    The subcellular location of histone mRNA-containing polysomes may play a key role in the posttranscriptional events that mediate histone mRNA turnover following inhibition of DNA synthesis. Previously, it has been shown that histone mRNA is found primarily on free polysomes that are associated with the cytoskeleton. The authors report here the construction of an Escherichia coli pBR322 ?-lactamase signal peptide-human H3 histone fusion gene. The fusion transcript is targeted to membrane-bound polysomes and remains stable following interruption of DNA replication. Relocating mRNA within the cell may provide a procedure for studying the posttranscriptional regulation of gene expression

  20. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  1. Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin.

    Science.gov (United States)

    Dwivedi, Vinay; Shrivastava, Richa; Hussain, Showket; Ganguly, Chaiti; Bharadwaj, Mausumi

    2011-01-01

    Spices, active ingredients of Indian cooking, may play important roles in prevention and treatment of various cancers. The objective of the present study is to compare the in vitro anticancer activities of three different extracts of Clove (Syzygium aromaticum L), a commonly used spice and food flavouring agent, against different kinds of cancer cell lines of various anatomical derivations. Water, ethanol and oil extracts were screened for anti proliferative activity against HeLa (cervical cancer), MCF-7 (ER + ve) and MDA-MB-231 (ER - ve) breast cancer, DU-145 prostate cancer and TE-13 esophageal cancer cell lines, along with normal human peripheral blood lymphocytes. Inhibition of cell proliferation was assessed using MTT assay as a vital stain. In the examined five cancer cell lines, the extracts showed different patterns of cell growth inhibition activity, with the oil extract having maximal cytotoxic activity. Morphological analysis and DAPI staining showed cytotoxicity to be a result of cell disruption with subsequent membrane rupture. Maximum cell death and apoptotic cell demise occurred in TE-13 cells within 24 hours by clove oil at 300 ?l/ml with 80% cell death whereas DU-145 cells showed minimal cell death. At the same time, no significant cytotoxicity was found in human PBMC's at the same dose. PMID:22292639

  2. Alterations of 86Rb+ fluxes in poliovirus-infected HeLa cells and their dependence on virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Geck, P.; Zibirre, R.; Kuehne, J.; Koch, G.

    1984-07-30

    Components of the 86Rb+ influx were investigated subsequent to poliovirus infection in the presence and absence of guanidine-HCl, both under normal steady-state conditions and after Na+ preloading of the cells. Measurements of the ouabain-sensitive 86Rb+ uptake indicated a biphasic change in the activity of the Na+, K+ pump in the course of virus infection: a transient increase in the second hour postinfection, that was detectable only after Na+ preloading and inhibition after 3 hr. The enhanced activity of the Na+, K+ pump was not affected, while the decrease later was fully prevented by the antiviral agent guanidine-HCl. The piretanide-sensitive 86Rb+ uptake due to the Na+, K+, 2 Cl- cotransport system also became strongly inhibited beginning in the second hour postinfection. The inhibition of this transport system was partially antagonized by guanidine-HCl. The remaining 86Rb+ influx in the presence of ouabain and piretanide increased in the third hour postinfection. The latter change in 86Rb+ influx, indicating an increased permeability to monovalent cations was completely abolished by guanidine-HCl.

  3. Apoptotic and autophagic cell death induced by glucolaxogenin in cervical cancer cells.

    Science.gov (United States)

    Sánchez-Sánchez, L; Escobar, M L; Sandoval-Ramírez, J; López-Muñoz, H; Fernández-Herrera, M A; Hernández-Vázquez, J M V; Hilario-Martínez, C; Zenteno, E

    2015-12-01

    The antiproliferative and cytotoxic activity of glucolaxogenin and its ability to induce apoptosis and autophagy in cervical cancer cells are reported. We ascertained that glucolaxogenin exerts an inhibitory effect on the proliferation of HeLa, CaSki and ViBo cells in a dose-dependent manner. Analysis of DNA distribution in the cell-cycle phase of tumor cells treated with glucolaxogenin suggests that the anti-proliferative activity of this steroid is not always dependent on the cell cycle. Cytotoxic activity was evaluated by detection of the lactate dehydrogenase enzyme in supernatants from tumor cell cultures treated with the steroid. Glucolaxogenin exhibited null cytotoxic activity. With respect to the apoptotic activity, the generation of apoptotic bodies, the presence of active caspase-3 and annexin-V, as well as the DNA fragmentation observed in all tumor lines after treatment with glucolaxogenin suggests that this compound does indeed induce cell death by apoptosis. Also, a significantly increased presence of the LC3-II, LC3 and Lamp-1 proteins was evidenced with the ultrastructural existence of autophagic vacuoles in cells treated with this steroidal glycoside, indicating that glucolaxogenin also induces autophagic cell death. It is important to note that this compound showed no cytotoxic effect and did not affect the proliferative capacity of mononuclear cells obtained from normal human peripheral blood activated by phytohaemagglutinin. Thus, glucolaxogenin is a compound with anti-proliferative properties that induces programmed cell death in cancer cell lines, though it is selective with respect to normal lymphocytic cells. These findings indicate that this glycoside could have a selective action on tumor cells and, therefore, be worthy of consideration as a therapeutic candidate with anti-tumor potential. PMID:26437916

  4. Transcription of a cloned rainbow trout protamine gene is accurately initiated following transfection into HeLa cells but the majority of the transcripts fail to polyadenylate at the correct site.

    OpenAIRE

    Dillon, N O; Spencer, V M; Butterworth, P H

    1985-01-01

    The expression of a cloned trout protamine gene transfected into mammalian cells in culture has been studied. This small intronless gene has a consensus TATA-box, a classical AATAAA sequence and the cap and polyadenylation sites are separated by only 228 base pairs (Gregory et al., ref 10). When 1kb of cloned trout genomic DNA containing this sequence was introduced into HeLa cells, S1-mapping showed that transcripts of the protamine gene were accurately initiated at the in vivo cap site but ...

  5. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Directory of Open Access Journals (Sweden)

    Jimenez-Perez Miriam I

    2012-02-01

    Full Text Available Abstract Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT. Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.

