WorldWideScience

Sample records for cancer cells identified

  1. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  2. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  3. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  5. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  6. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-07

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Hansen, Helle V

    2009-01-01

    The spread of cancer cells from a primary tumor to form metastasis at distant sites is a complex multi-step process. The cancer cell proteins, and plasma membrane proteins in particular, involved in this process are poorly defined and a study of the very early events of the metastatic process using...... clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice, but while one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane...... purification and comparative quantitative LC-MS/MS proteomic analysis identified 13 membrane proteins that were expressed at higher levels and 3 that were under-expressed in the metastatic compared to the non-metastatic cell line from a total of 1919 identified protein entries. Among the proteins were ecto-5...

  8. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  9. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    Directory of Open Access Journals (Sweden)

    Eric L. Allen

    2016-10-01

    Full Text Available Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.

  10. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Hyejin Choi

    2015-02-01

    Full Text Available Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.

  11. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?

    Directory of Open Access Journals (Sweden)

    Dongqing Wang

    2014-01-01

    Full Text Available Cancer stem cells (CSCs or cancer-initiating cells (CICs play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1. Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT, and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.

  13. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker.

    Science.gov (United States)

    Ray, Partha; Rialon-Guevara, Kristy L; Veras, Emanuela; Sullenger, Bruce A; White, Rebekah R

    2012-05-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.

  14. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Xie

    Full Text Available Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53- human cancer cells. We find that compared to p53-competent (p53+ human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.

  15. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  16. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    Science.gov (United States)

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    Science.gov (United States)

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  18. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  19. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  20. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  1. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    Science.gov (United States)

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  2. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  3. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire.

    Science.gov (United States)

    Beausang, John F; Wheeler, Amanda J; Chan, Natalie H; Hanft, Violet R; Dirbas, Frederick M; Jeffrey, Stefanie S; Quake, Stephen R

    2017-11-28

    Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment. Copyright © 2017 the Author(s). Published by PNAS.

  4. Glypican1 identifies cancer exosomes and facilitates early detection of cancer

    Science.gov (United States)

    Melo, Sonia A.; Luecke, Linda B.; Kahlert, Christoph; Fernandez, Agustin F.; Gammon, Seth T.; Kaye, Judith; LeBleu, Valerie S.; Mittendorf, Elizabeth A.; Weitz, Juergen; Rahbari, Nuh; Reissfelder, Christoph; Pilarsky, Christian; Fraga, Mario F.; Piwnica-Worms, David; Kalluri, Raghu

    2016-01-01

    Summary Exosomes are lipid bilayer-enclosed extracellular vesicles (EVs) that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer cell-derived exosomes in circulation is currently lacking. Using mass spectrometry analyses, we identified a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer cell-derived exosomes. GPC1+ circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of cancer patients and mice with cancer. GPC1+ crExos were detected in the serum of patients with pancreas cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreas disease from patients with early and late stage pancreas cancer. Levels of GPC1+ crExos correlate with tumor burden and survival in patients pre- and post-surgical tumor resection. GPC1+ crExos from patients and from mice with spontaneous pancreas tumors driven by oncogenic KRAS contained RNA with specific KRAS mutation, and it emerges as a reliable biomarker for the detection of PanIN lesions despite negative signal by MRI in mice. GPC1+ crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreas cancer to facilitate possible curative surgical therapy. PMID:26106858

  5. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  6. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  7. A crucial step in cell division identified | Center for Cancer Research

    Science.gov (United States)

    When cell division doesn’t go according to plan, the resulting daughter cells can become unstable or even cancerous. A team of CCR investigators has now discovered a crucial step required for normal cell division to occur. Read more...

  8. Identifying subgroups among poor prognosis patients with nonseminomatous germ cell cancer by tree modelling: a validation study.

    NARCIS (Netherlands)

    M.R. van Dijk (Merel); E.W. Steyerberg (Ewout); S.P. Stenning; J.D.F. Habbema (Dik)

    2004-01-01

    textabstractBACKGROUND: In order to target intensive treatment strategies for poor prognosis patients with non-seminomatous germ cell cancer, those with the poorest prognosis should be identified. These patients might profit most from more intensive treatment strategies. For

  9. Cancer Stem Cells in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J., E-mail: christiane.bruns@med.uni-muenchen.de [Department of Surgery, Ludwig Maximilian University of Munich, Klinikum Grosshadern, Marchioninistr. 15, D-81377, Munich (Germany)

    2010-08-19

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  10. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    Science.gov (United States)

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  11. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  12. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  13. Cancer Stem Cells in Pancreatic Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  14. Cancer Stem Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Karl-Walter Jauch

    2010-08-01

    Full Text Available Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs. Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  15. Quantitative proteomics identifies central players in erlotinib resistance of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Lund, Rikke Raaen; Beck, Hans Christian

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression when treated. However, all patients relapse due to development of acquired resistance, which in 43-50% of cases are caused...... by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained. Our aim is to identify novel resistance mechanisms in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20...... or other EGFR or KRAS mutations, potentiating the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones...

  16. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-01-01

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  18. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    Science.gov (United States)

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  19. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer

    OpenAIRE

    Ying Swan Ho; Lian Yee Yip; Nurhidayah Basri; Vivian Su Hui Chong; Chin Chye Teo; Eddy Tan; Kah Ling Lim; Gek San Tan; Xulei Yang; Si Yong Yeo; Mariko Si Yue Koh; Anantham Devanand; Angela Takano; Eng Huat Tan; Daniel Shao Weng Tan

    2016-01-01

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spect...

  20. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  1. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  2. Selective anti-proliferation of HER2-positive breast cancer cells by anthocyanins identified by high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    Full Text Available Overexpressed Human epidermal growth factor receptor 2 (HER2 drives the biology of 20% breast cancer and is a prediction of a poor prognosis for patients. HER2-targeted therapies significantly improve outcomes for HER2-positive patients. Traditional Chinese herbs/medicines have been used to treat breast cancer patients including HER2-positive patients in Asia for decades. Although the traditional medicines demonstrate efficacy in clinics for HER2-positive patients, the mechanism is largely unknown. In this article, we screened a 10,000 natural product library in 6 different cell lines representing breast cancer, and assessed the ability of each drug to cause cytotoxicity through a high-throughput screening approach. We have identified eight natural compounds that selectively inhibit the proliferation of HER2-positive cells. Two of the hit compounds, peonidin-3-glucoside and cyaniding-3-glucoside, are both extracts from black rice. They inhibit the phospho-HER2 and phospho-AKT and were confirmed to induce HER2-psotive breast cancer cells apoptosis both in vitro and in vivo. Peonidin-3-glucoside and cyaniding-3-glucoside treatments significantly reduced the tumor size and volume in vivo compared to the control group. There is no significant difference of antitumorgenic effects between peonidin-3-glucoside and cyaniding-3-glucoside treatments.

  3. Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Hu, Rongkuan; Huffman, Kenneth E; Chu, Michael; Zhang, Yajie; Minna, John D; Yu, Yonghao

    2016-02-05

    Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

  4. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  5. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  6. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention.

    Science.gov (United States)

    Colacino, Justin A; McDermott, Sean P; Sartor, Maureen A; Wicha, Max S; Rozek, Laura S

    2016-07-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

  7. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression

    International Nuclear Information System (INIS)

    Fan, Xinlan; Chen, Xu; Deng, Weixi; Zhong, Guangzheng; Cai, Qingqing; Lin, Tianxin

    2013-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men. Cancer stem cells (CSCs) are involved in tumor progression and metastasis, including in prostate cancer. There is an obvious and urgent need for effective cancer stem cells specific therapies in metastatic prostate cancer. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, especially in cancer. The goal of this study was to identify miRNAs involved in prostate cancer metastasis and cancer stem cells. A microarray and qRT-PCR were performed to investigate the miRNA expression profiles in PC-3 sphere cells and adherent cells. A transwell assay was used to evaluate the migration of PC-3 sphere cells and adherent cells. MiR-143 was silenced with antisense oligonucleotides in PC-3, PC-3-M and LNCaP cells. The role of miR-143 in prostate cancer metastasis was measured by wound-healing and transwell assays in vitro and bioluminescence imaging in vivo. Bioinformatics and luciferase report assays were used to identify the target of miR-143. The expression of miR-143 and the migration capability were reduced in PC-3 sphere cells and progressively increased during sphere re-adherent culture. Moreover, the down-regulation of miR-143 suppressed prostate cancer cells migration and invasion in vitro and systemically inhibited metastasis in vivo. Fibronectin type III domain containing 3B (FNDC3B), which regulates cell motility, was identified as a target of miR-143. The inhibition of miR-143 increased the expression of FNDC3B protein but not FNDC3B mRNA in vitro and vivo. These data demonstrate for the first time that miR-143 was up-regulated during the differentiation of prostate cancer stem cells and promoted prostate cancer metastasis by repressing FNDC3B expression. This sheds a new insight into the post-transcriptional regulation of cancer stem cells differentiation by miRNAs, a potential approach for the treatment of prostate cancer

  8. Identifying Stem-like Cells Using Mitochondrial Membrane Potential | Center for Cancer Research

    Science.gov (United States)

    Therapies that are based on living cells promise to improve treatments for metastatic cancer and for many degenerative diseases. Lasting treatment of these maladies may require the durable persistence of cells. Long-term engraftment of cells – for months or years – and the generation of large numbers of progeny are characteristics of stem cells. Most approaches to isolate

  9. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  10. Dissemination in athymic nude mice of lacZ transfected small cell lung cancer cells identified by X-gal staining

    DEFF Research Database (Denmark)

    Rømer, M U; Christiansen, J; Brünner, N

    1995-01-01

    The small cell lung cancer cell lines GLC-2 and DMS 456 were genetically labeled with the lacZ gene and examined for invasive and metastatic potential in META/Bom nude mice. The lacZ gene encodes the enzyme beta-D- galactosidase, and cells expressing this enzyme were identified by staining...... with the chromogenic substrate X-gal. lacZ expressing cells were investigated after subcutaneous (s.c.) inoculation and intravenous (i.v.) injection. The X-gal detection of beta-D-galactosidase activity proved to be a rapid and easy means for specific and highly sensitive identification of metastases. All primary s.......c. tumors stained by X-gal. The primary tumors of GLC-2 regularly demonstrated local invasive growth and produced multiple metastases in several organs. In contrast, primary DMS 456 tumors only occasionally demonstrated local invasion and very rarely generated secondary foci. No experimental metastases were...

  11. Combining Cell Type-Restricted Adenoviral Targeting with Immunostaining and Flow Cytometry to Identify Cells-of-Origin of Lung Cancer.

    Science.gov (United States)

    Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D

    2018-01-01

    Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.

  12. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma

    DEFF Research Database (Denmark)

    Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen

    2017-01-01

    Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technolo......Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few...... technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes......, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential...

  13. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Michael P Stany

    Full Text Available Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  14. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  15. Cancer stem cells in colorectal cancer: a review.

    Science.gov (United States)

    Munro, Matthew J; Wickremesekera, Susrutha K; Peng, Lifeng; Tan, Swee T; Itinteang, Tinte

    2018-02-01

    Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  17. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Lung cancer (LC with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC, large cell carcinoma (LCC, squamous cell carcinoma (SCC and adenocarcinoma (AC. We identified a small population of cells strongly positive for CD44 (CD44(high and a main population which was either weakly positive or negative for CD44 (CD44(low/-. Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44(highCD90(+ sub-population. Moreover, these CD44(highCD90(+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44(highCD90(+ population a good candidate for the lung CSCs. Both CD44(highCD90(+ and CD44(highCD90(- cells in the PLCCL derived from SCC formed spheroids, whereas the CD44(low/- cells were lacking this potential. These results indicate that CD44(highCD90(+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44(high sub-population.

  18. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    Science.gov (United States)

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  19. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    Science.gov (United States)

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  20. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  1. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Galectin-3 and Beclin1/Atg6 genes in human cancers: using cDNA tissue panel, qRT-PCR, and logistic regression model to identify cancer cell biomarkers.

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    Full Text Available Cancer biomarkers are sought to support cancer diagnosis, predict cancer patient response to treatment and survival. Identifying reliable biomarkers for predicting cancer treatment response needs understanding of all aspects of cancer cell death and survival. Galectin-3 and Beclin1 are involved in two coordinated pathways of programmed cell death, apoptosis and autophagy and are linked to necroptosis/necrosis. The aim of the study was to quantify galectin-3 and Beclin1 mRNA in human cancer tissue cDNA panels and determine their utility as biomarkers of cancer cell survival.A panel of 96 cDNAs from eight (8 different normal and cancer tissue types were used for quantitative real-time polymerase chain reaction (qRT-PCR using ABI7900HT. Miner2.0, a web-based 4- and 3-parameter logistic regression software was used to derive individual well polymerase chain reaction efficiencies (E and cycle threshold (Ct values. Miner software derived formula was used to calculate mRNA levels and then fold changes. The ratios of cancer to normal tissue levels of galectin-3 and Beclin1 were calculated (using the mean for each tissue type. Relative mRNA expressions for galectin-3 were higher than for Beclin1 in all tissue (normal and cancer types. In cancer tissues, breast, kidney, thyroid and prostate had the highest galectin-3 mRNA levels compared to normal tissues. High levels of Beclin1 mRNA levels were in liver and prostate cancers when compared to normal tissues. Breast, kidney and thyroid cancers had high galectin-3 levels and low Beclin1 levels.Galectin-3 expression patterns in normal and cancer tissues support its reported roles in human cancer. Beclin1 expression pattern supports its roles in cancer cell survival and in treatment response. qRT-PCR analysis method used may enable high throughput studies to generate molecular biomarker sets for diagnosis and predicting cancer treatment response.

  3. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    Science.gov (United States)

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  4. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  5. Microarray profiling of mononuclear peripheral blood cells identifies novel candidate genes related to chemoradiation response in rectal cancer.

    Directory of Open Access Journals (Sweden)

    Pablo Palma

    Full Text Available Preoperative chemoradiation significantly improves oncological outcome in locally advanced rectal cancer. However there is no effective method of predicting tumor response to chemoradiation in these patients. Peripheral blood mononuclear cells have emerged recently as pathology markers of cancer and other diseases, making possible their use as therapy predictors. Furthermore, the importance of the immune response in radiosensivity of solid organs led us to hypothesized that microarray gene expression profiling of peripheral blood mononuclear cells could identify patients with response to chemoradiation in rectal cancer. Thirty five 35 patients with locally advanced rectal cancer were recruited initially to perform the study. Peripheral blood samples were obtained before neaodjuvant treatment. RNA was extracted and purified to obtain cDNA and cRNA for hybridization of microarrays included in Human WG CodeLink bioarrays. Quantitative real time PCR was used to validate microarray experiment data. Results were correlated with pathological response, according to Mandard´s criteria and final UICC Stage (patients with tumor regression grade 1-2 and downstaging being defined as responders and patients with grade 3-5 and no downstaging as non-responders. Twenty seven out of 35 patients were finally included in the study. We performed a multiple t-test using Significance Analysis of Microarrays, to find those genes differing significantly in expression, between responders (n = 11 and non-responders (n = 16 to CRT. The differently expressed genes were: BC 035656.1, CIR, PRDM2, CAPG, FALZ, HLA-DPB2, NUPL2, and ZFP36. The measurement of FALZ (p = 0.029 gene expression level determined by qRT-PCR, showed statistically significant differences between the two groups. Gene expression profiling reveals novel genes in peripheral blood samples of mononuclear cells that could predict responders and non-responders to chemoradiation in patients with

  6. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes

  7. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.

    Science.gov (United States)

    Adams, April; Warner, Kristy; Pearson, Alexander T; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M; Wicha, Max S; Nör, Jacques E

    2015-09-29

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells.

  8. Emory University: MEDICI (Mining Essentiality Data to Identify Critical Interactions) for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has developed a computational methodology to combine high-throughput knockdown data with known protein network topologies to infer the importance of protein-protein interactions (PPIs) for the survival of cancer cells.  Applying these data to the Achilles shRNA results, the CCLE cell line characterizations, and known and newly identified PPIs provides novel insights for potential new drug targets for cancer therapies and identifies important PPI hubs.

  9. Tumor xenograft modeling identifies an association between TCF4 loss and breast cancer chemoresistance

    Directory of Open Access Journals (Sweden)

    Gorka Ruiz de Garibay

    2018-05-01

    Full Text Available Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs, we show that adaptation to therapy is genetically complex and identify that loss of transcription factor 4 (TCF4; also known as ITF2 is associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for five iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest a common loss of nuclear TCF4 expression post-chemotherapy. Together, these results from tumor xenograft modeling depict a link between altered TCF4 expression and breast cancer chemoresistance.

  10. Stem cells and cancer of the stomach and intestine.

    Science.gov (United States)

    Vries, Robert G J; Huch, Meritxell; Clevers, Hans

    2010-10-01

    Cancer in the 21st century has become the number one cause of death in developed countries. Although much progress has been made in improving patient survival, tumour relapse is one of the important causes of cancer treatment failure. An early observation in the study of cancer was the heterogeneity of tumours. Traditionally, this was explained by a combination of genomic instability of tumours and micro environmental factors leading to diverse phenotypical characteristics. It was assumed that cells in a tumour have an equal capacity to propagate the cancer. This model is currently known as the stochastic model. Recently, the Cancer stem cell model has been proposed to explain the heterogeneity of a tumour and its progression. According to this model, the heterogeneity of tumours is the result of aberrant differentiation of tumour cells into the cells of the tissue the tumour originated from. Tumours were suggested to contain stem cell-like cells, the cancer stem cells or tumour-initiating cells, which are uniquely capable of propagating a tumour much like normal stem cells fuel proliferation and differentiation in normal tissue. In this review we discuss the normal stem cell biology of the stomach and intestine followed by both the stochastic and cancer stem cell models in light of recent findings in the gastric and intestinal systems. The molecular pathways underlying normal and tumourigenic growth have been well studied, and recently the stem cells of the stomach and intestine have been identified. Furthermore, intestinal stem cells were identified as the cells-of-origin of colon cancer upon loss of the tumour suppressor APC. Lastly, several studies have proposed the positive identification of a cancer stem cell of human colon cancer. At the end we compare the cancer stem cell model and the stochastic model. We conclude that clonal evolution of tumour cells resulting from genetic mutations underlies tumour initiation and progression in both cancer models. This

  11. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  12. In Vivo Detection of HSP90 Identifies Breast Cancers with Aggressive Behavior.

    Science.gov (United States)

    Osada, Takuya; Kaneko, Kensuke; Gwin, William R; Morse, Michael A; Hobeika, Amy; Pogue, Brian W; Hartman, Zachary C; Hughes, Philip F; Haystead, Timothy; Lyerly, H Kim

    2017-12-15

    Purpose: Hsp90, a chaperone to numerous molecular pathways in malignant cells, is elevated in aggressive breast cancers. We hypothesized that identifying breast cells with elevated Hsp90 activity in situ could result in early detection of aggressive breast cancers. Experimental Design: We exploited the uptake of an Hsp90 inhibitor by malignant cells to create an imaging probe (HS131) of Hsp90 activity by linking it to a near-infrared (nIR) dye. HS131 uptake into cells correlated with cell membrane expression of Hsp90 and was used to image molecular subtypes of murine and human breast cancers in vitro and in murine models. Results: HS131 imaging was both sensitive and specific in detecting the murine 4T1 breast cancer cell line, as well as subclones with differing metastatic potential. Highly metastatic subclones (4T07) had high HS131 uptake, but subclones with lower metastatic potential (67NR, 168FARN) had low HS131 uptake. We generated isogenic cell lines to demonstrate that overexpression of a variety of specific oncogenes resulted in high HS131 uptake and retention. Finally, we demonstrated that HS131 could be used to detect spontaneous tumors in MMTV-neu mice, as well as primary and metastatic human breast cancer xenografts. HS131 could image invasive lobular breast cancer, a histologic subtype of breast cancer which is often undetectable by mammography. Conclusions: An HSP90-targeting nIR probe is sensitive and specific in imaging all molecular subtypes of murine and human breast cancer, with higher uptake in aggressive and highly metastatic clones. Clinical studies with Hsp90-targeting nIR probes will be initiated shortly. Clin Cancer Res; 23(24); 7531-42. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  14. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  15. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells

    Science.gov (United States)

    Petrocca, Fabio; Altschuler, Gabriel; Tan, Shen Mynn; Mendillo, Marc L.; Yan, Haoheng; Jerry, D. Joseph; Kung, Andrew L.; Hide, Winston; Ince, Tan A.; Lieberman, Judy

    2013-01-01

    Summary Basal-like triple negative breast cancers (TNBC) have poor prognosis. To identify basal-like TNBC dependencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed with the same genes - basal-like BPLER and myoepithelial HMLER. Expression of the screen’s 154 BPLER dependency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs relative to normal epithelial, luminal and mesenchymal TNBC lines. Proteasome inhibition reduced growth of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function and macrometastasis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence. PMID:23948298

  16. Non-small cell lung cancer in never smokers: a clinical entity to be identified.

    Science.gov (United States)

    Santoro, Ilka Lopes; Ramos, Roberta Pulcheri; Franceschini, Juliana; Jamnik, Sergio; Fernandes, Ana Luisa Godoy

    2011-01-01

    It has been recognized that patients with non-small cell lung cancer who are lifelong never-smokers constitute a distinct clinical entity. The aim of this study was to assess clinical risk factors for survival among never-smokers with non-small cell lung cancer. All consecutive non-small cell lung cancer patients diagnosed (n = 285) between May 2005 and May 2009 were included. The clinical characteristics of never-smokers and ever-smokers (former and current) were compared using chi-squared or Student's t tests. Survival curves were calculated using the Kaplan-Meier method, and log-rank tests were used for survival comparisons. A Cox proportional hazards regression analysis was evaluated by adjusting for age (continuous variable), gender (female vs. male), smoking status (never- vs. ever-smoker), the Karnofsky Performance Status Scale (continuous variable), histological type (adenocarcinoma vs. non-adenocarcinoma), AJCC staging (early vs. advanced staging), and treatment (chemotherapy and/or radiotherapy vs. the best treatment support). Of the 285 non-small cell lung cancer patients, 56 patients were never-smokers. Univariate analyses indicated that the never-smoker patients were more likely to be female (68% vs. 32%) and have adenocarcinoma (70% vs. 51%). Overall median survival was 15.7 months (95% CI: 13.2 to 18.2). The never-smoker patients had a better survival rate than their counterpart, the ever-smokers. Never-smoker status, higher Karnofsky Performance Status, early staging, and treatment were independent and favorable prognostic factors for survival after adjusting for age, gender, and adenocarcinoma in multivariate analysis. Epidemiological differences exist between never- and ever-smokers with lung cancer. Overall survival among never-smokers was found to be higher and independent of gender and histological type.

  17. Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark.