  6. Artichoke compound cynarin differentially affects the survival, growth and stress response of normal, immortalized and cancerous human cells

    DEFF Research Database (Denmark)

    Gezer, Ceren; Yücecan, Sevinç

    2015-01-01

    Cynarin (CYN) is the main derivative of caffeoylquinic acid, found in leaves and heads of artichoke. Potential health-beneficial effects of CYN include as being choloretic-cholesterol lowering, hepatoprotective, anti-atherosclerotic, and antioxidative. We have tested the effects of various doses of CYN on the proliferative potential, survival, morphology, and stress response (SR) markers haemoxygenase-1 (HO-1) and heat shock protein-70 (HSP70) in normal human skin fibroblasts (FSF-1), telomerase-immortalized mesenchymal stem cells (hTERT-MSC) and cervical cancer cells, HeLa. Effects of CYN on cell proliferation and morphology were dose- and cell type-dependent, with 500 µM CYN as the upper limit for all cell types. While the growth and proliferation of cells decreased after exposure to 75 µM CYN for 3 days, overall survival of FSF-1 and hTERT-MSC was higher than that of HeLa cells. Furthermore, CYN induced oxidative SR marker HO-1 in both fibroblasts and stem cells in a biphasic manner, but a slight inductionof HSP70 was observed only in the stem cells. Thus, CYN may be useful as a protection against the growth and survival of potentially cancerous cells and may promote longevity of normal cells by induction of SR proteins. Further advanced researches related with CYN and artichoke are recommended.

  7. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  8. MAML1 regulates cell viability via the NF-?B pathway in cervical cancer cell lines

    International Nuclear Information System (INIS)

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and ?-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-?B pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-I?B?, decreased total I?B? and nuclear localization of NF-?B p65, which suggests that the NF-?B pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.

  9. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  10. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium.

    Science.gov (United States)

    Jiang, Lifang; Shen, Chong; Long, Xuwei; Zhang, Guoliang; Meng, Qin

    2014-12-01

    Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs. PMID:25231070

  11. Human cancer cells exhibit in vitro individual receptiveness towards different mistletoe extracts.

    Science.gov (United States)

    Knöpfl-Sidler, F; Viviani, A; Rist, L; Hensel, A

    2005-06-01

    In vitro cytotoxic effects of three aqueous mistletoe extracts on cell physiology against different human tumor cell lines and primary cancer cells were investigated in order to compare the receptiveness of different cancer cells against different mistletoe products. Therefore cell proliferation (BrdU-incorporation assay), mitochondrial activity (MTT-testing) and necrotic cell toxicity (LDH assay) were assayed over serial dilutions of the test products. Data obtained with HELA-S3, MOLT-4, MFM-223, COR-L51, KPL-1 and VM-CUB1 tumor cell lines and Iscador M (20 mg/ml), Iscador Q (20 mg/ml) and Abnobaviscum Fraxini -2 (20 mg/ml) indicated significant growth-inhibition of all cell lines, but also different cell susceptibilities against the different extracts. These variations were not only monitored on established cell lines but also on primary mamma carcinoma cells from surgical resectates. Concerning cell proliferation and mitochondrial activity Abnobaviscum Fraxini exhibits stronger inhibitory effects compared to products from the Iscador series. In case the evaluation was standardized on the active contents of VAA-I within the different products, the Iscador extracts possess higher cytotoxic activity. Pure viscotoxins and mistletoe lectins exhibited less effects than the extracts. The simultaneous presence of pure mistletoe lectins and mistletoe polysaccharides diminished the VAA-mediated cytotoxic effects. The presence of fetal calf serum (FCS) in cultivation media during in vitro testing diminished the cytotoxic effects of mistletoe extracts. It was shown that in vivo application of mistletoe preparations led to the formation of antibodies against unknown compounds of the extracts, diminishing the cytotoxic effect. PMID:15997835

  12. RNA interference of argininosuccinate synthetase restores sensitivity to recombinant arginine deiminase (rADI in resistant cancer cells

    Directory of Open Access Journals (Sweden)

    Yo Hao-Hsin

    2011-04-01

    Full Text Available Abstract Background Sensitivity of cancer cells to recombinant arginine deiminase (rADI depends on expression of argininosuccinate synthetase (AS, a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. Methods We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7 as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. Results AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells and one with induced AS expression (HeLa cells, AS small interference RNA (siRNA inhibited 37-46% of the expression of AS in MCF-7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down-regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. Conclusions Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down-regulation (siRNA did not affect cell viability in MCF-7 cells, permanent down-regulation (shRNA overcame the problem of rADI-resistance due to the more efficiency in AS silencing.

  13. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro

    Directory of Open Access Journals (Sweden)

    Wimmer Eckard

    2005-11-01

    Full Text Available Abstract Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.

  14. Tumour heterogeneity and cancer cell plasticity.

    Science.gov (United States)

    Meacham, Corbin E; Morrison, Sean J

    2013-09-19

    Phenotypic and functional heterogeneity arise among cancer cells within the same tumour as a consequence of genetic change, environmental differences and reversible changes in cell properties. Some cancers also contain a hierarchy in which tumorigenic cancer stem cells differentiate into non-tumorigenic progeny. However, it remains unclear what fraction of cancers follow the stem-cell model and what clinical behaviours the model explains. Studies using lineage tracing and deep sequencing could have implications for the cancer stem-cell model and may help to determine the extent to which it accounts for therapy resistance and disease progression. PMID:24048065

  15. Purification and characterization of a simple ribonucleoprotein particle containing small nucleoplasmic RNAs (snRNP) as a subset of RNP containing heterogenous nuclear RNA (hnRNP) from HeLa cells.

    OpenAIRE

    Brunel, C.; Widada, J S; Lelay, M N; Jeanteur, P; Liautard, J P

    1981-01-01

    A ribonucleoprotein complex whose RNA complement consists exclusively of small nuclear RNA species (snRNA) has been purified from particles containing heterogenous nuclear RNA (hnRNP) from HeLa cells. This was accomplished by taking advantage of their ability to band at a density of about 1.43 g/cm3 in plain cesium chloride as well as in cesium chloride gradients containing 0.5% sarkosyl without prior aldehyde fixation. After these two steps of equilibrium density centrifugation, these snRNPs...

  16. Novel lysosome targeted molecular transporter built on a guanidinium-poly-(propylene imine) hybrid dendron for efficient delivery of doxorubicin into cancer cells.

    Science.gov (United States)

    Nair, Jyothi B; Mohapatra, Saswat; Ghosh, Surajit; Maiti, Kaustabh K

    2015-02-11

    An efficient synthetic approach has been adopted to construct a new dendron-based octa-guanidine appended molecular transporter with a lysosomal targeted peptide-doxorubicin conjugate. The transporter alone (G8-PPI-FL) is found to be non-toxic, showed higher cellular uptake compared to Arg-8-mer and exhibited excellent selectivity towards lysosomes in cathepsin B expressing HeLa cells, while the Dox-conjugate showed significant cytotoxicity to cancer cells without affecting the non-cancerous cells. PMID:25564099

  17. Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells

    International Nuclear Information System (INIS)

    Background and purpose: The success rate of any therapeutic approach depends on the therapeutic window, which can be increased by either raising the resistance of the normal tissue without protecting the tumor cells or by sensitizing the tumor cells but not the normal cells. Two promising candidate genes for normal tissue protection against radiation-induced damage may be the copper-zinc (CuZnSOD) and manganese superoxide-dismutase genes (MnSOD). The recombinant adeno-associated virus 2 (rAAV-2) offers attractive advantages over other vector systems: low immunogenicity, ability to infect dividing and non-dividing tissues and a low chance of insertional mutagenesis, due to extra-chromosomal localization. We report the production of novel rAAV-2-SOD vectors and the investigation of their modulating effects on HeLa-RC cells after irradiation. Material and methods: rAAV-2 vectors were cloned containing the human CuZnSOD or MnSOD as transgene and vector stocks were produced. In the initial experiments human cervix carcinoma (HeLa-RC) cells were chosen for their susceptibility to rAAV-2. On day 0, cells were seeded and transduced with the rAAV-2-SOD vectors. On day 3, cells were harvested, irradiated (0.5-8 Gy) and reseeded in different assays (FACS, SOD, MTT and colony assays). Results: Although >70% of all cells expressed SOD and significant amounts of functional SOD protein were detected, no radioprotective effect of SOD was observed after transduction of HeLa-RC cells. Conclusions: Novel rAAV-2-SOD vectors that could be produced at high titer, were able to efficiently infect cells and express the SOD genes. The absence of a radioprotective effect in HeLa-RC cancer cells indicates an additional safety feature and suggests that rAAV-mediated MnSOD overexpression might contribute to increasing the therapeutic index when applied for normal tissue protection

  18. Non-human prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Shantibhusan Senapati

    2014-05-01

    Full Text Available Cell lines have always been a valuable tool to address a variety of questions related to prostate cancer. Due to the unavailability of many human prostate cancer cell line models, investigators have shown significant interest in developing or establishing different new nonhuman prostate cancer cell lines. Indeed, many animal cell line models have successfully recapitulated key events in human prostate cancer development. For instance, Dunning rat prostate cancer cell lines have created a system to represent the full spectrum of prostate cancer progression while canine cell lines like Leo and Ace-1 recapitulate bone metastasis model. The establishment of in vitro models of animal cell lines recapitulating human disease will aid in molecular and functional characterization of human prostate cancer.

  19. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Zhou

    2010-02-01

    Full Text Available Abstract Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.

  20. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    International Nuclear Information System (INIS)

    The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these 'radioresistance' genes will lead to new therapeutic targets for cervical cancer

  1. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  2. Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells

    Directory of Open Access Journals (Sweden)

    Dejligbjerg Marielle

    2008-09-01

    Full Text Available Abstract Background Histone acetylation is an epigenetic modification involved in the regulation of gene expression, balanced by histone acetyl transferases and histone deacetylase (HDAC enzymes. HDAC inhibitors (HDACi induce growth arrest and cell death in transformed cells, and are currently in many clinical cancer trials. The transcriptional response to HDACi is complex, as is the response to HDAC isoform knockdown (KD. Here, we describe for the first time in a human cancer cell line, a transcriptional comparison of treatment by two structurally unrelated HDACi; belinostat and valproic acid with the KD of HDAC1, 2 and 3 isoforms. Results HDAC KD showed anti-proliferative effects, although to a lesser extent than HDACi treatment. Moreover, we found a 2-fold increased resistance of HDAC1 knockdown cells to belinostat, suggesting this isoenzyme as a selective target. While both HDACi treatment and individual class I HDAC KD produce significant transcriptional effects, three-times higher for HDACi, the gene-expression profiles of class I HDAC KD compared with that obtained by HDACi treatment exhibited less than 4% of altered genes in common between the two modes of inhibition. Further, cell-specific effects of HDAC KD are evident by comparison with a recent study in a different cell line. Conclusion The increased resistance to belinostat in response to HDAC1 depletion indicates the possibility of using this isoform as a predictive biomarker of response to HDACi treatment. Further, the transcriptional response to chemical inhibition of HDACs is very different from that of KD of individual class I HDAC isoforms. These data suggest that the anti-tumor effect of HDACi is indeed linked to class I inhibition, but may be more complex than simply targeting individual HDAC enzymes.

  3. Tumor heterogeneity and cancer cell plasticity

    Science.gov (United States)

    Meacham, Corbin E.; Morrison, Sean J.

    2015-01-01

    Preface Phenotypic and functional heterogeneity arise among cancer cells within the same tumor as a consequence of genetic change, environmental differences, and reversible changes in cellular properties. Some cancers also contain a hierarchy in which tumorigenic cancer stem cells differentiate into non-tumorigenic progeny. However, it remains unclear what fraction of cancers follow the stem cell model and what clinical behaviors the model explains. In this review we will evaluate the implications of recent lineage tracing and deep-sequencing studies for the cancer stem cell model and the extent to which it accounts for therapy resistance and disease progression. PMID:24048065

  4. Diagnostic Implementation of Fast and Selective Integrin-Mediated Adhesion of Cancer Cells on Functionalized Zeolite L Monolayers.

    Science.gov (United States)

    Greco, Arianna; Maggini, Laura; De Cola, Luisa; De Marco, Rossella; Gentilucci, Luca

    2015-09-16

    The rapid and exact identification and quantification of specific biomarkers is a key technology for always achieving more efficient diagnostic methodologies. We present the first application of a nanostructured device constituted of patterned self-assembled monolayers of disk-shaped zeolite L coated with the cyclic integrin ligand c[RGDfK] via isocyanate linker, to the rapid detection of cancer cells. With its high specificity toward HeLa and Glioma cells and fast adhesion ability, this biocompatible monolayer is a promising platform for implementation in diagnostics and personalized therapy formulation devices. PMID:26260887

  5. Nanophotothermolysis of multiple scattered cancer cells with carbon nanotubes guided by time-resolved infrared thermal imaging

    Science.gov (United States)

    Biris, Alexandru S.; Boldor, Dorin; Palmer, Jason; Monroe, William T.; Mahmood, Meena; Dervishi, Enkeleda; Xu, Yang; Li, Zhongrui; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2009-03-01

    Nanophotothermolysis with long laser pulses for treatment of scattered cancer cells and their clusters is introduced with the main focus on real-time monitoring of temperature dynamics inside and around individual cancer cells labeled with carbon nanotubes. This technique utilizes advanced time- and spatially-resolved thermal radiometry imaging for the visualization of laser-induced temperature distribution in multiple-point absorbing targets. The capability of this approach was demonstrated for monitoring of thermal effects under long laser exposure (from millisecond to seconds, wavelength 1064 nm, maximum power 1 W) of cervical cancer HeLa cells labeled with carbon nanotubes in vitro. The applications are discussed with a focus on the nanophotothermolysis of small tumors, tumor margins, or micrometastases under the guidance of near-IR and microwave radiometry.