    Science.gov (United States)

    Grifoni, Daniela; Sollazzo, Manuela; Fontana, Elisabetta; Froldi, Francesca; Pession, Annalisa

    2015-03-12

    Angiogenesis is the term used to describe all the alterations in blood vessel growth induced by a tumour mass following hypoxic stress. The occurrence of multiple strategies of vessel recruitment favours drug resistance, greatly complicating the treatment of certain tumours. In Drosophila, oxygen is conveyed to the internal organs by the tracheal system, a closed tubular network whose role in cancer growth is so far unexplored. We found that, as observed in human cancers, Drosophila malignant cells suffer from oxygen shortage, release pro-tracheogenic factors, co-opt nearby vessels and get incorporated into the tracheal walls. We also found that the parallelisms observed in cellular behaviours are supported by genetic and molecular conservation. Finally, we identified a molecular circuitry associated with the differentiation of cancer cells into tracheal cells. In summary, our findings identify tracheogenesis as a novel cancer hallmark in Drosophila, further expanding the power of the fly model in cancer research.

  18. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  19. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    Science.gov (United States)

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  20. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  1. Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Fei Long

    2015-01-01

    Full Text Available Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC and non-small-cell lung cancer (NSCLC that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

  2. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    Science.gov (United States)

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  3. Non-small cell lung cancer in never smokers: a clinical entity to be identified

    Directory of Open Access Journals (Sweden)

    Ilka Lopes Santoro

    2011-01-01

    Full Text Available OBJECTIVES: It has been recognized that patients with non-small cell lung cancer who are lifelong never-smokers constitute a distinct clinical entity. The aim of this study was to assess clinical risk factors for survival among neversmokers with non-small cell lung cancer. METHODS: All consecutive non-small cell lung cancer patients diagnosed (n = 285 between May 2005 and May 2009 were included. The clinical characteristics of never-smokers and ever-smokers (former and current were compared using chi-squared or Student's t tests. Survival curves were calculated using the Kaplan-Meier method, and log-rank tests were used for survival comparisons. A Cox proportional hazards regression analysis was evaluated by adjusting for age (continuous variable, gender (female vs. male, smoking status (never- vs. ever-smoker, the Karnofsky Performance Status Scale (continuous variable, histological type (adenocarcinoma vs. non-adenocarcinoma, AJCC staging (early vs. advanced staging, and treatment (chemotherapy and/or radiotherapy vs. the best treatment support. RESULTS: Of the 285 non-small cell lung cancer patients, 56 patients were never-smokers. Univariate analyses indicated that the never-smoker patients were more likely to be female (68% vs. 32% and have adenocarcinoma (70% vs. 51%. Overall median survival was 15.7 months (95% CI: 13.2 to 18.2. The never-smoker patients had a better survival rate than their counterpart, the ever-smokers. Never-smoker status, higher Karnofsky Performance Status, early staging, and treatment were independent and favorable prognostic factors for survival after adjusting for age, gender, and adenocarcinoma in multivariate analysis. CONCLUSIONS: Epidemiological differences exist between never- and ever-smokers with lung cancer. Overall survival among never-smokers was found to be higher and independent of gender and histological type.

  4. The developing cancer stem-cell model: clinical challenges and opportunities

    NARCIS (Netherlands)

    Vermeulen, Louis; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul

    2012-01-01

    During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population

  5. Dynamic mapping of genes controlling cancer stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Zhong eWang

    2012-05-01

    Full Text Available The growing evidence that cancer originates from stem cells holds a great promise to eliminate this disease by designing specific drug therapies for removing cancer stem cells. Translation of this knowledge into predictive tests for the clinic is hampered due to the lack of methods to discriminate cancer stem cells from non-cancer stem cells. Here, we address this issue by describing a conceptual strategy for identifying the genetic origins of cancer stem cells. The strategy incorporates a high-dimensional group of differential equations that characterizes the proliferation, differentiation, and reprogramming of cancer stem cells in a dynamic cellular and molecular system. The deployment of robust mathematical models will help uncover and explain many still unknown aspects of cell behavior, tissue function, and network organization related to the formation and division of cancer stem cells. The statistical method developed allows biologically meaningful hypotheses about the genetic control mechanisms of carcinogenesis and metastasis to be tested in a quantitative manner.

  6. Proteomics in studying cancer stem cell biology.

    Science.gov (United States)

    Kranenburg, Onno; Emmink, Benjamin L; Knol, Jaco; van Houdt, Winan J; Rinkes, Inne H M Borel; Jimenez, Connie R

    2012-06-01

    Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.

  7. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  8. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  9. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  10. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Science.gov (United States)

    Song, Chang W.; Lee, Hyemi; Dings, Ruud P. M.; Williams, Brent; Powers, John; Santos, Troy Dos; Choi, Bo-Hwa; Park, Heon Joo

    2012-01-01

    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR. PMID:22500211

  11. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Science.gov (United States)

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  12. Reprogramming to developmental plasticity in cancer stem cells.

    Science.gov (United States)

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    International Nuclear Information System (INIS)

    Santilli, Guido; Binda, Mara; Zaffaroni, Nadia; Daidone, Maria Grazia

    2011-01-01

    There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC). BCIC identified in clinical specimens based on membrane phenotype (CD44 + /CD24 −/low and/or CD133 + expression) or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1 + ), have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways

  14. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Liou Louis S

    2010-04-01

    Full Text Available Abstract Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX, VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1

  15. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells.

    Science.gov (United States)

    Dória, M Luísa; Cotrim, Zita; Macedo, Bárbara; Simões, Cláudia; Domingues, Pedro; Helguero, Luisa; Domingues, M Rosário

    2012-06-01

    Breast cancer is the leading cause of cancer-related deaths in women. Altered cellular functions of cancer cells lead to uncontrolled cellular growth and morphological changes. Cellular biomembranes are intimately involved in the regulation of cell signaling; however, they remain largely understudied. Phospholipids (PLs) are the main constituents of biological membranes and play important functional, structural and metabolic roles. The aim of this study was to establish if patterns in the PL profiles of mammary epithelial cells and breast cancer cells differ in relation to degree of differentiation and metastatic potential. For this purpose, PLs were analyzed using a lipidomic approach. In brief, PLs were extracted using Bligh and Dyer method, followed by a separation of PL classes by thin layer chromatography, and subsequent analysis by mass spectrometry (MS). Differences and similarities were found in the relative levels of PL content between mammary epithelial and breast cancer cells and between breast cancer cells with different levels of aggressiveness. When compared to the total PL content, phosphatidylcholine levels were reduced and lysophosphatydilcholines increased in the more aggressive cancer cells; while phosphatidylserine levels remained unchanged. MS analysis showed alterations in the classes of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and phosphatidylinositides. In particular, the phosphatidylinositides, which are signaling molecules that affect proliferation, survival, and migration, showed dramatic alterations in their profile, where an increase of phosphatdylinositides saturated fatty acids chains and a decrease in C20 fatty acids in cancer cells compared with mammary epithelial cells was observed. At present, information about PL changes in cancer progression is lacking. Therefore, these data will be useful as a starting point to define possible PLs with prospective as biomarkers and disclose metabolic pathways with potential

  16. NFATC3-PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Jang, Jee-Eun; Kim, Hwang-Phill; Han, Sae-Won; Jang, Hoon; Lee, Si-Hyun; Song, Sang-Hyun; Bang, Duhee; Kim, Tae-You

    2018-06-14

    This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer lines. We performed paired-end RNA sequencing of 28 colorectal cancer (CRC) cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. 1,380 FT candidates were detected through bioinformatics filtering. We selected 6 candidate FTs, including 4 inter-chromosomal and 2 intra-chromosomal FTs and each FT was found in at least 1 of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3-PLA2G15 FT was found in 2. Knockdown of NFATC3-PLA2G15 using siRNA reduced mRNA expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal-epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3-PLA2G15 FT. The NFATC3-PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. These results suggest that that NFATC3-PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.

  17. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  18. Optical Quantification of Cellular Mass, Volume, and Density of Circulating Tumor Cells Identified in an Ovarian Cancer Patient

    International Nuclear Information System (INIS)

    Phillips, Kevin G.; Velasco, Carmen Ruiz; Li, Julia; Kolatkar, Anand; Luttgen, Madelyn; Bethel, Kelly; Duggan, Bridgette; Kuhn, Peter; McCarty, Owen J. T.

    2012-01-01

    Clinical studies have demonstrated that circulating tumor cells (CTCs) are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal, and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD)-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC) compared to 18.7 ± 0.6 pg (leukocytes), p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC) compared to 230.9 ± 78.5 fL (leukocyte), p < 0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC) compared to 0.085 ± 0.004 pg/fL (leukocyte), p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  19. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics

    International Nuclear Information System (INIS)

    Chen, Li; Schmidt, Emmett V; Stuart, Lynda; Ohsumi, Toshiro K; Burgess, Shawn; Varshney, Gaurav K; Dastur, Anahita; Borowsky, Mark; Benes, Cyril; Lacy-Hulbert, Adam

    2013-01-01

    The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens

  20. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

    Science.gov (United States)

    West, Michael D; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex

    2018-01-30

    Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1 , encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro -derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

  2. Identifying novel hypoxia-associated markers of chemoresistance in ovarian cancer.

    LENUS (Irish Health Repository)

    McEvoy, Lynda M

    2015-01-01

    Ovarian cancer is associated with poor long-term survival due to late diagnosis and development of chemoresistance. Tumour hypoxia is associated with many features of tumour aggressiveness including increased cellular proliferation, inhibition of apoptosis, increased invasion and metastasis, and chemoresistance, mostly mediated through hypoxia-inducible factor (HIF)-1α. While HIF-1α has been associated with platinum resistance in a variety of cancers, including ovarian, relatively little is known about the importance of the duration of hypoxia. Similarly, the gene pathways activated in ovarian cancer which cause chemoresistance as a result of hypoxia are poorly understood. This study aimed to firstly investigate the effect of hypoxia duration on resistance to cisplatin in an ovarian cancer chemoresistance cell line model and to identify genes whose expression was associated with hypoxia-induced chemoresistance.

  3. Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care

    Directory of Open Access Journals (Sweden)

    David P. Kodack

    2017-12-01

    Full Text Available Personalized cancer therapy is based on a patient’s tumor lineage, histopathology, expression analyses, and/or tumor DNA or RNA analysis. Here, we aim to develop an in vitro functional assay of a patient’s living cancer cells that could complement these approaches. We present methods for developing cell cultures from tumor biopsies and identify the types of samples and culture conditions associated with higher efficiency of model establishment. Toward the application of patient-derived cell cultures for personalized care, we established an immunofluorescence-based functional assay that quantifies cancer cell responses to targeted therapy in mixed cell cultures. Assaying patient-derived lung cancer cultures with this method showed promise in modeling patient response for diagnostic use. This platform should allow for the development of co-clinical trial studies to prospectively test the value of drug profiling on tumor-biopsy-derived cultures to direct patient care.

  4. β-Elemene: Mechanistic Studies on Cancer Cell Interaction and Its Chemosensitization Effect

    Science.gov (United States)

    Jiang, Ziyu; Jacob, Joe A.; Loganathachetti, Dinesh S.; Nainangu, Prasannabalaji; Chen, Baoan

    2017-01-01

    Over the past decade, screening and identifying novel compounds for their biomedical applications has become an upcoming area of research. Identifying the molecular mechanisms of these compounds has become an integral part of anticancer research. β-elemene, a sesquiterpene, is renowned for its anticancer activity against a variety of cell lines. Recent studies on β-elemene have elucidated that it possesses anti-proliferative effect on cancer cells by creating an apoptotic trigger. Interestingly, it also induces protective autophagy in some cancerous cell lines and is less cytotoxic compared to other widely accepted chemotherapeutic agents. This provides an edge with the perception of limited toxicity to normal cells. This mini-review precisely focuses on the studies performed to identify the mechanism of anticancer activity of β-elemene against cancer cells of multiple origin. In accordance to the evaluation made by the studies mentioned, apoptosis has been identified to be most possible reason behind anticancer activity exerted by β-elemene against a variety of cancer cell lines. Cell cycle arrest and necrosis have been credited to be possible alternate mechanisms for the anticancer effect of β-elemene. PMID:28337141

  5. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    Science.gov (United States)

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  6. Integrated genomic analyses identify KDM1A's role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer.

    Science.gov (United States)

    Narayanan, Sathiya Pandi; Singh, Smriti; Gupta, Amit; Yadav, Sandhya; Singh, Shree Ram; Shukla, Sanjeev

    2015-10-28

    The histone demethylase KDM1A specifically demethylates lysine residues and its deregulation has been implicated in the initiation and progression of various cancers. However, KDM1A's molecular role and its pathological consequences, and prognostic significance in oral cancer remain less understood. In the present study, we sought to investigate the expression of KDM1A and its downstream role in oral cancer pathogenesis. By comparing mRNA expression profiles, we identified an elevated KDM1A expression in oral tumors when compared to normal oral tissues. In silico pathway prediction identified the association between KDM1A and E2F1 signaling in oral cancer. Pathway scanning, functional annotation analysis and In vitro assays showed the KDM1A's involvement in oral cancer cell proliferation and the cell cycle. Moreover, real time PCR and luciferase assays confirmed KDM1A's role in regulation of E2F1 signaling activity in oral cancer. Elevated KDM1A expression is associated with poor clinical outcome in oral cancer. Our data indicate that deregulated KDM1A expression is positively associated with proliferative phenotype of oral cancer and confers poor clinical outcome. These cumulative data suggest that KDM1A might be a potential diagnostic and therapeutic target for oral cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Breast cancer subtypes: two decades of journey from cell culture to patients.

    Science.gov (United States)

    Zhao, Xiangshan; Gurumurthy, Channabasavaiah Basavaraju; Malhotra, Gautam; Mirza, Sameer; Mohibi, Shakur; Bele, Aditya; Quinn, Meghan G; Band, Hamid; Band, Vimla

    2011-01-01

    Recent molecular profiling has identified six major subtypes of breast cancers that exhibit different survival outcomes for patients. To address the origin of different subtypes of breast cancers, we have now identified, isolated, and immortalized (using hTERT) mammary stem/progenitor cells which maintain their stem/progenitor properties even after immortalization. Our decade long research has shown that these stem/progenitor cells are highly susceptible to oncogenesis. Given the emerging evidence that stem/progenitor cells are precursors of cancers and that distinct subtypes of breast cancer have different survival outcome, these cellular models provide novel tools to understand the oncogenic process leading to various subtypes of breast cancers and for future development of novel therapeutic strategies to treat different subtypes of breast cancers.

  8. Separation of breast cancer cells from peripherally circulating blood using antibodies fixed in microchannels

    Science.gov (United States)

    Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.

    2004-07-01

    Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.

  9. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  10. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  11. Single-cell proteomics: potential implications for cancer diagnostics.

    Science.gov (United States)

    Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T

    2016-01-01

    Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.

  12. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    Science.gov (United States)

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  13. Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2017-10-01

    Full Text Available Targeting epigenetic changes in gene expression in cancer cells may offer new strategies for the development of selective cancer therapies. In the present study, we investigated coumestrol, a natural compound exhibiting broad anti-cancer effects against skin melanoma, lung cancer and colon cancer cell growth. Haspin kinase was identified as a direct target protein of coumestrol using kinase profiling analysis. Histone H3 is a direct substrate of haspin kinase. We observed haspin kinase overexpression as well as greater phosphorylation of histone H3 at threonine 3 (Thr-3 in the cancer cells compared to normal cells. Computer modeling using the Schrödinger Suite program identified the binding interface within the ATP binding site. These findings suggest that the anti-cancer effect of coumestrol is due to the direct targeting of haspin kinase. Coumestrol has considerable potential for further development as a novel anti-cancer agent.

  14. [Cancer stem cells as the therapeutic target of tomorrow].

    Science.gov (United States)

    Hatina, Jiří

    2017-02-01

    The concept of hierarchical organization of tumour cell population, with cancer stem cells positioned at the apex of the cell hierarchy, can explain at least some crucial aspects of biological and clinical behaviour of cancer, like its propensity to relapse as well as the development of therapeutic resistance. The underlying biological properties of cancer stem cells are crucially dependent on various signals, inhibition of which provides an attractive opportunity to attack pharmacologically cancer stem cells. Currently, a lot of such stemness-inhibitors undergo various phases of clinical testing. Interestingly, numerous old drugs that are in routine use in human and veterinary medicine for non-oncological indications appear to be able to specifically target cancer stem cells as well. As cancer stem cells, at least for most tumours, represent usually only a minor tumour cell fraction, it is quite probable that the main focus of the clinical use of the stemness inhibitors would consist in their rational combinations with traditional anticancer treatment modalities. A highly important goal for the future research is to identify reliable and clinically applicable predictive markers that would allow to apply these novel anticancer drugs on the individual basis within the context of personalized medicine.

  15. Biological response of cancer cells to radiation treatment

    Directory of Open Access Journals (Sweden)

    Rajamanickam eBaskar

    2014-11-01

    Full Text Available Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made towards the understanding of proposed hallmarks of cancer development, care and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET, total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE. In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.

  16. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    Science.gov (United States)

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  17. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Science.gov (United States)

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  19. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  20. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

    Science.gov (United States)

    Yue, Zhiying; Yuan, Zengjin; Zeng, Li; Wang, Ying; Lai, Li; Li, Jing; Sun, Peng; Xue, Xiwen; Qi, Junyi; Yang, Zhengfeng; Zheng, Yansen; Fang, Yuanzhang; Li, Dali; Siwko, Stefan; Li, Yi; Luo, Jian; Liu, Mingyao

    2018-05-01

    The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

  1. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Kato, Kazunori; Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki

    2013-01-01

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  2. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated

  3. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  4. Integrated analysis of breast cancer cell lines reveals unique signaling pathways.

    Science.gov (United States)

    Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T

    2009-01-01

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  5. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  6. Local cell-mediated immune reactions in cancer patients

    International Nuclear Information System (INIS)

    Bilynskij, B.T.; Vasil'ev, N.V.; Volod'ko, N.A.; Akademiya Meditsinskikh Nauk SSSR, Tomsk. Onkologicheskij Nauchnyj Tsentr)

    1988-01-01

    The analysis of 178 cases of stage I-II breast cancer showed morphological features of local cell-mediated immune reactions to be of limited prognostic value. A comparative evaluation of some characteristics of cell surface receptors, such as ability to spontaneous rosette formation with sheep erythrocytes and sensitivty to theophylline, was carried out in lymphocyte samples obtained from tumor tissue and peripheral blood of 76 cancer patients subjected to preoperative radiotherapy. The said parameters were studied in breast cancer patients of rosette-forming cell reaction to theophylline were identified, the incidence of some of them being determined by the presence or absence of regional metastases. The level and functional activity of surface receptors of tumor mononuclear cells proved to influence prognosis

  7. Identifying microRNA/mRNA dysregulations in ovarian cancer.

    Science.gov (United States)

    Miles, Gregory D; Seiler, Michael; Rodriguez, Lorna; Rajagopal, Gunaretnam; Bhanot, Gyan

    2012-03-27

    MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Our findings identify

  8. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  9. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Adel Tabchy

    Full Text Available There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  10. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Science.gov (United States)

    Tabchy, Adel; Eltonsy, Nevine; Housman, David E; Mills, Gordon B

    2013-01-01

    There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  11. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  12. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Jiangang Zhao

    2017-01-01

    Full Text Available Cancer stem cells (CSCs have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.

  13. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  14. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  15. High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier Vatter

    2018-04-01

    Full Text Available Summary: Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. : Vatter et al. find that single-cell mass cytometry of human mammary epithelial cells from 57 women, from 16 to 91 years old, depicts an in-depth phenotyping of aging mammary epithelia. Subpopulations of altered luminal and progenitor cells that accumulate with age may be at increased risk for oncogenic transformation. Keywords: human mammary epithelia, aging, mass cytometry, single-cell analysis, heterogeneity, breast cancer

  16. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Francavilla

    2017-03-01

    Full Text Available Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer.

  17. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  18. How Can We Treat Cancer Disease Not Cancer Cells?

    Science.gov (United States)

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  19. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer.

    Science.gov (United States)

    Yu, Jiangyong; Wang, Shuhang; Zhao, Wei; Duan, Jianchun; Wang, Zhijie; Chen, Hanxiao; Tian, Yanhua; Wang, Di; Zhao, Jun; An, Tongtong; Bai, Hua; Wu, Meina; Wang, Jie

    2018-05-01

    Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance. Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined. Results: Different proportions of α2δ1 + cells were identified in SCLC cell lines and PDX models. α2δ1 + cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1 + cells instead of CD133 + cells in PDXs, and an increased proportion of α2δ1 + cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models. Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. Association analysis identifies 65 new breast cancer risk loci.

    Science.gov (United States)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D; Qing Chen, Xiao; Fachal, Laura; McCue, Karen; McCart Reed, Amy E; Ghoussaini, Maya; Carroll, Jason S; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Aronson, Kristan J; Arun, Banu; Auer, Paul L; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D; Castelao, Jose E; Chan, Tsun L; David Cheng, Ting-Yuan; Seng Chia, Kee; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Conroy, Don M; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M; Ekici, Arif B; Eliassen, A Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M; García-Sáenz, José A; Gaudet, Mia M; Georgoulias, Vassilios; Giles, Graham G; Glendon, Gord; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Grenaker Alnæs, Grethe I; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Kosma, Veli-Matti; Kristensen, Vessela N; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Le Marchand, Loic; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Neng Lee, Chuen; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; Ma, Edmond S K; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Taib, Nur Aishah Mohd; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Noh, Dong-Young; Nordestgaard, Børge G; Norman, Aaron; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V Shane; Park, Sue K; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofyeva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J T; Saloustros, Emmanouil; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E; Shrubsole, Martha J; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A; Tengström, Maria; Teo, Soo H; Beth Terry, Mary; Tessier, Daniel C; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van der Kolk, Lizet; van der Luijt, Rob B; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R; Har Yip, Cheng; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R; Antoniou, Antonis C; Droit, Arnaud; Andrulis, Irene L; Amos, Christopher I; Couch, Fergus J; Pharoah, Paul D P; Chang-Claude, Jenny; Hall, Per; Hunter, David J; Milne, Roger L; García-Closas, Montserrat; Schmidt, Marjanka K; Chanock, Stephen J; Dunning, Alison M; Edwards, Stacey L; Bader, Gary D; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F

    2017-11-02

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10 -8 . The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.

  1. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  2. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor

    International Nuclear Information System (INIS)

    Yashiroda, Yoko; Okamoto, Reika; Hatsugai, Kaori; Takemoto, Yasushi; Goshima, Naoki; Saito, Tamio; Hamamoto, Makiko; Sugimoto, Yoshikazu; Osada, Hiroyuki; Seimiya, Hiroyuki; Yoshida, Minoru

    2010-01-01

    The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.