  6. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    International Nuclear Information System (INIS)

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide ± celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: ? Celecoxib may enhance effects of anticancer drugs. ? Its combination with four drugs was tested in five cancer cell lines. ? It antagonized the effects of the four drugs in the breast cancer cell line MCF7. ? Doxorubicin's cytotoxic effects were antagonized by celecoxib in four cell lines. ? Cell cycle, apoptosis and DNA damage explain the different interactive effects.

  7. Apoptotic induction activity of Dactyloctenium aegyptium (L. P.B. and Eleusine indica (L. Gaerth. extracts on human lung and cervical cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pintusorn Hansakul

    2009-08-01

    Full Text Available Dactyloctenium aegyptium (L. P.B. (Yaa paak khwaai and Eleusine indica (L. Gaerth. (Yaa teen-ka have long been used in traditional Thai medicine because of their diuretic, anti-inflamatory, and antipyretic effects. The present study examined the antiproliferative and cytotoxic effects of the hexane and butanolic extracts of these two grass species. All the grass extracts exhibited selective growth inhibition effect on human lung cancer (A549 and cervical cancer (HeLa cells relative to normal human lung MRC-5 fibroblasts with IC50 values in a range of 202 to 845 mg/ml. Apparently, HeLa cellswere more sensitive to the extracts than A549 cells. Moreover, all the extracts induced lethality in both cancer cell lines atconcentrations close to 1,000 mg/ml, indicating their selective cytotoxicity effects. ELISA assay showed that only the hexaneextract of D. aegyptium (L. P.B. and E. indica (L. Gaerth. significantly increased the apoptotic level in extract-treatedA549 cells. However, DNA ladder assay detected classic DNA ladder patterns, a characteristic feature of apoptosis, in both cancer cell lines treated with all the extracts in a dose- and time-dependent manner. Taken together, these results indicatethat the cytotoxic activity of the grass extracts against lung and cervical cancer cells is mediated through the induction ofapoptosis.

  8. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues (colon, breast, liver, pancreas, and prostate). It is becomingevident that successful cancer therapies have to eradicate CSC. Thus, strategies aimed at efficient targeting of CSC are becoming vital for monitoring the progress of cancer therapy and evaluating new therapeutic approaches. Therefore, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities.

  9. Intrinsic cell factors that influence tumourigenicity in cancer stem cells - towards hallmarks of cancer stem cells

    OpenAIRE

    Scott, Jacob G; Chinnaiyan, Prakash; Anderson, Alexander R. A.; Hjelmeland, Anita; Basanta, David

    2013-01-01

    Since the discovery of a cancer initiating side population in solid tumours, studies focussing on the role of so-called cancer stem cells in cancer initiation and progression have abounded. The biological interrogation of these cells has yielded volumes of information about their behaviour, but there has, as of yet, not been many actionable generalised theoretical conclusions. To address this point, we have created a hybrid, discrete/continuous computational cellular automat...

  10. Artificial microRNAs against the viral E6 protein provoke apoptosis in HPV positive cancer cells.

    Science.gov (United States)

    Bonetta, Anaëlle Charlotte; Mailly, Laurent; Robinet, Eric; Travé, Gilles; Masson, Murielle; Deryckere, François

    2015-10-01

    High-risk human papillomavirus (HPV) types 16 and 18 are associated with more than 70% of cervical cancer cases. The oncoprotein E6 is multifunctional and has numerous cellular partners. The best-known activity of E6 is the polyubiquination of the pro-apoptotic tumor suppressor p53, targeting it for degradation by the 26S proteasome. Loss of p53 triggers genomic instability and favors cancer development. Here, we generated recombinant adenovirus (Ad) vectors expressing artificial microRNAs directed against HPV16 E6 (Ad16_1) or HPV18 E6 (Ad18_2). E6-knockdown was observed in HeLa after treatment with Ad18_2 and in SiHa with Ad16_1. Western-blot experiments found an increase in p53 levels after treatment in both cell lines. Cell death was observed in both cell lines after knockdown of E6. Further analysis such as cleavage of caspases (3 and 7) as well as of PARP1 indicated that treated HeLa and SiHa cells underwent apoptosis. The growth of HeLa-derived tumors developed in nude mice was significantly reduced after intra-tumoral injection of Ad18_2. Therefore, vectorisation of artificial miRNA against E6 oncoprotein by means of recombinant adenoviruses might represent a valuable therapeutic approach for treating HPV-positive cancers. PMID:26241675

  11. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line.

    Science.gov (United States)

    Kim, Yong-Wan; Chaturvedi, Pankaj Kumar; Chun, Sung Nam; Lee, Yang Gu; Ahn, Woong Shick

    2015-04-01

    Bee venom (BV) therapy is a type of alternative medical treatment used to treat various diseases in oriental medicine. The mechanisms underlying the effects of BV remain poorly understood. In the present study, we evaluated the antiviral effect of BV on cervical carcinoma cell lines (CaSki, HeLa, C33A and TC-1). BV treatments resulted in a more significant suppression of cell growth in HPV 16-infected cells (CaSki) and a lesser suppression in HPV 18-infected cells (HeLa). However, less suppression was observed in HPV-negative C33A cells. In 10 µg/ml BV-treated CaSki cells, the mRNA expression and protein levels of HPV16 E6 and E7 were significantly decreased by BV, while HPV18 E6 and E7 mRNA expression levels were not significantly altered by 10 µg/ml BV-treated HeLa cells. The antitumor effects of BV were in accordance with in vitro data, in restricting tumor growth in vivo and were much more effective on the suppression of tumor growth. Furthermore, the mRNA and protein expression levels of HPV16 E6 and E7 were decreased by BV in TC-1 tumors. These findings demonstrated the antiviral effects of BV in HPV-infected cervical cancer cells and the anticancer effects of BV in HPV16 E6/E7-expressed TC-1 tumors. Collectively, BV plays a differential role in suppressing HPV16-infected cells (CaSki cells) and HPV18-infected cells (HeLa cells) by the downregulation of E6/E7 protein of HPV16/18. PMID:25633640

  12. Targeted therapies in small cell lung cancer

    OpenAIRE

    LU, HONG-YANG; Wang, Xiao-Jia; Mao, Wei-min

    2012-01-01

    Lung cancer is the leading cause of cancer-related mortality. Small cell lung cancer (SCLC) accounted for 12.95% of all lung cancer histological types in 2002. Despite trends toward modest improvement in survival, the outcome remains extremely poor. Chemotherapy is the cornerstone of treatment in SCLC. More than two-thirds of patients who succumb to lung cancer in the United States are over 65 years old. Elderly patients tolerate chemotherapy poorly and need novel therapeutic agents. Targeted...