  3. C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment.

    Science.gov (United States)

    Urata, Satoko; Izumi, Kouji; Hiratsuka, Kaoru; Maolake, Aerken; Natsagdorj, Ariunbold; Shigehara, Kazuyoshi; Iwamoto, Hiroaki; Kadomoto, Suguru; Makino, Tomoyuki; Naito, Renato; Kadono, Yoshifumi; Lin, Wen-Jye; Wufuer, Guzailinuer; Narimoto, Kazutaka; Mizokami, Atsushi

    2018-03-01

    Chemokines and their receptors have key roles in cancer progression. The present study investigated chemokine activity in the prostate cancer bone metastasis microenvironment. Growth and migration of human prostate cancer cells were assayed in cocultures with bone stromal cells. The migration of LNCaP cells significantly increased when co-cultured with bone stromal cells isolated from prostate cancer bone metastases. Cytokine array analysis of conditioned medium from bone stromal cell cultures identified CCL5 as a concentration-dependent promoter of LNCaP cell migration. The migration of LNCaP cells was suppressed when C-C motif ligand 5 (CCL5) neutralizing antibody was added to cocultures with bone stromal cells. Knockdown of androgen receptor with small interfering RNA increased the migration of LNCaP cells compared with control cells, and CCL5 did not promote the migration of androgen receptor knockdown LNCaP. Elevated CCL5 secretion in bone stromal cells from metastatic lesions induced prostate cancer cell migration by a mechanism consistent with CCL5 activity upstream of androgen receptor signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Analysis of the interaction of extracellular matrix and phenotype of bladder cancer cells

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Kyker, Kimberly D; Saban, Ricardo; Knowlton, Nicholas; Dozmorov, Igor; Centola, Michael B; Hurst, Robert E

    2006-01-01

    The extracellular matrix has a major effect upon the malignant properties of bladder cancer cells both in vitro in 3-dimensional culture and in vivo. Comparing gene expression of several bladder cancer cells lines grown under permissive and suppressive conditions in 3-dimensional growth on cancer-derived and normal-derived basement membrane gels respectively and on plastic in conventional tissue culture provides a model system for investigating the interaction of malignancy and extracellular matrix. Understanding how the extracellular matrix affects the phenotype of bladder cancer cells may provide important clues to identify new markers or targets for therapy. Five bladder cancer cell lines and one immortalized, but non-tumorigenic, urothelial line were grown on Matrigel, a cancer-derived ECM, on SISgel, a normal-derived ECM, and on plastic, where the only ECM is derived from the cells themselves. The transcriptomes were analyzed on an array of 1186 well-annotated cancer derived cDNAs containing most of the major pathways for malignancy. Hypervariable genes expressing more variability across cell lines than a set expressing technical variability were analyzed further. Expression values were clustered, and to identify genes most likely to represent biological factors, statistically over-represented ontologies and transcriptional regulatory elements were identified. Approximately 400 of the 1186 total genes were expressed 2 SD above background. Approximately 100 genes were hypervariable in cells grown on each ECM, but the pattern was different in each case. A core of 20 were identified as hypervariable under all 3 growth conditions, and 33 were hypervariable on both SISgel and Matrigel, but not on plastic. Clustering of the hypervariable genes showed very different patterns for the same 6 cell types on the different ECM. Even when loss of cell cycle regulation was identified, different genes were involved, depending on the ECM. Under the most permissive conditions

  5. Squamous cell cancer (image)

    Science.gov (United States)

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  6. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  7. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  8. Phenotype heterogeneity in cancer cell populations

    International Nuclear Information System (INIS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-01-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  9. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  10. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  11. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.

    Science.gov (United States)

    Zheng, Chunhong; Zheng, Liangtao; Yoo, Jae-Kwang; Guo, Huahu; Zhang, Yuanyuan; Guo, Xinyi; Kang, Boxi; Hu, Ruozhen; Huang, Julie Y; Zhang, Qiming; Liu, Zhouzerui; Dong, Minghui; Hu, Xueda; Ouyang, Wenjun; Peng, Jirun; Zhang, Zemin

    2017-06-15

    Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8 + T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8 + T cells and Tregs and represses the CD8 + T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  13. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  14. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  15. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    International Nuclear Information System (INIS)

    Huang, Shang-Lang; Chao, Chuck C.-K.

    2015-01-01

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

  16. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  17. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  18. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Wu

    Full Text Available Cancer stem-like side population (SP cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07% was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.

  19. MicroRNA-145 targets YES and STAT1 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea H; Jacobsen, Anders B; Frankel, Lisa

    2010-01-01

    miRNA overexpression. Gene Ontology analysis showed an overrepresentation of genes involved in cell death, cellular growth and proliferation, cell cycle, gene expression and cancer. A number of the identified miRNA targets have previously been implicated in cancer, including YES, FSCN1, ADAM17, BIRC2......, VANGL1 as well as the transcription factor STAT1. Both YES and STAT1 were verified as direct miR-145 targets. CONCLUSIONS/SIGNIFICANCE: The study identifies and validates new cancer-relevant direct targets of miR-145 in colon cancer cells and hereby adds important mechanistic understanding of the tumor......BACKGROUND: MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-145 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. METHODOLOGY/PRINCIPAL FINDINGS: To investigate...

  20. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    Science.gov (United States)

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  1. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  2. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  3. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    Science.gov (United States)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes.

    Science.gov (United States)

    Vardaki, Ioulia; Ceder, Sophia; Rutishauser, Dorothea; Baltatzis, George; Foukakis, Theodoros; Panaretakis, Theocharis

    2016-11-15

    Breast cancer (BrCa) is the most frequent cancer type in women and a leading cause of cancer related deaths in the world. Despite the decrease in mortality due to better diagnostics and palliative care, there is a lack of prognostic markers of metastasis. Recently, the exploitation of liquid biopsies and in particular of the extracellular vesicles has shown promise in the identification of such prognostic markers. In this study we compared the proteomic content of exosomes derived from metastatic and non-metastatic human (MCF7 and MDA-MB-231) and mouse (67NR and 4T1) cell lines. We found significant differences not only in the amount of secreted exosomes but most importantly in the protein content of exosomes secreted from metastatic versus non-metastatic ones. We identified periostin as a protein that is enriched in exosomes secreted by metastatic cells and validated its presence in a pilot cohort of breast cancer patient samples with localized disease or lymph node (LN) metastasis.

  5. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Duan

    2009-10-01

    Full Text Available Multidrug resistance (MDR is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1 but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.

  6. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  7. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  8. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.

    Science.gov (United States)

    Lai, Yi-Hua; Yu, Sung-Liang; Chen, Hsuan-Yu; Wang, Chi-Chung; Chen, Huei-Wen; Chen, Jeremy J W

    2013-05-01

    HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.

  9. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  10. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  11. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  12. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Brianne Cruickshank

    2018-04-01

    Full Text Available Immunogenic cell death (ICD activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various “hallmarks” of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.

  13. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  14. Targeting cancer cells using 3-bromopyruvate for selective cancer treatment

    Directory of Open Access Journals (Sweden)

    Hussam H Baghdadi

    2017-01-01

    Full Text Available Cancer treatment deserves more research efforts despite intensive conventional treatment modalities for many types of malignancies. Metastasis and resistance to chemotherapy and radiotherapy receive a lot of global research efforts. The current advances in cancer biology may improve targeting the critical metabolic differences that distinguish cancer cells from normal cells. Cancer cells are highly glycolytic for energy production, exhibit the Warburg effect, establish aggressive acidic microenvironment, maintain cancer stem cells, exhibit resistance to chemotherapy, have low antioxidant systems but different ΔΨm (delta psi, mitochondrial transmembrane potential, express P-glycoprotein for multidrug resistance, upregulate glucose transporters and monocarboxylate transporters and are under high steady-state reactive oxygen species conditions. Normal cells differ in all these aspects. Lactate produced through the Warburg effect helps cancer metastasis. Targeting glycolysis reactions for energy production in cancer cells seems promising in decreasing the proliferation and metastasis of cancer cells. 3-bromopyruvate makes use of cancer biology in treating cancer cells, cancer stem cells and preventing metastasis in human cancer as discussed in this review. Updated advances are analyzed here, which include research analysis of background, experience, readings in the field of cancer biology, oncology and biochemistry.

  15. Cancer stem cells and differentiation therapy.

    Science.gov (United States)

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  16. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  17. Identify multiple myeloma stem cells: Utopia?

    Science.gov (United States)

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  18. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-01-01

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  19. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  20. Data of a fluorescent imaging-based analysis of anti-cancer drug effects on three-dimensional cultures of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Junji Itou

    2015-12-01

    Full Text Available Three-dimensional (3D cell culture is a powerful tool to study cell growth under 3D condition. To perform a simple test for anti-cancer drugs in 3D culture, visualization of non-proliferated cells is required. We propose a fluorescent imaging-based assay to analyze cancer cell proliferation in 3D culture. We used a pulse-labeling technique with a photoconvertible fluorescent protein Kaede to identify non-proliferated cells. This assay allows us to observe change in cell proliferation in 3D culture by simple imaging. Using this assay, we obtained the data of the effects of anti-cancer drugs, 5-fluorouracil and PD0332991 in a breast cancer cell line, MCF-7.

  1. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  2. Mechanisms of therapeutic resistance in cancer (stem cells with emphasis on thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Sabine eHombach-Klonisch

    2014-03-01

    Full Text Available Tissue invasion, metastasis and therapeutic resistance to anti-cancer treatments are common and main causes of death in cancer patients. Tumor cells mount complex and still poorly understood molecular defense mechanisms to counteract and evade oxygen deprivation, nutritional restrictions as well as radio- and chemotherapeutic treatment regimens aimed at destabilizing their genomes and important cellular processes. In thyroid cancer, as in other tumors, such defense strategies include the reactivation in cancer cells of early developmental programs normally active exclusively in stem cells, the stimulation of cancer stem-like cells resident within the tumor tissue and the recruitment of bone marrow-derived progenitors into the tumor (Thomas et al., 2008;Klonisch et al., 2009;Derwahl, 2011. Metastasis and therapeutic resistance in cancer (stem cells involves the epithelial-to-mesenchymal transition- (EMT- mediated enhancement in cellular plasticity, which includes coordinated dynamic biochemical and nuclear changes (Ahmed et al., 2010. The purpose of the present review is to provide an overview of the role of DNA repair mechanisms contributing to therapeutic resistance in thyroid cancer and highlight the emerging roles of autophagy and damage associated molecular pattern (DAMP responses in EMT and chemoresistance in tumor cells. Finally, we use the stem cell factor and nucleoprotein High Mobility Group A2 (HMGA2 as an example to demonstrate how factors intended to protect stem cells are wielded by cancer (stem cells to gain increased transformative cell plasticity which enhances metastasis, therapeutic resistance and cell survival. Wherever possible, we have included information on these cellular processes and associated factors as they relate to thyroid cancer cells.

  3. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  4. Long-term survival in small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Osterlind, K; Hansen, M

    1995-01-01

    PURPOSE: To describe in patients with small-cell lung cancer (SCLC) the characteristics of those who survive for > or = 5 years, to identify long-term prognostic factors, to analyze survival data of 5-year survivors, and to study 10-year survival in patients entered before 1981. PATIENTS......, especially tobacco-related cancers and other tobacco-related diseases....

  5. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line

    Science.gov (United States)

    Boo, Lily; Ho, Wan Yong; Ali, Norlaily Mohd; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Ong, Han Kiat; Cheong, Soon Keng

    2016-01-01

    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self

  6. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  7. Identification of alternatively spliced TIMP-1 mRNA in cancer cell lines and colon cancer tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Sieuwerts, A.M.; Bartels, Annette

    2007-01-01

    TIMP-1 is a promising new candidate as a prognostic marker in colorectal and breast cancer. We now describe the discovery of two alternatively spliced variants of TIMP-1 mRNA. The two variants lacking exon 2 (del-2) and 5 (del-5), respectively, were identified in human cancer cell lines by RT......-PCR. The del-2 variant was, furthermore, detected in extracts from 12 colorectal cancer tissue samples. By western blotting additional bands of lower molecular mass than full-length TIMP-1 were identified in tumor tissue, but not in plasma samples obtained from cancer patients. The two splice variants of TIMP...

  8. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  9. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  10. Genome-Wide Progesterone Receptor Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells and Primary Leiomyoma Cells

    Science.gov (United States)

    Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.

    2012-01-01

    Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and

  11. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Science.gov (United States)

    2010-01-01

    Background Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts

  12. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    Science.gov (United States)

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  13. Local advanced transitional cell cancer and squamous cell cancer of ...

    African Journals Online (AJOL)

    Case report: A 51-year-old man presented with a locally advanced squamous cell cancer of the periurethral tissues as well as an underlying isolated transitional cell cancer of the urethra. Chemotherapy with Gemcitabin and Cisplatinum together with local radiation to the pelvis and the perineum was given. There was ...

  14. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  15. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2018-05-01

    Full Text Available Songjiang Wu, Yanying Yang, Feiping Li, Lifu Huang, Zihua Han, Guanfu Wang, Hongyuan Yu, Haiping Li Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group, Taizhou, China Introduction: Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE, a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS-mediated endoplasmic reticulum (ER stress in prostate cancer cells were studied for the first time. Methods: In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. Results: Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. Conclusion: Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer. Keywords: chelerythrine, reactive oxygen species, endoplasmic reticulum stress, apoptosis, prostate cancer

  16. Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  17. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  18. Novel Somatic Copy Number Alteration Identified for Cervical Cancer in the Mexican American Population

    Directory of Open Access Journals (Sweden)

    Alireza Torabi

    2016-08-01

    Full Text Available Cervical cancer affects millions of Americans, but the rate for cervical cancer in the Mexican American is approximately twice that for non-Mexican Americans. The etiologies of cervical cancer are still not fully understood. A number of somatic mutations, including several copy number alterations (CNAs, have been identified in the pathogenesis of cervical carcinomas in non-Mexican Americans. Thus, the purpose of this study was to investigate CNAs in association with cervical cancer in the Mexican American population. We conducted a pilot study of genome-wide CNA analysis using 2.5 million markers in four diagnostic groups: reference (n = 125, low grade dysplasia (cervical intraepithelial neoplasia (CIN-I, n = 4, high grade dysplasia (CIN-II and -III, n = 5 and invasive carcinoma (squamous cell carcinoma (SCC, n = 5 followed by data analyses using Partek. We observed a statistically-significant difference of CNA burden between case and reference groups of different sizes (>100 kb, 10–100 kb and 1–10 kb of CNAs that included deletions and amplifications, e.g., a statistically-significant difference of >100 kb deletions was observed between the reference (6.6% and pre-cancer and cancer (91.3% groups. Recurrent aberrations of 98 CNA regions were also identified in cases only. However, none of the CNAs have an impact on cancer progression. A total of 32 CNA regions identified contained tumor suppressor genes and oncogenes. Moreover, the pathway analysis revealed endometrial cancer and estrogen signaling pathways associated with this cancer (p < 0.05 using Kyoto Encyclopedia of Genes and Genomes (KEGG. This is the first report of CNAs identified for cervical cancer in the U.S. Latino population using high density markers. We are aware of the small sample size in the study. Thus, additional studies with a larger sample are needed to confirm the current findings.

  19. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  20. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  1. Colorectal cancer stem cells.

    Science.gov (United States)

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  2. Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells?

    Science.gov (United States)

    Bystrom, Laura M.

    2014-01-01

    Abstract Significance: In this review, the dual nature of both iron and reactive oxygen species (ROS) will be explored in normal and cancer cell metabolism. Although iron and ROS play important roles in cellular homeostasis, they may also contribute to carcinogenesis. On the other hand, many studies have indicated that abrogation of iron metabolism, elevation of ROS, or modification of redox regulatory mechanisms in cancer cells, should be considered as therapeutic approaches for cancer. Recent Advances: Drugs that target different aspects of iron metabolism may be promising therapeutics for cancer. The ability of iron chelators to cause iron depletion and/or elevate ROS levels indicates that these types of compounds have more potential as antitumor medicines than originally expected. Other natural and synthetic compounds that target pathways involved in ROS homeostasis also have potential value alone or in combination with current chemotherapeutics. Critical Issues: Although ROS induction and iron depletion may be targets for cancer therapies, the optimal therapeutic strategies have yet to be identified. This review highlights some of the research that strives to identify such therapeutics. Future Directions: More studies are needed to better understand the role of iron and ROS in carcinogenesis not only as cancer promoters, but also as cytotoxic agents to cancer cells and cancer stem cells (CSCs). Moreover, the structure–activity effects of iron chelators and other compounds that increase ROS and/or disrupt iron metabolism need to be further evaluated to assess the effectiveness and selectivity of these compounds against both cancer and CSCs. Antioxid. Redox Signal. 20, 1917–1924. PMID:23198911

  3. Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair.

    Science.gov (United States)

    Hedberg, Annica; Knutsen, Erik; Løvhaugen, Anne Silje; Jørgensen, Tor Erik; Perander, Maria; Johansen, Steinar D

    2018-04-19

    Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T). Most sites were clustered within the highly conserved Complex IV and ribosomal RNA genes. Two heteroplasmic variants in normal cells were found as fixed mutations in cancer cells. This indicates a positive selection of these variants in cancer cells. RNA-Seq analysis identified upregulated L-strand specific transcripts in cancer cells, which include three mitochondrial long non-coding RNA molecules. We hypothesize that this is due to two cancer cell-specific mutations in the control region.

  4. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    Science.gov (United States)

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  5. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  6. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  7. At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.

    Science.gov (United States)

    Gerweck, Leo E; Wakimoto, Hiroaki

    2016-03-01

    Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.

  8. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state

    Directory of Open Access Journals (Sweden)

    Ahmed El-Badawy

    2017-11-01

    exposure to cancer cell-secreted factors. These acquired characteristics may contribute to tumor progression, survival, and metastasis. Our findings provide new insights into the interactions between MSCs and cancer cells, with the potential to identify novel molecular targets for cancer therapy.

  9. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    López, Jacqueline; Poitevin, Adela; Mendoza-Martínez, Veverly; Pérez-Plasencia, Carlos; García-Carrancá, Alejandro

    2012-01-01

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10 3 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10 5 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  10. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  11. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    have identified two nanoparticle formulations incorporating kaempferol that may lead to breakthroughs in cancer treatment. Both PEO-PPO-PEO and PLGA nanoparticle formulations had superior effects compared with kaempferol alone in reducing cancer cell viability. PMID:22866004

  12. Stem cells and cancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-05-01

    Full Text Available Stem cells are the small units of multicellular creature. Regeneration and self-renewal are the ability of the stem cells. Each tissue is having particular stem cells, specific to it. These normal stem cells are converted into cancer stem cells through mutations in it. Although the expression of oncogenes is enhanced a lot, the tumor-supressing gene is lessened. Cancer stem cells are isolated and visualized through different techniques like immunocytochemical staining, spectral karyotyping, immunohistochemistry, induction method and dissection measures, then are performed histological procedures which include fascination, immunohistochemistry, dispensation, in situ hybridization and also quantitative examination of tissue flow cytometric analysis. For the analysis of quantization, statistical tests are also performed as two-sample t-test, Chi-square test, SD and arithmetic mean. Tumor cells generate glioma spheres. These are used in cancer study. Axin 1 is the gene suppressing cancer. Its removal causes the generation of liver cancer. Curcumin is the most effective for suppressing cancer as it increases the normal stem cell function and decreases the cancer stem cell function. Brahma-related gene 1 is crucial for the safeguarding of the stem cell residents in tissue-specific comportment. Different types of cancers originate through genetic mutation, tissue disorganization and cell proliferation. Tumor configuration is produced by the alteration in original cell culture having stem cells and progenitor cell populations. The developmental facets about cancer cells and cancer stem cells as well as their personal natal functions sustain an intricate steadiness to settle on their personal donations to the efficacy or harmfulness of the biological organization.

  13. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.

    Science.gov (United States)

    Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh

    2018-01-01

    Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.

  14. Endometrial Cancer Side-Population Cells Show Prominent Migration and Have a Potential to Differentiate into the Mesenchymal Cell Lineage

    Science.gov (United States)

    Kato, Kiyoko; Takao, Tomoka; Kuboyama, Ayumi; Tanaka, Yoshihiro; Ohgami, Tatsuhiro; Yamaguchi, Shinichiro; Adachi, Sawako; Yoneda, Tomoko; Ueoka, Yousuke; Kato, Keiji; Hayashi, Shinichi; Asanoma, Kazuo; Wake, Norio

    2010-01-01

    Cancer stem-like cell subpopulations, referred to as “side-population” (SP) cells, have been identified in several tumors based on their ability to efflux the fluorescent dye Hoechst 33342. Although SP cells have been identified in the normal human endometrium and endometrial cancer, little is known about their characteristics. In this study, we isolated and characterized the SP cells in human endometrial cancer cells and in rat endometrial cells expressing oncogenic human K-Ras protein. These SP cells showed i) reduction in the expression levels of differentiation markers; ii) long-term proliferative capacity of the cell cultures; iii) self-renewal capacity in vitro; iv) enhancement of migration, lamellipodia, and, uropodia formation; and v) enhanced tumorigenicity. In nude mice, SP cells formed large, invasive tumors, which were composed of both tumor cells and stromal-like cells with enriched extracellular matrix. The expression levels of vimentin, α-smooth muscle actin, and collagen III were enhanced in SP tumors compared with the levels in non-SP tumors. In addition, analysis of microdissected samples and fluorescence in situ hybridization of Hec1-SP-tumors showed that the stromal-like cells with enriched extracellular matrix contained human DNA, confirming that the stromal-like cells were derived from the inoculated cells. Moreober, in a Matrigel assay, SP cells differentiated into α-smooth muscle actin-expressing cells. These findings demonstrate that SP cells have cancer stem-like cell features, including the potential to differentiate into the mesenchymal cell lineage. PMID:20008133

  15. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.

    Science.gov (United States)

    Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A

    2018-05-17

    The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    Science.gov (United States)

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas

    Directory of Open Access Journals (Sweden)

    He T

    2017-01-01

    Full Text Available Tao He,1–3,* Tianming Qiu,4,* Xiaodong Wang,5 Hongxing Gui,6 Xilong Wang,2 Qikuan Hu,3,7 Hechun Xia,2 Gaoyang Qi,1,2 Jinsong Wu,4 Hui Ma2 1Clinical Medicine College, Ningxia Medical University, 2Department of Neurosurgery, General Hospital of Ningxia Medical University, 3Ningxia Key Laboratory of Cerebrocranial Diseases, The National Key Laboratory Incubation Base, Yinchuan, 4Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 5Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 6Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, NJ, USA; 7Department of Physiology, Ningxia Medical University, Yinchuan, People’s Republic of China *These authors contributed equally to this work Objective: This study investigated the correlation between choline/creatine (Cho/Cr ratios determined by multivoxel proton magnetic resonance spectroscopy (1H-MRS and the distribution of cancer stem-like cells (CSLCs in high-grade gliomas. Patients and methods: Sixteen patients with high-grade gliomas were recruited and underwent 1H-MRS examination before surgery to identify distinct tumor regions with variable Cho/Cr ratios. Using intraoperative neuronavigation, tumor tissues were accurately sampled from regions with high and low Cho/Cr ratios within each tumor. The distribution of CSLCs in samples from glioma tissue regions with different Cho/Cr ratios was quantified by neurosphere culture, immunohistochemistry, and Western blot. Results: The mean neurosphere formation rate in tissues with high Cho/Cr ratios was significantly increased compared with that in low Cho/Cr ratio tissues (13.94±5.94 per 100 cells vs 8.04±3.99 per 100 cells, P<0.001. Immunohistochemistry indicated that tissues with high Cho/Cr ratios had elevated expression of CD133, nestin, and CD15, relative to low Cho/Cr ratio tissue

  18. Multifaceted Interpretation of Colon Cancer Stem Cells.

    Science.gov (United States)

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-07-05

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but essential to cure the malignant foci completely. Herein, we review the recent evidence for intestinal stem cells and colon cancer stem cells, methods to detect the tumor-initiating cells, and clinical significance of cancer stem cell markers. We also describe the emerging problems of cancer stem cell theory, including bidirectional conversion and intertumoral heterogeneity of stem cell phenotype.

  19. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  20. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  1. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  2. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  3. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  4. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-08-01

    Full Text Available Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs, using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP, caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells.

  5. Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byong Chul [Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang (Korea, Republic of); Yeo, Seung Gu [Dept. of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan (Korea, Republic of)

    2017-09-15

    The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins.

  6. Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

    International Nuclear Information System (INIS)

    Yoo, Byong Chul; Yeo, Seung Gu

    2017-01-01

    The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins

  7. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang, E-mail: brilliant212@163.com; Yang, Xinghai, E-mail: cnspineyang@163.com; Xiao, Jianru, E-mail: jianruxiao83@163.com

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  8. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    Science.gov (United States)

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  10. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology).

    Science.gov (United States)

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-04-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.

  11. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    Science.gov (United States)

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-06

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.

  13. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  14. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  15. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  16. Proteome screening of pleural effusions identifies IL1A as a diagnostic biomarker for non-small cell lung cancer.

    Science.gov (United States)

    Li, Yuanyuan; Lian, Hengning; Jia, Qingzhu; Wan, Ying

    2015-02-06

    Non-small cell lung cancer (NSCLC) is a common malignant disease, and in ~10-20% of patients, pleural effusion is the first symptom. The pleural effusion proteome contains information on pulmonary disease that directly or indirectly reflects pathophysiological status. However, the proteome of pleural effusion in NSCLC patients is not well understood, nor is the variability in protein composition between malignant and benign pleural effusions. Here, we investigated the different proteins in pleural effusions from NSCLC and tuberculosis (TB) patients by using nano-scale liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. In total, 363 proteins were identified in the NSCLC pleural effusion proteome with a low false discovery rate (pleural effusion were involved in cell adhesion, proteolysis, and cell migration. Furthermore, interleukin 1 alpha (IL1A), a protein that regulates tumor growth, angiogenesis, and metastasis, was significantly more abundant in the NSCLC group compared to the TB group, a finding that was validated with an ELISA assay. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    Science.gov (United States)

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  18. Selective expression of long non-coding RNAs in a breast cancer cell progression model.

    Science.gov (United States)

    Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A; Fritz, Andrew J; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2018-02-01

    Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression. © 2017 Wiley Periodicals, Inc.

  19. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  20. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...

  1. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  2. Characterization of transformation related genes in oral cancer cells.

    Science.gov (United States)

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  3. Mechanisms of drug resistance in cancer cells

    International Nuclear Information System (INIS)

    Iqbal, M.P.

    2003-01-01

    Development of drug resist chemotherapy. For the past several years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells. Using different experimental models of cancer, some of the major mechanisms of drug resistance identified in mammalian cells include: (a) Altered transport of the drug (decreased influx of the drug; increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug resistance associated protein)), (b) Increase in total amount of target enzyme/protein (gene amplification), (c) alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene; increased expression of bcl-xl gene). (author)

  4. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  5. Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Han, Jing; Fujisawa, Toshio; Husain, Syed R; Puri, Raj K

    2014-01-01

    Current evidence suggests that initiation, growth, and invasion of cancer are driven by a small population of cancer stem cells (CSC). Previous studies have identified CD44+ cells as cancer stem cells in head and neck squamous cell carcinoma (HNSCC). However, CD44 is widely expressed in most cells in HNSCC tumor samples and several cell lines tested. We previously identified a small population of CD24+/CD44+ cells in HNSCC. In this study, we examined whether this population of cells may represent CSC in HNSCC. CD24+/CD44+ cells from HNSCC cell lines were sorted by flow cytometry, and their phenotype was confirmed by qRT-PCR. Their self-renewal and differentiation properties, clonogenicity in collagen gels, and response to anticancer drugs were tested in vitro. The tumorigenicity potential of CD24+/CD44+ cells was tested in athymic nude mice in vivo. Our results show that CD24+/CD44+ cells possessed stemness characteristics of self-renewal and differentiation. CD24+/CD44+ cells showed higher cell invasion in vitro and made higher number of colonies in collagen gels compared to CD24-/CD44+ HNSCC cells. In addition, the CD24+/CD44+ cells were more chemo-resistant to gemcitabine and cisplatin compared to CD24-/CD44+ cells. In vivo, CD24+/CD44+ cells showed a tendency to generate larger tumors in nude mice compared to CD24-/CD44+ cell population. Our study clearly demonstrates that a distinct small population of CD24+/CD44+ cells is present in HNSCC that shows stem cell-like properties. This distinct small population of cells should be further characterized and may provide an opportunity to target HNSCC CSC for therapy

  6. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  7. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  8. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Abdollahi, H

    2014-01-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  9. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    Science.gov (United States)

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  10. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  11. Development of Single Cell Raman Spectroscopy for Cancer Screening and Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-24

    The overall goal of this project was to develop a new technology for cancer detection based on single cell laser tweezers Raman spectroscopy (LTRS). This method has the potential to improve the detection of cancer characteristics in single cells by acquiring cellular spectral markers that reflect the intrinsic biology of the cell. These spectral biomarkers are a new form of molecular signatures in the field of cancer research that may hold promise in accurately identifying and diagnosing cancer and measuring patient response to treatment. The primary objectives of this proposed work were to perform a full characterization of the Raman spectra of single normal, transformed, and cancer cells to identify cancer spectral signatures, validate the clinical significance of these results by direct correlation to established clinical parameters for assessing cancer, and to develop the optical technology needed for efficient sampling and analysis of cells needed for the practical use of such a system in the clinic. The results indicated that normal T and B lymphocytes could be distinguished from their neoplastic cultured cells and leukemia patient cells with classification sensitivities and specificities routinely exceeding 90% based on multivariate statistical analysis and leave-one-out cross validation. Differences primarily in the Raman peaks associated with DNA and protein were observed between normal and leukemic cells and were consistent for both the cultured and primary cells. Differences between normal and leukemia patient cells were more subtle than between normal and leukemia cultured cells but were still significant to allow for accurate discrimination. Furthermore, it is revealed that the spectral differences are representative of the neoplastic phenotype of the cells and not a reflection of the different metabolic states (resting versus active) of normal and leukemic cells. The effect of different standard cell fixation protocols (i.e. methanol, paraformaledhye

  12. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  13. Gastric stem cells and gastric cancer stem cells

    OpenAIRE

    Han, Myoung-Eun; Oh, Sae-Ock

    2013-01-01

    The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal ev...

  14. Multimodal Nanomedicine Strategies for Targeting Cancer Cells as well as Cancer Stem Cell Signalling Mechanisms.

    Science.gov (United States)

    Kanwar, Jagat R; Samarasinghe, Rasika M; Kamalapuram, Sishir K; Kanwar, Rupinder K

    2017-01-01

    Increasing evidence suggests that stem cells, a small population of cells with unique selfrenewable and tumour regenerative capacity, are aiding tumour re-growth and multidrug resistance. Conventional therapies are highly ineffective at eliminating these cells leading to relapse of disease and formation of chemoresistance tumours. Cancer and stem cells targeted therapies that utilizes nanotherapeutics to delivery anti-cancer drugs to specific sites are continuously investigated. This review focuses on recent research using nanomedicine and targeting entities to eliminate cancer cells and cancer stem cells. Current nanotherapeutics in clinical trials along with more recent publications on targeted therapies are addressed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  16. Drosophila Cancer Models Identify Functional Differences between Ret Fusions.

    Science.gov (United States)

    Levinson, Sarah; Cagan, Ross L

    2016-09-13

    We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Chinese herb derived-Rocaglamide A is a potent inhibitor of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Baochun; Li, Yixiong; Tan, Fengbo; Xiao, Zhanxiang

    2016-01-01

    Pancreatic cancer ranks No.1 in mortality rate worldwide. This study aims to identify the novel anti-pancreatic cancer drugs. Human pancreatic carcinoma cell lines were purchased from ATCC. CPE-based screening assay was used to examine the cell viability. Patient derived tumor xenografts in SCID mice was established. The Caspase-3 and 7 activities were measured using the Caspase Glo 3/7 Assay kit. Soft agar colony formation assay was used to evaluate the colony formation. Wound healing assay was employed to determine the cell migration. We screened a Chinese herbal product library and found three "hits" that kill cancer cells at nanomolar to micromolar concentrations. One of these compounds, rocaglamide, was found to be potent inhibitors of a wide spectrum of pancreatic cancer cell lines. Furthermore, Rocaglamide reduced the tumor size in a patient-derived pancreatic cancer xenograft mouse model without noticeable toxicity in vivo. Rocaglamide also inhibits pancreatic cancer cell migration and invasion. In conclusion, these data support that Rocaglamide may be a promising anti-pancreatic cancer drug.

  18. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  19. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  20. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  1. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    The Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell tumors. That is, the tumors originate in the sperm forming cells in the testicles ( ...

  2. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

    Science.gov (United States)

    Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J

    2016-09-02

    To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.

  3. [Utility of chromosome banding with ALU I enzyme for identifying methylated areas in breast cancer].

    Science.gov (United States)

    Rojas-Atencio, Alicia; Yamarte, Leonard; Urdaneta, Karelis; Soto-Alvarez, Marisol; Alvarez Nava, Francisco; Cañizalez, Jenny; Quintero, Maribel; Atencio, Raquel; González, Richard

    2012-12-01

    Cancer is a group of disorders characterized by uncontrolled cell growth which is produced by two successive events: increased cell proliferation (tumor or neoplasia) and the invasive capacity of these cells (metastasis). DNA methylation is an epigenetic process which has been involved as an important pathogenic factor of cancer. DNA methylation participates in the regulation of gene expression, directly, by preventing the union of transcription factors, and indirectly, by promoting the "closed" structure of the chromatine. The objectives of this study were to identify hypermethyled chromosomal regions through the use of restriction Alu I endonuclease, and to relate cytogenetically these regions with tumor suppressive gene loci. Sixty peripheral blood samples of females with breast cancer were analyzed. Cell cultures were performed and cytogenetic spreads, previously digested with Alu I enzyme, were stained with Giemsa. Chromosomal centromeric and not centromeric regions were stained in 37% of cases. About 96% of stained hypermethyled chromosomal regions (1q, 2q, 6q) were linked with methylated genes associated with breast cancer. In addition, centromeric regions in chromosomes 3, 4, 8, 13, 14, 15 and 17, usually unstained, were found positive to digestion with Alu I enzime and Giemsa staining. We suggest the importance of this technique for the global visualization of the genome which can find methylated genes related to breast cancer, and thus lead to a specific therapy, and therefore a better therapeutic response.

  4. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Ji Xiaoqin; Ji Jiang; Chen Yongbing; Shan Fang; Lu Xueguan

    2014-01-01

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A 549 and H 1299 cells, and the effects of CAF on the radiosensitivity of A 549 and H 1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A 549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H 1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF 2 ) of A 549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF 2 of H 1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A 549 cells and H 1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  5. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  6. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    Science.gov (United States)

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. New use of an old drug: Inhibition of breast cancer stem cells by benztropine mesylate

    OpenAIRE

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells...

  8. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.

    Science.gov (United States)

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.

  9. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  10. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  11. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    Obermayr, E.

    2009-01-01

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author) [de

  12. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET.

    Science.gov (United States)

    Anazawa, Yoshio; Nakagawa, Hidewaki; Furihara, Mutsuo; Ashida, Shingo; Tamura, Kenji; Yoshioka, Hiroki; Shuin, Taro; Fujioka, Tomoaki; Katagiri, Toyomasa; Nakamura, Yusuke

    2005-06-01

    Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.

  13. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations

    DEFF Research Database (Denmark)

    Gravgaard, Karina Hedelund; Terp, Mikkel G; Lund, Rikke R

    2015-01-01

    To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered...... proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4......,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis...

  14. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  15. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  16. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Abbasi Atiya

    2010-09-01

    Full Text Available Abstract Background There has been a long standing interest in the identification of medicinal plants and derived natural products for developing cancer therapeutics. Our study focuses upon pancreatic cancer, due to its high mortality rate, that is attributed in part to the lack of an effective chemotherapeutic agent. Previous reports on the use of medicinal plant extracts either alone or alongside conventional anticancer agents in the treatment of this cancer have shown promising results. This work aims to investigate the therapeutic properties of a library of medicinal plants from Bangladesh. Methods 56 extracts of 44 unique medicinal plants were studied. The extracts were screened for cytotoxicity against the pancreatic adenocarcinoma cell line Panc-1, using a label-free biosensor assay. The top cytotoxic extracts identified in this screen were tested on two additional pancreatic cancer cell lines (Mia-Paca2 and Capan-1 and a fibroblast cell line (Hs68 using an MTT proliferation assay. Finally, one of the most promising extracts was studied using a caspase-3 colorimetric assay to identify induction of apoptosis. Results Crude extracts of Petunia punctata, Alternanthera sessilis, and Amoora chittagonga showed cytotoxicity to three cancer cell lines with IC50 values ranging between 20.3 - 31.4 μg/mL, 13.08 - 34.9 μg/mL, and 42.8 - 49.8 μg/mL, respectively. Furthermore, treatment of Panc-1 cells with Petunia punctata was shown to increase caspase-3 activity, indicating that the observed cytotoxicity was mediated via apoptosis. Only Amoora chittagonga showed low cytotoxicity to fibroblast cells with an IC50 value > 100 μg/mL. Conclusion Based upon the initial screening work reported here, further studies aimed at the identification of active components of these three extracts and the elucidation of their mechanisms as cancer therapeutics are warranted.

  17. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection

    Science.gov (United States)

    Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.

    2018-01-01

    Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515

  18. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  19. Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior.

    Science.gov (United States)

    Wang, Yue; Dong, Li; Cui, Heng; Shen, Dan-hua; Wang, Ying; Chang, Xiao-hong; Fu, Tian-yun; Ye, Xue; Yao, Yuan-yang

    2011-05-01

    Recently, a high frequency of mutations in mitochondrial DNA (mtDNA) has been detected in ovarian cancer. To explore the alterations of proteins in mitochondria in ovarian cancer, a pair of human ovarian carcinoma cell lines (SKOV3/SKOV3.ip1) with different metastatic potentials was examined. Cancer cells SKOV3.ip1 were derived from the ascitic tumor cells of nude mice bearing a tumor of ovarian cancer cells SKOV3. SKOV3.ip1 exhibited a higher degree of migration potential than its paired cell line SKOV3. The proteins in the mitochondria of these two cells were isolated and separated by 2-D gel electrophoresis. The differently expressed proteins were extracted and identified using matrix assisted laser desorption ionisation/time-of-flight/time-of-flight (MALDI-TOF/TOF), and finally a selected protein candidate was further investigated by immunohistochemistry (IHC) method in nude mice bearing tumor tissues of these two cells. A total of 35 spots with different expressions were identified between the two cells using 2D-polyacrylamide gel electrophoresis (PAGE) approach. Among them, 17 spots were detected only in either SKOV3 or SKOV3.ip1 cells. Eighteen spots expressed different levels, with as much as a three-fold difference between the two cells. Twenty spots were analyzed using MALDI-TOF/TOF, and 11 of them were identified successfully; four were known to be located in mitochondria, including superoxide dismutase 2 (SOD2), fumarate hydratase (FH), mitochondrial ribosomal protein L38 (MRPL38), and mRNA turnover 4 homolog (MRTO4). An increased staining of SOD2 was observed in SKOV3.ip1 over that of SKOV3 in IHC analysis. Our results indicate that the enhanced antioxidation and metabolic potentials of ovarian cancer cells might contribute to their aggressive and metastatic behaviors. The underlying mechanism warrants further study.

  20. Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule-1 and enhances natural killer cell sensitivity on cancer cells.

    Science.gov (United States)

    Li, Simin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2017-12-01

    We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) has multiple anticancer effects, including induction of cancer-selective cell death and activation of anticancer immunity. The HVJ-E stimulates dendritic cells to produce cytokines and chemokines such as β-interferon, interleukin-6, chemokine (C-C motif) ligand 5, and chemokine (C-X-C motif) ligand 10, which activate both CD8 + T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ-E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ-E induced the production of intercellular adhesion molecule-1 (ICAM-1, CD54), a ligand of lymphocyte function-associated antigen 1, in several cancer cell lines through the activation of nuclear factor-κB downstream of retinoic acid-inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM-1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM-1 in MDA-MB-231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM-1-depleted MDA-MB-231 cells. In addition, HVJ-E suppressed tumor growth in MDA-MB-231 tumor-bearing SCID mice, and the HVJ-E antitumor effect was impaired when NK cells were depleted by treatment with the anti-asialo GM1 antibody. Our findings suggest that HVJ-E enhances NK cell sensitivity against cancer cells by increasing ICAM-1 expression on the cancer cell surface. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells

    Directory of Open Access Journals (Sweden)

    Izraeli Shai

    2011-09-01

    Full Text Available Abstract Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers.

  2. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  3. Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Mia Kim

    Full Text Available BACKGROUND: Regulatory T cells (Treg expressing the transcription factor forkhead-box protein P3 (Foxp3 have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC. METHODS AND FINDINGS: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival. CONCLUSIONS: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression.

  4. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  5. Mechanoresponsive stem cells to target cancer metastases through biophysical cues.

    Science.gov (United States)

    Liu, Linan; Zhang, Shirley X; Liao, Wenbin; Farhoodi, Henry P; Wong, Chi W; Chen, Claire C; Ségaliny, Aude I; Chacko, Jenu V; Nguyen, Lily P; Lu, Mengrou; Polovin, George; Pone, Egest J; Downing, Timothy L; Lawson, Devon A; Digman, Michelle A; Zhao, Weian

    2017-07-26

    Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  7. DPEP1, expressed in the early stages of colon carcinogenesis, affects cancer cell invasiveness.

    Science.gov (United States)

    Toiyama, Yuji; Inoue, Yasuhiro; Yasuda, Hiromi; Saigusa, Susumu; Yokoe, Takeshi; Okugawa, Yoshinaga; Tanaka, Koji; Miki, Chikao; Kusunoki, Masato

    2011-02-01

    We investigated changes in the gene expression profile in colon cancer in order to identify gene markers that may be useful in the management of this disease. The Cancer Genome Anatomy Project was used to detect differences in gene expression between normal and cancer tissue. The overexpression of dipeptidase-1 (DPEP1) in cancer tissue was confirmed in a sample of 76 patients by real-time PCR. To identify the function of DPEP1, RNA interference (RNAi) was used to inactivate this gene in the colon cancer cell line. Immunohistochemical analysis was performed to characterize the pattern of DPEP1 expression in colon cancer. DPEP1 expression in cancer was significantly higher than that in normal tissue. However, DPEP1 expression decreased with pathological differentiation, lymph-node and distant metastasis. Patients with tumors with decreased DPEP1 expression showed a poorer prognosis, and this was also true of patients with tumors who are treated with curative intent. RNAi-mediated DPEP1 reduction in the colon cancer cell line did not result in cell proliferation or apoptosis, but was associated with an increased invasive ability. DPEP1 protein was observed on the apical side of the cancer cells, and is expressed in the early stages of carcinogenesis, even in adenomas of both sporadic colorectal cancer and familial adenomatous polyposis patients. DPEP1 expression in normal colonic mucosa is very low, but it is highly expressed in colorectal adenoma and cancer specimens and is negatively correlated with parameters of pathological aggressiveness and poor prognosis. DPEP1 is expressed in the early stages of colon carcinogenesis and affects cancer cell invasiveness.

  8. Identification of novel LRH-1 target genes in breast cancer cells

    OpenAIRE

    Zhao, Zhe

    2017-01-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) plays important roles in embryonic development, lipid homeostasis and steroidogenesis, and has been implicated in driving several cancers. In breast cancer, LRH-1 is expressed in tumour epithelial cells of invasive ductal carcinomas. We hypothesized that LRH-1 regulates epithelial cell proliferation and invasiveness to drive breast tumour progression. The overall goal of this study was to identify molecular mechanisms regulated by L...

  9. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  10. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  11. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  12. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  13. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  14. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  15. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC-1.

    Science.gov (United States)

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-05-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC-1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC-1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC-1 cells, metabolome analysis of the invaded PANC-1 compared with the whole cultured PANC-1 was performed using CE-TOFMS, and concentrations of 110 metabolites were measured. In contrast to the whole cultured cells, the invaded PANC-1 was characterized as a population with reduced levels of amino acids and TCA cycle intermediates, and decreased and increased intermediates in glycolysis and nucleic acid metabolism. In particular, the ratio of both adenosine and guanosine energy charge was reduced in the invaded cells, revealing that the consumption of ATP and GTP was high in the invaded cells, and thus suggesting that ATP- or GTP-generating pathways are stimulated. In addition, the GSH/GSSG ratio was low in the invaded cells, but these cells had a higher surviving fraction after exposure to hydrogen peroxide. Thus, the invaded cells were the population resistant to oxidative stress. Furthermore, reduction in intracellular GSH content inhibited PANC-1 invasiveness, indicated that GSH has an important role in PANC-1 invasiveness. Overall, we propose the invaded cells have several unique metabolic profiles. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  17. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Hao Yumei; He Xin; Song Naling

    2013-01-01

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  18. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Olga Bajenova

    Full Text Available Сarcinoembryonic antigen (CEA, CEACAM5, CD66 is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8 and CEA negative (MIP 101 colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated. They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis.