  13. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells

    International Nuclear Information System (INIS)

    Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3–3 nmol L?1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P < 0.05). ?H2AX assay results revealed higher occurrences of DNA-DSBs with anti-TROP2 conjugated HGNs plus laser radiation as compared to treatment with laser alone. Flow cytometry analysis showed that the amount of cell apoptosis was increased after laser irradiation with anti-TROP2 conjugated HGNs (P < 0.05). Anti-TROP2 conjugated HGNs resulted in down-regulation of Bcl-2 expression and up-regulation of Bax expression. Our study results confirmed that anti-TROP2 conjugated HGNs can selectively destroy cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment. (paper)

  14. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticle

  15. A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells.

    Science.gov (United States)

    Silva, Victoria C; Plooster, Melissa; Leung, Jessica C; Cassimeris, Lynne

    2015-01-01

    Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells. PMID:25602147

  16. Inhibition of c-Abl Kinase Activity Renders Cancer Cells Highly Sensitive to Mitoxantrone

    Science.gov (United States)

    Tuomela, Johanna; Sandholm, Jouko; Aittokallio, Kaappo; Siljamäki, Elina; Kallio, Marko; Kähäri, Veli-Matti; Hietanen, Sakari

    2014-01-01

    Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl–dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy. PMID:25148385

  17. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  18. Breast cancer, a stem cell disease

    OpenAIRE

    Pérez-Losada, J.; González-Sarmiento, Rogelio

    2008-01-01

    Breast cancer is a first magnitude problem of public health worldwide. There is increasing evidence that this cancer is originated in and maintained by a small population of undifferentiated cells with self-renewal properties. This small population generates a more differentiated pool of cells which represents the main mass of the tumor, resembling the hierarchical tissue organization of the normal breast. These cancer stem cells seem to share a similar phenotype with their normal counterpart...

  19. Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells

    International Nuclear Information System (INIS)

    We previously reported that human squamous cell carcinoma (SCC) cell lines refractory to cis-diaminedichloro-platinum II (cisplatin [CDDP]) had significant upregulation of the phosphodiesterase 3B gene (PDE3B), suggesting that inhibiting PDE3B suppresses CDDP resistance. shRNA-mediated PDE3B depletion in CDDP-resistant cells derived from SCC cells and Hela cells and induced CDDP sensitivity and inhibited tumor growth with elevated cyclic GMP induction resulting in upregulation of the multidrug-resistant molecule, but this did not occur in the 5-fluorouracil-resistant hepatocellular carcinoma cell lines. Furthermore, the antitumor growth effect of the combination of a PDE3B inhibitor (cilostazol) and CDDP in vivo was also greater than with either cilostazol or CDDP alone, with a significant increase in the number of apoptotic and cell growth-suppressive cancer cells in CDDP-resistance cell lines. Our results provided novel information on which to base further mechanistic studies of CDDP sensitization by inhibiting PDE3B in human cancer cells and for developing strategies to improve outcomes with concurrent chemotherapy

  20. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-r...

  1. Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells

    Directory of Open Access Journals (Sweden)

    He Fan

    2010-12-01

    Full Text Available Abstract Background Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of combination of saikosaponins with chemotherapeutic drugs has never been addressed. Thus, we investigated whether these two saikosaponins have chemosensitization effect on cisplatin-induced cancer cell cytotoxicity. Methods Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death. Results Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS accumulation. The dead cells showed typical apoptotic morphologies. Both early apoptotic and late apoptotic cells detected by flow cytometry were increased in saikosaponins and cisplatin cotreated cells, accompanied by activation of the caspase pathway. The pan-caspase inhibitor z-VAD and ROS scanvengers butylated hydroxyanisole (BHA and N-acetyl-L-cysteine (NAC dramatically suppressed the potentiated cytotoxicity achieved by combination of saikosaponin-a or -d and cisplatin. Conclusions These results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy.

  2. Targeting cancer stem cells in gastric cancer

    OpenAIRE

    Ishimoto T; Baba H

    2014-01-01

    Takatsugu Ishimoto, Hideo Baba Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan Abstract: Gastric cancer (GC) remains a leading cause of cancer-related deaths worldwide. Despite the recent advance of anticancer drugs and the development of molecular-targeted drugs, the prognosis of patients with advanced GC remains poor, especially in Western countries, and is mainly implicated in tumor relapse and metastasis. Cancer stem cel...

  3. Role of stem cells in cancer therapy and cancer stem cells: a review

    Directory of Open Access Journals (Sweden)

    Sales Kevin

    2007-06-01

    Full Text Available Abstract For over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and possible potential future treatment modalities for the cancer. Aim of this review is primarily focus on the recent developments in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new cancer treatment options in future.

  4. Bub1 is required for maintaining cancer stem cells in breast cancer cell lines.

    Science.gov (United States)

    Han, Jeong Yoon; Han, Yu Kyeong; Park, Ga-Young; Kim, Sung Dae; Kim, Joong Sun; Jo, Wol Soon; Geun Lee, Chang

    2015-01-01

    Breast cancer is a leading cause of death among women worldwide due to therapeutic resistance and cancer recurrence. Cancer stem cells are believed to be responsible for resistance and recurrence. Many efforts to overcome resistance and recurrence by regulating cancer stem cells are ongoing. Bub1 (Budding uninhibited by benzimidazoles 1) is a mitotic checkpoint serine/threonine kinase that plays an important role in chromosome segregation. Bub1 expression is correlated with a poor clinical prognosis in patients with breast cancer. We identified that depleting Bub1 using shRNAs reduces cancer stem cell potential of the MDA-MB-231 breast cancer cell line, resulting in inhibited formation of xenografts in immunocompromised mice. These results suggest that Bub1 may be associated with cancer stem cell potential and could be a target for developing anti-breast cancer stem cell therapies. PMID:26522589

  5. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  6. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  7. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E; Berezin, Vladimir; Bock, Elisabeth; Walmod, Peter S

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3). Results: VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhib...

  8. High Resolution Quantitative Proteomics of HeLa Cells Protein Species Using Stable Isotope Labeling with Amino Acids in Cell Culture(SILAC), Two-Dimensional Gel Electrophoresis(2DE) and Nano-Liquid Chromatograpohy Coupled to an LTQ-OrbitrapMass Spectrometer*

    OpenAIRE

    Thiede, Bernd; Koehler, Christian J.; Strozynski, Margarita; Treumann, Achim; Stein, Robert; Zimny-Arndt, Ursula; Schmid, Monika; Jungblut, Peter R.

    2012-01-01

    The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein separation. Therefore, we combined stable isotope labeling with amino acids in cell culture of controls and apoptotic HeLa cells with 2-DE and the ...

  9. Anti-proliferative and apoptotic properties of a peptide from the seeds of Polyalthia longifolia against human cancer cell lines.

    Science.gov (United States)

    Rupachandra, S; Sarada, D V L

    2014-04-01

    The peptides produced enzymatically from various plants have shown various biological activities including cytotoxicity. Different types of cytotoxic peptides have been reported from the seeds and leaves of Violaceae, Rubiaceae and Annonaceae families. In this study, we report purification and characterization of peptide(s) showing cytotoxic activity against A549 and HeLa cancer cell lines from the seeds of Polyalthia longifolia (Annonaceae). Seed proteins of P. longifolia were extracted and hydrolyzed using trypsin. The enzyme hydrolysate was applied on to a Sephadex G10 column and eluted using Tris-HC1 buffer (pH 7.5). Two fractions F1 and F2 were obtained, of which F2 showed significant cytotoxic activity against lung (A549) cancer cells at 10 microg/mL and cervical (HeLa) cancer cell lines at 30 microg/mL, as revealed by the MTT assay. DNA fragmentation was observed in the tested cancer cell lines treated with F2 peptide at a concentration of 10microg/mL and 30 pg/mL, respectively. Further, increased number of apoptotic cells was observed in sub-G0 phase of cell cycle of A549 and HeLa cell lines, when treated with 10 microg/mL and 30 microg/mL of F2, as revealed by the flow cytometric analyses. FTIR spectrum of F2 peptide detected the presence of stretching vibrations of carboxylic acid OH residue with peak at 3420 cm-and carbonyl (C=O) groups at 1636 cm-1, respectively. RP-HPLC analysis of F2 peptide showed a single peak at a retention time of 12.8 min detected at 280 nm, depicting the purity of F2 to be more than 90%. LC-ESI-MS/MS analysis showed the average theoretical mass of F2 to be 679.8 using m/z ratios. In conclusion, the findings suggest that F2 peptide is an effective inducer of apoptosis of cancer cells, thus offers an important strategy in the development of cancer therapeutics. PMID:24980016

  10. Adipocyte activation of cancer stem cell signaling in breast cancer

    Science.gov (United States)

    Wolfson, Benjamin; Eades, Gabriel; Zhou, Qun

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment, have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6 (IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activator of transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways. PMID:26009703

  11. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Zheng, Fangxia [Department of Radiotherapy, Liaocheng People’s Hospital, Liaocheng 252000 (China); Yu, Gang [Department for Disease Control, Tumor Hospital of Liaocheng, Liaocheng 252000 (China); Yin, Yanhua, E-mail: yinyanhuablk@163.com [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Lu, Qingyang [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)

    2013-11-01

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3?-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3?-untranslated region (3?-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the functional role of miR-196a in cervical carcinogenesis and suggested a potential use of miR-196a for clinical diagnosis and as a therapeutic target.

  12. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    International Nuclear Information System (INIS)

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3?-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3?-untranslated region (3?-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the functional role of miR-196a in cervical carcinogenesis and suggested a potential use of miR-196a for clinical diagnosis and as a therapeutic target

  13. TERRA Expression Levels Do Not Correlate With Telomere Length and Radiation Sensitivity in Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    ElenaGiulotto

    2013-05-01

    Full Text Available Mammalian telomeres are transcribed into long non-coding telomeric RNA molecules (TERRA that seem to play a role in the maintenance of telomere stability. In human cells, CpG island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma, BRC-230 (breast cancer, AKG and GK2 (gastric cancers and GM847 (SV40 immortalized skin fibroblasts. We observed great clonal heterogeneity both in TRF (Terminal Restriction Fragment length and in TERRA levels. However, these two parameters did not correlate with each other. Moreover, cell survival to ?-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.

  14. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice.

    Science.gov (United States)

    Kanno, Syu-Ichi; Tomizawa, Ayako; Hiura, Takako; Osanai, Yuu; Shouji, Ai; Ujibe, Mayuko; Ohtake, Takaharu; Kimura, Katsuhiko; Ishikawa, Masaaki

    2005-03-01

    We have investigated the effect of naringenin (NGEN) on tumor growth in various human cancer cell lines and sarcoma S-180-implanted mice. NGEN showed cytotoxicity in cell lines derived from cancer of the breast (MCF-7, MDA-MB-231), stomach (KATOIII, MKN-7), liver (HepG2, Hep3B, Huh7), cervix (Hela, Hela-TG), pancreas (PK-1), and colon (Caco-2) as well as leukemia (HL-60, NALM-6, Jurkat, U937). NGEN-induced cytotoxicity was low in Caco-2 and high in leukemia cells compared to other cell lines. NGEN dose-dependently induced apoptosis, with hypodiploid cells detected in both Caco-2 and HL-60 by flow cytometric analysis. In vivo, NGEN inhibited tumor growth in sarcoma S-180-implanted mice, following intraperitoneal or peroral injection once a day for 5 d. Naringin (NG) also inhibited tumor growth by peroral injection but not intraperitoneal injection. NGEN, one of the most abundant flavonoids in citrus fruits, may have a potentially useful inhibitory effect on tumor growth. PMID:15744083

  15. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F-K; Chen, W-C; Lai, S-F [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123, University Rd, Sec. 3, Douliu, Yunlin 64002, Taiwan (China); Liu, C-J; Wang, C-L; Wang, C-H; Chen, H-H; Hua, T-E; Cheng, Y-Y; Wu, M K; Hwu, Y [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Yang, C-S [Center for Nanomedicine Research, National Helath Research Institute, Miaoli 350, Taiwan (China); Margaritondo, G [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: chenwc@yuntech.edu.tw, E-mail: giorgio.margaritondo@epfl.ch

    2010-01-21

    We investigated iron oxide nanoparticles with two different surface modifications, dextran coating and cross-linked dextran coating, showing that their different internalization affects their capability to enhance radiation damage to cancer cells. The internalization was monitored with an ultrahigh resolution transmission x-ray microscope (TXM), indicating that the differences in the particle surface charge play an essential role and dominate the particle-cell interaction. We found that dextran-coated iron oxide nanoparticles cannot be internalized by HeLa and EMT-6 cells without being functionalized with amino groups (the cross-linked dextran coating) that modify the surface potential from -18 mV to 13.4 mV. The amount of cross-linked dextran-coated iron oxide nanoparticles uptaken by cancer cells reached its maximum, 1.33 x 10{sup 9} per HeLa cell, when the co-culture concentration was 40 {mu}g Fe mL{sup -1} or more. Standard tests indicated that these internalized nanoparticles increased the damaging effects of x-ray irradiation, whereas they are by themselves biocompatible. These results could lead to interesting therapy applications; furthermore, iron oxide also produces high contrast for magnetic resonance imaging (MRI) in the diagnosis and therapy stages.

  16. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  17. HELAS: local helioseismology data website

    International Nuclear Information System (INIS)

    The Local Helioseismology Network Activity is part of the European Helio-and Asteroseismology Network (HELAS). One aspect of the network activity is to collate multipurpose data sets and make them available to the community for local helioseismic analysis. The first stage of the project is underway whereby high quality and useful data sets have been selected and acquired. The HELAS Local Helioseismology Network Activity website at http://www.mps.mpg.de/projects/seismo/NA4/ provides this data ready to download. Furthermore, the data is supplemented with relevant documentation necessary for further analysis, including details about the data reduction process that has already been applied. The data primarily consists of Doppler velocity observations but also includes observations of the line-of-sight magnetic field, vector magnetic field measurements, intensity and travel time maps. The website will be continuously updated with data thereby providing convenient access to comprehensive data sets appropriate for use in local helioseismology.

  18. How Do Cytotoxic Lymphocytes Kill Cancer Cells?

    Science.gov (United States)

    Martínez-Lostao, Luis; Anel, Alberto; Pardo, Julián

    2015-11-15

    In the past few years, cancer immunotherapy has emerged as a safe and effective alternative for treatment of cancers that do not respond to classical treatments, including those types with high aggressiveness. New immune modulators, such as cytokines, blockers of CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1(programmed cell death protein 1)/PD-L1 (programmed death-ligand 1), and interaction or adoptive cell therapy, have been developed and approved to treat solid and hematologic carcinomas. In these scenarios, cytotoxic lymphocytes (CL), mainly cytotoxic T cells (Tc) and natural killer (NK) cells, are ultimately responsible for killing the cancer cells and eradicating the tumor. Extensive studies have been conducted to assess how Tc and NK cells get activated and recognize the cancer cell. In contrast, few studies have focused on the effector molecules used by CLs to kill cancer cells during cancer immunosurveillance and immunotherapy. In this article, the two main pathways involved in CL-mediated tumor cell death, granule exocytosis (perforin and granzymes) and death ligands, are briefly introduced, followed by a critical discussion of the molecules involved in cell death during cancer immunosurveillance and immunotherapy. This discussion also covers unexpected consequences of proinflammatory and survival effects of granzymes and death ligands and recent experimental evidence indicating that perforin and granzymes of CLs can activate nonapoptotic pathways of cell death, overcoming apoptosis defects and chemoresistance. The consequences of apoptosis versus other modalities of cell death for an effective treatment of cancer by modulating the patient immune system are also briefly discussed. Clin Cancer Res; 21(22); 5047-56. ©2015 AACR.See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." PMID:26567364

  19. Myeloid-cell differentiation redefined in cancer

    OpenAIRE

    Wynn, Thomas A.

    2013-01-01

    The differentiation of monocytes is altered in cancer, which results in the unexpected conversion of a large proportion of monocytic myeloid-derived suppressor cells into polymorphonuclear myeloid-derived suppressor cells.

  20. Stemness is Derived from Thyroid Cancer Cells

    OpenAIRE

    RishengMa; SimonBonnefond

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provide...

  1. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  2. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to differentiate, thus making them easier to remove. For all these reasons, we have collected existing literature on head and neck cancer stem cells that correlate the biological characteristics of this subpopulation of cancer cells with the clinical behavior of tumors.Keywords: head and neck cancer, cancer stem cells, tumor markers

  3. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties

    OpenAIRE

    Liu, Jianming; MA, LILIN; XU, JUNFEI; LIU, CHUN; Zhang, JianGuo; Liu , Jie; CHEN, RUIXIN; Zhou, Youlang

    2012-01-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. ...

  4. Sunitinib for advanced renal cell cancer

    OpenAIRE

    Chris Coppin

    2008-01-01

    Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and c...

  5. Repopulation of Ovarian Cancer Cells After Chemotherapy

    OpenAIRE

    Telleria, Carlos M

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  6. Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells.

    Science.gov (United States)

    Choudhury, Diptiman; Das, Amlan; Bhattacharya, Abhijit; Chakrabarti, Gopal

    2010-10-01

    Ginger has a long history of use as traditional medicine for varied human disease. Our present study has shown that the aqueous extract of ginger (GAE) interacts directly with cellular microtubules and disrupts its structure and induces apoptosis of cancer cells as well. The IC(50) values of GAE, as determined from cell viability experiment on human non-small lung epithelium cancer (A549) cells and human cervical epithelial carcinoma (HeLa), were 239.4+7.4 and 253.4+8.9 ?g/ml, respectively. It has been found that the apoptosis of A549 cells by GAE is mediated by up regulation of tumor suppressor gene p53 and alteration of the normal Bax/Bcl-2 ratio followed by down regulation of cellular pro-caspase3. The morphological change of cells upon GAE treatment has also been demonstrated. Both the structural and functional properties of tubulin and microtubule were lost, as confirmed by both ex vivo and invitro experiments. The major component of GAE is poly-phenols (around 2.5%), which consist of ? 80% flavones and flavonols. Poly-phenolic compounds are well known to have anti-mitotic properties, and may be further screened for the development of a potential anti-cancer agent. PMID:20647029

  7. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  8. Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture

    OpenAIRE

    Romero, Nahuel; Dumur, Catherine I; Martinez, Hernán; García, Iris A; Monetta, Pablo; Slavin, Ileana; Sampieri, Luciana; Koritschoner, Nicolas; Mironov, Alexander A.; De Matteis, Maria Antonietta; Alvarez, Cecilia

    2013-01-01

    An increase in Rab1b levels induces changes in Golgi size and in gene expression. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element binding protein consensus binding. The results show a Rab1b increase in secretory cells after stimulation and suggest that this increase is required to elicit a secretory response.

  9. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Science.gov (United States)

    Lee, Hyemi; Park, Heon Joo; Park, Chang-Shin; Oh, Eun-Taex; Choi, Bo-Hwa; Williams, Brent; Lee, Chung K; Song, Chang W

    2014-01-01

    Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high)/CD24(low) cells of MCF-7 cells and, CD44(high)/CD24(high) cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia. PMID:24505341

  10. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe.

    Science.gov (United States)

    Liu, Jintong; Zhang, Lei; Lei, Jianping; Ju, Huangxian

    2015-09-01

    Integration of cancer cell imaging and therapy is critical to enhance the theranostic efficacy and prevent under- or overtreatment. Here, a multifunctional gold nanoprobe is designed for simultaneous miRNA-responsive fluorescence imaging and therapeutic monitoring of cancer. By assembling with folic acid as the targeted moiety and a dye-labeled molecular beacon (MB) as the recognition element and signal switch, the gold nanoprobe is folate receptor-targeted delivered into the cancer cells, and the fluorescence is lighted with the unfolding of MB by intracellular microRNA (miRNA), resulting in an efficient method for imaging and detecting nucleic acid. The average quantity of miRNA-21 is measured to be 1.68 pg in a single HeLa cell. Upon the near-infrared irradiation at 808 nm, the real-time monitoring and assessing of photothermal therapeutic efficacy is achieved from the further enhanced fluorescence of the dye-labeled MB, caused by the high photothermal transformation efficiency of the gold nanocarrier to unwind the remaining folded MB and depart the dye from the nanocarrier. The fluorescence monitoring is also feasible for applications in vivo. This work provides a simple but powerful protocol with great potential in cancer imaging, therapy, and therapeutic monitoring. PMID:26271820

  11. NUCLEOCYTOPLASMIC SHUTTLING OF HEXOKINASE II IN A CANCER CELL

    OpenAIRE

    Neary, Catherine L.; PASTORINO, JOHN G.

    2010-01-01

    In yeast, the hexokinase type II enzyme (HXKII) translocates to the nucleus in the presence of excess glucose, and participates in glucose repression. However, no evidence has suggested a nuclear function for HXKII in mammalian cells. Herein, we present data showing nuclear localization of HXKII in HeLa cells, both by immunocytochemistry and subcellular fractionation. HXKII is extruded from the nucleus, at least in part, by the activity of the exportin 1/CrmA system, as demonstrated by increa...

  12. Effect of a heat shock protein 90-specific inhibitor on the proliferation and apoptosis induced by VEGF-C in cervical cancer cells

    OpenAIRE

    DU, XUE; Li, Yongmei; JING, XU; Zhao, Lina

    2014-01-01

    The aim of the present study was to investigate the effect of heat shock protein 90 (Hsp90)-specific inhibitor geldanamycin (GA) on the proliferation and apoptosis induced by vascular endothelial growth factor-C (VEGF-C) in cervical cancer cells. HeLa cells (1×106/ml) in the logarithmic growth phase were incubated without serum for 24 h. The cells were pretreated with kinase insert domain receptor antibody (KDR)-Ab (20 ?g/ml), phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (3 ?mol/l)...

  13. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined

    OpenAIRE

    Lee, Hyemi; Park, Heon Joo; Park, Chang-Shin; Oh, Eun-Taex; Choi, Bo-Hwa; Williams, Brent; Lee, Chung K.; Song, Chang W.

    2014-01-01

    Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5–10 mM metformin for 48 h caused ...

  14. PTEN, Stem Cells, and Cancer Stem Cells*S?

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  15. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  16. Electrodynamic activity of healthy and cancer cells.

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Ji?í

    Vol. 329. Bristol : IOP, 2011 - (Cifra, M.; Pokorny, J.; Ku?era, O.), 012007 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] R&D Projects: GA ?R(CZ) GAP102/11/0649 Institutional research plan: CEZ:AV0Z20670512 Keywords : Boundary elements * Cancer cells * Electric dipole Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Multidentate Small-Molecule Inhibitors of Vaccinia H1-related (VHR) Phosphatase Decrease Proliferation of Cervix Cancer Cells

    Science.gov (United States)

    Wu, Shuangding; Vossius, Sofie; Rahmouni, Souad; Miletic, Ana V.; Vang, Torkel; Vazquez-Rodriguez, Jesus; Cerignoli, Fabio; Arimura, Yutaka; Williams, Scott; Hayes, Tikva; Moutschen, Michel; Vasile, Stefan; Pellecchia, Maurizio; Mustelin, Tomas; Tautz, Lutz

    2009-01-01

    Loss of VHR phosphatase causes cell cycle arrest in HeLa carcinoma cells, suggesting that VHR inhibition may be a useful approach to halt the growth of cancer cells. We recently reported that VHR is upregulated in several cervix cancer cell lines as well as in carcinomas of the uterine cervix. Here we report the development of multidentate small-molecule inhibitors of VHR that inhibit its enzymatic activity at nanomolar concentrations and exhibit antiproliferative effects on cervix cancer cells. Chemical library screening was used to identify hit compounds, which were further prioritized in profiling and kinetic experiments. SAR analysis was applied in the search for analogs with improved potency and selectivity, resulting in the discovery of novel inhibitors that are able to interact with both the phosphate-binding pocket and several distinct hydrophobic regions within VHR’s active site. This multidentate binding mode was confirmed by Xray crystallography. The inhibitors decreased the proliferation of cervix cancer cells, while growth of primary normal keratinocytes was not affected. These compounds may be a starting point to develop drugs for the treatment of cervical cancer. PMID:19888758

  18. Reversal of hypermethylation and reactivation of the RAR?2 gene by natural compounds in cervical cancer cell lines.

    Science.gov (United States)

    Jha, A K; Nikbakht, M; Parashar, G; Shrivastava, A; Capalash, N; Kaur, J

    2010-01-01

    Reactivation of tumour suppressor genes that have been silenced by promoter methylation is a very attractive molecular target for cancer therapy. The treatment of a squamous cervical cancer cell line, SiHa, with 20 ?M curcumin and genistein resulted in demethylation of promoter of the RAR?2 gene and led to the reactivation of the gene. The degree of methylation as observed by MSP decreased as the time period of treatment was increased from 72 h to 6 days. In HeLa cells (an adenocarcinoma cervical cancer cell line) there was also reversal of hypermethylation of the RAR?2 gene after six days of treatment with 20 ?M curcumin. However, allyl sulphide treatment (20 ?M) did not cause the reversal of hypermethylation until 72 h of treatment in the SiHa cell line. This is the first report to show the reversal of hypermethylation of the RAR?2 gene by genistein and curcumin in cervical cancer cell lines. Furthermore, these compounds acted as doublepronged agents as they caused apoptosis in the treated cervical cancer cell lines in addition to reversal of promoter hypermethylation. PMID:21138650

  19. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  20. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-22

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol(-1)) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells. PMID:26465291