  19. Imaging Reporters for Proteasome Activity Identify Tumor- and Metastasis-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Amanda C. Stacer

    2015-08-01

    Full Text Available Tumor-initiating cells, also designated as cancer stem cells, are proposed to constitute a subpopulation of malignant cells central to tumorigenesis, metastasis, and treatment resistance. We analyzed the activity of the proteasome, the primary organelle for targeted protein degradation, as a marker of tumor- and metastasis-initiating cells. Using human and mouse breast cancer cells expressing a validated fluorescent reporter, we found a small subpopulation of cells with low proteasome activity that divided asymmetrically to produce daughter cells with low or high proteasome activity. Breast cancer cells with low proteasome activity had greater local tumor formation and metastasis in immunocompromised and immunocompetent mice. To allow flexible labeling of cells, we also developed a new proteasome substrate based on HaloTag technology. Patient-derived glioblastoma cells with low proteasome activity measured by the HaloTag reporter show key phenotypes associated with tumor-initiating cells, including expression of a stem cell transcription factor, reconstitution of the original starting population, and enhanced neurosphere formation. We also show that patient-derived glioblastoma cells with low proteasome activity have higher frequency of tumor formation in mouse xenografts. These studies support proteasome function as a tool to investigate tumor- and metastasis-initiating cancer cells and a potential biomarker for outcomes in patients with several different cancers.

  20. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    The SSX family of cancer and germline antigens is mainly expressed in the germ cells of healthy individuals as well as wide range of cancers and is therefore potential targets for immunotherapy. However, little is known about the role of SSX proteins in tumorigenesis and normal cell function. Here......, we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... melanoma cells was severely reduced compared to those derived from the isogenic parental cell line. Cell cycle analysis showed that SSX2 caused an accumulation of cells arrested in G1. Consistent with this, we observed a marked decrease in cells expressing the proliferation marker Ki67 and concomitantly...

  1. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1

    International Nuclear Information System (INIS)

    Li, Juan; Dong, Guoying; Wang, Bo; Gao, Wei; Yang, Qing

    2016-01-01

    SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3′-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, and overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer. - Highlights: • SIRT1 is a novel target of miR-543. • miR-543 promotes gastric cancer cell proliferation and cell cycle progression by targeting SIRT1. • miR-543 is upregulated in GC and positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis. • miR-543 is negatively correlated with SIRT1 expression in gastric cancer tissues.

  2. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  3. miR-16 promotes the apoptosis of human cancer cells by targeting FEAT

    International Nuclear Information System (INIS)

    Liang, Hongwei; Fu, Zheng; Jiang, Xueyuan; Wang, Nan; Wang, Feng; Wang, Xueliang; Zhang, Suyang; Wang, Yanbo; Yan, Xin; Guan, Wen-xian; Zhang, Chen-Yu; Zen, Ke; Zhang, Yujing; Chen, Xi; Zhou, Guangxin

    2015-01-01

    Although human cancers have heterogeneous combinations of altered oncogenes, some crucial genes are universally dysregulated in most cancers. One such gene, FEAT (faint expression in normal tissues, aberrant overexpression in tumors), is uniformly overexpressed in a variety of human cancers and plays an important role in tumorigenesis by suppressing apoptosis. However, the precise molecular mechanism through which FEAT is upregulated during tumorigenesis remains largely unknown. In this study, we used bioinformatic analyses to search for miRNAs that potentially target FEAT. We examined the expression of FEAT protein level by western blotting and miR-16 level by qRT-PCR assay. Cancer cell lines (A549, MCF-7 and Huh-7) with miR-16 upregulation and FEAT silencing were established and the effects on apoptosis of cancer cells in vitro were assessed. Luciferase reporter assay was also performed to investigate the interaction between miR-16 and FEAT. We identified a specific target site for miR-16 in the 3′-untranslated region (3′-UTR) of FEAT. Consistent with the bioinformatic analyses, we identified an inverse correlation between the miR-16 and FEAT protein levels in lung cancer, breast cancer, and hepatocellular cancer tissues. We then experimentally validated miR-16 as a direct regulator of FEAT using cell transfection and luciferase assays. Finally, we demonstrated that the repression of FEAT by miR-16 promoted the apoptosis of cancer cells. Our findings provide the first clues regarding the role of miR-16 as a tumor suppressor in cancer cells through the inhibition of FEAT translation. The online version of this article (doi:10.1186/s12885-015-1458-8) contains supplementary material, which is available to authorized users

  4. TCGA study identifies genomic features of cervical cancer

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have identified novel genomic and molecular characteristics of cervical cancer that will aid in subclassification of the disease and may help target therapies that are most appropriate for each patient.

  5. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity.

    Science.gov (United States)

    Chen, Lin; Zhu, Zhe; Gao, Wei; Jiang, Qixin; Yu, Jiangming; Fu, Chuangang

    2017-09-05

    Insulin-like growth factor 1 receptor (IGF-1R) is proved to contribute the development of many types of cancers. But, little is known about its roles in radio-resistance of colorectal cancer (CRC). Here, we demonstrated that low IGF-1R expression value was associated with the better radiotherapy sensitivity of CRC. Besides, through Quantitative Real-time PCR (qRT-PCR), the elevated expression value of epidermal growth factor receptor (EGFR) was observed in CRC cell lines (HT29, RKO) with high radio-sensitivity compared with those with low sensitivity (SW480, LOVO). The irradiation induced apoptosis rates of wild type and EGFR agonist (EGF) or IGF-1R inhibitor (NVP-ADW742) treated HT29 and SW480 cells were quantified by flow cytometry. As a result, the apoptosis rate of EGF and NVP-ADW742 treated HT29 cells was significantly higher than that of those wild type ones, which indicated that high EGFR and low IGF-1R expression level in CRC was associated with the high sensitivity to radiotherapy. We next conducted systemic bioinformatics analysis of genome-wide expression profiles of CRC samples from the Cancer Genome Atlas (TCGA). Differential expression analysis between IGF-1R and EGFR abnormal CRC samples, i.e. CRC samples with higher IGF-1R and lower EGFR expression levels based on their median expression values, and the rest of CRC samples identified potential genes contribute to radiotherapy sensitivity. Functional enrichment of analysis of those differential expression genes (DEGs) in the Database for Annotation, Visualization and Integrated Discovery (DAVID) indicated PPAR signaling pathway as an important pathway for the radio-resistance of CRC. Our study identified the potential biomarkers for the rational selection of radiotherapy for CRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  8. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    Science.gov (United States)

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  9. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  10. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  11. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    Science.gov (United States)

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  12. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  13. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  14. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  15. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  16. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections

    DEFF Research Database (Denmark)

    Sørensen, Karen Marie Juul; Meldgaard, Theresa; Melchjorsen, Connie Jenning

    2017-01-01

    BACKGROUND: One of the hallmarks of cancer is an altered energy metabolism, and here, mitochondria play a central role. Previous studies have indicated that some mitochondrial ribosomal proteins change their expression patterns upon transformation. METHOD: In this study, we have used the selection...... of recombinant antibody libraries displayed on the surface of filamentous bacteriophage as a proteomics discovery tool for the identification of breast cancer biomarkers. A small subpopulation of breast cells expressing both cytokeratin 19 and cytokeratin 14 was targeted using a novel selection procedure....... RESULTS: We identified the mitochondrial ribosomal protein s18a (Mrps18a) as a protein which is upregulated in breast cancer. However, Mrps18a was not homogeneously upregulated in all cancer cells, suggesting the existence of sub-populations within the tumor. The upregulation was not confined...

  17. Analysis of HP1α regulation in human breast cancer cells

    DEFF Research Database (Denmark)

    Thomsen, Rune; Christensen, Dennis B; Rosborg, Sanne

    2011-01-01

    The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we...... examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin...... immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors...

  18. Extinction models for cancer stem cell therapy

    Science.gov (United States)

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  19. Cancer Cell Hyperactivity and Membrane Dipolarity Monitoring via Raman Mapping of Interfaced Graphene: Toward Non-Invasive Cancer Diagnostics.

    Science.gov (United States)

    Keisham, Bijentimala; Cole, Arron; Nguyen, Phong; Mehta, Ankit; Berry, Vikas

    2016-12-07

    Ultrasensitive detection, mapping, and monitoring of the activity of cancer cells is critical for treatment evaluation and patient care. Here, we demonstrate that a cancer cell's glycolysis-induced hyperactivity and enhanced electronegative membrane (from sialic acid) can sensitively modify the second-order overtone of in-plane phonon vibration energies (2D) of interfaced graphene via a hole-doping mechanism. By leveraging ultrathin graphene's high quantum capacitance and responsive phononics, we sensitively differentiated the activity of interfaced Glioblastoma Multiforme (GBM) cells, a malignant brain tumor, from that of human astrocytes at a single-cell resolution. GBM cell's high surface electronegativity (potential ∼310 mV) and hyperacidic-release induces hole-doping in graphene with a 3-fold higher 2D vibration energy shift of approximately 6 ± 0.5 cm -1 than astrocytes. From molecular dipole-induced quantum coupling, we estimate that the sialic acid density on the cell membrane increases from one molecule per ∼17 nm 2 to one molecule per ∼7 nm 2 . Furthermore, graphene phononic response also identified enhanced acidity of cancer cell's growth medium. Graphene's phonon-sensitive platform to determine interfaced cell's activity/chemistry will potentially open avenues for studying activity of other cancer cell types, including metastatic tumors, and characterizing different grades of their malignancy.

  20. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    Science.gov (United States)

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  2. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  3. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    HER2/neu-positive breast cancer cells have recently been shown to use a unique Warburg-like metabolism for survival and aggressive behavior. These cells exhibit increased fatty acid synthesis and storage compared to normal breast cells or other tumor cells. Disruption of this synthetic process results in apoptosis. Since the addition of physiological doses of exogenous palmitate induces cell death in HER2/neu-positive breast cancer cells, the pathway is likely operating at its limits in these cells. We have studied the response of HER2/neu-positive breast cancer cells to physiological concentrations of exogenous palmitate to identify lipotoxicity-associated consequences of this physiology. Since epidemiological data show that a diet rich in saturated fatty acids is negatively associated with the development of HER2/neu-positive cancer, this cellular physiology may be relevant to the etiology and treatment of the disease. We sought to identify signaling pathways that are regulated by physiological concentrations of exogenous palmitate specifically in HER2/neu-positive breast cancer cells and gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Transcriptional profiling was performed to assess programs that are regulated in HER2-normal MCF7 and HER2/neu-positive SKBR3 breast cancer cells in response to exogenous palmitate. Computational analyses were used to define and predict functional relationships and identify networks that are differentially regulated in the two cell lines. These predictions were tested using reporter assays, fluorescence-based high content microscopy, flow cytometry and immunoblotting. Physiological effects were confirmed in HER2/neu-positive BT474 and HCC1569 breast cancer cell lines. Exogenous palmitate induces functionally distinct transcriptional programs in HER2/neu-positive breast cancer cells. In the lipogenic HER2/neu-positive SKBR3 cell line, palmitate induces a G2 phase cell cycle delay and

  4. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  5. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    International Nuclear Information System (INIS)

    Tang Xiaorong; Yao Ling; Chen Keying; Hu Xiaofang; Xu Lisa; Fan Chunhai

    2009-01-01

    Secretome, the totality of secreted proteins, is viewed as a promising pool of candidate cancer biomarkers. Simple and reliable methods for identifying secreted proteins are highly desired. We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231. A total of 464 proteins were identified. About 63% of the proteins were classified as secreted proteins, including many promising breast cancer biomarkers, which were thought to be correlated with tumorigenesis, tumor development and metastasis. These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling, and can be used to find potential cancer biomarkers with great clinical significance. (authors)

  6. GTSE1 expression represses apoptotic signaling and confers cisplatin resistance in gastric cancer cells

    International Nuclear Information System (INIS)

    Subhash, Vinod Vijay; Tan, Shi Hui; Tan, Woei Loon; Yeo, Mei Shi; Xie, Chen; Wong, Foong Ying; Kiat, Zee Ying; Lim, Robert; Yong, Wei Peng

    2015-01-01

    Platinum based therapy is commonly used in the treatment of advanced gastric cancer. However, resistance to chemotherapy is a major challenge that causes marked variation in individual response rate and survival rate. In this study, we aimed to identify the expression of GTSE1 and its correlation with cisplatin resistance in gastric cancer cells. Methylation profiling was carried out in tissue samples from gastric cancer patients before undergoing neoadjuvent therapy using docetaxel, cisplatin and 5FU (DCX) and in gastric cancer cell lines. The correlation between GTSE1 expression and methylation in gastric cancer cells was determined by RT-PCR and MSP respectively. GTSE1 expression was knocked-down using shRNA’s and its effects on cisplatin cytotoxicity and cell survival were detected by MTS, proliferation and clonogenic survival assays. Additionally, the effect of GTSE1 knock down in drug induced apoptosis was determined by western blotting and apoptosis assays. GTSE1 exhibited a differential methylation index in gastric cancer patients and in cell lines that correlated with DCX treatment response and cisplatin sensitivity, respectively. In-vitro, GTSE1 expression showed a direct correlation with hypomethylation. Interestingly, Cisplatin treatment induced a dose dependent up regulation as well as nuclear translocation of GTSE1 expression in gastric cancer cells. Knock down of GTSE1 enhanced cisplatin cytotoxity and led to a significant reduction in cell proliferation and clonogenic survival. Also, loss of GTSE1 expression caused a significant increase in P53 mediated apoptosis in cisplatin treated cells. Our study identifies GTSE1 as a biomarker for cisplatin resistance in gastric cancer cells. This study also suggests the repressive role of GTSE1 in cisplatin induced apoptosis and signifies its potential utility as a therapeutic target for better clinical management of gastric cancer patients. The online version of this article (doi:10.1186/s12885

  7. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype

    Science.gov (United States)

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Redd, Priscilla S.; Choi, Jeong-Hyeon; Heaton, Christopher M.; Lee, Jeffrey R.; Nayak-Kapoor, Asha; Liu, Kebin

    2016-01-01

    The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells. PMID:27659530

  8. Wnt signaling in cancer stem cells and colon cancer metastasis [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sayon Basu

    2016-04-01

    Full Text Available Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC. The Wnt pathway is a key regulator of both the early and the later, more invasive, stages of CRC development. In the normal intestine and colon, Wnt signaling controls the homeostasis of intestinal stem cells (ISCs that fuel, via proliferation, upward movement of progeny cells from the crypt bottom toward the villus and differentiation into all cell types that constitute the intestine. Studies in recent years suggested that cancer stem cells (CSCs, similar to ISCs of the crypts, consist of a small subpopulation of the tumor and are responsible for the initiation and progression of the disease. Although various ISC signature genes were also identified as CRC markers and some of these genes were even demonstrated to have a direct functional role in CRC development, the origin of CSCs and their contribution to cancer progression is still debated. Here, we describe studies supporting a relationship between Wnt-regulated CSCs and the progression of CRC.

  9. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.

    Science.gov (United States)

    Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C

    2014-10-15

    PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target. ©2014 American Association for Cancer Research.

  10. ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways

    International Nuclear Information System (INIS)

    Wang, Guohui; Yang, Zeng-Quan; Liu, Gang; Wang, Xiaogang; Sethi, Seema; Ali-Fehmi, Rouba; Abrams, Judith; Zheng, Ze; Zhang, Kezhong; Ethier, Stephen

    2012-01-01

    Amplification of the 8p11-12 region has been found in approximately 15% of human breast cancer and is associated with poor prognosis. Previous genomic analysis has led us to identify the endoplasmic reticulum (ER) lipid raft-associated 2 (ERLIN2) gene as one of the candidate oncogenes within the 8p11-12 amplicon in human breast cancer, particularly in the luminal subtype. ERLIN2, an ER membrane protein, has recently been identified as a novel mediator of ER-associated degradation. Yet, the biological roles of ERLIN2 and molecular mechanisms by which ERLIN2 coordinates ER pathways in breast carcinogenesis remain unclear. We established the MCF10A-ERLIN2 cell line, which stably over expresses ERLIN2 in human nontransformed mammary epithelial cells (MCF10A) using the pLenti6/V5-ERLIN2 construct. ERLIN2 over expressing cells and their respective parental cell lines were assayed for in vitro transforming phenotypes. Next, we knocked down the ERLIN2 as well as the ER stress sensor IRE1α activity in the breast cancer cell lines to characterize the biological roles and molecular basis of the ERLIN2 in carcinogenesis. Finally, immunohistochemical staining was performed to detect ERLIN2 expression in normal and cancerous human breast tissues We found that amplification of the ERLIN2 gene and over expression of the ERLIN2 protein occurs in both luminal and Her2 subtypes of breast cancer. Gain- and loss-of-function approaches demonstrated that ERLIN2 is a novel oncogenic factor associated with the ER stress response pathway. The IRE1α/XBP1 axis in the ER stress pathway modulated expression of ERLIN2 protein levels in breast cancer cells. We also showed that over expression of ERLIN2 facilitated the adaptation of breast epithelial cells to ER stress by supporting cell growth and protecting the cells from ER stress-induced cell death. ERLIN2 may confer a selective growth advantage for breast cancer cells by facilitating a cytoprotective response to various cellular stresses

  11. ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways

    Directory of Open Access Journals (Sweden)

    Wang Guohui

    2012-06-01

    Full Text Available Abstract Background Amplification of the 8p11-12 region has been found in approximately 15% of human breast cancer and is associated with poor prognosis. Previous genomic analysis has led us to identify the endoplasmic reticulum (ER lipid raft-associated 2 (ERLIN2 gene as one of the candidate oncogenes within the 8p11-12 amplicon in human breast cancer, particularly in the luminal subtype. ERLIN2, an ER membrane protein, has recently been identified as a novel mediator of ER-associated degradation. Yet, the biological roles of ERLIN2 and molecular mechanisms by which ERLIN2 coordinates ER pathways in breast carcinogenesis remain unclear. Methods We established the MCF10A-ERLIN2 cell line, which stably over expresses ERLIN2 in human nontransformed mammary epithelial cells (MCF10A using the pLenti6/V5-ERLIN2 construct. ERLIN2 over expressing cells and their respective parental cell lines were assayed for in vitro transforming phenotypes. Next, we knocked down the ERLIN2 as well as the ER stress sensor IRE1α activity in the breast cancer cell lines to characterize the biological roles and molecular basis of the ERLIN2 in carcinogenesis. Finally, immunohistochemical staining was performed to detect ERLIN2 expression in normal and cancerous human breast tissues Results We found that amplification of the ERLIN2 gene and over expression of the ERLIN2 protein occurs in both luminal and Her2 subtypes of breast cancer. Gain- and loss-of-function approaches demonstrated that ERLIN2 is a novel oncogenic factor associated with the ER stress response pathway. The IRE1α/XBP1 axis in the ER stress pathway modulated expression of ERLIN2 protein levels in breast cancer cells. We also showed that over expression of ERLIN2 facilitated the adaptation of breast epithelial cells to ER stress by supporting cell growth and protecting the cells from ER stress-induced cell death. Conclusions ERLIN2 may confer a selective growth advantage for breast cancer cells by

  12. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells.

    Science.gov (United States)

    Ramachandran, Mohanraj; Dimberg, Anna; Essand, Magnus

    2017-08-01

    Cell therapy is an advanced form of cancer immunotherapy that has had remarkable clinical progress in the past decade in the search for cure of cancer. Most success has been achieved for chimeric antigen receptor (CAR) T-cells where CAR T-cells targeting CD19 show very high complete response rates for patients with refractory acute B-cell acute lymphoblastic leukemia (ALL) and are close to approval for this indication. CD19 CAR T-cells are also effective against B-cell chronic lymphoblastic leukemia (CLL) and B-cell lymphomas. Although encouraging, CAR T-cells have not yet proven clinically effective for solid tumors. This is mainly due to the lack of specific and homogenously expressed targets to direct the T-cells against and a hostile immunosuppressive tumor microenvironment in solid tumors. Cancer vaccines based on dendritic cells (DC) are also making progress although clinical efficacy is still lacking. The likelihood of success is however increasing now when individual tumors can be sequences and patient-specific neoepitopes identified. Neoepitopes and/or neoantigens can then be included in patient-based DC vaccines. This review discusses recent advancements of DC vaccines and CAR T-cells with emphasis on the cancer-immunity cycle, and current efforts to design novel cell therapies. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  14. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tsz-Lun Yeung

    2016-01-01

    Full Text Available Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment.

  15. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection......, and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...

  16. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells

    DEFF Research Database (Denmark)

    Frankel, Lisa; Christoffersen, Nanna R; Jacobsen, Anders

    2008-01-01

    growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21......MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell...... and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells....

  17. Renal impairment and late toxicity in germ-cell cancer survivors

    DEFF Research Database (Denmark)

    Lauritsen, J.; Mortensen, M. S.; Kier, M. G. G.

    2015-01-01

    cohort of germ-cell cancer survivors. Patients and methods BEP-treated patients (N = 1206) were identified in the Danish DaTeCa database, and merged with national registers to identify late toxicity. GFR were measured (51Cr-EDTA clearance) before and after treatment and at 1, 3 and 5-year follow...

  18. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness

    International Nuclear Information System (INIS)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-01-01

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial-mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer. The online version of this article (doi:10.1186/s12885-015-1780-1) contains supplementary material, which is available to authorized users

  19. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    Science.gov (United States)

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  20. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  1. Identifying colon cancer risk modules with better classification performance based on human signaling network.

    Science.gov (United States)

    Qu, Xiaoli; Xie, Ruiqiang; Chen, Lina; Feng, Chenchen; Zhou, Yanyan; Li, Wan; Huang, Hao; Jia, Xu; Lv, Junjie; He, Yuehan; Du, Youwen; Li, Weiguo; Shi, Yuchen; He, Weiming

    2014-10-01

    Identifying differences between normal and tumor samples from a modular perspective may help to improve our understanding of the mechanisms responsible for colon cancer. Many cancer studies have shown that signaling transduction and biological pathways are disturbed in disease states, and expression profiles can distinguish variations in diseases. In this study, we integrated a weighted human signaling network and gene expression profiles to select risk modules associated with tumor conditions. Risk modules as classification features by our method had a better classification performance than other methods, and one risk module for colon cancer had a good classification performance for distinguishing between normal/tumor samples and between tumor stages. All genes in the module were annotated to the biological process of positive regulation of cell proliferation, and were highly associated with colon cancer. These results suggested that these genes might be the potential risk genes for colon cancer. Copyright © 2013. Published by Elsevier Inc.

  2. Oral epithelial stem cells – implications in normal development and cancer metastasis

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  3. Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hussein Sabit

    2016-01-01

    Full Text Available Colon cancer is the third most commonly diagnosed cancer in the world, and it is the major cause of morbidity and mortality throughout the world. The present study aimed at treating colon cancer cell line (HCT116 with different chemotherapeutic drug/drug combinations (procaine, vorinostat “SAHA,” sodium phenylbutyrate, erlotinib, and carboplatin. Two different final concentrations were applied: 3 μM and 5 μM. Trypan blue test was performed to assess the viability of the cell before and after being treated with the drugs. The data obtained showed that there was a significant decrease in the viability of cells after applying the chemotherapeutic drugs/drug combinations. Also, DNA fragmentation assay was carried out to study the effect of these drugs on the activation of apoptosis-mediated DNA degradation process. The results indicated that all the drugs/drug combinations had a severe effect on inducing DNA fragmentation. Global DNA methylation quantification was performed to identify the role of these drugs individually or in combination in hypo- or hypermethylating the CpG dinucleotide all over the genome of the HCT116 colon cancer cell line. Data obtained indicated that different combinations had different effects in reducing or increasing the level of methylation, which might indicate the effectiveness of combining drugs in treating colon cancer cells.

  4. Critical protein GAPDH and its regulatory mechanisms in cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described

  5. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    Science.gov (United States)

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  6. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  7. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  8. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  9. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  10. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    Science.gov (United States)

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  11. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  12. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kumar Smriti

    2011-09-01

    Full Text Available Abstract Background Ovarian cancer is the leading cause of death from gynecologic cancer in women worldwide. According to the National Cancer Institute, ovarian cancer has the highest mortality rate among all the reproductive cancers in women. Advanced stage diagnosis and chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The most commonly employed chemotherapeutic drug for ovarian cancer treatment is cis-platin. As with most chemotherapeutic drugs, many patients eventually become resistant to cis-platin and therefore, diminishing its effect. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Methods The present study is focused on identifying the differential expression of regulatory microRNAs (miRNAs between cis-platin sensitive (A2780, and cis-platin resistant (A2780/CP70 cell lines. Cell proliferation assays were conducted to test the sensitivity of the two cell lines to cis-platin. Differential expression patterns of miRNA between cis-platin sensitive and cis-platin resistant cell lines were analyzed using novel LNA technology. Results Our results revealed changes in expression of 11 miRNAs out of 1,500 miRNAs analyzed. Out of the 11 miRNAs identified, 5 were up-regulated in the A2780/CP70 cell line and 6 were down regulated as compared to cis-platin sensitive A2780 cells. Our microRNA data was further validated by quantitative real-time PCR for these selected miRNAs. Ingenuity Pathway Analysis (IPA and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis was performed for the selected miRNAs and their putative targets to identify the potential pathways and networks involved in cis-platin resistance. Conclusions Our data clearly showed the differential expression of 11 miRNAs in cis-platin resistant cells, which could potentially target many important pathways including MAPK, TGF-β signaling, actin cytoskeleton, ubiquitin mediated

  13. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  14. Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma.

    Science.gov (United States)

    Wu, Licun; Blum, Walter; Zhu, Chang-Qi; Yun, Zhihong; Pecze, Laszlo; Kohno, Mikihiro; Chan, Mei-Lin; Zhao, Yidan; Felley-Bosco, Emanuela; Schwaller, Beat; de Perrot, Marc

    2018-04-27

    Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to improve the efficacy of treatment in malignant mesothelioma. Murine mesothelioma AB12 and RN5 cells were used to compare tumorigenicity in mice. The expression of CSC-associated genes was evaluated by quantitative real-time PCR in both cell lines treated with chemo-radiation. Stemness properties of MSC-enriched RN5-EOS-Puro2 cells were characterized with flow cytometry and immunostaining. A MSC-specific gene profile was screened by microarray assay and confirmed thereafter. Gene Ontology analysis of the selected genes was performed by GOMiner. Tumor growth delay of murine mesothelioma AB12 cells was achieved after each cycle of cisplatin treatment, however, tumors grew back rapidly due to cancer cell repopulation between courses of chemotherapy. Strikingly, a 10-times lower number of irradiated cells in both cell lines led to a similar tumor incidence and growth rate as with untreated cells. The expression of CSC-associated genes such as CD24, CD133, CD90 and uPAR was dramatically up-regulated, while others did not change significantly after chemoradiation. Highly enriched MSC after selection with puromycin displayed an increasing GFP-positive population and showed typical properties of stemness. Comparatively, the proportion of MSC significantly increased after RN5-EOS parental cells were treated with either chemotherapy, γ-ray radiation, or a combination of the two, while MSC showed more resistance to the above treatments. A group of identified genes are most likely MSC-specific, and major pathways related to regulation of cell growth or apoptosis are involved. Upregulation of the gene transcripts Tnfsf18, Serpinb9b, Ly6a

  15. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs).

    Science.gov (United States)

    Bartosh, Thomas J; Ullah, Mujib; Zeitouni, Suzanne; Beaver, Joshua; Prockop, Darwin J

    2016-10-18

    Patients with breast cancer often develop malignant regrowth of residual drug-resistant dormant tumor cells years after primary treatment, a process defined as cancer relapse. Deciphering the causal basis of tumor dormancy therefore has obvious therapeutic significance. Because cancer cell behavior is strongly influenced by stromal cells, particularly the mesenchymal stem/stromal cells (MSCs) that are actively recruited into tumor-associated stroma, we assessed the impact of MSCs on breast cancer cell (BCC) dormancy. Using 3D cocultures to mimic the cellular interactions of an emerging tumor niche, we observed that MSCs sequentially surrounded the BCCs, promoted formation of cancer spheroids, and then were internalized/degraded through a process resembling the well-documented yet ill-defined clinical phenomenon of cancer cell cannibalism. This suspected feeding behavior was less appreciable in the presence of a rho kinase inhibitor and in 2D monolayer cocultures. Notably, cannibalism of MSCs enhanced survival of BCCs deprived of nutrients but suppressed their tumorigenicity, together suggesting the cancer cells entered dormancy. Transcriptome profiles revealed that the resulting BCCs acquired a unique molecular signature enriched in prosurvival factors and tumor suppressors, as well as inflammatory mediators that demarcate the secretome of senescent cells, also referred to as the senescence-associated secretory phenotype. Overall, our results provide intriguing evidence that cancer cells under duress enter dormancy after cannibalizing MSCs. Importantly, our practical 3D coculture model could provide a valuable tool to understand the antitumor activity of MSCs and cell cannibalism further, and therefore open new therapeutic avenues for the prevention of cancer recurrence.

  16. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  17. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K.

    2013-01-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities

  18. Prospectively Identified Incident Testicular Cancer Risk in a Familial Testicular Cancer Cohort.

    Science.gov (United States)

    Pathak, Anand; Adams, Charleen D; Loud, Jennifer T; Nichols, Kathryn; Stewart, Douglas R; Greene, Mark H

    2015-10-01

    Human testicular germ cell tumors (TGCT) have a strong genetic component and a high familial relative risk. However, linkage analyses have not identified a rare, highly penetrant familial TGCT (FTGCT) susceptibility locus. Currently, multiple low-penetrance genes are hypothesized to underlie the familial multiple-case phenotype. The observation that two is the most common number of affected individuals per family presents an impediment to FTGCT gene discovery. Clinically, the prospective TGCT risk in the multiple-case family context is unknown. We performed a prospective analysis of TGCT incidence in a cohort of multiple-affected-person families and sporadic-bilateral-case families; 1,260 men from 140 families (10,207 person-years of follow-up) met our inclusion criteria. Age-, gender-, and calendar time-specific standardized incidence ratios (SIR) for TGCT relative to the general population were calculated using SEER*Stat. Eight incident TGCTs occurred during prospective FTGCT cohort follow-up (versus 0.67 expected; SIR = 11.9; 95% CI, 5.1-23.4; excess absolute risk = 7.2/10,000). We demonstrate that the incidence rate of TGCT is greater among bloodline male relatives from multiple-case testicular cancer families than that expected in the general population, a pattern characteristic of adult-onset Mendelian cancer susceptibility disorders. Two of these incident TGCTs occurred in relatives of sporadic-bilateral cases (0.15 expected; SIR = 13.4; 95% CI, 1.6-48.6). Our data are the first to indicate that despite relatively low numbers of affected individuals per family, members of both multiple-affected-person FTGCT families and sporadic-bilateral TGCT families comprise high-risk groups for incident testicular cancer. Men at high TGCT risk might benefit from tailored risk stratification and surveillance strategies. ©2015 American Association for Cancer Research.

  19. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  20. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog

    International Nuclear Information System (INIS)

    Tan, Mingyue; Mu, Xingyu; Liu, Zhihong; Tao, Le; Wang, Jun; Ge, Jifu; Qiu, Jianxin

    2017-01-01

    Accumulating evidence has linked deregulation of microRNA-495 (miR-495) to tumorigenesis; however, its function in tumor progression is controversial. This work was undertaken to explore the expression and biological roles of miR-495 in bladder cancer. The expression of miR-495 was examined in 67 pairs of bladder cancer and adjacent normal bladder tissues. The roles of miR-495 in bladder cancer cell proliferation and invasion in vitro and tumorigenesis in vivo were determined. Direct target gene(s) mediating the activity of miR-495 in bladder cancer cells was identified. It was found that miR-495 was expressed at greater levels in bladder tissues and cell lines. High expression of miR-495 was significantly associated with larger tumor size, advanced TNM stage, and lymph node metastasis. Overexpression of miR-495 significantly promoted bladder cancer cell proliferation and invasion, whereas inhibition of miR-495 suppressed cell proliferation and invasion. PTEN, a well-defined tumor suppressor was identified to be a target gene of miR-495. A significant inverse correlation between miR-495 and PTEN expression was noted in bladder cancer tissues (r = −0.3094, P = 0.0125). Overexpression of miR-495 led to reduction of PTEN expression in bladder cancer cells. Rescue experiments showed that enforced expression of PTEN impaired miR-495-mediated bladder cancer proliferation and invasion. In vivo mouse studies demonstrated that overexpression of miR-495 accelerated the growth of subcutaneous bladder cancer xenografts, which was associated with downregulation of PTEN. Overall, these findings indicate that miR-495 upregulation contributes to bladder cancer cell growth, invasion, and tumorigenesis by targeting PTEN and offer a potential therapeutic target for bladder cancer. - Highlights: • miR-495 upregulation induces aggressive phenotype in bladder cancer. • miR-495 is inversely correlated with PTEN in bladder cancer. • miR-495 promotes bladder cancer cell

  2. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells.

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S; Troncoso, Patricia; Maity, Sankar N; Navone, Nora M

    2012-02-01

    To study Wnt/β-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the β-catenin-androgen receptor (AR) interaction. We carried out β-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of β-catenin-mediated transcription), and sequenced the β-catenin gene in MDA prostate cancer 118a, MDA prostate cancer 118b, MDA prostate cancer 2b, and PC-3 prostate cancer cells. We knocked down β-catenin in AR-negative MDA prostate cancer 118b cells and carried out comparative gene-array analysis. We also immunohistochemically analyzed β-catenin and AR in 27 bone metastases of human CRPCs. β-Catenin nuclear accumulation and TOP-flash reporter activity were high in MDA prostate cancer 118b but not in MDA prostate cancer 2b or PC-3 cells. MDA prostate cancer 118a and MDA prostate cancer 118b cells carry a mutated β-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA prostate cancer 118b cells with downregulated β-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant β-catenin. Finally, we found nuclear localization of β-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher's exact test), suggesting that reduced AR expression enables Wnt/β-catenin signaling. We identified a previously unknown downstream target of β-catenin, HAS2, in prostate cancer, and found that high β-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone metastatic prostate cancer. These findings may guide physicians in managing these patients.

  3. Osteoblast-Prostate Cancer Cell Interaction in Prostate Cancer Bone Metastases

    National Research Council Canada - National Science Library

    Navone, Nora

    2001-01-01

    .... This suggests that prostate cancer cells interact with cells from the osteoblastic lineage. To understand the molecular bases of prostatic bone metastases, we established two prostate cancer cell lines, MDA PCa 2a and MDA PCa 2b (1...

  4. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  5. Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG

    Directory of Open Access Journals (Sweden)

    Christina Wefers

    2018-06-01

    Full Text Available Cancer stem cells (CSCs have been identified as the source of tumor growth and disease recurrence. Eradication of CSCs is thus essential to achieve durable responses, but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches that specifically target CSCs will, therefore, be crucial to improve patient outcome. Immunotherapies, which boost the body’s own immune system to eliminate cancerous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells (DCs loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. Importantly, DC vaccination also promotes immunological memory formation, paving the way for long-term cancer control. Here, we propose a DC vaccination that specifically targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining stem cell properties, could evoke a potent anti-tumor immune response against CSCs. We hypothesize that the resulting immunological memory will also control newly formed CSCs, thereby preventing disease recurrence.

  6. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  7. The role of microRNAs in stemness of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Hosseini Rad

    2013-12-01

    Full Text Available Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs. Tumor-initiating cells (T-ICs or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs in many aspects (such as pluripotency and self-renewal, recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs. ncRNAs are classified in two groups: microRNAs (miRNAs and long non-coding RNAs (lncRNAs. miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.

  8. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    Science.gov (United States)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  9. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  10. Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer

    International Nuclear Information System (INIS)

    Fan, Biao; Li, Ying-Ai; Du, Hong; Zhao, Wei; Niu, Zhao-Jian; Lu, Ai-Ping; Li, Ji-You; Ji, Jia-Fu; Zhang, Lian-Hai; Jia, Yong-ning; Zhong, Xi-Yao; Liu, Yi-Qiang; Cheng, Xiao-Jing; Wang, Xiao-Hong; Xing, Xiao-Fang; Hu, Ying

    2012-01-01

    S100A9 was originally discovered as a factor secreted by inflammatory cells. Recently, S100A9 was found to be associated with several human malignancies. The purpose of this study is to investigate S100A9 expression in gastric cancer and explore its role in cancer progression. S100A9 expression in gastric tissue samples from 177 gastric cancer patients was assessed by immunohistochemistry. The expression of its dimerization partner S100A8 and the S100A8/A9 heterodimer were also assessed by the same method. The effect of exogenous S100A9 on motility of gastric cancer cells AGS and BGC-823 was then investigated. S100A9 was specifically expressed by inflammatory cells such as macrophages and neutrophils in human gastric cancer and gastritis tissues. Statistical analysis showed that a high S100A9 cell count (> = 200) per 200x magnification microscopic field in cancer tissues was predictive of early stage gastric cancer. High S100A9-positive cell count was negatively correlated with lymph node metastasis (P = 0.009) and tumor invasion (P = 0.011). S100A9 was identified as an independent prognostic predictor of overall survival of patients with gastric cancer (P = 0.04). Patients with high S100A9 cell count were with favorable prognosis (P = 0.021). Further investigation found that S100A8 distribution in human gastric cancer tissues was similar to S100A9. However, the number of S100A8-positive cells did not positively correlate with patient survival. The inflammatory cells infiltrating cancer were S100A8/A9 negative, while those in gastritis were positive. Furthermore, exogenous S100A9 protein inhibited migration and invasion of gastric cancer cells. Our results suggested S100A9-positive inflammatory cells in gastric cancer tissues are associated with early stage of gastric cancer and good prognosis

  11. The role of CD40 expression in dendritic cells in cancer biology; a systematic review.

    Science.gov (United States)

    Lee, Gui Han; Askari, Alan; Malietzis, George; Bernardo, David; Clark, Susan K; Knight, Stella C; Al-Hassi, Hafid Omar

    2014-01-01

    CD40 is a co-stimulatory molecule belonging to the tumor necrosis factor superfamily and is essential in activation of dendritic cells. Dendritic cells (DCs) are antigen-presenting cells capable of initiating cytotoxic T-lymphocyte immune response against cancer cells. However, there are few studies on the characterization of DCs in cancer, specifically their expression of CD40, despite its implication in cancer immunotherapy. We reviewed available data on the expression of CD40 on DCs in various cancers, and its implications for cancer immunotherapy. A systematic review on CD40 expression on DCs in cancer was performed with reference to preferred reporting items for systematic reviews and meta-analyses (PRISMA). Studies that satisfied the inclusion and exclusion criteria were 21 out of 927. Variations in type and status of the cancers, source of DCs and methodology for detecting CD40 expression amongst the studies resulted in contrasting results. DCs generally expressed low CD40 in tumor infiltrating DCs (tiDCs), in DCs derived by in vitro culture from blood monocytes using cytokine stimulation (MoDCs) and in DCs exposed in vitro to tumor cells lines; the studies suggested that CD40 expression in DCs is impaired in cancer particularly in metastatic disease. However, DCs identified in fresh peripheral blood mononuclear cells (PBMC) expressed higher numbers of CD40 positive cells in some cancer patients, which could be due to tumor-derived factors leading to partially-stimulated DCs. The results provide evidence that some cancer patients may show partial systemic DC activation and expression of increased CD40 in response to the presence of tumor but that such activity may become abortive in the presence of factors produced by the tumor. This review has thus identified key papers on CD40 expression on DCs in various cancers and discusses the limitations and contrasting results of these studies in relation to variations in methodology. The results highlight the need

  12. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  13. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiyan Wang

    Full Text Available A major challenge in the treatment of pancreatic ductal adenocarcinoma is the failure of chemotherapy, which is likely due to the presence of the cancer stem cells (CSCs.To identify side population (SP cells and characterize s-like properties in human pancreatic cancer cell lines (h-PCCLs and to exploit the efficacy of concomitant targeting of multiple key transcription factors governing the stemness of pancreatic CSCs in suppressing CSC-like phenotypes.Flow cytometry and Hoechst 33342 DNA-binding dye efflux assay were used to sort SP and non-SP (NSP cells from three h-PCCLs: PANC-1, SW1990, and BxPc-3. The self-renewal ability, invasiveness, migration and drug resistance of SP cells were evaluated. Expression of CSC marker genes was analyzed. Tumorigenicity was assessed using a xenograft model in nude mice. Effects of a complex decoy oligonucleotide (cdODN-SCO designed to simultaneously targeting Sox2, Oct4 and c-Myc were assessed.CSCs were enriched in the side proportion (SP cells contained in the h-PCCLs and they possessed aggressive growth, invasion, migration and drug-resistance properties, compared with NSP cells. SP cells overexpressed stem cell markers CD133 and ALDH1, pluripotency maintaining factors Nanog, Sox2 and Oct4, oncogenic transcription factor c-Myc, signaling molecule Notch1, and drug resistant gene ABCG2. Moreover, SP cells consistently demonstrated significantly greater tumorigenicity than NSP cells in xenograft model of nude mice. CdODN-SOC efficiently suppressed all CSC properties and phenotypes, and minimized the tumorigenic capability of the SP cells and the resistance to chemotherapy. By comparison, the negative control failed to do so.The findings indicate that targeting the key genes conferring the stemness of CSCs can efficiently eliminate CSC-like phenotypes, and thus may be considered a new approach for cancer therapy. Specifically, the present study establishes the combination of Sox2/Oct4/c-Myc targeting as a

  14. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  15. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838

  16. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1.

    Directory of Open Access Journals (Sweden)

    Ye Seul Kim

    Full Text Available Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1 is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF, histone H3, and the cAMP response element (CRE-binding protein (CREB. In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.

  17. Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer?

    Science.gov (United States)

    Yeh, Albert C; Ramaswamy, Sridhar

    2015-12-01

    Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biologic level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biologic insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. ©2015 American Association for Cancer Research.

  18. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Shan Wang

    2016-03-01

    Full Text Available The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.

  19. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  20. Gastric washing by distilled water can reduce free gastric cancer cells exfoliated into the stomach lumen.

    Science.gov (United States)

    Ohki, Atsuko; Abe, Nobutsugu; Yoshimoto, Eri; Hashimoto, Yoshikazu; Takeuchi, Hirohisa; Nagao, Gen; Masaki, Tadahiko; Mori, Toshiyuki; Ohkura, Yasuo; Sugiyama, Masanori

    2018-04-25

    Intragastric free cancer cells in patients with gastric cancer have rarely been studied. The purpose of this study was to investigate the detection rate of intragastric free cancer cells in gastric washes using two types of solutions during endoscopic examination. We further clarified risk factors affecting the presence of exfoliated free cancer cells. A total of 175 patients with gastric cancer were enrolled. Lactated Ringer's solution (N = 89) or distilled water (DW; N = 86) via endoscopic working channel was sprayed onto the tumor surface, and the resultant fluid was collected for cytological examination. We compared the cancer-cell positivity rate between the two (Ringer and DW) groups. We also tested the correlation between cancer-cell positivity and clinicopathological factors in the Ringer group to identify risk factors for the presence of exfoliated cancer cells. The cancer-cell positivity rate was significantly higher in the Ringer group than that in the DW group (58 vs 6%). Cytomorphology in the Ringer group was well maintained, but not in the DW group. The larger tumor size (≥ 20 mm) and positive lymphatic involvement were significant risk factors of exfoliated free cancer cells. Cancer cells can be highly exfoliated from the tumor surface into the gastric lumen by endoscopic irrigation in large gastric cancer with lymphatic involvement. Gastric washing by DW can lead to cytoclasis of free cancer cells; therefore, it may minimize the possibility of cancer-cell seeding in procedures carrying potential risks of tumor-cell seeding upon transluminal communication, such as endoscopic full-thickness resection and laparoscopy-endoscopy cooperative surgery.

  1. Therapeutic Potential, Challenges and Future Perspective of Cancer Stem Cells in Translational Oncology: A Critical Review.

    Science.gov (United States)

    Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv

    2017-01-01

    Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts.

    Science.gov (United States)

    Liu, Ying; Geng, Yue-Hang; Yang, Hui; Yang, Han; Zhou, Yan-Ting; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-05-04

    Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis. Copyright © 2018. Published by Elsevier B.V.

  3. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    Science.gov (United States)

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  4. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics.

    Science.gov (United States)

    Noto, Zenko; Yoshida, Toshiko; Okabe, Motonori; Koike, Chika; Fathy, Moustafa; Tsuno, Hiroaki; Tomihara, Kei; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2013-08-01

    Cancer may be derived from cancer stem-like cells (CSCs), which are tumor-initiating cells that have properties similar to those of stem cells. Identification and isolation of CSCs needs to be improved further. CSCs markers were examined in human oral cancer cell lines by flow cytometry. The stem cell properties of subpopulations expressing different markers were assessed further by in vitro sphere formation assays, expression of stemness genes, drug resistance assays, and the ability to form tumors in nude mice. We demonstrated that CSCs could be isolated by the cell surface markers CD44 and stage-specific embryonic antigen-4 (SSEA-4). CD44+SSEA-4+ cells exhibited cancer stem-like properties, including extensive self-renewal into the bulk of cancer cells. In vivo xenograft experiments indicated that CD44+SSEA-4+ cells exhibit the highest tumorigenic capacity compared with the remaining subpopulations and parental cells. Double-positive cells for CD44 and SSEA-4 exhibited preferential expression of some stemness genes and were more resistant to the anticancer drugs, cisplatin and 5-fluorouracil (5-FU). In addition, cells expressing CD44 and SSEA-4 were detected in all tumor specimens analyzed, while coexpression of CD44 and SSEA-4 was not detectable in normal oral mucosa. Our findings suggest that CD44+SSEA-4+ cells exhibit the characteristics of CSCs in oral squamous cell carcinoma and provide a target for the development of more effective therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  6. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana

    2015-01-01

    biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SC lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses...... at least partially truncated O-glycans. Overall we identified 499 O-glycoproteins and 1,236 O-glycosites in gastric cancer SCs, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer...... with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to demonstrate that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set...

  7. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  8. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  9. Utilization of genomic signatures to identify phenotype-specific drugs.

    Directory of Open Access Journals (Sweden)

    Seiichi Mori

    2009-08-01

    Full Text Available Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery, we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines. In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000 compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based screens.

  10. EBP1 suppresses growth, migration, and invasion of thyroid cancer cells through upregulating RASAL expression.

    Science.gov (United States)

    Liu, Hongyan; Li, Zhenjie; Li, Liujuan; Peng, Haiying; Zhang, Zhijun

    2015-11-01

    Ebp1, a protein identified by its interactions with the ErbB3 receptor, has been characterized as a negative regulator of cancers. RAS GTPase-activating protein (RasGAP), RASAL1, was recently identified as a major tumor suppressor in thyroid cancer. In this study, we examined EBP1 expression in papillary and follicular thyroid cancer cells. We found that compared with normal thyroid cells, TPC1, WRO, and FTC133 thyroid tumor cells exhibited lower EBP1 expression at messenger RNA (mRNA) and protein levels. We then investigated the effects of forced EBP1 expression on growth, migration, and invasiveness of thyroid tumor cells. By using MTT and Boyden chamber assays, we showed that EBP1 overexpression dramatically reduced growth rate, migration, and invasiveness of K1 and FTC133 thyroid tumor cells. Furthermore, we explored the molecular mechanism underlying the effects of EBP1 on the cells by disclosing the correlation of EBP1 and RASAL1 expression. RASAL expression was elevated in thyroid tumor cells overexpressing EBP1. Knockdown RASAL by transduction of RASAL1 shRNA lentiviral particles markedly reduced RASAL levels with restoration of EBP1, and RASAL1 knockdown abrogated the effects of forced EBP1 expression on cell growth, migration, and invasiveness of thyroid tumor cells. These findings suggest that Ebp1 suppressed thyroid cancer cell lines by upregulating RASRAL expression.

  11. Interactions between household air pollution and GWAS-identified lung cancer susceptibility markers in the Female Lung Cancer Consortium in Asia (FLCCA).

    Science.gov (United States)

    Hosgood, H Dean; Song, Minsun; Hsiung, Chao Agnes; Yin, Zhihua; Shu, Xiao-Ou; Wang, Zhaoming; Chatterjee, Nilanjan; Zheng, Wei; Caporaso, Neil; Burdette, Laurie; Yeager, Meredith; Berndt, Sonja I; Landi, Maria Teresa; Chen, Chien-Jen; Chang, Gee-Chen; Hsiao, Chin-Fu; Tsai, Ying-Huang; Chien, Li-Hsin; Chen, Kuan-Yu; Huang, Ming-Shyan; Su, Wu-Chou; Chen, Yuh-Min; Chen, Chung-Hsing; Yang, Tsung-Ying; Wang, Chih-Liang; Hung, Jen-Yu; Lin, Chien-Chung; Perng, Reury-Perng; Chen, Chih-Yi; Chen, Kun-Chieh; Li, Yao-Jen; Yu, Chong-Jen; Chen, Yi-Song; Chen, Ying-Hsiang; Tsai, Fang-Yu; Kim, Christopher; Seow, Wei Jie; Bassig, Bryan A; Wu, Wei; Guan, Peng; He, Qincheng; Gao, Yu-Tang; Cai, Qiuyin; Chow, Wong-Ho; Xiang, Yong-Bing; Lin, Dongxin; Wu, Chen; Wu, Yi-Long; Shin, Min-Ho; Hong, Yun-Chul; Matsuo, Keitaro; Chen, Kexin; Wong, Maria Pik; Lu, Dara; Jin, Li; Wang, Jiu-Cun; Seow, Adeline; Wu, Tangchun; Shen, Hongbing; Fraumeni, Joseph F; Yang, Pan-Chyr; Chang, I-Shou; Zhou, Baosen; Chanock, Stephen J; Rothman, Nathaniel; Lan, Qing

    2015-03-01

    We previously carried out a multi-stage genome-wide association study (GWAS) on lung cancer among never smokers in the Female Lung Cancer Consortium in Asia (FLCCA) (6,609 cases, 7,457 controls) that identified novel susceptibility loci at 10q25.2, 6q22.2, and 6p21.32, and confirmed two previously identified loci at 5p15.33 and 3q28. Household air pollution (HAP) attributed to solid fuel burning for heating and cooking, is the leading cause of the overall disease burden in Southeast Asia, and is known to contain lung carcinogens. To evaluate the gene-HAP interactions associated with lung cancer in loci independent of smoking, we analyzed data from studies participating in FLCCA with fuel use information available (n = 3; 1,731 cases; 1,349 controls). Coal use was associated with a 30% increased risk of lung cancer (OR 1.3, 95% CI 1.0-1.6). Among the five a priori SNPs identified by our GWAS, two showed a significant interaction with coal use (HLA Class II rs2395185, p = 0.02; TP63 rs4488809 (rs4600802), p = 0.04). The risk of lung cancer associated with coal exposure varied with the respective alleles for these two SNPs. Our observations provide evidence that genetic variation in HLA Class II and TP63 may modify the association between HAP and lung cancer risk. The roles played in the cell cycle and inflammation pathways by the proteins encoded by these two genes provide biological plausibility for these interactions; however, additional replication studies are needed in other non-smoking populations.

  12. T Cells in Gastric Cancer: Friends or Foes

    Science.gov (United States)

    Amedei, Amedeo; Della Bella, Chiara; Silvestri, Elena; Prisco, Domenico; D'Elios, Mario M.

    2012-01-01

    Gastric cancer is the second cause of cancer-related deaths worldwide. Helicobacter pylori is the major risk factor for gastric cancer. As for any type of cancer, T cells are crucial for recognition and elimination of gastric tumor cells. Unfortunately T cells, instead of protecting from the onset of cancer, can contribute to oncogenesis. Herein we review the different types, “friend or foe”, of T-cell response in gastric cancer. PMID:22693525

  13. MiR-133b is frequently decreased in gastric cancer and its overexpression reduces the metastatic potential of gastric cancer cells

    International Nuclear Information System (INIS)

    Zhao, Yu; Zhu, Zhenggang; Huang, Jie; Zhang, Li; Qu, Ying; Li, Jianfang; Yu, Beiqin; Yan, Min; Yu, Yingyan; Liu, Bingya

    2014-01-01

    Emerging evidence has shown that microRNAs are involved in gastric cancer development and progression. Here we examine the role of miR-133b in gastric cancer. Quantitative real-time PCR analysis was performed in 140 patient gastric cancer tissues and 8 gastric cancer cell lines. The effects of miR-133b in gastric cancer cells metastasis were examined by scratch assay, transwell migration and matrigel invasion. In vivo effects of miR-133b were examined in an intraperitoneal mouse tumor model. Targets of miR-133b were predicted by bioinformatics tools and validated by luciferase reporter analyses, western blot, and quantitative real-time PCR. MiR-133b was significantly downregulated in 70% (98/140) of gastric cancer patients. Expression of miR-133b was negatively correlated with lymph node metastasis of gastric cancer in patients. Similarly, the expression of miR-133b was significantly lower in seven tested gastric cancer cell lines than in the immortalized non-cancerous GES-1 gastric epithelial cells. Overexpression of miR-133b markedly inhibited metastasis of gastric cancer cells in vitro and in vivo. Moreover, the transcriptional factor Gli1 was identified as a direct target for miR-133b. Level of Gli1 protein but not mRNA was decreased by miR-133b. Activity of luciferase with Gli1 3′-untranslated region was markedly decreased by miR-133b in gastric cancer cells. Gli1 target genes, OPN and Zeb2, were also inhibited by miR133b. MiR-133b is frequently decreased in gastric cancer. Overexpression of miR-133b inhibits cell metastasis in vitro and in vivo partly by directly suppressing expression of Gli1 protein. These results suggested that miR-133b plays an important role in gastric cancer metastasis

  14. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seznec, Janina; Naumann, Ulrike, E-mail: ulrike.naumann@uni-tuebingen.de [Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, Tuebingen 72076 (Germany)

    2011-06-27

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  15. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    International Nuclear Information System (INIS)

    Seznec, Janina; Naumann, Ulrike

    2011-01-01

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies

  16. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors.

    Science.gov (United States)

    Kortenhorst, Madeleine S Q; Wissing, Michel D; Rodríguez, Ronald; Kachhap, Sushant K; Jans, Judith J M; Van der Groep, Petra; Verheul, Henk M W; Gupta, Anuj; Aiyetan, Paul O; van der Wall, Elsken; Carducci, Michael A; Van Diest, Paul J; Marchionni, Luigi

    2013-09-01

    Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal's website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.

  17. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  18. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  19. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  20. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    Science.gov (United States)

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  1. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin

    Directory of Open Access Journals (Sweden)

    Jacquemont Céline

    2012-04-01

    Full Text Available Abstract Background Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment. Since the Fanconi anemia (FA pathway is a DNA damage response pathway required for cellular resistance to DNA interstrand crosslinking agents, identification of small molecules that inhibit the FA pathway may reveal classes of chemicals that sensitize cancer cells to cisplatin. Results Through a cell-based screening assay of over 16,000 chemicals, we identified 26 small molecules that inhibit ionizing radiation and cisplatin-induced FANCD2 foci formation, a marker of FA pathway activity, in multiple human cell lines. Most of these small molecules also compromised ionizing radiation-induced RAD51 foci formation and homologous recombination repair, indicating that they are not selective toward the regulation of FANCD2. These compounds include known inhibitors of the proteasome, cathepsin B, lysosome, CHK1, HSP90, CDK and PKC, and several uncharacterized chemicals including a novel proteasome inhibitor (Chembridge compound 5929407. Isobologram analyses demonstrated that half of the identified molecules sensitized ovarian cancer cells to cisplatin. Among them, 9 demonstrated increased efficiency toward FA pathway-proficient, cisplatin-resistant ovarian cancer cells. Six small molecules, including bortezomib (proteasome inhibitor, CA-074-Me (cathepsin B inhibitor and 17-AAG (HSP90 inhibitor, synergized with cisplatin specifically in FA-proficient ovarian cancer cells (2008 + FANCF, but not in FA-deficient isogenic cells (2008. In addition, geldanamycin (HSP90 inhibitor and two CHK1 inhibitors (UCN-01 and SB218078 exhibited a significantly stronger synergism with cisplatin in FA

  2. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  3. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Ahn, Hee-Jin; Kim, Gwangil; Park, Kyung-Soon

    2013-01-01

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway

  4. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ji; Huang, Yijiang [Department of Respiratory Medicine, Hainan General Hospital, Hainan Province (China); Gao, Yunsuo [Equipment Division, Hainan General Hospital, Hainan Province (China); Wu, Haihong; Dong, Wen [Department of Respiratory Medicine, Hainan General Hospital, Hainan Province (China); Liu, Lina, E-mail: echoliun@hotmail.com [Department of Ophthalmology, Hainan Eye Hospital, ZhongShan Ophthalmic Centre, Sun Yat-Sen University, Hainan Province (China)

    2016-04-01

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-catenin phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.

  5. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    International Nuclear Information System (INIS)

    Li, Ji; Huang, Yijiang; Gao, Yunsuo; Wu, Haihong; Dong, Wen; Liu, Lina

    2016-01-01

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-catenin phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.

  6. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance

    DEFF Research Database (Denmark)

    Alvero, Ayesha B; Chen, Rui; Fu, Han-Hsuan

    2009-01-01

    A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk...... to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor. Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique...... of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence...

  7. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Fournie

    2011-03-01

    Full Text Available The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity.

  8. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    International Nuclear Information System (INIS)

    Gross, Emilie; Quillet-Mary, Anne; Ysebaert, Loic; Laurent, Guy; Fournie, Jean-Jacques

    2011-01-01

    The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity

  9. The stem cell division theory of cancer.

    Science.gov (United States)

    López-Lázaro, Miguel

    2018-03-01

    All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the

  10. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  11. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    International Nuclear Information System (INIS)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  12. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J

    2014-11-01

    The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. © 2014 Wiley Periodicals, Inc.

  13. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  14. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  15. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    Science.gov (United States)

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  16. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  17. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    Science.gov (United States)

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.

  18. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  19. Fingerprints in cancer cells

    International Nuclear Information System (INIS)

    Servomaa, K.

    1994-01-01

    Gene research has shown that factors causing cancer, or carcinogens, may leave marks typical of each particular carcinogen (fingerprints) in the genotype of the cell. Radiation, for instance, may leave such fingerprints in a cancer cell. In particular, the discovery of a gene called p53 has yielded much new information on fingerprints. It has been discovered, for example, that toxic fungus and UV-radiation each leave fingerprints in the p53 gene. Based on the detection of fingerprints, it may be possible in the future to tell a cancer patient what factor had trigged the maglinancy

  20. Cell plasticity and heterogeneity in cancer.

    Science.gov (United States)

    Marjanovic, Nemanja D; Weinberg, Robert A; Chaffer, Christine L

    2013-01-01

    Heterogeneity within a given cancer arises from diverse cell types recruited to the tumor and from genetic and/or epigenetic differences amongst the cancer cells themselves. These factors conspire to create a disease with various phenotypes. There are 2 established models of cancer development and progression to metastatic disease. These are the clonal evolution and cancer stem cell models. The clonal evolution theory suggests that successive mutations accumulating in a given cell generate clonal outgrowths that thrive in response to microenvironmental selection pressures, dictating the phenotype of the tumor. The alternative cancer stem cell (CSC) model suggests that cancer cells with similar genetic backgrounds can be hierarchically organized according to their tumorigenic potential. Accordingly, CSCs reside at the apex of the hierarchy and are thought to possess the majority of a cancer's tumor-initiating and metastatic ability. A defining feature of this model is its apparent unidirectional nature, whereby CSCs undergo symmetric division to replenish the CSC pool and irreversible asymmetric division to generate daughter cells (non-CSCs) with low tumorigenic potential. However, evolving evidence supports a new model of tumorigenicity, in which considerable plasticity exists between the non-CSC and CSC compartments, such that non-CSCs can reacquire a CSC phenotype. These findings suggest that some tumors may adhere to a plastic CSC model, in which bidirectional conversions are common and essential components of tumorigenicity. Accumulating evidence surrounding the plasticity of cancer cells, in particular, suggests that aggressive CSCs can be created de novo within a tumor. Given the current focus on therapeutic targeting of CSCs, we discuss the implications of non-CSC-to-CSC conversions on the development of future therapies. © 2012 American Association for Clinical Chemistry

  1. Are Mast Cells MASTers in Cancer?

    Science.gov (United States)

    Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo

    2017-01-01

    Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.

  2. Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells.

    Science.gov (United States)

    Cheng, Wan-Li; Huang, Chien-Yu; Tai, Cheng-Jeng; Chang, Yu-Jia; Hung, Chin-Sheng

    2018-02-01

    Androgen deprivation therapy remains the principal treatment for patients with advanced prostate cancer, though, most patients will eventually develop hormone-refractory prostate cancer (HRPC). Androgen ablation mediated maspin-induction has been identified in cancer patients. However, the role of maspin on the anticancer activity of curcumin derived from turmeric (Curcuma longa) in HRPC cells has not been elucidated. The anticancer action of curcumin in hormone-independent prostate cancer cells (DU145, and PC-3) was determined by measures of cell survival rate. The cause of maspin silencing on the anti-tumor abilities of curcumin in PC-3 cells was evaluated by measures of cell survival rate, cell-cycle distribution, and apoptosis signaling analysis. Our present study showed that PC-3 cells (with higher maspin expression) were more sensitive than DU145 cells to curcumin treatment (with lower maspin expression). RNA interference-mediated maspin silencing reduced curcumin sensitivity of PC-3 cells, as evidenced by reduced apoptotic cell death. After exposure to curcumin, maspin-knockdown cells showed lower expression levels of pro-apoptotic proteins, Bad and Bax, as compared with control cells. Maspin can enhance the sensitivity of HRPC cells to curcumin treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  5. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol.

    Science.gov (United States)

    Cruz, Pamela; Torres, Cristian; Ramírez, María Eugenia; Epuñán, María José; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2010-05-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E(2)) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E(2), and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E(2) in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E(2)-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels.

  6. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.

  7. KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Zhenyu Zhong

    2018-06-01

    Full Text Available The KIAA0100 gene was identified in the human immature myeloid cell line cDNA library. Recent studies have shown that its expression is elevated in breast cancer and associated with more aggressive cancer types as well as poor outcomes. However, its cellular and molecular function is yet to be understood. Here we show that silencing KIAA0100 by siRNA in the breast cancer cell line MDA-MB-231 significantly reduced the cancer cells’ aggressive behavior, including cell aggregation, reattachment, cell metastasis and invasion. Most importantly, silencing the expression of KIAA0100 particularly sensitized the quiescent cancer cells in suspension culture to anoikis. Immunoprecipitation, mass spectrometry and immunofluorescence analysis revealed that KIAA0100 may play multiple roles in the cancer cells, including stabilizing microtubule structure as a microtubule binding protein, and contributing to MDA-MB-231 cells Anoikis resistance by the interaction with stress protein HSPA1A. Our study also implies that the interaction between KIAA0100 and HSPA1A may be targeted for new drug development to specifically induce anoikis cell death in the cancer cell.

  8. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression.

    Science.gov (United States)

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K; Wang, Yang; Yip, Yim Ling; Law, Simon Y K; Chan, Kin Tak; Lee, Nikki P Y; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L M

    2017-02-10

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.

  9. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    Science.gov (United States)

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  10. Dynamics of Cancer Cell near Collagen Fiber Chain

    Science.gov (United States)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  11. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    leading to their activation. The effectiveness of PAM against SCaBER cells is the highest when it is used immediately after preparation. It is found that the killing effect of PAM decreases gradually over time, depending on the dose of plasma exposure. Hydrogen peroxide is known as one of the most stable and impactful ROS in biological systems. Measurements show that the plasma pencil generates a significant amount of hydrogen peroxide in PAM. Interestingly, the concentration of hydrogen peroxide in PAM decreases gradually over time, which correlates well with the decrease of PAM effectiveness with storage time. While the effects of PAM treatment on cancerous epithelial cell lines have been studied, much less is known about the interaction of PAM with normal epithelial cells. Effects of PAM on non-cancerous Madin-Darby Canine kidney (MDCK) epithelial cells indicates that MDCK cells are much more robust than SCaBER cells against PAM treatment. The dose of PAM, which causes a widespread death in SCaBER cells, does not significantly impact viability and morphology of MDCK cells. Time-lapse imaging of normal cells shows that PAM treatment inhibits cell proliferation and random migration. In addition, immunofluorescence staining shows that PAM treatment causes a significant reduction in the nuclear localization of proliferation marker, Ki-67, without any damage to the morphological properties of cells including adhesions and cytoskeleton function. This dissertation clearly demonstrates the capability of PAM treatment in inducing death in cancerous cells that can be important for cancer therapy. Hydrogen peroxide is identified as an important ROS responsible for the anti-tumor properties of PAM, although much additional work remains to comprehensively understand all the involved ROS/RNS and their role in PAM treatment.

  12. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  13. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure.

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-17

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  14. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  15. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    Science.gov (United States)

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  16. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Directory of Open Access Journals (Sweden)

    Ki Jung Lim

    Full Text Available Cell-penetrating peptides (CPPs have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2 was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57. The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv directed toward a mutated K-ras (G12V. BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  17. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Science.gov (United States)

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  18. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis

    Science.gov (United States)

    Qiu, Jing-Xin; Kim, Edward J.; Yu, Ai-Ming

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer. PMID:27322206

  19. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Blanca L Valle

    Full Text Available Epidemiological studies have shown that the regular use of non-steroidal anti-inflammatory (NSAIDs drugs is associated with a reduced risk of various cancers. In addition, in vitro and experiments in mouse models have demonstrated that NSAIDs decrease tumor initiation and/or progression of several cancers. However, there are limited preclinical studies investigating the effects of NSAIDs in ovarian cancer. Here, we have studied the effects of two NSAIDs, diclofenac and indomethacin, in ovarian cancer cell lines and in a xenograft mouse model. Diclofenac and indomethacin treatment decreased cell growth by inducing cell cycle arrest and apoptosis. In addition, diclofenac and indomethacin reduced tumor volume in a xenograft model of ovarian cancer. To identify possible molecular pathways mediating the effects of NSAID treatment in ovarian cancer, we performed microarray analysis of ovarian cancer cells treated with indomethacin or diclofenac. Interestingly, several of the genes found downregulated following diclofenac or indomethacin treatment are transcriptional target genes of E2F1. E2F1 was downregulated at the mRNA and protein level upon treatment with diclofenac and indomethacin, and overexpression of E2F1 rescued cells from the growth inhibitory effects of diclofenac and indomethacin. In conclusion, NSAIDs diclofenac and indomethacin exert an anti-proliferative effect in ovarian cancer in vitro and in vivo and the effects of NSAIDs may be mediated, in part, by downregulation of E2F1.

  20. A Preclinical Evaluation of Antimycin A as a Potential Antilung Cancer Stem Cell Agent

    Directory of Open Access Journals (Sweden)

    Chi-Tai Yeh

    2013-01-01

    Full Text Available Drug resistance and tumor recurrence are major obstacles in treating lung cancer patients. Accumulating evidence considers lung cancer stem cells (CSCs as the major contributor to these clinical challenges. Agents that can target lung CSCs could potentially provide a more effective treatment than traditional chemotherapy. Here, we utilized the side-population (SP method to isolate lung CSCs from A549 and PC-9 cell lines. Subsequently, a high throughput platform, connectivity maps (CMAPs, was used to identify potential anti-CSC agents. An antibiotic, antimycin A (AMA, was identified as a top candidate. SP A549 cells exhibited an elevated stemness profile, including Nanog, β-catenin, Sox2, and CD133, and increased self-renewal ability. AMA treatment was found to suppress β-catenin signaling components and tumor sphere formation. Furthermore, AMA treatment decreased the proliferation of gefitinib-resistant PC-9/GR cells and percentage of SP population. AMA demonstrated synergistic suppression of PC-9/GR cell viability when combined with gefitinib. Finally, AMA treatment suppressed tumorigenesis in mice inoculated with A549 SP cells. Collectively, we have identified AMA using CMAP as a novel antilung CSC agent, which acts to downregulate β-catenin signaling. The combination of AMA and targeted therapeutic agents could be considered for overcoming drug resistance and relapse in lung cancer patients.

  1. In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, A S

    2007-05-21

    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5\\' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49\\/79 primary prostate adenocarcinoma and 7\\/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5\\/37 benign prostatic hyperplasia (P < 0.0001) and in 0\\/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.

  2. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall

  3. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  4. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  5. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  6. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  7. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  8. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Science.gov (United States)

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  9. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  10. Anti-Proliferative Effects of Siegesbeckia orientalis Ethanol Extract on Human Endometrial RL-95 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2014-12-01

    Full Text Available Endometrial cancer is a common malignancy of the female genital tract. This study demonstrates that Siegesbeckia orientalis ethanol extract (SOE significantly inhibited the proliferation of RL95-2 human endometrial cancer cells. Treating RL95-2 cells with SOE caused cell arrest in the G2/M phase and induced apoptosis of RL95-2 cells by up-regulating Bad, Bak and Bax protein expression and down-regulation of Bcl-2 and Bcl-xL protein expression. Treatment with SOE increased protein expression of caspase-3, -8 and -9 dose-dependently, indicating that apoptosis was through the intrinsic and extrinsic apoptotic pathways. Moreover, SOE was also effective against A549 (lung cancer, Hep G2 (hepatoma, FaDu (pharynx squamous cancer, MDA-MB-231 (breast cancer, and especially on LNCaP (prostate cancer cell lines. In total, 10 constituents of SOE were identified by Gas chromatography-mass analysis. Caryophyllene oxide and caryophyllene are largely responsible for most cytotoxic activity of SOE against RL95-2 cells. Overall, this study suggests that SOE is a promising anticancer agent for treating endometrial cancer.

  11. Somatic Cells Become Cancer’s “Starter Dough” | Center for Cancer Research

    Science.gov (United States)

    Cancer stem cells (CSCs) is a term that sparks animated differences of opinions among researchers in the oncology community.  Much of the disagreement comes from the difficulty involved in isolating these cells and manipulating them ex vivo. When putative CSCs are isolated from clinical samples, researchers are unable to retrospectively identify the cell type that suffered the

  12. The Cell-CT 3D Cell Imaging Technology Platform Enables the Detection of Lung Cancer Using the Non-Invasive LuCED Sputum Test

    Science.gov (United States)

    Meyer, Michael G.; Hayenga, Jon; Neumann, Thomas; Katdare, Rahul; Presley, Chris; Steinhauer, David; Bell, Timothy; Lancaster, Christy; Nelson, Alan C.

    2015-01-01

    The war against cancer has yielded important advances in the early diagnosis and treatment of certain cancer types, but the poor detection rate and 5-year survival rate for lung cancer remains little changed over the past 40 years. Early detection through emerging lung cancer screening programs promises the most reliable means of improving mortality. Sputum cytology has been tried without success because sputum contains few malignant cells that are difficult for cytologists to detect. However, research has shown that sputum contains diagnostic malignant cells and could serve as a means of lung cancer detection if those cells could be detected and correctly characterized. Recently, the National Lung Cancer Screening Trial reported that screening by three consecutive low-dose X-ray CT scans provides a 20% reduction in lung cancer mortality compared to chest X-ray. This reduction in mortality, however, comes with an unacceptable false positive rate that increases patient risks and the overall cost of lung cancer screening. This article reviews the LuCED® test for detecting early lung cancer. LuCED is based on patient sputum that is enriched for bronchial epithelial cells. The enriched sample is then processed on the Cell-CT®, which images cells in three dimensions with sub-micron resolution. Algorithms are applied to the 3D cell images to extract morphometric features that drive a classifier to identify cells that have abnormal characteristics. The final status of these candidate abnormal cells is established by the pathologist's manual review. LuCED promotes accurate cell classification which could enable cost effective detection of lung cancer. PMID:26148817

  13. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    International Nuclear Information System (INIS)

    Anastassiou, Dimitris; Rumjantseva, Viktoria; Cheng, Weiyi; Huang, Jianzhong; Canoll, Peter D; Yamashiro, Darrell J; Kandel, Jessica J

    2011-01-01

    The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT). We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics

  14. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  15. Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances.

    Science.gov (United States)

    Sun, Yu; Liu, Jing

    2014-06-01

    Exosomes are 30- to 100-nm, membrane-bound vesicles that are released by most types of cells, including tumor cells. Exosomes contain a great variety of bioactive molecules, including signal peptides, microRNA, lipids, and DNA. In cancer, tumor cells aberrantly secrete large quantities of exosomes to transport paracrine signals or to contribute to tumor-environment interaction at a distance. The goal of this review was to discuss the recent advances on the mechanism of cancer-derived exosomes in tumor regulation. Pertinent articles and abstracts were identified through searches of PubMed for literature published from 1983 to December 2013. Search terms included exosome, tumor, cancer, diagnosis, and therapy. All of the exposed evidence points to communication between cancer cells and their surroundings, either mediated by cancer cell-derived exosomes or by stromal cell-derived exosomes. This communication probably supports tumor proliferation, motility, invasion, angiogenesis, and premetastatic niche preparation. In addition, recent research implies that cancer cell-derived exosomes play a suppressive role in cancer-directed immune response. The biomarkers detected in bodily fluid-derived exosomes imply a potential for exosomes in cancer diagnosis. Also, exosomes could be used as a vehicle to selectively deliver therapeutic nucleic-acid drugs or conventional drugs for tumor therapy. The tolerability and feasibility of cancer exosomes in diagnosis and therapy need to be further evaluated. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  16. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  17. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Science.gov (United States)

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to

  18. MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells.

    Science.gov (United States)

    Zhu, Weimin; Huang, Yijiao; Pan, Qi; Xiang, Pei; Xie, Nanlan; Yu, Hao

    2017-03-01

    Warburg effect is a hallmark of cancer cells. Accumulating evidence suggests that microRNAs (miRs) could regulate such metabolic reprograming. Aberrant expression of miR-98 has been observed in many types of cancers. However, its functions and significance in colon cancer remain largely elusive. To investigate miR-98 expression and the biological functions in colon cancer progression. miR-98 expression levels were determined by quantitative RT-PCR in 215 cases of colon cancer samples. miR-98 mimic or inhibitor was used to test the biological functions in SW480 and HCT116 cells, followed by cell proliferation assay, lactate production, glucose uptake, and cellular ATP levels assay and extracellular acidification rates measurement. Western blot and luciferase assay were used to identify the target of miR-98. miR-98 was significantly down-regulated in colon cancer tissues compared to adjacent colon tissues and acted as a suppressor for Warburg effect in cancer cells. miR-98 inhibited glycolysis by directly targeting hexokinase 2, or HK2, illustrating a novel pathway to mediate Warburg effect of cancer cells. In vitro experiments further indicated that HK2 was involved in miR-98-mediated suppression of glucose uptake, lactate production, and cell proliferation. In addition, we detected HK2 expression in colon cancer tissues and found that the expressions of miR-98 and HK2 were negatively correlated. miR-98 acts as tumor suppressor gene and inhibits Warburg effect in colon cancer cells, which provided potential targets for clinical treatments.

  19. NEDD 4 binding protein 2-like 1 promotes cancer cell invasion in oral squamous cell carcinoma.

    Science.gov (United States)

    Sasahira, Tomonori; Kurihara, Miyako; Nishiguchi, Yukiko; Fujiwara, Rina; Kirita, Tadaaki; Kuniyasu, Hiroki

    2016-08-01

    Head and neck cancer, including oral squamous cell carcinoma, is the sixth most common cancer worldwide. Although cancer cell invasion and metastasis are crucial for tumor progression, detailed molecular mechanisms underlying the invasion and metastasis of oral squamous cell carcinoma are unclear. Comparison of transcriptional profiles using a cDNA microarray demonstrated that N4BP2L1, a novel oncogene expressed by neural precursor cells, is involved in oral squamous cell carcinoma. Expression of N4BP2L1 in oral squamous cell carcinoma is regulated by activation of miR-448 and is higher than in normal oral mucosa. Knockdown of N4BP2L1 and upregulation of miR-448 significantly reduced the invasive potential of oral squamous cell carcinoma cells. We studied N4BP2L1 expression in 187 cases of oral squamous cell carcinoma and found its overexpression to be significantly associated with nodal metastasis (P = 0.0155) and poor prognosis (P = 0.0136). Expression of miR-448 was found to be inversely associated with that of N4BP2L1 (P = 0.0019). Cox proportional hazards analysis identified N4BP2L1 expression as an independent predictor of disease-free survival (P = 0.0349). Our results suggest that N4BP2L1 plays an important role in tumor cell invasion in oral squamous cell carcinoma. Further studies on expression of N4BP2L1 may provide new insight into its function and clarify its potential as biomarker in human oral cancer.

  20. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.

    Science.gov (United States)

    Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao

    2015-01-01

    Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  1. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  2. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  3. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Akkarawut Kowitdamrong

    2013-01-01

    Full Text Available Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS, in which hydroxyl radical (OH∙ was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397 and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473, whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.

  4. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing-Ru Weng

    2017-03-01

    Full Text Available Abstract: Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4′-dimethoxy-3′,5,7-trihydroxyflavone (compound 1, along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50 values ranging from 3.3 μM (MCF-7 to 8.6 μM (SCC4. Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1’s modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2, CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2 and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.

  5. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells

    Directory of Open Access Journals (Sweden)

    Anthony Edwards

    2011-07-01

    Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol, in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy.

  6. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  7. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Science.gov (United States)

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  8. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood.Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels.Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion.Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  9. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  10. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.

    Science.gov (United States)

    Stires, Hillary; Heckler, Mary M; Fu, Xiaoyong; Li, Zhao; Grasso, Catherine S; Quist, Michael J; Lewis, Joseph A; Klimach, Uwe; Zwart, Alan; Mahajan, Akanksha; Győrffy, Balázs; Cavalli, Luciane R; Riggins, Rebecca B

    2018-08-15

    Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. An in vitro co-culture model of esophageal cells identifies ascorbic acid as a modulator of cell competition

    Directory of Open Access Journals (Sweden)

    Gardiner Kristin L

    2011-10-01

    Full Text Available Abstract Background The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for potential chemopreventive agents. Methods One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT was grown in competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D under varying conditions and the outcome of competition measured over 14 days by flow cytometry. Results We demonstrate that ascorbic acid (vitamin C can help squamous cells outcompete Barrett's cells in this system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus. Conclusions This model is able to integrate differential fitness effects on various cell types, allowing us to simultaneously capture effects on interacting cell types without having to perform separate experiments. This model system may be used to screen for new classes of cancer prevention agents designed to modulate the competition between normal and neoplastic cells.

  13. Association analysis identifies 65 new breast cancer risk loci

    OpenAIRE

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer ri...

  14. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria-Martinez, Albert [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat de Barcelona, Barcelona (Spain); Barquinero, Jordi [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Banc de Sang i Teixits, Barcelona (Spain); Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Seoane, Joan [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Medical Oncology program, Vall d' Hebron Institute of Oncology, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Poupon, Marie-France [Institut Curie, Paris (France); Morote, Joan [Universitat Autonoma de Barcelona, Barcelona (Spain); Servei d' Urologia. Hospital Vall d' Hebron, Barcelona (Spain); Reventos, Jaume [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Munell, Francina, E-mail: fmunell@ir.vhebron.net [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  15. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form

  16. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  17. Lichen Secondary Metabolites in Flavocetraria cucullata Exhibit Anti-Cancer Effects on Human Cancer Cells through the Induction of Apoptosis and Suppression of Tumorigenic Potentials

    Science.gov (United States)

    Nguyen, Thanh Thi; Yoon, Somy; Yang, Yi; Lee, Ho-Bin; Oh, Soonok; Jeong, Min-Hye; Kim, Jong-Jin; Yee, Sung-Tae; Crişan, Florin; Moon, Cheol; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2014-01-01

    Lichens are symbiotic organisms which produce distinct secondary metabolic products. In the present study, we tested the cytotoxic activity of 17 lichen species against several human cancer cells and further investigated the molecular mechanisms underlying their anti-cancer activity. We found that among 17 lichens species, F. cucullata exhibited the most potent cytotoxicity in several human cancer cells. High performance liquid chromatography analysis revealed that the acetone extract of F. cucullata contains usnic acid, salazinic acid, Squamatic acid, Baeomycesic acid, d-protolichesterinic acid, and lichesterinic acid as subcomponents. MTT assay showed that cancer cell lines were more vulnerable to the cytotoxic effects of the extract than non-cancer cell lines. Furthermore, among the identified subcomponents, usnic acid treatment had a similar cytotoxic effect on cancer cell lines but with lower potency than the extract. At a lethal dose, treatment with the extract or with usnic acid greatly increased the apoptotic cell population and specifically activated the apoptotic signaling pathway; however, using sub-lethal doses, extract and usnic acid treatment decreased cancer cell motility and inhibited in vitro and in vivo tumorigenic potentials. In these cells, we observed significantly reduced levels of epithelial-mesenchymal transition (EMT) markers and phosphor-Akt, while phosphor-c-Jun and phosphor-ERK1/2 levels were only marginally affected. Overall, the anti-cancer activity of the extract is more potent than that of usnic acid alone. Taken together, F. cucullata and its subcomponent, usnic acid together with additional component, exert anti-cancer effects on human cancer cells through the induction of apoptosis and the inhibition of EMT. PMID:25360754

  18. Dormancy activation mechanism of oral cavity cancer stem cells.

    Science.gov (United States)

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  19. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  20. Effect of constituents from samaras of Austroplenckia populnea (Celastraceae) on human cancer cells.

    Science.gov (United States)

    Caneschi, Carolina Milagres; Muniyappa, Mohan K; Duarte, Lucienir P; Silva, Grácia D F; Dos Santos, Orlando David Henrique; Spillane, Charles; Filho, Sidney Augusto Vieira

    2015-01-01

    Aiming the continuity of the studies of Austroplenckia populnea, Brazilian species of the Celastraceae family, in the present study, it was investigated the effect of crude extracts obtained with ethanol, ethyl acetate and chloroform and two purified constituents, proanthocyanidin A and 4'-O-methylepigallocatechin, both isolated from its samaras, on cancer cell proliferation assays. The human cancer cells lines MCF-7 (ductal breast carcinoma), A549 (lung cancer), HS578T (ductal breast carcinoma) and non-cancer HEK293 (embryonic kidney cells) were treated with different concentrations of extracts and constituents and the effect was observed through the acid phosphatase method. The chemical structures of the purified compounds were identified by the respective IR and (1)H and (13)C nuclear magnetic resonance spectral data. While crude extracts from samaras of the folk medicine A. populnea can trigger cell proliferative effects in human cell lines, the purified compounds (proanthocyanidin A and 4'-O-methyl-epigallocatechin) isolated from the same extracts can have an opposite (anti-proliferative) effect. Based on the results, it was possible to suggest that extracts from samaras of A. populnea should be further investigated for possible cancer-promoting activities; and the active extracts can also represent a source of compounds that have anti-cancer properties.

  1. Cancer stem cells: a metastasizing menace!

    Science.gov (United States)

    Bandhavkar, Saurabh

    2016-04-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  3. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds.

    Science.gov (United States)

    Lin, Hsin-Hung; Lee, Hsiao-Wen; Lin, Ruey-Jen; Huang, Chih-Wei; Liao, Yi-Chun; Chen, Yit-Tsong; Fang, Jim-Min; Lee, Te-Chang; Yu, Alice L; Chang, Huan-Cheng

    2015-09-09

    Quiescent cancer stem cells (CSCs) have long been considered to be a source of tumor initiation. However, identification and isolation of these cells have been hampered by the fact that commonly used fluorescent markers are not sufficiently stable, both chemically and photophysically, to allow tracking over an extended period of time. Here, it is shown that fluorescent nanodiamonds (FNDs) are well suited for this application. Genotoxicity tests of FNDs with comet and micronucleus assays for human fibroblasts and breast cancer cells indicate that the nanoparticles neither cause DNA damage nor impair cell growth. Using AS-B145-1R breast cancer cells as the model cell line for CSC, it is found that the FND labeling outperforms 5-ethynyl-2'-deoxyuridine (EdU) and carboxyfluorescein diacetate succinimidyl ester (CFSE) in regards to its long-term tracking capability (>20 d). Moreover, through a quantification of their stem cell activity by measuring mammosphere-forming efficiencies (MFEs) and self-renewal rates, the FND-positive cells are identified to have an MFE twice as high as that of the FND-negative cells isolated from the same dissociated mammospheres. Thus, the nanoparticle-based labeling technique provides an effective new tool for tracking and finding slow-proliferating/quiescent CSCs in cancer research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Melittin exerts an antitumor effect on non‑small cell lung cancer cells.

    Science.gov (United States)

    Zhang, Su-Fang; Chen, Zhe

    2017-09-01

    Lung cancer accounts for a significant percentage of all cancer‑associated mortalities in men and women, with non‑small cell lung cancer being the most frequently occurring type of lung cancer. Melittin is the principal active component of apitoxin (bee venom) that has been reported to exert anti‑chronic inflammatory and anti‑cancer effects. In the present study, the antitumor effect of melittin was evaluated using in vivo and in vitro analyses. The results demonstrated that melittin significantly inhibited the epidermal growth factor‑induced invasion and migration of non‑small cell lung cancer cells. Subcutaneous injection of melittin at doses of 1 and 10 mg/kg significantly suppressed non‑small cell lung cancer tumor growth by 27 and 61%, respectively. In addition, melittin significantly inhibited the secretion of vascular endothelial growth factor (VEGF) in non‑small cell lung cancer cells. Furthermore, melittin decreased the protein expression of VEGF and hypoxia‑inducible factor 1‑α. Therefore, the antitumor activity of melittin may be associated with the anti‑angiogenic actions of inhibiting the VEGF and hypoxia‑inducible factor signaling pathways.

  5. Identification of copy number variations and translocations in cancer cells from Hi-C data.

    Science.gov (United States)

    Chakraborty, Abhijit; Ay, Ferhat

    2017-10-18

    Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes

  6. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2008-12-01

    Full Text Available Abstract Background Patients diagnosed with lung adenocarcinoma (AD and squamous cell carcinoma (SCC, two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy. Methods MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays. Results Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively. Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette

  7. An immunosurveillance mechanism controls cancer cell ploidy.

    Science.gov (United States)

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  8. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ruth Merkle

    2016-08-01

    Full Text Available Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC, is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO. However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR. The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in

  9. Synthesis and Structure-Activity Relationship of Griseofulvin Analogues as Inhibitors of Centrosomal Clustering in Cancer Cells

    DEFF Research Database (Denmark)

    Rønnest, Mads Holger; Rebacz, Blanka; Markworth, Lene

    2009-01-01

    Griseofulvin was identified as an inhibitor of centrosomal clustering in a recently developed assay. Centrosomal clustering is an important cellular event that enables bipolar mitosis for cancer cell lines harboring supernumerary centrosomes. We report herein the synthesis and SAR of 34 griseoful......Griseofulvin was identified as an inhibitor of centrosomal clustering in a recently developed assay. Centrosomal clustering is an important cellular event that enables bipolar mitosis for cancer cell lines harboring supernumerary centrosomes. We report herein the synthesis and SAR of 34...

  10. To grab the stroma by the horns: from biology to cancer therapy with mesenchymal stem cells.

    Science.gov (United States)

    Droujinine, Ilia A; Eckert, Mark A; Zhao, Weian

    2013-05-01

    Mesenchymal stem or stromal cells (MSCs) are precursor cells that play important roles in tumorigenesis. MSCs are recruited to tumors from local and distant sources to form part of the tumor microenvironment. MSCs influence tumor progression by interacting with cancer cells, endothelial cells, immune cells, and cancer stem cells, in a context-dependent network. This review aims to synthesize this emerging yet controversial field to identify key questions regarding the mechanisms of MSC mobilization and survival in blood; homing to tumors, metastases, and premetastatic sites; spatiotemporal organization and differentiation; and interaction with immune cells and cancer stem cells. Understanding the fundamental biology underlying mesenchymal stem cell and tumor interactions has the potential to inform our knowledge of cancer initiation and progression as well as lead to novel therapeutics for cancer. Furthermore, knowledge of endogenous mechanisms can be used to "program" exogenous MSCs for targeted chemotherapeutic delivery to tumors and metastases. Emerging studies will provide crucial insight into the mechanisms of tumor interactions with the whole organism including MSCs.

  11. STK33 kinase activity is nonessential in KRAS-dependent cancer cells.

    Science.gov (United States)

    Babij, Carol; Zhang, Yihong; Kurzeja, Robert J; Munzli, Anke; Shehabeldin, Amro; Fernando, Manory; Quon, Kim; Kassner, Paul D; Ruefli-Brasse, Astrid A; Watson, Vivienne J; Fajardo, Flordeliza; Jackson, Angela; Zondlo, James; Sun, Yu; Ellison, Aaron R; Plewa, Cherylene A; San, Miguel Tisha; Robinson, John; McCarter, John; Schwandner, Ralf; Judd, Ted; Carnahan, Josette; Dussault, Isabelle

    2011-09-01

    Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. ©2011 AACR.

  12. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs approved by the ... not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) Axitinib Bevacizumab Cabometyx ( ...

  13. Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144

    Directory of Open Access Journals (Sweden)

    Laetitia Nivelle

    2017-11-01

    Full Text Available A new resveratrol dimer (1 called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D and two dimensional (2D nuclear magnetic resonance (NMR analyses including 1H, 13C, heteronuclear single-quantum correlation (HSQC, heteronuclear multiple bond correlation (HMBC, and correlation spectroscopy (COSY as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93% in sufficient amounts (41 mg to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed.

  14. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  15. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  16. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  17. Cancer stem cells: a metastasizing menace!

    International Nuclear Information System (INIS)

    Bandhavkar, Saurabh

    2016-01-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy

  18. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  19. Increased cell motility and invasion upon knockdown of lipolysis stimulated lipoprotein receptor (LSR in SW780 bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Ørntoft Torben F

    2008-07-01

    Full Text Available Abstract Background Mechanisms underlying the malignant development in bladder cancer are still not well understood. Lipolysis stimulated lipoprotein receptor (LSR has previously been found to be upregulated by P53. Furthermore, we have previously found LSR to be differentially expressed in bladder cancer. Here we investigated the role of LSR in bladder cancer. Methods A time course siRNA knock down experiment was performed to investigate the functional role of LSR in SW780 bladder cancer cells. Since LSR was previously shown to be regulated by P53, siRNA against TP53 was included in the experimental setup. We used Affymetrix GeneChips for measuring gene expression changes and we used Ingenuity Pathway Analysis to investigate the relationship among differentially expressed genes upon siRNA knockdown. Results By Ingenuity Pathway analysis of the microarray data from the different timepoints we identified six gene networks containing genes mainly related to the functional categories "cancer", "cell death", and "cellular movement". We determined that genes annotated to the functional category "cellular movement" including "invasion" and "cell motility" were highly significantly overrepresented. A matrigel assay showed that 24 h after transfection the invasion capacity was significantly increased 3-fold (p Conclusion We conclude that LSR may impair bladder cancer cells from gaining invasive properties.

  20. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-01-01

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer