WorldWideScience

Sample records for camera-based seam tracking

  1. Homography-based multiple-camera person-tracking

    Science.gov (United States)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of

  2. Human tracking over camera networks: a review

    Science.gov (United States)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  3. Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-01-01

    Full Text Available This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i moving human detection and tracking, (ii automatic camera calibration, and (iii human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic.

  4. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    Science.gov (United States)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  5. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  6. Multiple-camera tracking: UK government requirements

    Science.gov (United States)

    Hosmer, Paul

    2007-10-01

    The Imagery Library for Intelligent Detection Systems (i-LIDS) is the UK government's new standard for Video Based Detection Systems (VBDS). The standard was launched in November 2006 and evaluations against it began in July 2007. With the first four i-LIDS scenarios completed, the Home Office Scientific development Branch (HOSDB) are looking toward the future of intelligent vision in the security surveillance market by adding a fifth scenario to the standard. The fifth i-LIDS scenario will concentrate on the development, testing and evaluation of systems for the tracking of people across multiple cameras. HOSDB and the Centre for the Protection of National Infrastructure (CPNI) identified a requirement to track targets across a network of CCTV cameras using both live and post event imagery. The Detection and Vision Systems group at HOSDB were asked to determine the current state of the market and develop an in-depth Operational Requirement (OR) based on government end user requirements. Using this OR the i-LIDS team will develop a full i-LIDS scenario to aid the machine vision community in its development of multi-camera tracking systems. By defining a requirement for multi-camera tracking and building this into the i-LIDS standard the UK government will provide a widely available tool that developers can use to help them turn theory and conceptual demonstrators into front line application. This paper will briefly describe the i-LIDS project and then detail the work conducted in building the new tracking aspect of the standard.

  7. Hardware accelerator design for tracking in smart camera

    Science.gov (United States)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  8. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  9. Autonomous Multicamera Tracking on Embedded Smart Cameras

    Directory of Open Access Journals (Sweden)

    Bischof Horst

    2007-01-01

    Full Text Available There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This deployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory, and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our approach has been successfully evaluated on tracking persons at our campus.

  10. Advances in top-down and bottom-up approaches to video-based camera tracking

    OpenAIRE

    Marimón Sanjuán, David

    2007-01-01

    Video-based camera tracking consists in trailing the three dimensional pose followed by a mobile camera using video as sole input. In order to estimate the pose of a camera with respect to a real scene, one or more three dimensional references are needed. Examples of such references are landmarks with known geometric shape, or objects for which a model is generated beforehand. By comparing what is seen by a camera with what is geometrically known from reality, it is possible to recover the po...

  11. Advances in top-down and bottom-up approaches to video-based camera tracking

    OpenAIRE

    Marimón Sanjuán, David; Ebrahimi, Touradj

    2008-01-01

    Video-based camera tracking consists in trailing the three dimensional pose followed by a mobile camera using video as sole input. In order to estimate the pose of a camera with respect to a real scene, one or more three dimensional references are needed. Examples of such references are landmarks with known geometric shape, or objects for which a model is generated beforehand. By comparing what is seen by a camera with what is geometrically known from reality, it is possible to recover the po...

  12. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  13. A new apparatus for track-analysis in nuclear track emulsion based on a CCD-camera device

    International Nuclear Information System (INIS)

    Ganssauge, E.

    1993-01-01

    A CCD camera-based, image-analyzing system for automatic evaluation of nuclear track emulsion chambers is presented. The stage of a normal microscope moves using three remote controlled stepping motors with a step size of 0.25 μm. A CCD-camera is mounted on tope of the microscope in order to register the nuclear emulsion. The camera has a resolution capable of differentiating single emulsion-grains (0.6 μm). The camera picture is transformed from analogue to digital signals and stored by a frame grabber. Some background-picture elements can be eliminated by applying cuts on grey levels. The central computer processes the picture, correlates the single picture points, the coordinates and the grey-levels, such that in the end one has a unique assignment of each picture point to an address on the hard disk for a given plate. After repetition of this procedure for several plates by means of an appropriate software (for instance our vertex program [1]). the coordinates of the points are combined to tracks, and a variety of distributions like pseudorapidity-distributions can be calculated and presented on the terminal. (author)

  14. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  15. A framework for multi-object tracking over distributed wireless camera networks

    Science.gov (United States)

    Gau, Victor; Hwang, Jenq-Neng

    2010-07-01

    In this paper, we propose a unified framework targeting at two important issues in a distributed wireless camera network, i.e., object tracking and network communication, to achieve reliable multi-object tracking over distributed wireless camera networks. In the object tracking part, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping field of views without initial training. To effectively exchange the tracking information among the distributed cameras, we proposed an idle probability based broadcasting method, iPro, which adaptively adjusts the broadcast probability to improve the broadcast effectiveness in a dense saturated camera network. Experimental results for the multi-object tracking demonstrate the promising performance of our approach on real video sequences for cameras with overlapping and non-overlapping views. The modeling and ns-2 simulation results show that iPro almost approaches the theoretical performance upper bound if cameras are within each other's transmission range. In more general scenarios, e.g., in case of hidden node problems, the simulation results show that iPro significantly outperforms standard IEEE 802.11, especially when the number of competing nodes increases.

  16. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Ingram, S; Rao, A; Wendt, R; Castillo, R; Court, L; Yang, J; Beadle, B

    2014-01-01

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  17. The seam visual tracking method for large structures

    Science.gov (United States)

    Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong

    2017-10-01

    In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.

  18. Person and gesture tracking with smart stereo cameras

    Science.gov (United States)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems

  19. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  20. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-07-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  1. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-04-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2 0 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  2. Web Camera Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task

    Directory of Open Access Journals (Sweden)

    Nicholas T. Bott

    2017-06-01

    Full Text Available Background: Web cameras are increasingly part of the standard hardware of most smart devices. Eye movements can often provide a noninvasive “window on the brain,” and the recording of eye movements using web cameras is a burgeoning area of research.Objective: This study investigated a novel methodology for administering a visual paired comparison (VPC decisional task using a web camera.To further assess this method, we examined the correlation between a standard eye-tracking camera automated scoring procedure [obtaining images at 60 frames per second (FPS] and a manually scored procedure using a built-in laptop web camera (obtaining images at 3 FPS.Methods: This was an observational study of 54 clinically normal older adults.Subjects completed three in-clinic visits with simultaneous recording of eye movements on a VPC decision task by a standard eye tracker camera and a built-in laptop-based web camera. Inter-rater reliability was analyzed using Siegel and Castellan's kappa formula. Pearson correlations were used to investigate the correlation between VPC performance using a standard eye tracker camera and a built-in web camera.Results: Strong associations were observed on VPC mean novelty preference score between the 60 FPS eye tracker and 3 FPS built-in web camera at each of the three visits (r = 0.88–0.92. Inter-rater agreement of web camera scoring at each time point was high (κ = 0.81–0.88. There were strong relationships on VPC mean novelty preference score between 10, 5, and 3 FPS training sets (r = 0.88–0.94. Significantly fewer data quality issues were encountered using the built-in web camera.Conclusions: Human scoring of a VPC decisional task using a built-in laptop web camera correlated strongly with automated scoring of the same task using a standard high frame rate eye tracker camera.While this method is not suitable for eye tracking paradigms requiring the collection and analysis of fine-grained metrics, such as

  3. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Sven Fleck

    2006-12-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  4. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Fleck Sven

    2007-01-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  5. Real-time tracking for virtual environments using scaat kalman filtering and unsynchronised cameras

    DEFF Research Database (Denmark)

    Rasmussen, Niels Tjørnly; Störring, Morritz; Moeslund, Thomas B.

    2006-01-01

    This paper presents a real-time outside-in camera-based tracking system for wireless 3D pose tracking of a user’s head and hand in a virtual environment. The system uses four unsynchronised cameras as sensors and passive retroreflective markers arranged in rigid bodies as targets. In order to ach...

  6. ACT-Vision: active collaborative tracking for multiple PTZ cameras

    Science.gov (United States)

    Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet

    2009-04-01

    We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.

  7. Airbag Seams Leave Trails

    Science.gov (United States)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  8. Development of Automated Tracking System with Active Cameras for Figure Skating

    Science.gov (United States)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  9. A line feature-based camera tracking method applicable to nuclear power plant environment

    International Nuclear Information System (INIS)

    Yan, Weida; Ishii, Hirotake; Shimoda, Hiroshi; Izumi, Masanori

    2014-01-01

    Augmented reality, which can support the maintenance and decommissioning work of an NPP to improve efficiency and reduce human error, is expected to be practically used in an NPP. AR has indispensable tracking technology that estimates the 3D position and orientation of users in real time, but because of the complication of the NPP environment, it is difficult for its practial use in the large space of an NPP. This study attempt to develop a tracking method for the practial use in an NPP. Marker tracking is a legacy tracking method, but the preparation work necessary for that method is onerous. Therefore, this study developed and evaluated a natural feature-based camera tracking method that demands less preparation and which is applicable in an NPP environment. This method registers natural features as landmarks. When tracking, the natural features existing in the NPP environment can be registered automatically as landmarks. It is therefore possible to expand the tracking area to cover a wide environment in theory. The evaluation result shows that the proposed tracking method has the possibility to support field work of some kinds in an NPP environment. It is possible to reduce the preparation work necessary for the marker tracking method. (author)

  10. Determination of feature generation methods for PTZ camera object tracking

    Science.gov (United States)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  11. Collaborative 3D Target Tracking in Distributed Smart Camera Networks for Wide-Area Surveillance

    Directory of Open Access Journals (Sweden)

    Xenofon Koutsoukos

    2013-05-01

    Full Text Available With the evolution and fusion of wireless sensor network and embedded camera technologies, distributed smart camera networks have emerged as a new class of systems for wide-area surveillance applications. Wireless networks, however, introduce a number of constraints to the system that need to be considered, notably the communication bandwidth constraints. Existing approaches for target tracking using a camera network typically utilize target handover mechanisms between cameras, or combine results from 2D trackers in each camera into 3D target estimation. Such approaches suffer from scale selection, target rotation, and occlusion, drawbacks typically associated with 2D tracking. In this paper, we present an approach for tracking multiple targets directly in 3D space using a network of smart cameras. The approach employs multi-view histograms to characterize targets in 3D space using color and texture as the visual features. The visual features from each camera along with the target models are used in a probabilistic tracker to estimate the target state. We introduce four variations of our base tracker that incur different computational and communication costs on each node and result in different tracking accuracy. We demonstrate the effectiveness of our proposed trackers by comparing their performance to a 3D tracker that fuses the results of independent 2D trackers. We also present performance analysis of the base tracker along Quality-of-Service (QoS and Quality-of-Information (QoI metrics, and study QoS vs. QoI trade-offs between the proposed tracker variations. Finally, we demonstrate our tracker in a real-life scenario using a camera network deployed in a building.

  12. A Quality Evaluation of Single and Multiple Camera Calibration Approaches for an Indoor Multi Camera Tracking System

    Directory of Open Access Journals (Sweden)

    M. Adduci

    2014-06-01

    Full Text Available Human detection and tracking has been a prominent research area for several scientists around the globe. State of the art algorithms have been implemented, refined and accelerated to significantly improve the detection rate and eliminate false positives. While 2D approaches are well investigated, 3D human detection and tracking is still an unexplored research field. In both 2D/3D cases, introducing a multi camera system could vastly expand the accuracy and confidence of the tracking process. Within this work, a quality evaluation is performed on a multi RGB-D camera indoor tracking system for examining how camera calibration and pose can affect the quality of human tracks in the scene, independently from the detection and tracking approach used. After performing a calibration step on every Kinect sensor, state of the art single camera pose estimators were evaluated for checking how good the quality of the poses is estimated using planar objects such as an ordinate chessboard. With this information, a bundle block adjustment and ICP were performed for verifying the accuracy of the single pose estimators in a multi camera configuration system. Results have shown that single camera estimators provide high accuracy results of less than half a pixel forcing the bundle to converge after very few iterations. In relation to ICP, relative information between cloud pairs is more or less preserved giving a low score of fitting between concatenated pairs. Finally, sensor calibration proved to be an essential step for achieving maximum accuracy in the generated point clouds, and therefore in the accuracy of the produced 3D trajectories, from each sensor.

  13. Multi Camera Multi Object Tracking using Block Search over Epipolar Geometry

    Directory of Open Access Journals (Sweden)

    Saman Sargolzaei

    2000-01-01

    Full Text Available We present strategy for multi-objects tracking in multi camera environment for the surveillance and security application where tracking multitude subjects are of utmost importance in a crowded scene. Our technique assumes partially overlapped multi-camera setup where cameras share common view from different angle to assess positions and activities of subjects under suspicion. To establish spatial correspondence between camera views we employ an epipolar geometry technique. We propose an overlapped block search method to find the interested pattern (target in new frames. Color pattern update scheme has been considered to further optimize the efficiency of the object tracking when object pattern changes due to object motion in the field of views of the cameras. Evaluation of our approach is presented with the results on PETS2007 dataset..

  14. Investigation of subsidence event over multiple seam mining area

    International Nuclear Information System (INIS)

    Kohli, K.K.

    1999-01-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface

  15. Using active contour models for feature extraction in camera-based seam tracking of arc welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren

    2009-01-01

    of the processes requires the extraction of characteristic parameters of the welding groove close to the molten pool, i.e. in an environment dominated by the very intense light emission from the welding arc. The typical industrial solution today is a laser-scanner containing a camera as well as a laser source......In the recent decades much research has been performed in order to allow better control of arc welding processes, but the success has been limited, and the vast majority of the industrial structural welding work is therefore still being made manually. Closed-loop and nearly-closed-loop control...... illuminating the groove by a light curtain and thus allowing details of the groove geometry to be extracted by triangulation. This solution is relatively expensive and must act several centimetres ahead of the molten pool. In addition laser-scanners often show problems when dealing with shiny surfaces...

  16. Principal axis-based correspondence between multiple cameras for people tracking.

    Science.gov (United States)

    Hu, Weiming; Hu, Min; Zhou, Xue; Tan, Tieniu; Lou, Jianguang; Maybank, Steve

    2006-04-01

    Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties: 1) Camera calibration is not needed. 2) Accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise. 3) Based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method.

  17. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.

    Science.gov (United States)

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-08-30

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.

  18. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  19. Java Persistence Dengan JBoss Seam

    OpenAIRE

    Utomo, Wiranto Herry; Istiyanto, Jazi Eko

    2009-01-01

    Seam is based on Java EE, so it satisfies its framework duties in two fundamental ways: 1) Seam  simplifies Java EE: Seam provides a number of  shortcuts and  simplifications  to  the standard  Java EE  framework, making  it  even  easier  to  effectively  use  Java EE web  and business components, 2) Seam extends Java EE: Seam integrates a number of new concepts and tools into the Java EE framework. These extensions b...

  20. Joint Multi-person Detection and Tracking from Overlapping Cameras

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2014-01-01

    We present a system to track the positions of multiple persons in a scene from overlapping cameras. The distinguishing aspect of our method is a novel, two-step approach that jointly estimates person position and track assignment. The proposed approach keeps solving the assignment problem tractable,

  1. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  2. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  3. Multi-person tracking with overlapping cameras in complex, dynamic environments

    NARCIS (Netherlands)

    Liem, M.; Gavrila, D.M.

    2009-01-01

    This paper presents a multi-camera system to track multiple persons in complex, dynamic environments. Position measurements are obtained by carving out the space defined by foreground regions in the overlapping camera views and projecting these onto blobs on the ground plane. Person appearance is

  4. Cluster Tracking with Time-of-Flight Cameras

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, Mads; Kirschmeyer, Martin

    2008-01-01

    We describe a method for tracking people using a time-of-flight camera and apply the method for persistent authentication in a smart-environment. A background model is built by fusing information from intensity and depth images. While a geometric constraint is employed to improve pixel cluster...... coherence and reducing the influence of noise, the EM algorithm (expectation maximization) is used for tracking moving clusters of pixels significantly different from the background model. Each cluster is defined through a statistical model of points on the ground plane. We show the benefits of the time...

  5. Video Surveillance using a Multi-Camera Tracking and Fusion System

    OpenAIRE

    Zhang , Zhong; Scanlon , Andrew; Yin , Weihong; Yu , Li; Venetianer , Péter L.

    2008-01-01

    International audience; Usage of intelligent video surveillance (IVS) systems is spreading rapidly. These systems are being utilized in a wide range of applications. In most cases, even in multi-camera installations, the video is processed independently in each feed. This paper describes a system that fuses tracking information from multiple cameras, thus vastly expanding its capabilities. The fusion relies on all cameras being calibrated to a site map, while the individual sensors remain lar...

  6. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  7. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.

    Science.gov (United States)

    Erdem, Arif Tanju; Ercan, Ali Özer

    2015-02-01

    In a setup where camera measurements are used to estimate 3D egomotion in an extended Kalman filter (EKF) framework, it is well-known that inertial sensors (i.e., accelerometers and gyroscopes) are especially useful when the camera undergoes fast motion. Inertial sensor data can be fused at the EKF with the camera measurements in either the correction stage (as measurement inputs) or the prediction stage (as control inputs). In general, only one type of inertial sensor is employed in the EKF in the literature, or when both are employed they are both fused in the same stage. In this paper, we provide an extensive performance comparison of every possible combination of fusing accelerometer and gyroscope data as control or measurement inputs using the same data set collected at different motion speeds. In particular, we compare the performances of different approaches based on 3D pose errors, in addition to camera reprojection errors commonly found in the literature, which provides further insight into the strengths and weaknesses of different approaches. We show using both simulated and real data that it is always better to fuse both sensors in the measurement stage and that in particular, accelerometer helps more with the 3D position tracking accuracy, whereas gyroscope helps more with the 3D orientation tracking accuracy. We also propose a simulated data generation method, which is beneficial for the design and validation of tracking algorithms involving both camera and inertial measurement unit measurements in general.

  8. PolarTrack: Optical Outside-In Device Tracking that Exploits Display Polarization

    DEFF Research Database (Denmark)

    Rädle, Roman; Jetter, Hans-Christian; Fischer, Jonathan

    2018-01-01

    PolarTrack is a novel camera-based approach to detecting and tracking mobile devices inside the capture volume. In PolarTrack, a polarization filter continuously rotates in front of an off-the-shelf color camera, which causes the displays of observed devices to periodically blink in the camera feed....... The periodic blinking results from the physical characteristics of current displays, which shine polarized light either through an LC overlay to produce images or through a polarizer to reduce light reflections on OLED displays. PolarTrack runs a simple detection algorithm on the camera feed to segment...... displays and track their locations and orientations, which makes PolarTrack particularly suitable as a tracking system for cross-device interaction with mobile devices. Our evaluation of PolarTrack's tracking quality and comparison with state-of-the-art camera-based multi-device tracking showed a better...

  9. Remote removal of an obstruction from FFTF [Fast Flux Test Facility] in-service inspection camera track

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1990-11-01

    Remote techniques and special equipment were used to clear the path of a closed-circuit television camera system that travels on a monorail track around the reactor vessel support arm structure. A tangle of wire-wrapped instrumentation tubing had been inadvertently inserted through a dislocated guide-tube expansion joint and into the camera track area. An externally driven auger device, mounted on the track ahead of the camera to view the procedure, was used to retrieve the tubing. 6 figs

  10. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  11. Thin seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1989-06-01

    Discusses thin seam mining in Poland and its prospects. There were 194 working faces in coal seams to 1.5 m thick in Poland in 1988. Of them, 115 fell on faces with powered supports, 79 on faces with SHC-40 and Valent props; 108 shearer loaders and 45 coal plows were used for longwall mining of thin coal seams. Drilling and blasting was used to mine 21 working faces. Longwall faces in seams to 1.0 m thick gave 2.0% coal output, faces in coal seams 1.01-1.5 m thick gave 12.2% of daily coal output of underground mining. Structure of daily coal output of faces in thin seams was the following: 52 faces below 300 t/day, 42 from 301-500 t/day, 63 from 501 to 1,000 t/day, 17 faces above 1,000 t/day. Prospects for increasing coal output of faces in thin seams are discussed. 7 refs.

  12. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  13. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  14. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  15. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.

    Science.gov (United States)

    Bapat, Akash; Dunn, Enrique; Frahm, Jan-Michael

    2016-11-01

    To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated data with tracking frequencies reaching 56.7 kHz. We further validate the method's accuracy on real-world images collected from a prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

  16. Respiratory motion tracking using Microsoft’s Kinect v2 camera

    Directory of Open Access Journals (Sweden)

    Ernst Floris

    2015-09-01

    Full Text Available In image-guided radiotherapy, monitoring and compensating for respiratory motion is of high importance. We have analysed the possibility to use Microsoft’s Kinect v2 sensor as a low-cost tracking camera. In our experiment, eleven circular markers were printed onto a Lycra shirt and were tracked in the camera’s color image using cross correlation-based template matching. The 3D position of the marker was determined using this information and the mean distance of all template pixels from the sensor. In an experiment with four volunteers (male and female we could demonstrate that real time position tracking is possible in 3D. By averaging over the depth values inside the template, it was possible to increase the Kinect’s depth resolution from 1 mm to 0.1 mm. The noise level was reduced to a standard deviation of 0.4 mm. Temperature sensitivity of the measured depth values was observed for about 10-15 minutes after system start.

  17. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    Science.gov (United States)

    Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith

    2013-05-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.

  18. Compact 3D Camera for Shake-the-Box Particle Tracking

    Science.gov (United States)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  19. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  20. The development of three dimensional inspection and tracking system for the maintenance of pipes in the nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Suk Young; Kim, Chul Jung; Baik, Sung Hoon; Cho, Jai Wan; Park, Seung Kyu

    1999-12-01

    We developed 3D laser camera sensors for weld seam tracking and inspection of radioactive NPP pipes. The developed sensor's optical system adopts the optical triangulation method with the line beam generation and imaging optics. A laser line extraction algorithm accompanying preprocessing of noise reduction has been developed on images captured from the sensor. Experimental results validate the physical accuracy of the sensor hardware and the robustness of the image processing algorithms. A 3D shape reconstruction algorithm from multiple laser lines was proposed and the resulting 3D shape was visualized on the developed 3D graphic program environment utilizing OpenGL graphic libraries. And also, two D.O.F precise servo controlled mechanism was developed. The experimental results on weld seam tracking and inspection tasks show the practical feasibility of the developed sensors and the image processing algorithms. (author)

  1. The development of three dimensional inspection and tracking system for the maintenance of pipes in the nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Suk Young; Kim, Chul Jung; Baik, Sung Hoon; Cho, Jai Wan; Park, Seung Kyu

    1999-12-01

    We developed 3D laser camera sensors for weld seam tracking and inspection of radioactive NPP pipes. The developed sensor's optical system adopts the optical triangulation method with the line beam generation and imaging optics. A laser line extraction algorithm accompanying preprocessing of noise reduction has been developed on images captured from the sensor. Experimental results validate the physical accuracy of the sensor hardware and the robustness of the image processing algorithms. A 3D shape reconstruction algorithm from multiple laser lines was proposed and the resulting 3D shape was visualized on the developed 3D graphic program environment utilizing OpenGL graphic libraries. And also, two D.O.F precise servo controlled mechanism was developed. The experimental results on weld seam tracking and inspection tasks show the practical feasibility of the developed sensors and the image processing algorithms. (author)

  2. Movement-based interaction in camera spaces: a conceptual framework

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas

    2007-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movementbased projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space,...

  3. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  4. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    NARCIS (Netherlands)

    Bouma, H.; Baan, J.; Landsmeer, S.; Kruszynski, K.J.; Antwerpen, G. van; Dijk, J.

    2013-01-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time

  5. Analysis of US underground thin seam mining potential. Volume 1. Text. Final technical report, December 1978. [In thin seams

    Energy Technology Data Exchange (ETDEWEB)

    Pimental, R. A; Barell, D.; Fine, R. J.; Douglas, W. J.

    1979-06-01

    An analysis of the potential for US underground thin seam (< 28'') coal mining is undertaken to provide basic information for use in making a decision on further thin seam mining equipment development. The characteristics of the present low seam mines and their mining methods are determined, in order to establish baseline data against which changes in mine characteristics can be monitored as a function of time. A detailed data base of thin seam coal resources is developed through a quantitative and qualitative analysis at the bed, county and state level. By establishing present and future coal demand and relating demand to production and resources, the market for thin seam coal has been identified. No thin seam coal demand of significance is forecast before the year 2000. Current uncertainty as to coal's future does not permit market forecasts beyond the year 2000 with a sufficient level of reliability.

  6. A Smart Assistant for Shooting Virtual Cinematography with Motion-Tracked Cameras

    OpenAIRE

    Lino , Christophe; Christie , Marc; Ranon , Roberto; Bares , William

    2011-01-01

    International audience; This demonstration shows how an automated assistant encoded with knowledge of cinematography practice can off er suggested viewpoints to a fi lmmaker operating a hand-held motion-tracked virtual camera device. Our system, called Director's Lens, uses an intelligent cinematography engine to compute, at the request of the lmmaker, a set of suitable camera placements for starting a shot that represent semantically and cinematically distinct choices for visualizing the cur...

  7. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    Science.gov (United States)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  8. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    Science.gov (United States)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  9. Online Tracking of Outdoor Lighting Variations for Augmented Reality with Moving Cameras

    OpenAIRE

    Liu , Yanli; Granier , Xavier

    2012-01-01

    International audience; In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key ide...

  10. Long-term tracking of multiple interacting pedestrians using a single camera

    CSIR Research Space (South Africa)

    Keaikitse, M

    2014-11-01

    Full Text Available interacting pedestrians using a single camera Mogomotsi Keaikitse∗, Willie Brink† and Natasha Govender∗ ∗Modelling and Digital Sciences, Council for Scientific and Industrial Research, Pretoria, South Africa †Department of Mathematical Sciences, Stellenbosch...-identified and their tracks extended. Standard, publicly available data sets are used to test the system. I. INTRODUCTION Closed circuit cameras are becoming widespread and preva- lent in cities and towns around the world, indicating that surveillance is an important issue...

  11. Approximate Learning and Inference for Tracking with Non-overlapping Cameras

    NARCIS (Netherlands)

    Zajdel, W.; Kröse, B.; Hamza, M.H.

    2003-01-01

    Tracking with multiple cameras requires partitioning of ob servations from various sensors into trajectories. In this paper we assume that the observations are generated by a hidden, stochastic 'partition' process and propose a hidden Markov model (HMM) as a generative model for the data. The state

  12. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    Science.gov (United States)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  13. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    Science.gov (United States)

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  14. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    Science.gov (United States)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  15. Fast and Practical Head Tracking in Brain Imaging with Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Jensen, Rasmus Ramsbøl

    2013-01-01

    scanners. Particularly in MRI and PET, the newest generation of TOF cameras could become a method of tracking small and large scale patient movement in a fast and user friendly way required in clinical environments. We present a novel methodology for fast tracking from TOF point clouds without the need...

  16. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    Science.gov (United States)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  17. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

    Science.gov (United States)

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-03-14

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

  18. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  19. User-assisted visual search and tracking across distributed multi-camera networks

    Science.gov (United States)

    Raja, Yogesh; Gong, Shaogang; Xiang, Tao

    2011-11-01

    Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.

  20. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  1. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    Science.gov (United States)

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  2. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M; Takahashi, M; Kurita, M; Hirose, Y; Fukui, K [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  3. In-seam seismics for coal

    Energy Technology Data Exchange (ETDEWEB)

    Saviron Cidon, L [OCICARBON, Madrid (Spain)

    1989-11-01

    The project objective is to assess the degree of applicability of in-seam seismic technology in Spanish coal mines for use as a tool to predict the presence of irregularities in coal seams. By the very nature of coal mining, a large number of in-seam seismic research results are put directly to the test by the ensuing underground operations. The statistics from this continuous process of verification in other countries show this method to be extremely successful. Indeed, the use of the method has become habitual and it is recognised as an efficient instrument for aiding the location of faults and other irregularities in coal seams. 3 figs., 2 tabs.

  4. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    Science.gov (United States)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  5. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Yanchao Dong

    2016-07-01

    Full Text Available The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  6. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    National Research Council Canada - National Science Library

    Chen, J; Dixon, W. E; Dawson, D. M; Chitrakaran, V. K

    2004-01-01

    In this paper, a visual servo tracking controller for a wheeled mobile robot (WMR) is developed that utilizes feedback from a monocular camera system that is mounted with a fixed position and orientation...

  7. ROBUST PERSON TRACKING WITH MULTIPLE NON-OVERLAPPING CAMERAS IN AN OUTDOOR ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    S. Hellwig

    2012-07-01

    Full Text Available The aim of our work is to combine multiple cameras for a robust tracking of persons in an outdoor environment. Although surveillance is a well established field, many algorithms apply various constraints like overlapping fields of view or precise calibration of the cameras to improve results. An application of these developed systems in a realistic outdoor environment is often difficult. Our aim is to be widely independent from the camera setup and the observed scene, in order to use existing cameras. Thereby our algorithm needs to be capable to work with both overlapping and non-overlapping fields of views. We propose an algorithm that allows flexible combination of different static cameras with varying properties. Another requirement of a practical application is that the algorithm is able to work online. Our system is able to process the data during runtime and to provide results immediately. In addition to seeking flexibility in the camera setup, we present a specific approach that combines state of the art algorithms in order to be robust to environment influences. We present results that indicate a good performance of our introduced algorithm in different scenarios. We show its robustness to different types of image artifacts. In addition we demonstrate that our algorithm is able to match persons between cameras in a non-overlapping scenario.

  8. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Dong Seop Kim

    2018-03-01

    Full Text Available Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR open database, show that our method outperforms previous works.

  9. People detection and tracking using RGB-D cameras for mobile robots

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2016-09-01

    Full Text Available People detection and tracking is an essential capability for mobile robots in order to achieve natural human–robot interaction. In this article, a human detection and tracking system is designed and validated for mobile robots using color data with depth information RGB-depth (RGB-D cameras. The whole framework is composed of human detection, tracking and re-identification. Firstly, ground points and ceiling planes are removed to reduce computation effort. A prior-knowledge guided random sample consensus fitting algorithm is used to detect the ground plane and ceiling points. All left points are projected onto the ground plane and subclusters are segmented for candidate detection. Meanshift clustering with an Epanechnikov kernel is conducted to partition different points into subclusters. We propose the new idea of spatial region of interest plan view maps which are employed to identify human candidates from point cloud subclusters. Here, a depth-weighted histogram is extracted online to feature a human candidate. Then, a particle filter algorithm is adopted to track the human’s motion. The integration of the depth-weighted histogram and particle filter provides a precise tool to track the motion of human objects. Finally, data association is set up to re-identify humans who are tracked. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  10. CCD camera system for use with a streamer chamber

    International Nuclear Information System (INIS)

    Angius, S.A.; Au, R.; Crawley, G.C.; Djalali, C.; Fox, R.; Maier, M.; Ogilvie, C.A.; Molen, A. van der; Westfall, G.D.; Tickle, R.S.

    1988-01-01

    A system based on three charge-coupled-device (CCD) cameras is described here. It has been used to acquire images from a streamer chamber and consists of three identical subsystems, one for each camera. Each subsystem contains an optical lens, CCD camera head, camera controller, an interface between the CCD and a microprocessor, and a link to a minicomputer for data recording and on-line analysis. Image analysis techniques have been developed to enhance the quality of the particle tracks. Some steps have been made to automatically identify tracks and reconstruct the event. (orig.)

  11. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  12. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    Science.gov (United States)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  13. Collaborative Tracking of Image Features Based on Projective Invariance

    Science.gov (United States)

    Jiang, Jinwei

    In past manned lunar landing missions, such as Apollo 14, spatial disorientation of astronauts substantially compromised the productivities of astronauts, and caused safety and mission success problems. The non-GPS lunar environment has micro-gravity field, and lacks both spatial recognition cues and reference objects which are familiar to the human biological sensors related to spatial recognition (e.g. eyes). Such an environment causes misperceptions of the locations of astronauts and targets and their spatial relations, as well as misperceptions of the heading direction and travel distances of astronauts. These spatial disorientation effects can reduce productivity and cause life risks in lunar manned missions. A navigation system, which is capable of locating astronauts and tracking the movements of them on the lunar surface, is critical for future lunar manned missions where multiple astronauts will traverse more than 100km from the lander or the base station with the assistance from roving vehicle, and need real-time navigation support for effective collaborations among them. Our earlier research to solve these problems dealt with developing techniques to enable a precise, flexible and reliable Lunar Astronaut Spatial Orientation and Information System (LASOIS) capable of delivering real-time navigation information to astronauts on the lunar surface. The LASOIS hardware was a sensor network composed of orbital, ground and on-suit sensors: the Lunar Reconnaissance Orbiter Camera (LROC), radio beacons, the on-suit cameras, and shoe-mounted Inertial Measurement Unit (IMU). The LASOIS software included efficient and robust algorithms for estimating trajectory from IMU signals, generating heading information from imagery acquired from on-suit cameras, and an Extended Kalman Filter (EKF) based approach for integrating these spatial information components to generate the trajectory of an astronaut with meter-level accuracy. Moreover, LASOIS emphasized multi

  14. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  15. Aluminized film, seam sealing tests and observations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The purpose of this work was to investigate various seam sealing techniques, reinforcing methods, fitting installations, seam tolerances and geometric configurations pertinent to an aluminized plastic laminate. The program seeks a successful fabricating method for producing low-diffusion, cylindrical, spar liners to contain pressurized GH{sub 2} and GO{sub 2}. The test plan included: (1) seaming techniques on metallized Mylar film; (2) ``double patches`` for end fittings; (3) stainless steel bulkhead fitting assembly with seals; (4) minimum run tolerance on linear shear seam; (5) peel seam vs. inverted seal seam fabrication.

  16. Video-based Chinese Input System via Fingertip Tracking

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yu

    2012-10-01

    Full Text Available In this paper, we propose a system to detect and track fingertips online and recognize Mandarin Phonetic Symbol (MPS for user-friendly Chinese input purposes. Using fingertips and cameras to replace pens and touch panels as input devices could reduce the cost and improve the ease-of-use and comfort of computer-human interface. In the proposed framework, particle filters with enhanced appearance models are applied for robust fingertip tracking. Afterwards, MPS combination recognition is performed on the tracked fingertip trajectories using Hidden Markov Models. In the proposed system, the fingertips of the users could be robustly tracked. Also, the challenges of entering, leaving and virtual strokes caused by video-based fingertip input can be overcome. Experimental results have shown the feasibility and effectiveness of the proposed work.

  17. Markerless tracking in nuclear power plants. A line segment-based approach

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Kimura, Taro; Tokumaru, Hiroki; Shimoda, Hiroshi; Koda, Yuya

    2017-01-01

    To develop augmented reality-based support systems, a tracking method that measures the camera's position and orientation in real time is indispensable. A relocalization is one step that is used to (re)start the tracking. A line-segment-based relocalization method that uses a RGB-D camera and coarse-to-fine approach was developed and evaluated for this study. In the preparation stage, the target environment is scanned with a RGB-D camera. Line segments are recognized. Then three-dimensional positions of the line segments are calculated, and statistics of the line segments are calculated and stored in a database. In the relocalization stage, a few images that closely resemble the current RGB-D camera image are chosen from the database by comparing the statistics of the line segments. Then the most similar image is chosen using Normalized Cross-Correlation. This coarse-to-fine approach reduces the computational load to find the most similar image. The method was evaluated in the water purification room of the Fugen nuclear power plant. Results showed that the success rate of the relocalization is 93.6% and processing time is 45.7 ms per frame on average, which is promising for practical use. (author)

  18. Moving Target Detection and Active Tracking with a Multicamera Network

    Directory of Open Access Journals (Sweden)

    Long Zhao

    2014-01-01

    Full Text Available We propose a systematic framework for Intelligence Video Surveillance System (IVSS with a multicamera network. The proposed framework consists of low-cost static and PTZ cameras, target detection and tracking algorithms, and a low-cost PTZ camera feedback control algorithm based on target information. The target detection and tracking is realized by fixed cameras using a moving target detection and tracking algorithm; the PTZ camera is manoeuvred to actively track the target from the tracking results of the static camera. The experiments are carried out using practical surveillance system data, and the experimental results show that the systematic framework and algorithms presented in this paper are efficient.

  19. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  20. The relation between district raise in the multiple coal seams and its pillars

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X. [Jiaozuo Institute of Technology, Jiaozuo (China). Dept. of Mining Engineering

    2002-02-01

    Based on the geological condition of multiple coal seams mining in No.8 Colliery of Pingdingshan Coal Group, the behaviours of the front abutment pressure in each of the coal seams and the fixed abutment pressure are observed. The main cause of deformation and damage to the galleries is the increasing value of the valid load coefficient of the surrounding rock. The rational pillar width of the district raise is studied when its two side seams have been mined, and the layout question of district raise in the different set of seams is also studied. The conclusions derived from the study are useful guiding reference for the design of district raise layout in deep multiple coal seams mining. 6 refs., 3 figs., 1 tab.

  1. Effect of Seams on Drape of Fabrics | Sukumar | African Research ...

    African Journals Online (AJOL)

    In this study drape of ten fabrics are analyzed with three types of seams and three stitch densities. Sample without seam is a control sample and drape of seamed samples are compared with control sample to analyse the drape behavior of seamed fabrics. This paper presents a fundamental drape analysis of seamed fabrics ...

  2. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  3. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  4. Characterization of Coal Quality Based On Ash Content From M2 Coal-Seam Group, Muara Enim Formation, South Sumatra Basin

    Directory of Open Access Journals (Sweden)

    Frillia Putri Nasution

    2017-09-01

    Full Text Available Muara Enim Formation is well known as coal-bearing formation in South Sumatra Basin. As coal-bearing formation, this formation was subjects of many integrated study. Muara Enim Formation can be divided into four coal-seam group, M1, M2, M3, and M4. The M2 group comprising of Petai (C, Suban (B, Lower Mangus (A2, and Upper Mangus (A1. Depositional environments of Group M2 is transitional lower delta plain with sub-depositional are crevasse splay and distributary channel. The differentiation of both sub-depositional environments can be caused the quality of coal deposit. One of quality aspects is ash content. This research conducted hopefully can give better understanding of relationship between depositional environments to ash content. Group M2 on research area were found only Seam C, Seam B, and Seam A2, that has distribution from north to central so long as 1400 m. Coal-seam thickness C ranged between 3.25-9.25 m, Seam B range 7.54-13.43 m, and Seam C range 1.53-8.37 m, where all of coal-seams thickening on the central part and thinning-splitting to northern part and southern part. The ash content is formed from burning coal residue material. Ash contents on coal seam caused by organic and inorganic compound which resulted from mixing modified material on surrounded when transportation, sedimentation, and coalification process. There are 27 sample, consists of 9 sample from Seam C, 8 sample from Seam B, and 10 sample from Seam A2. Space grid of sampling is 100-150 m. Ash content influenced by many factors, but in research area, main factor is existence of inorganic parting. Average ash content of Seam C is 6,04%, Seam B is 5,05%, and Seam A2 is 3,8%. Low ash content influenced by settle environment with minor detrital material. High ash content caused by oxidation and erosional process when coalification process. Ash content on coal in research area originated from detritus material carried by channel system into brackish area or originated

  5. Mining the 510 coal seam prone to rock bursts and below a coal support pillar in a seam above

    Energy Technology Data Exchange (ETDEWEB)

    Major, M; Gebala, W

    1983-10-01

    The 510 coal seam, situated at a depth of 760 m below a support pillar left in an overlying coal seam, was mined by a system of longwall faces from 1979 to 1982. The seam was prone to rock bursts. Energy of rock bursts which occurred in the mine ranged from 10/SUP/5 to 10/SUP/6 J. The coal seam, 10 m thick, was mined by slicing. Faces were 140 m long. Stress concentrations caused by the suppport pillar left in the overlying coal seam were calculated. Curves which describe stress fluctuations were plotted. Rock burst hazards were determined by drilling. Drilling intervals depended on hazard degree and position of the test site in relation to the support pillar in the overlying coal seam. The face was 3 m high. Supports used in 2 gate roads were reinforced by steel and timber supports. Strong timber boards were placed at canopies of powered supports used at the working face. The face was situated at an angle of 10 degrees to the pillar axis. In the zone of critical stresses water infusion and shock blasting were used for rock burst prevention. These methods, plus reinforcement of the supports in gate roads and at the working face, guaranteed safe mining and prevented rock bursts. (8 refs.)

  6. Automatic weld torch guidance control system

    Science.gov (United States)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  7. Adaptive DFT-Based Interferometer Fringe Tracking

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2005-12-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  8. Adaptive DFT-Based Interferometer Fringe Tracking

    Directory of Open Access Journals (Sweden)

    Wesley A. Traub

    2005-09-01

    Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  9. Microscopic analysis of the morphology of seams in friction stir welded polypropylene

    Directory of Open Access Journals (Sweden)

    Z. Kiss

    2012-01-01

    Full Text Available Supermolecular structure of welded seams prepared by friction stir welding (FSW of polypropylene sheets has been studied by optical and electron microscopy. It has been shown that in the central parts of the seam spherulitic structures similar to that of the base material are formed, while at the borderline of the seam, a complex supermolecular structure could be identified. Lower welding rotation speed resulted in a border transition zone of more complex feature than the higher rotation speed during FSW. This was accompanied by reduced joint efficiency.

  10. CAMERA-BASED SOFTWARE IN REHABILITATION/THERAPY INTERVENTION (extended)

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2014-01-01

    on specific hardware. Adaptable means that human tracking and created artefact interaction in the camera field of view is relatively easily changed as one desires via a user-friendly GUI. The significance of having both available for contemporary intervention is argued. Conclusions are that the mature, robust...

  11. Design guidelines for multi-seam mining at Elliot Lake

    International Nuclear Information System (INIS)

    Hedley, D.G.F.

    1978-04-01

    With the current expansion in uranium mining, multi-seam mining could again be practised at Elliot Lake as it was in the 1960s. Information on the dimensions of stopes, pillars, and parting zone was gathered from plans and sections of the relevant closed mines. Discussions were held with personnel familiar with these mines to establish instances of pillar, roof, and parting zone failures. Design guidelines are formulated for stope and pillar dimensions in multi-seam mining for a range of orebody configurations using past practice in a back-analysis approach. Constraints imposed by dip and seam thickness on the choice of equipment and mining layout are evaluated. An attempt is made to bring together the engineering aspects, including rock mechanics, of multi-seam mine design with uranium recovery and other economic factors for three alternative mine layouts: single-seam mining, double-seam mining, and seams-and-parting mining. A series of examples are worked through, showing how the design guidelines can be applied for typical orebody configurations

  12. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto, E-mail: kabuki@cr.scphys.kyoto-u.ac.j [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kimura, Hiroyuki; Amano, Hiroo [Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kawashima, Hidekazu [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ueda, Masashi [Radioisotopes Research Labaoratory, Kyoto University Hospital, Kyoto 606-8507 (Japan); Okada, Tomohisa [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki [Department of Radiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji [Application Development Office, Hitachi Medical Corporation, Chiba 277-0804 (Japan); Ogawa, Koichi [Department of Electronic Informatics, Faculty of Engineering, Hosei University, Tokyo 184-8584 (Japan)

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  13. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    Science.gov (United States)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  14. Seam Pucker

    CSIR Research Space (South Africa)

    Galuszynski, S

    1986-05-01

    Full Text Available pucker. The bestexam~leofsucha stitch is the lockstitch lFie.4). Astitch withabilitv to stretch and react to thread contraction without prk&kg ~ i g ~ c a n t changes in stitch length, is unlikely to produce seam pucker. The double locked chain...

  15. Vibration extraction based on fast NCC algorithm and high-speed camera.

    Science.gov (United States)

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.

  16. Towards Sensor-Actuator Coupling in an Automated Order Picking System by Detecting Sealed Seams on Pouch Packed Goods

    Directory of Open Access Journals (Sweden)

    Frank Weichert

    2014-10-01

    Full Text Available In this paper, a novel concept of coupling the actuators of an automated order picking system for pouch packed goods with an embedded CCD camera sensor by means of image processing and machine learning is presented. The picking system mechanically combines the conveyance and singularization of a still-connected chain of pouch packed goods in a single machinery. The proposed algorithms perform a per-frame processing of the captured images in real-time to detect the sealed seams of the ongoing pouches. The detections are used to deduce cutting decisions in order to control the system’s actuators, namely the drive pulley for conveyance and the cutting device for the separation. Within this context, two controlling strategies are presented as well which specify the interaction of the sensor and the actuators. The detection is carried out by two different marker detection strategies: enhanced Template Matching as a heuristic and Support Vector Machines as a supervised classification based concept. Depending on the employed marker, detection rates of almost 100% with a calculation time of less than 40 ms are possible. From a logistic point of view, sealed seam widths of 20 mm prove feasible.

  17. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    Science.gov (United States)

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  18. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    Science.gov (United States)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  19. Effects of clay-seam behavior on WIPP repository design

    International Nuclear Information System (INIS)

    Stone, C.M.; Krieg, R.D.; Branstetter, L.J.

    1981-07-01

    The geology at the southeastern New Mexico WIPP site consists of bedded layers of rock salt, anhydrite, polyhalite, mixtures of those materials, and thin clay seams. In spite of their very small (0.005 m to 0.05 m) thickness, clay seams are important to structural characterization of the WIPP stratigraphy since slip might possibly take place across them. Results of a study to determine the effects of clay seam frictional slip on the closure of a well-defined drift configuration are described. A Mohr-Coulomb dry friction model was used to model the active clay seams. The main thrust of the study was to determine the effects of friction coefficient variability on drift closure. Results show that the drift closure varies by a factor of 3.0 over the range of friction coefficients studied. The maximum slip observed along any clay seam was 0.12 m. For values of μ > .7, virtually no slip occurs along any clay seam

  20. Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home

    Directory of Open Access Journals (Sweden)

    Mau-Tsuen Yang

    2014-08-01

    Full Text Available There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home’s entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.

  1. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  2. Current status of thin seam longwall mining in the US

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.S. [West Virginia Univ., Morgantown, WV (United States); Orndorff, A.

    1996-12-31

    Thin seams in this paper refers to those seams the economic mining height of which is below 50-55 in. that are traditionally considered to be the proprietary of plowing and present a whole net set of problems for longwall mining. In thin seams it is difficult to design and manufacture an efficient high capacity cutting machine for maintenance and production operations. Thin seam mining by longwall plowing began in the late fifties in southern West Virginia, and continues to the present time. In the seventies when longwall mining began to take off a large percentage of U.S. longwalls were operating in the thin seams. Tables 1 and 2 show the historical trends of cutting machines used for seams less than 55 in and 50 in, respectively. In addition to the plow system, the single-ended fixed drum and single-ended ranging drum shearers were introduced in the mid and late seventies and operated continuously until 2-4 years ago. The double-ended ranging drum shearers have also been employed for thin seam longwall mining during this period including several in-web (or off-pan) shearers between late seventies and early eighties. In this paper three thin-seam longwalls in three states employing the latest thin-seam longwall technology will be reviewed. However only two of them are still in operation while the third one ceased operation recently.

  3. Target tracking system based on preliminary and precise two-stage compound cameras

    Science.gov (United States)

    Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie

    2018-02-01

    Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.

  4. Time-lapse analysis of methane quantity in Mary Lee group of coal seams using filter-based multiple-point geostatistical simulation

    Science.gov (United States)

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    Coal seam degasification and its success are important for controlling methane, and thus for the health and safety of coal miners. During the course of degasification, properties of coal seams change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane emission potential into mines should be evaluated by examining time-dependent changes and the presence of major heterogeneities and geological discontinuities in the field. In this work, time-lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water production history matching and production forecasting of vertical degasification wellbores. These properties were combined with isotherm and other important data to compute gas-in-place (GIP) and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP difference corresponding to each coal and date were generated by using these point-wise data and Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP distributions within the study area. Performed simulations were used for mapping spatial time-lapsed methane quantities as well as their uncertainties within the study area.

  5. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    Science.gov (United States)

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  6. Influence of Mining Thickness on the Rationality of Upward Mining in Coal Seam Group

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-04-01

    Full Text Available This study aimed to determine the influence of mining thickness on the rationality of upward mining in coal seam group. Numerical simulation and theoretical analysis were performed to investigate the influence of the mining thicknesses of initial mining seam on the destruction and pressure relief effect of the upper coal seam in a high-gas coal seam group. The mechanical model of the roof failure based on the mining thickness was established by assuming that the gob formed after adjacent panels have fully been caved is the infinite plane. On the basis of this model, an equation was derived to calculate the roof failure height of the panel. Considering the geological conditions of No. 9 and No. 12 coal seams of Zhaogezhuang Coal Mine, economic effectiveness, and proposed techniques, we concluded that the top layer (4 m of the No. 12 coal seam should be mined first. The top layer of the No. 9 coal seam should be subsequently mined. The topcaving technique was applied to the exploitation of the lower layer of the No. 12 coal seam. Practically monitored data revealed that the deformation and failure of the No. 2699 panel roadway was small and controllable, the amount of gas emission was reduced significantly, and the effect of upward mining was active. The results of this study provide theory basics for mine designing, and it is the provision of a reference for safe and efficient coal exploitation under similar conditions.

  7. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring

    Directory of Open Access Journals (Sweden)

    Yifan Zhao

    2017-11-01

    Full Text Available Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.

  8. Object tracking with robotic total stations: Current technologies and improvements based on image data

    Science.gov (United States)

    Ehrhart, Matthias; Lienhart, Werner

    2017-09-01

    The importance of automated prism tracking is increasingly triggered by the rising automation of total station measurements in machine control, monitoring and one-person operation. In this article we summarize and explain the different techniques that are used to coarsely search a prism, to precisely aim at a prism, and to identify whether the correct prism is tracked. Along with the state-of-the-art review, we discuss and experimentally evaluate possible improvements based on the image data of an additional wide-angle camera which is available for many total stations today. In cases in which the total station's fine aiming module loses the prism, the tracked object may still be visible to the wide-angle camera because of its larger field of view. The theodolite angles towards the target can then be derived from its image coordinates which facilitates a fast reacquisition of the prism. In experimental measurements we demonstrate that our image-based approach for the coarse target search is 4 to 10-times faster than conventional approaches.

  9. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    Science.gov (United States)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  10. Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Pathiraj, B.; Aarts, Ronald G.K.M.

    2010-01-01

    Laser welding has a large potential for the production of tailor welded blanks in the automotive industry, due to the low heat input and deep penetration. However, due to the small laser spot and melt pool, laser-based welding processes in general have a low tolerance for seam gaps. In this paper,

  11. Process for opening up carboniferous seams for underground gasification by drilling production holes downwards

    Energy Technology Data Exchange (ETDEWEB)

    Lokschin, J L; Volk, A F; Starinskii, A A

    1977-12-01

    This process will reduce drilling costs and times by 20 to 25% and will improve gasification under the influence of a thin liquid medium connecting adjacent holes. After determining the approximate depth and thickness of the seam to be opened up, e.g. by geological means, production holes of 100 to 400 mm (diameter) are made down to a depth of 400 m or more, by well-known boring bars and chisels. After passing the top of the seam (the roof of the seam), which can be recognised by discoloration of the drilling liquid, one goes 1/2 to 1 metre deeper and one determines the depth of the roof the seam exactly by the reduced natural radioactivity at the boundary layer, by introducing a gamma sensor on to the boring bar. The production holes are taken down in a second borehold to a free space 0.6 to 2 metres above the floor of the seam (bottom of the seam), according to the thickness of the seam. After replacing the boring bar by a feedpipe one continues to drill using a boring bar of smaller cutting diameter inside this tube. This hole reaches from the foot of the pipe of the feedpipe to the floor of the seam. It is preferably flushed with gas but may be flushed with liquid. A thin liquid introduced into this hole penetrates the surrounding mass of the seam horizontally (unhindered by any armouring) and represents the required connection to neighbouring bores for gasification. The process is suitable for mining coal, combustible shale oil, bituminous rock, heavy natural oil where this process is based on gasification, melting or dissolving of those deposits.

  12. An Efficient Seam Elimination Method for UAV Images Based on Wallis Dodging and Gaussian Distance Weight Enhancement.

    Science.gov (United States)

    Tian, Jinyan; Li, Xiaojuan; Duan, Fuzhou; Wang, Junqian; Ou, Yang

    2016-05-10

    The rapid development of Unmanned Aerial Vehicle (UAV) remote sensing conforms to the increasing demand for the low-altitude very high resolution (VHR) image data. However, high processing speed of massive UAV data has become an indispensable prerequisite for its applications in various industry sectors. In this paper, we developed an effective and efficient seam elimination approach for UAV images based on Wallis dodging and Gaussian distance weight enhancement (WD-GDWE). The method encompasses two major steps: first, Wallis dodging was introduced to adjust the difference of brightness between the two matched images, and the parameters in the algorithm were derived in this study. Second, a Gaussian distance weight distribution method was proposed to fuse the two matched images in the overlap region based on the theory of the First Law of Geography, which can share the partial dislocation in the seam to the whole overlap region with an effect of smooth transition. This method was validated at a study site located in Hanwang (Sichuan, China) which was a seriously damaged area in the 12 May 2008 enchuan Earthquake. Then, a performance comparison between WD-GDWE and the other five classical seam elimination algorithms in the aspect of efficiency and effectiveness was conducted. Results showed that WD-GDWE is not only efficient, but also has a satisfactory effectiveness. This method is promising in advancing the applications in UAV industry especially in emergency situations.

  13. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    Science.gov (United States)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  14. A new optimal seam method for seamless image stitching

    Science.gov (United States)

    Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng

    2017-07-01

    A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.

  15. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  16. On the quantitative determination of coal seam thickness by means of in-seam seismic surveys

    Czech Academy of Sciences Publication Activity Database

    Schott, W.; Waclawik, Petr

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1496-1504 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : in-seam seismic (ISS) * ISS wave * Love wave * coal seam thickness * dispersion Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0466#.VgqE1Zc70mt

  17. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many

  18. Track-based event recognition in a realistic crowded environment

    Science.gov (United States)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  19. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    Science.gov (United States)

    2017-08-01

    particles . The motion of the light- reflecting tracer particles is observed, generally with a CCD or complementary metal-oxide semiconductor (CMOS) digital...ER D C/ CH L SR -1 7- 1 Dredging Operations and Environmental Research Program The Feasibility of Performing Particle - Tracking-Based...acwc.sdp.sirsi.net/client/default. Dredging Operations and Environmental Research Program ERDC/CHL SR-17-1 August 2017 The Feasibility of Performing Particle

  20. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    Science.gov (United States)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  1. DistancePPG: Robust non-contact vital signs monitoring using a camera

    Science.gov (United States)

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-01-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios. PMID:26137365

  2. Person detection, tracking and following using stereo camera

    Science.gov (United States)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  3. Video-based measurements for wireless capsule endoscope tracking

    International Nuclear Information System (INIS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions. (paper)

  4. Video-based measurements for wireless capsule endoscope tracking

    Science.gov (United States)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  5. Utilisation of thin-seam drum shearer loaders at Bergbau AG Niederrhein

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.; Klimek, K.H.

    1983-03-10

    Conventional shearer loaders which travel on the AFC can only be used in seams more than 1.6 m thick in the conditions of the Ruhr coalfield. Low design shearers have been developed for seams below 1.6 m, and can work in conditions down to 1.0 m seam thickness. At Bergbau AG Niederrhein these machines have been adapted to prevailing conditions and requirements. The demand for a high drive rating led to a thin-seam shearer thickness from 1.3 m upwards. The need for minimum feasible machine height with adequate drive rating has been obtained with another machine. Currently under development is a machine which should lower the utilisation limit of thin-seam shearers. With planning and the use of suitable types of supports, it is possible to work faces by shearer in seams of 1.0 m upwards, even under difficult extraction conditions.

  6. Vision-Based System for Human Detection and Tracking in Indoor Environment

    OpenAIRE

    Benezeth , Yannick; Emile , Bruno; Laurent , Hélène; Rosenberger , Christophe

    2010-01-01

    International audience; In this paper, we propose a vision-based system for human detection and tracking in indoor environment using a static camera. The proposed method is based on object recognition in still images combined with methods using temporal information from the video. Doing that, we improve the performance of the overall system and reduce the task complexity. We first use background subtraction to limit the search space of the classifier. The segmentation is realized by modeling ...

  7. Classification of coal seam outburst hazards and evaluation of the importance of influencing factors

    OpenAIRE

    Shi Xianzhi; Song Dazhao; Qian Ziwei

    2017-01-01

    Coal and gas outbursts are the result of several geological factors related to coal seam gas (coal seam gas pressure P, coal seam sturdiness coefficient f and coal seam gas content W), and these parameters can be used to classify the outburst hazard level of a coal seam.

  8. Real-Time Vehicle Speed Estimation Based on License Plate Tracking in Monocular Video Sequences

    Directory of Open Access Journals (Sweden)

    Aleksej MAKAROV

    2016-02-01

    Full Text Available A method of estimating the vehicle speed from images obtained by a fixed over-the-road monocular camera is presented. The method is based on detecting and tracking vehicle license plates. The contrast between the license plate and its surroundings is enhanced using infrared light emitting diodes and infrared camera filters. A range of the license plate height values is assumed a priori. The camera vertical angle of view is measured prior to installation. The camera tilt is continuously measured by a micro-electromechanical sensor. The distance of the license plate from the camera is theoretically derived in terms of its pixel coordinates. Inaccuracies due to the frame rate drift, to the tilt and the angle of view measurement errors, to edge pixel detection and to a coarse assumption of the vehicle license plate height are analyzed and theoretically formulated. The resulting system is computationally efficient, inexpensive and easy to install and maintain along with the existing ALPR cameras.

  9. Evolution of the SOFIA tracking control system

    Science.gov (United States)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  10. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  11. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall

    OpenAIRE

    Bouma, H.; Baan, J.; Burghouts, G.J.; Eendebak, P.T.; Huis, J.R. van; Dijk, J.; Rest, J.H.C. van

    2014-01-01

    Proactive detection of incidents is required to decrease the cost of security incidents. This paper focusses on the automatic early detection of suspicious behavior of pickpockets with track-based features in a crowded shopping mall. Our method consists of several steps: pedestrian tracking, feature computation and pickpocket recognition. This is challenging because the environment is crowded, people move freely through areas which cannot be covered by a single camera, because the actual snat...

  12. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  13. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW

    Indian Academy of Sciences (India)

    The Ören and Yatağan Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays ...

  14. EYE GAZE TRACKING

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method of performing eye gaze tracking of at least one eye of a user, by determining the position of the center of the eye, said method comprising the steps of: detecting the position of at least three reflections on said eye, transforming said positions to spanning...... a normalized coordinate system spanning a frame of reference, wherein said transformation is performed based on a bilinear transformation or a non linear transformation e.g. a möbius transformation or a homographic transformation, detecting the position of said center of the eye relative to the position...... of said reflections and transforming this position to said normalized coordinate system, tracking the eye gaze by tracking the movement of said eye in said normalized coordinate system. Thereby calibration of a camera, such as knowledge of the exact position and zoom level of the camera, is avoided...

  15. Lignite and tin ores exploration in southern part of Thailand by using nuclear track-etch detectors

    International Nuclear Information System (INIS)

    Chittrakarn, T.; Boonnummar, R.; Pongsuwan, T.; Nuannin, P.; Kaew-On, C.

    1993-01-01

    Both lignite and tin mines in Southern of Thailand are associated with uranium ore. In lignite exploration, Bangpudum Lignite Mine at Krabi Province was chosen for this studied because we know the exact location and deposition of coal seam by using other geophysical technique and also confirm by borehole. The size 1x2 cm 2 of cellulose nitrate CN-85 films were used, each film was stuck at the inner bottom of a softdrink cup. Each cup was put up side down at the bottom of a borehole about 75 cm depth from the earth surface and laid about 10 m apart. All the cups were put in the hole along the line in order to cover about 280 metre in the cross sectional direction long of the known coal seam. After one month, all the film detectors were collected and etched with 6.25N NaOH at 60 o C about 25 minutes long in order to enlarge the latent alpha registration tracks. These alpha particles were emitted from radon gas (Rn-222) which was generated from uranium associated with lignite ore. The registration track density per area of each CN-85 film was studied by optical microscope at 400x magnifications. We found that the track densities of the films have high correlation with the depth of the known coal seam while high and low track densities will correspond to the shallow and deep coal seam respectively. Also, track density was significantly higher than background. A similar manner of experiment was designed for tin ore exploration at Ronpibul district, Nakorn Si Thammarat province. The result is in progress and will present at the conference. (Author)

  16. Evaluation of bending rigidity behaviour of ultrasonic seaming on woven fabrics

    Science.gov (United States)

    Şevkan Macit, Ayşe; Tiber, Bahar

    2017-10-01

    In recent years ultrasonic seaming that is shown as an alternative method to conventional seaming has been investigated by many researchers. In our study, bending behaviour of this alternative method is examined by changing various parameters such as fabric type, seam type, roller type and seaming velocity. For this purpose fifteen types of sewn fabrics were tested according to bending rigidity test standard before and after washing processes and results were evaluated through SPSS statistical analyze programme. Consequently, bending length values of the ultrasonically sewn fabrics are found to be higher than the bending length values of conventionally sewn fabrics and the effects of seam type on bending length are seen statistically significant. Also it is observed that bending length values are in relationship with the rest of the parameters excluding roller type.

  17. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2018-04-01

    Full Text Available Although enhanced coal bed methane recovery (ECBM and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2

  18. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering

    2009-09-15

    The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.

  19. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  20. Time-Lapse Analysis of Methane Quantity in the Mary Lee Group of Coal Seams Using Filter-Based Multiple-Point Geostatistical Simulation.

    Science.gov (United States)

    Karacan, C Özgen; Olea, Ricardo A

    2013-08-01

    Coal seam degasification and its success are important for controlling methane, and thus for the health and safety of coal miners. During the course of degasification, properties of coal seams change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane emission potential into mines should be evaluated by examining time-dependent changes and the presence of major heterogeneities and geological discontinuities in the field. In this work, time-lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water production history matching and production forecasting of vertical degasification wellbores. These properties were combined with isotherm and other important data to compute gas-in-place (GIP) and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP difference corresponding to each coal and date were generated by using these point-wise data and Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP distributions within the study area. Performed simulations were used for mapping spatial time-lapsed methane quantities as well as their uncertainties within the study area. The systematic approach presented in this paper is the first time in literature that history matching, TIs of GIPs and filter simulations are used for degasification performance evaluation and for assessing GIP for mining safety. Results from this study showed that using production history matching of coalbed methane wells to determine time-lapsed reservoir data could be used to compute spatial GIP and representative GIP TIs generated through Voronoi decomposition

  1. Temperature field distribution of coal seam in heat injection

    OpenAIRE

    Zhang Zhizhen; Peng Weihong; Shang Xiaoji; Wang Kun; Li Heng; Ma Wenming

    2017-01-01

    In this article, we present a natural boundary element method (NBEM) to solve the steady heat flow problem with heat sources in a coal seam. The boundary integral equation is derived to obtain the temperature filed distribution of the coal seam under the different injecting conditions.

  2. A Simple Setup to Perform 3D Locomotion Tracking in Zebrafish by Using a Single Camera

    Directory of Open Access Journals (Sweden)

    Gilbert Audira

    2018-02-01

    Full Text Available Generally, the measurement of three-dimensional (3D swimming behavior in zebrafish relies on commercial software or requires sophisticated scripts, and depends on more than two cameras to capture the video. Here, we establish a simple and economic apparatus to detect 3D locomotion in zebrafish, which involves a single camera capture system that records zebrafish movement in a specially designed water tank with a mirror tilted at 45 degrees. The recorded videos are analyzed using idTracker, while spatial positions are calibrated by ImageJ software and 3D trajectories are plotted by Origin 9.1 software. This easy setting allowed scientists to track 3D swimming behavior of multiple zebrafish with low cost and precise spatial position, showing great potential for fish behavioral research in the future.

  3. Camera-marker and inertial sensor fusion for improved motion tracking

    NARCIS (Netherlands)

    Roetenberg, D.; Veltink, P.H.

    2005-01-01

    A method for combining a camera-marker based motion analysis system with miniature inertial sensors is proposed. It is used to fill gaps of optical data and can increase the data rate of the optical system.

  4. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. RGBD Video Based Human Hand Trajectory Tracking and Gesture Recognition System

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    2015-01-01

    Full Text Available The task of human hand trajectory tracking and gesture trajectory recognition based on synchronized color and depth video is considered. Toward this end, in the facet of hand tracking, a joint observation model with the hand cues of skin saliency, motion and depth is integrated into particle filter in order to move particles to local peak in the likelihood. The proposed hand tracking method, namely, salient skin, motion, and depth based particle filter (SSMD-PF, is capable of improving the tracking accuracy considerably, in the context of the signer performing the gesture toward the camera device and in front of moving, cluttered backgrounds. In the facet of gesture recognition, a shape-order context descriptor on the basis of shape context is introduced, which can describe the gesture in spatiotemporal domain. The efficient shape-order context descriptor can reveal the shape relationship and embed gesture sequence order information into descriptor. Moreover, the shape-order context leads to a robust score for gesture invariant. Our approach is complemented with experimental results on the settings of the challenging hand-signed digits datasets and American sign language dataset, which corroborate the performance of the novel techniques.

  6. In-seam seismic surveys at Polio and Santiago collieries during the month of January

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In-seam seismic surveys were carried out over the last two weekends in January in order to assess two coal panels, one in seam Cuatro at Polio colliery between levels 4 and 5 of the Centella field and the other in the Mariana seam at Santiago colliery between levels 3,5, and 7 in the Desquite zone. Geological research called in-seam seismics, which is just being developed in Spain, is a geophysical method developed specially for detailed investigation of coal seams.

  7. Adaptive DIT-Based Fringe Tracking and Prediction at IOTA

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array (IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHZ PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension would require significantly more computational capacity.

  8. Methods for working thick seams and research on increasing their effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    In Poland nearly 40 per cent of all coal is extracted from seams more than 3 m. thick. In absolute figures this represents about 70 million tons of coal per year. Working seams with thicknesses up to 3.5 m. does not present, at present, major difficulties. Working thicker seams calls for a steady improvement in order to increase the degree of utilizaion of the deposit and to enlarge the concentration of output. The seams are worked under protected surface structures which compels the mines to use hydraulic stowing with all its advantages and disadvantages. Rock burst hazard, the control of which is the basic problem hindering the mining, is a further problem. 3 refs.

  9. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    Directory of Open Access Journals (Sweden)

    José Manuel Molina

    2012-09-01

    Full Text Available Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors’ knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP application for the elaboration of live market researches.

  10. On the problem of technological innovations in driving preparatory workings in thin coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Peknik, J

    1980-03-01

    Possibilities of mechanizing preparation of thin coal seams for longwall mining are discussed. Until now preparatory workings in the Ostrava Karvina coal region have been driven mainly by manual work or blasting. Tables show the total length of preparatory workings driven in the period 1973-1978 and the average advance of preparatory working per day and per shift. Factors influencing mechanization of preparatory working drivage are: geological disturbances, angle of seam inclination and its changes, thickness of the seam and strength of coal. Some types of mining machines which can be used for driving preparatory workings in thin, horizontal and inclined coal seams and produced in the USSR and United Kingdom are reviewed. Two sets of machines used in coal seams inclined up to 18 or 20 degrees are presented: KN produced in the USSR and 'In seam Miner' produced by the Dosco firm in the UK. Parameters of both machines are compared. The following Soviet machines for driving preparatory workings in inclined seams are also reviewed: 2 KNP (slope 45-80 degrees), KMD-72 (slope 45-80 degrees, height of the seam 0.6 m to 1.2 m), MRS-2 (slope 45-90 degrees, height of the seam 0.55 m to 1.0 m). (7 refs.) (In Czech)

  11. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  12. Palynological dating of a coal seam in Ayyanapalem area, Khamman District, Andhra Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.R.; Lakshminarayana, G.; Ramanujam, C.G.K. (Geological Survey of India, Hyderabad (India). Southern Region)

    1990-05-25

    A palynological study of five subsurface samples of a coal seam near Ayyanapalem, Chintalapudi sub-basin of Godavari valley, Andhra Pradesh, was carried out. Twenty-five genera, including monosaccate, striate and nonstriate bisaccate, and trilete sporomorphs were identified; striate bisaccates predominate. Based on occurrence of {ital Rhizomaspora, Microbaculispora, Indotriradites, Crucisaccites ital} and {ital Corisaccites}, the coal seam is inferred to be similar in age to the Permian age Barakar Formation of the Lower Gondwana. 3 refs., 2 figs.

  13. Automatic multi-camera calibration for deployable positioning systems

    Science.gov (United States)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  14. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  15. Utilization of thin-seam drum shearer loaders at Bergbau AG Niederrhein

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.; Klimek, K.H.

    1983-03-10

    Low design shearers have been developed for seams under 1.6 m, which can be introduced in thicknesses to 1.0 m in the Ruhr conditions. The opposed demands for high drive rating and low machine height produced a two-pronged development. The priority need for high drive rating led to the EDW 230-2 LN thin-seam shearer for seam thicknesses from 1.3 m upwards. The second demand for minimum feasible machine height with adequate drive rating is most closely matched so far by the EDW 200/230 LN. It is anticipated that the EDW 300 LN at present being developed is another stage in lowering the lower utilization limit of thin-seam shearers. For the best possible use of LN shearers the LN mode of shearing should also be adhered to in the majority of likely applications. With thorough planning and the use of suitable types of supports it is possible to work faces with shearing in seam thicknesses from 1.0 m even under difficult extraction conditions.

  16. Video Sharing System Based on Wi-Fi Camera

    OpenAIRE

    Qidi Lin; Hewei Yu; Jinbin Huang; Weile Liang

    2015-01-01

    This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition, it is able to send commands to camera and control the camera's holder to rotate. The platform can be applied to interactive teaching and dangerous area's monitoring and so on. Testing results show that the platform can share ...

  17. OpenCV and TYZX : video surveillance for tracking.

    Energy Technology Data Exchange (ETDEWEB)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processing solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.

  18. OpenCV and TYZX : video surveillance for tracking

    International Nuclear Information System (INIS)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-01-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processing solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition

  19. Unscented Kalman filtering for articulated human tracking

    DEFF Research Database (Denmark)

    Boesen Lindbo Larsen, Anders; Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    We present an articulated tracking system working with data from a single narrow baseline stereo camera. The use of stereo data allows for some depth disambiguation, a common issue in articulated tracking, which in turn yields likelihoods that are practically unimodal. While current state...... with superior results. Tracking quality is measured by comparing with ground truth data from a marker-based motion capture system....

  20. Image and video based remote target localization and tracking on smartphones

    Science.gov (United States)

    Wang, Qia; Lobzhanidze, Alex; Jang, Hyun; Zeng, Wenjun; Shang, Yi; Yang, Jingyu

    2012-06-01

    Smartphones are becoming popular nowadays not only because of its communication functionality but also, more importantly, its powerful sensing and computing capability. In this paper, we describe a novel and accurate image and video based remote target localization and tracking system using the Android smartphones, by leveraging its built-in sensors such as camera, digital compass, GPS, etc. Even though many other distance estimation or localization devices are available, our all-in-one, easy-to-use localization and tracking system on low cost and commodity smartphones is first of its kind. Furthermore, smartphones' exclusive user-friendly interface has been effectively taken advantage of by our system to facilitate low complexity and high accuracy. Our experimental results show that our system works accurately and efficiently.

  1. Towards predictive control of extrusion weld seams: an integrated approach

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable

  2. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned......2,1) based on the detected first pattern sequence (S1'); projecting the second pattern sequence (S2) onto a surface region of the subject with the light projector; detecting the projected second pattern sequence (S2') with the first camera; and determining motion tracking parameters based...

  3. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  4. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification

    Science.gov (United States)

    Karacan, C. Özgen; Olea, Ricardo A.

    2015-01-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal seam reservoir simulation is one of the most effective ways to help with these two main objectives. As in all modeling and simulation studies, how the reservoir is defined and whether observed productions can be predicted are important considerations.

  5. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    Science.gov (United States)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  6. Image resizing using saliency strength map and seam carving for white blood cell analysis

    Directory of Open Access Journals (Sweden)

    Nam JaeYeal

    2010-09-01

    Full Text Available Abstract Background A new image-resizing method using seam carving and a Saliency Strength Map (SSM is proposed to preserve important contents, such as white blood cells included in blood cell images. Methods To apply seam carving to cell images, a SSM is initially generated using a visual attention model and the structural properties of white blood cells are then used to create an energy map for seam carving. As a result, the energy map maximizes the energies of the white blood cells, while minimizing the energies of the red blood cells and background. Thus, the use of a SSM allows the proposed method to reduce the image size efficiently, while preserving the important white blood cells. Results Experimental results using the PSNR (Peak Signal-to-Noise Ratio and ROD (Ratio of Distortion of blood cell images confirm that the proposed method is able to produce better resizing results than conventional methods, as the seam carving is performed based on an SSM and energy map. Conclusions For further improvement, a faster medical image resizing method is currently being investigated to reduce the computation time, while maintaining the same image quality.

  7. Image resizing using saliency strength map and seam carving for white blood cell analysis.

    Science.gov (United States)

    Ko, ByoungChul; Kim, SeongHoon; Nam, JaeYeal

    2010-09-20

    A new image-resizing method using seam carving and a Saliency Strength Map (SSM) is proposed to preserve important contents, such as white blood cells included in blood cell images. To apply seam carving to cell images, a SSM is initially generated using a visual attention model and the structural properties of white blood cells are then used to create an energy map for seam carving. As a result, the energy map maximizes the energies of the white blood cells, while minimizing the energies of the red blood cells and background. Thus, the use of a SSM allows the proposed method to reduce the image size efficiently, while preserving the important white blood cells. Experimental results using the PSNR (Peak Signal-to-Noise Ratio) and ROD (Ratio of Distortion) of blood cell images confirm that the proposed method is able to produce better resizing results than conventional methods, as the seam carving is performed based on an SSM and energy map. For further improvement, a faster medical image resizing method is currently being investigated to reduce the computation time, while maintaining the same image quality.

  8. Exploitation of the in-seam miner and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W I.S.; Morris, A H

    1977-12-01

    The In-seam Miner started as an investigatory project at MRDE in 1969. Since that time it has passed through the classic development stages of design of prototype, surface trials, underground trials, modification, production of more machines, assessment of experience and then wider exploitation. At the present time well over 100 machines have been supplied to the National Coal Board. The original machine was hydraulically driven and all but five of the machines supplied to date are of this type. The variety of applications that the machine has found in the mining industry has caused derivative development to embrace machines of length varying from 12-ft centers to 44-ft centers, to work in seams ranging from 40 in. up to 68 in. The range of applications has included face drivages, stablehole operations, in-seam retreat roadways and dirt-absorbing headings. Five electrically driven machines are now coming onto the market and experience with them, though limited, is very encouraging. The paper concentrates on two major aspects of the overall development process: first, the management of exploitation; and second, some operational experience of the In-seam Miner in South Midlands area.

  9. Development of marker-based tracking methods for augmented reality applied to NPP maintenance work support and its experimental evaluation

    International Nuclear Information System (INIS)

    Ishii, H.; Fujino, H.; Bian, Z.; Sekiyama, T.; Shimoda, H.; Yoshikawa, H.

    2006-01-01

    In this study, two types of marker-based tracking methods for Augmented Reality have been developed. One is a method which employs line-shaped markers and the other is a method which employs circular-shaped markers. These two methods recognize the markers by means of image processing and calculate the relative position and orientation between the markers and the camera in real time. The line-shaped markers are suitable to be pasted in the buildings such as NPPs where many pipes and tanks exist. The circular-shaped markers are suitable for the case that there are many obstacles and it is difficult to use line-shaped markers because the obstacles hide the part of the line-shaped markers. Both methods can extend the maximum distance between the markers and the camera compared to the legacy marker-based tracking methods. (authors)

  10. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  11. A novel optical investigation technique for railroad track inspection and assessment

    Science.gov (United States)

    Sabato, Alessandro; Beale, Christopher H.; Niezrecki, Christopher

    2017-04-01

    Track failures due to cross tie degradation or loss in ballast support may result in a number of problems ranging from simple service interruptions to derailments. Structural Health Monitoring (SHM) of railway track is important for safety reasons and to reduce downtime and maintenance costs. For this reason, novel and cost-effective track inspection technologies for assessing tracks' health are currently insufficient and needed. Advancements achieved in recent years in cameras technology, optical sensors, and image-processing algorithms have made machine vision, Structure from Motion (SfM), and three-dimensional (3D) Digital Image Correlation (DIC) systems extremely appealing techniques for extracting structural deformations and geometry profiles. Therefore, optically based, non-contact measurement techniques may be used for assessing surface defects, rail and tie deflection profiles, and ballast condition. In this study, the design of two camera-based measurement systems is proposed for crossties-ballast condition assessment and track examination purposes. The first one consists of four pairs of cameras installed on the underside of a rail car to detect the induced deformation and displacement on the whole length of the track's cross tie using 3D DIC measurement techniques. The second consists of another set of cameras using SfM techniques for obtaining a 3D rendering of the infrastructure from a series of two-dimensional (2D) images to evaluate the state of the track qualitatively. The feasibility of the proposed optical systems is evaluated through extensive laboratory tests, demonstrating their ability to measure parameters of interest (e.g. crosstie's full-field displacement, vertical deflection, shape, etc.) for assessment and SHM of railroad track.

  12. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  13. Evaluation of Human Body Tracking System for Gesture-based Programming of Industrial Robots

    DEFF Research Database (Denmark)

    Høilund, Carsten; Krüger, Volker; Moeslund, Thomas B.

    2012-01-01

    Is low-cost tracking precise enough for recognition of pointing actions? We investigate the quality of the human body tracking available with a Kinect camera by comparing it to a state-of-the-art motion capture system. The application is action recognition with parametric hidden Markov Models...

  14. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    Science.gov (United States)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the

  15. Fast time-of-flight camera based surface registration for radiotherapy patient positioning

    International Nuclear Information System (INIS)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07 deg. ± 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration

  16. Solid Coal Stability with Regards to Seam Thickness or Bench mined

    Directory of Open Access Journals (Sweden)

    Bukovanský Stanislav

    1998-03-01

    Full Text Available In the paper the problem of working unit stability, showing a limit state of a rock tension with the Mohr envelope known from a theory of failure, is described. It is obvious that a load of building units in mountain massives can be expressed easily either by simple or multiaxial compressions, and then, on the basis of individual states characteristics, individual conditions of stability can be observed. So we may understand that such building units can be broken even in case of a certain discharge, i.e. lowering of one of main tensions of both of them as well. Combined methods of discharge and surchage can be used too. Another reactive power of an enormous value is caused by pre-fault then. In the OKR district it means even 10% of the seam thickness with common conditions (e.g. saddle seams. An area of a contact between a seam, original rocks and seam thickness should be taken into consideration as serious conditions of rock bumps origin. If this contact area is wavy of the seam thickness is small (possibly both conditions are valid, there will be no risk of any rock bump.

  17. Fall detection in the elderly by head-tracking

    OpenAIRE

    Yu, Miao; Naqvi, Syed Mohsen; Chambers, Jonathan

    2009-01-01

    In the paper, we propose a fall detection method based on head tracking within a smart home environment equipped with video cameras. A motion history image and code-book background subtraction are combined to determine whether large movement occurs within the scene. Based on the magnitude of the movement information, particle filters with different state models are used to track the head. The head tracking procedure is performed in two video streams taken bytwoseparatecamerasandthree-dimension...

  18. Determination of mineral matter distribution in a coal seam using O sub 2 chemisorption technique

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.D.; Goulet, J.-C.; Grandsen, J.; Price, J.T.; Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1990-08-01

    A series of samples taken from different depths of the seam of a bituminous coal in Western Canada was used to determine the mineral matter distribution. The measurements were carried out using the O{sub 2} chemisorption based on a thermogravimetric technique. The O{sub 2} chemisorption increased with decreasing mineral matter content. The employed technique was found to be suitable for identifying the portion of coal seam least contaminated with mineral matter. 5 refs., 3 figs., 1 tab.

  19. WE-DE-BRA-11: A Study of Motion Tracking Accuracy of Robotic Radiosurgery Using a Novel CCD Camera Based End-To-End Test System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L; M Yang, Y [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Nelson, B [Logos Systems Intl, Scotts Valley, CA (United States)

    2016-06-15

    Purpose: A novel end-to-end test system using a CCD camera and a scintillator based phantom (XRV-124, Logos Systems Int’l) capable of measuring the beam-by-beam delivery accuracy of Robotic Radiosurgery (CyberKnife) was developed and reported in our previous work. This work investigates its application in assessing the motion tracking (Synchrony) accuracy for CyberKnife. Methods: A QA plan with Anterior and Lateral beams (with 4 different collimator sizes) was created (Multiplan v5.3) for the XRV-124 phantom. The phantom was placed on a motion platform (superior and inferior movement), and the plans were delivered on the CyberKnife M6 system using four motion patterns: static, Sine- wave, Sine with 15° phase shift, and a patient breathing pattern composed of 2cm maximum motion with 4 second breathing cycle. Under integral recording mode, the time-averaged beam vectors (X, Y, Z) were measured by the phantom and compared with static delivery. In dynamic recording mode, the beam spots were recorded at a rate of 10 frames/second. The beam vector deviation from average position was evaluated against the various breathing patterns. Results: The average beam position of the six deliveries with no motion and three deliveries with Synchrony tracking on ideal motion (sinewave without phase shift) all agree within −0.03±0.00 mm, 0.10±0.04, and 0.04±0.03 in the X, Y, and X directions. Radiation beam width (FWHM) variations are within ±0.03 mm. Dynamic video record showed submillimeter tracking stability for both regular and irregular breathing pattern; however the tracking error up to 3.5 mm was observed when a 15 degree phase shift was introduced. Conclusion: The XRV-124 system is able to provide 3D and 4D targeting accuracy for CyberKnife delivery with Synchrony. The experimental results showed sub-millimeter delivery in phantom with excellent correlation in target to breathing motion. The accuracy was degraded when irregular motion and phase shift was introduced.

  20. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  1. Simulation-based camera navigation training in laparoscopy-a randomized trial

    DEFF Research Database (Denmark)

    Nilsson, Cecilia; Sørensen, Jette Led; Konge, Lars

    2017-01-01

    patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. MATERIALS AND METHODS: A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera...... navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera.......033), had a higher score. CONCLUSIONS: Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher...

  2. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  3. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto; Hattori, Kaori [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kohara, Ryota [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Kunieda, Etsuo; Kubo, Atsushi [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nakahara, Tadaki [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Shirahata, Takashi [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Takada, Atsushi [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tanimori, Toru [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: tanimori@cr.scphys.kyoto-u.ac.jp; Ueno, Kazuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber ({mu}-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this {mu}-TPC (10x10x8 cm{sup 3}) and the 6x6x13 mm{sup 3} GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the {mu}-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6 deg. (FWHM) at 364 keV of {sup 131}I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of {sup 131}I.

  4. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  5. Kalman Filter Based Tracking in an Video Surveillance System

    Directory of Open Access Journals (Sweden)

    SULIMAN, C.

    2010-05-01

    Full Text Available In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.

  6. Driver head pose tracking with thermal camera

    Science.gov (United States)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  7. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  8. Exploiting Seams and Closing Gaps: Lessons from Mumbai and Beyond

    Directory of Open Access Journals (Sweden)

    Dr. Andrea J. Dew

    2012-01-01

    Full Text Available This article analyzes a single event—the 2008 Mumbai attacks—in order to consider the strategic and operational lessons for dealing with other armed groups. How and why was Lashkar-e-Tayyiba (LeT able to carry out such a sophisticated attack in the heart of Mumbai? And what lessons does Mumbai hold for strategists seeking to counter other armed groups around the world? While tactical level lessons from Mumbai have been well documented, it is important to also consider what the Mumbai attacks tell us at the strategic and operational levels. Specifically, the Mumbai attacks provide valuable insight into how armed groups use the maritime environment, and how they use surprise, denial, and deception to mask intention and invite over-reaction by states. In addition, studying the Mumbai attacks provides insight into some of the strategic and operational seams and gaps that armed groups seek to exploit. These include environmental and geographical factors; institutional, bureaucratic, and jurisdictional seams and gaps between agencies; cognitive seams and gaps that made the use of the sea by LeT so difficult to conceptualize; and the diplomatic seams and gaps that led to heightened tensions among states— in this case, India, Pakistan, and the United States. This article discusses how to categorize these seams and gaps in order to better address the problems they create, and how states might best direct and focus their limited resources when faced with similar challenges.

  9. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  10. Novel computer-based endoscopic camera

    Science.gov (United States)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  11. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    Science.gov (United States)

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  12. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    Science.gov (United States)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain

  13. Stress distribution characteristics in the vicinity of coal seam floor

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.

  14. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  15. A System based on Adaptive Background Subtraction Approach for Moving Object Detection and Tracking in Videos

    Directory of Open Access Journals (Sweden)

    Bahadır KARASULU

    2013-04-01

    Full Text Available Video surveillance systems are based on video and image processing research areas in the scope of computer science. Video processing covers various methods which are used to browse the changes in existing scene for specific video. Nowadays, video processing is one of the important areas of computer science. Two-dimensional videos are used to apply various segmentation and object detection and tracking processes which exists in multimedia content-based indexing, information retrieval, visual and distributed cross-camera surveillance systems, people tracking, traffic tracking and similar applications. Background subtraction (BS approach is a frequently used method for moving object detection and tracking. In the literature, there exist similar methods for this issue. In this research study, it is proposed to provide a more efficient method which is an addition to existing methods. According to model which is produced by using adaptive background subtraction (ABS, an object detection and tracking system’s software is implemented in computer environment. The performance of developed system is tested via experimental works with related video datasets. The experimental results and discussion are given in the study

  16. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    Science.gov (United States)

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  17. LAMOST CCD camera-control system based on RTS2

    Science.gov (United States)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  18. Performance analysis of a new positron camera geometry for high speed, fine particle tracking

    Science.gov (United States)

    Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.

    2017-09-01

    A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a  -212  +  106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.

  19. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-06-01

    Full Text Available Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i generation of a three-dimensional (3D human model; (ii human object-based automatic scene calibration; and (iii metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  20. Vehicular camera pedestrian detection research

    Science.gov (United States)

    Liu, Jiahui

    2018-03-01

    With the rapid development of science and technology, it has made great development, but at the same time of highway traffic more convenient in highway traffic and transportation. However, in the meantime, traffic safety accidents occur more and more frequently in China. In order to deal with the increasingly heavy traffic safety. So, protecting the safety of people's personal property and facilitating travel has become a top priority. The real-time accurate pedestrian and driving environment are obtained through a vehicular camera which are used to detection and track the preceding moving targets. It is popular in the domain of intelligent vehicle safety driving, autonomous navigation and traffic system research. Based on the pedestrian video obtained by the Vehicular Camera, this paper studies the trajectory of pedestrian detection and its algorithm.

  1. A software-based tool for video motion tracking in the surgical skills assessment landscape

    OpenAIRE

    Ganni, S.; Botden, Sanne M.B.I.; Chmarra, M.K.; Goossens, R.H.M.; Jakimowicz, J.J.

    2018-01-01

    Background: The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. Methods: 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The...

  2. Neutron imaging system based on a video camera

    International Nuclear Information System (INIS)

    Dinca, M.

    2004-01-01

    The non-destructive testing with cold, thermal, epithermal or fast neutrons is nowadays more and more useful because the world-wide level of industrial development requires considerably higher standards of quality of manufactured products and reliability of technological processes especially where any deviation from standards could result in large-scale catastrophic consequences or human loses. Thanks to their properties, easily obtained and very good discrimination of the materials that penetrate, the thermal neutrons are the most used probe. The methods involved for this technique have advanced from neutron radiography based on converter screens and radiological films to neutron radioscopy based on video cameras, that is, from static images to dynamic images. Many neutron radioscopy systems have been used in the past with various levels of success. The quality of an image depends on the quality of the neutron beam and the type of the neutron imaging system. For real time investigations there are involved tube type cameras, CCD cameras and recently CID cameras that capture the image from an appropriate scintillator through the agency of a mirror. The analog signal of the camera is then converted into digital signal by the signal processing technology included into the camera. The image acquisition card or frame grabber from a PC converts the digital signal into an image. The image is formatted and processed by image analysis software. The scanning position of the object is controlled by the computer that commands the electrical motors that move horizontally, vertically and rotate the table of the object. Based on this system, a lot of static image acquisitions, real time non-destructive investigations of dynamic processes and finally, tomographic investigations of the small objects are done in a short time. A system based on a CID camera is presented. Fundamental differences between CCD and CID cameras lie in their pixel readout structure and technique. CIDs

  3. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group, Xuzhou.Based on the stratum column chart in this coal mine, the distribution of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D).The permeability parameters of the coal seam floor are described given the relationship between permeability parameters.Strain and the water-inrush-indices were calculated.The water-inrush-index was 67.2% when the working face was pushed to 100 m, showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m, showing that water-inrush is quite probable.The results show that as long-wall mining is pushed along, the failure zone is enlarged, the strain increased, and fissures developed correspondingly, resulting in the formation of water-inrush channels.Accompanied by the failure of the strata, the permeability increased exponentially.In contrast, the non-Darcy flow β factor and the acceleration coefficient decreased exponentially, while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.

  4. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  5. Detection and Tracking of Road Barrier Based on Radar and Vision Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Taeryun Kim

    2016-01-01

    Full Text Available The detection and tracking algorithms of road barrier including tunnel and guardrail are proposed to enhance performance and reliability for driver assistance systems. Although the road barrier is one of the key features to determine a safe drivable area, it may be recognized incorrectly due to performance degradation of commercial sensors such as radar and monocular camera. Two frequent cases among many challenging problems are considered with the commercial sensors. The first case is that few tracks of radar to road barrier are detected due to material type of road barrier. The second one is inaccuracy of relative lateral position by radar, thus resulting in large variance of distance between a vehicle and road barrier. To overcome the problems, the detection and estimation algorithms of tracks corresponding to road barrier are proposed. Then, the tracking algorithm based on a probabilistic data association filter (PDAF is used to reduce variation of lateral distance between vehicle and road barrier. Finally, the proposed algorithms are validated via field test data and their performance is compared with that of road barrier measured by lidar.

  6. Modeling of Three Flat Coal Seams Strata Developing at Open Pit Miming

    Science.gov (United States)

    Gvozdkova, Tatiana; Markov, Sergey; Demirel, Nuray; Anyona, Serony

    2017-11-01

    The use of low-cost direct dumpling technology, as is well known, has a relatively limited field of application: flat coal seams, and the higher the dip angle of the seam, the more difficult it is to place the necessary volume of overburden rock in the dumping layers. For this, we have to pour four-tier dumps. In this article, four possible options for piling the dump have been studied and prerequisites have been made for further research aimed at improving the efficiency of the use of direct dumpling technology in the development of flat coal seams.

  7. Real-time gaze estimation via pupil center tracking

    Directory of Open Access Journals (Sweden)

    Cazzato Dario

    2018-02-01

    Full Text Available Automatic gaze estimation not based on commercial and expensive eye tracking hardware solutions can enable several applications in the fields of human computer interaction (HCI and human behavior analysis. It is therefore not surprising that several related techniques and methods have been investigated in recent years. However, very few camera-based systems proposed in the literature are both real-time and robust. In this work, we propose a real-time user-calibration-free gaze estimation system that does not need person-dependent calibration, can deal with illumination changes and head pose variations, and can work with a wide range of distances from the camera. Our solution is based on a 3-D appearance-based method that processes the images from a built-in laptop camera. Real-time performance is obtained by combining head pose information with geometrical eye features to train a machine learning algorithm. Our method has been validated on a data set of images of users in natural environments, and shows promising results. The possibility of a real-time implementation, combined with the good quality of gaze tracking, make this system suitable for various HCI applications.

  8. External Mask Based Depth and Light Field Camera

    Science.gov (United States)

    2013-12-08

    External mask based depth and light field camera Dikpal Reddy NVIDIA Research Santa Clara, CA dikpalr@nvidia.com Jiamin Bai University of California...passive depth acquisition technology is illustrated by the emergence of light field camera companies like Lytro [1], Raytrix [2] and Pelican Imaging

  9. Single photon detection and localization accuracy with an ebCMOS camera

    Energy Technology Data Exchange (ETDEWEB)

    Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne F-69622 (France); Dominjon, A., E-mail: agnes.dominjon@nao.ac.jp [Université de Lyon, Université de Lyon 1, Lyon 69003 France. (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne F-69622 (France); Université de Lyon, Université de Lyon 1, Lyon 69003 France. (France)

    2015-07-01

    The CMOS sensor technologies evolve very fast and offer today very promising solutions to existing issues facing by imaging camera systems. CMOS sensors are very attractive for fast and sensitive imaging thanks to their low pixel noise (1e-) and their possibility of backside illumination. The ebCMOS group of IPNL has produced a camera system dedicated to Low Light Level detection and based on a 640 kPixels ebCMOS with its acquisition system. After reminding the principle of detection of an ebCMOS and the characteristics of our prototype, we confront our camera to other imaging systems. We compare the identification efficiency and the localization accuracy of a point source by four different photo-detection devices: the scientific CMOS (sCMOS), the Charge Coupled Device (CDD), the Electron Multiplying CCD (emCCD) and the Electron Bombarded CMOS (ebCMOS). Our ebCMOS camera is able to identify a single photon source in less than 10 ms with a localization accuracy better than 1 µm. We report as well efficiency measurement and the false positive identification of the ebCMOS camera by identifying more than hundreds of single photon sources in parallel. About 700 spots are identified with a detection efficiency higher than 90% and a false positive percentage lower than 5. With these measurements, we show that our target tracking algorithm can be implemented in real time at 500 frames per second under a photon flux of the order of 8000 photons per frame. These results demonstrate that the ebCMOS camera concept with its single photon detection and target tracking algorithm is one of the best devices for low light and fast applications such as bioluminescence imaging, quantum dots tracking or adaptive optics.

  10. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking

    Directory of Open Access Journals (Sweden)

    Shengjun Tang

    2018-05-01

    Full Text Available Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.

  11. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  12. Performance analysis for gait in camera networks

    OpenAIRE

    Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon

    2008-01-01

    This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real...

  13. SEAM PUCKERING EVALUATION METHOD FOR SEWING PROCESS

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2014-07-01

    Full Text Available The paper presents an automated method for the assessment and classification of puckering defects detected during the preproduction control stage of the sewing machine or product inspection. In this respect, we have presented the possible causes and remedies of the wrinkle nonconformities. Subjective factors related to the control environment and operators during the seams evaluation can be reduced using an automated system whose operation is based on image processing. Our implementation involves spectral image analysis using Fourier transform and an unsupervised neural network, the Kohonen Map, employed to classify material specimens, the input images, into five discrete degrees of quality, from grade 5 (best to grade 1 (the worst. The puckering features presented in the learning and test images have been pre-classified using the seam puckering quality standard. The network training stage will consist in presenting five input vectors (derived from the down-sampled arrays, representing the puckering grades. The puckering classification consists in providing an input vector derived from the image supposed to be classified. A scalar product between the input values vectors and the weighted training images is computed. The result will be assigned to one of the five classes of which the input image belongs. Using the Kohonen network the puckering defects were correctly classified in proportion of 71.42%.

  14. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    Science.gov (United States)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  15. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  16. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  17. Simulation of double-seaming in a two-piece aluminum can

    International Nuclear Information System (INIS)

    Romanko, Anne; Berry, Dale; Fox, David

    2004-01-01

    The aluminum can industry in the United States and Canada manufactures over 100 billion cans per year. Two-piece aluminum cans are commonly used to seal and deliver foodstuffs such as soft drinks, beer, pet food, and other perishable items. In order to ensure product safety and performance, the double seam between the can body and lid is a critical component of the package. Double-seaming is a method by which the flange of the can body and the curl of the end are folded over together such that the final joint is composed of five metal thicknesses. There are a number of design challenges involved with the art of double seaming, especially with the push to lightweight. Although the requirements vary by product, the typical beer package must be able to hold pressures in excess of 90psi. In addition, in production, double seaming is a high-speed operation with speeds as high as 3000 cans/minute on an 18-spindle seamer. For this high volume, low cost industry, understanding and optimizing the seaming process can advance the industry as well as help prevent various manufacturing problems that produce a poor seal between the two pieces of the can.To aid in understanding the mechanics of the can parts during double-seaming, a simulation procedure was developed and carried out on a 202 diameter beverage can and lid. Simulations were run with the explicit dynamics solver ABAQUS/Explicit using the continuum shell element technology available in the ABAQUS general purpose FEA program. The continuum shell is a shear-deformable shell element with the topology of an eight node brick. The element's formulation allows continuously varying, solution-dependent shell thickness and through-thickness pinching stress. One important advantage of using the continuum shell as opposed to a traditional shell element is that true contact interactions at the top and bottom surfaces of the can body and lid can be accurately modeled. With a conventional shell element, contact is performed at the

  18. Simulation of Double-Seaming in a Two-piece Aluminum Can

    Science.gov (United States)

    Romanko, Anne; Berry, Dale; Fox, David

    2004-06-01

    The aluminum can industry in the United States and Canada manufactures over 100 billion cans per year. Two-piece aluminum cans are commonly used to seal and deliver foodstuffs such as soft drinks, beer, pet food, and other perishable items. In order to ensure product safety and performance, the double seam between the can body and lid is a critical component of the package. Double-seaming is a method by which the flange of the can body and the curl of the end are folded over together such that the final joint is composed of five metal thicknesses. There are a number of design challenges involved with the art of double seaming, especially with the push to lightweight. Although the requirements vary by product, the typical beer package must be able to hold pressures in excess of 90psi. In addition, in production, double seaming is a high-speed operation with speeds as high as 3000 cans/minute on an 18-spindle seamer. For this high volume, low cost industry, understanding and optimizing the seaming process can advance the industry as well as help prevent various manufacturing problems that produce a poor seal between the two pieces of the can. To aid in understanding the mechanics of the can parts during double-seaming, a simulation procedure was developed and carried out on a 202 diameter beverage can and lid. Simulations were run with the explicit dynamics solver ABAQUS/Explicit using the continuum shell element technology available in the ABAQUS general purpose FEA program. The continuum shell is a shear-deformable shell element with the topology of an eight node brick. The element's formulation allows continuously varying, solution-dependent shell thickness and through-thickness pinching stress. One important advantage of using the continuum shell as opposed to a traditional shell element is that true contact interactions at the top and bottom surfaces of the can body and lid can be accurately modeled. With a conventional shell element, contact is performed at the

  19. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-02-01

    Full Text Available Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated.

  20. Study of physiocochemical processes liable to affect methane drainage from an anthracite seam

    Energy Technology Data Exchange (ETDEWEB)

    Artemov, A V

    1976-01-01

    The molecular structure of anthracites is discussed, and liquids suitable for improving gas emission from anthracite seams are suggested. Infusion of the seam with ethylene glycol solution makes it possible to increase methane emission in drainage boreholes by eight or nine times.

  1. The Method of Validity Evaluation of Hard Coal Excavation in Residual Seam Parts

    Science.gov (United States)

    Wodarski, Krzysztof; Bijańska, Jolanta; Gumiński, Adam

    2017-12-01

    The excavation of residual seam parts should be justified by positive assessment of the purposefulness, technical feasibility and economic effectiveness. The results of the profitability evaluation are crucial in a decision making process. The excavation of residual seam parts, even if it is possible from a technical point of view, should not be implemented if it is economically inefficient or when accompanied by a very high risk of non-recovery of invested capital resources. The article presents the evaluation method of possibilities of excavating hard coal from residual seam parts, and the example of its use in one of collieries in the Upper Silesian Coal Basin. Working in line with the developed method, allows to indicate the variant of residual seam part exploitation, which is feasible to implement from a technical point of view, and which is characterized by the highest economic effectiveness and lowest risk.

  2. A generic model for camera based intelligent road crowd control ...

    African Journals Online (AJOL)

    This research proposes a model for intelligent traffic flow control by implementing camera based surveillance and feedback system. A series of cameras are set minimum three signals ahead from the target junction. The complete software system is developed to help integrating the multiple camera on road as feedback to ...

  3. Eye tracking and nutrition label use

    DEFF Research Database (Denmark)

    Graham, Dan J.; Orquin, Jacob Lund; Visschers, Vivianne H.M.

    2012-01-01

    cameras monitoring consumer visual attention (i.e., eye tracking) has begun to identify ways in which label design could be modified to improve consumers’ ability to locate and effectively utilize nutrition information. The present paper reviews all published studies of nutrition label use that have...... utilized eye tracking methodology, identifies directions for further research in this growing field, and makes research-based recommendations for ways in which labels could be modified to improve consumers’ ability to use nutrition labels to select healthful foods....

  4. Interanal seam loss in Asian turtles of the Cuora flavomarginata complex (Testudines, Geoemydidae)

    Science.gov (United States)

    Ernst, Carl H.; Lovich, Jeffrey E.

    2015-01-01

    The taxonomy of Asian box turtles of the genus Cuora is complicated by the description of numerous valid and invalid taxa over the last several decades. However, some characteristics used to differentiate species are questionable. Members of the C. flavomarginata complex are defined by some, but not all, taxonomists as having reduced interanal seam lengths relative to other species. We examined the ratio of interanal scute seam length divided by midline anal scute length in C. flavomarginata and C. evelynae. Hatchlings show a seam that divides 100% of the anal scute along the midline. As individuals increase in carapace length, there is a tendency for the percentage to decrease, especially in females, although there is considerable overlap. We suggest that the decrease in interanal seam length is due to abrasion of the plastron on the substrate as turtles grow larger and older. Differences in habitat substrates across the range of the species may contribute to the wide variation we observed.

  5. Whole body scan system based on γ camera

    International Nuclear Information System (INIS)

    Ma Tianyu; Jin Yongjie

    2001-01-01

    Most existing domestic γ cameras can not perform whole body scan protocol, which is of important use in clinic. The authors designed a set of whole body scan system, which is made up of a scan bed, an ISA interface card controlling the scan bed and the data acquisition software based on a data acquisition and image processing system for γ cameras. The image was obtained in clinical experiment, and the authors think it meets the need of clinical diagnosis. Application of this system in γ cameras can provide whole body scan function at low cost

  6. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  7. Nonlinear coupling analysis of coal seam floor during mining based on FLAC3D

    Institute of Scientific and Technical Information of China (English)

    YAO Duo-xi; XU Ji-ying; LU Hai-feng

    2011-01-01

    Based on the hydro-geological conditions of 1028 mining face in Suntuan Coal Mine, mining seepage strain mechanism of seam floor was simulated by a nonlinear coupling method, which applied fluid-solid coupling analysis module of FLAC3D. The results indicate that the permeability coefficient of adjoining rock changes a lot due to mining. The maximum value reaches 1 379.9 times to the original value, where it is at immediate roof of the mined-out area. According to the analysis on the seepage field, mining does not destroy water resistance of the floor aquiclude. The mining fissure does not conduct lime-stone aquifer, and it is less likely to form damage. The plastic zone does not exactly correspond to the seepage area, and the scope of the altered seepage area is much larger than the plastic zone.

  8. GMR-based eddy current probe for weld seam inspection and its non-scanning detection study

    Science.gov (United States)

    Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya

    2017-04-01

    Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.

  9. Experience with dust suppression in mining a thick, dirty seam

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, D; Kohlhauer, H

    1975-11-20

    Dust suppression measures used when mining a thick, dirty seam are described. Dust sprays inside and outside the shearer drum helped to reduce coarse dust, but the resulting increase in moisture content of the coal limits the extent to which this method can be used. The shields were also fitted with sprays. Because of the dirt in the seam, continuous, remotely controlled deep infusion was used. This reduced the dust concentration from more than 10 mg/m/sup 3/ to between 3.9 and 6.6 mg/m/sup 3/.

  10. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    Science.gov (United States)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  11. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    Directory of Open Access Journals (Sweden)

    Iñaki Maurtua

    2013-10-01

    Full Text Available Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  12. Thermal tracking in mobile robots for leak inspection activities.

    Science.gov (United States)

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  13. Finding suspects in multiple cameras for improved railway protection

    NARCIS (Netherlands)

    Marck, J.W.; Bouma, H.; Baan, J; Oliveira Filho, J. de; Brink, M. van der

    2014-01-01

    The capability to find individuals using CCTV cameras is important for surveillance applications at large areas such as railway stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras post incident. In this paper, we describe the live

  14. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    Science.gov (United States)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  15. Multi-camera synchronization core implemented on USB3 based FPGA platform

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  16. Improving extraction technology of level seams. Sovershenstvovanie tekhnologii razrabotki pologikh plastov

    Energy Technology Data Exchange (ETDEWEB)

    Shetser, M G; Spitsyn, Yu G

    1985-01-01

    This report deals with conditions and prospects for intensifying extraction of level and inclined seams and improving extraction technology. Reviews mechanization of excavation of stables with automatic cutter-loaders (KA80 in conjunction with KD80); coal extraction using two cutter-loaders in seams 0.9 - 1.9 m thick and up to 20 degrees inclination (pillar mining); reciprocating method of coal cutting; one-sided method of coal extraction (KMK97 cutter loaders). Discusses strengthening of junctions of faces with gate roads (KSU and KSU3M props); improved types of props (hydraulic props SUG-30, SUG-V and GVD); roof control methods (induced caving, advance torpedoing or using KM87UMP and KMT power supports). Deals in detail with introduction of new extraction technology and strengthening of unstable rock by injecting polyurethene compounds, extraction of seams with wide-web cutter-loaders (Kirovets, IK101) and plowing. (3 refs.)

  17. Evaluation techniques of accuracy characteristics for non-contact photonic track inspection system

    Science.gov (United States)

    Popov, Dmitry V.; Ryabichenko, Roman B.; Krivosheina, Elena A.

    2005-06-01

    The most important task in Moscow metro is increasing safety of railway traffic. For safety purposes six track parameters are measured in Moscow Metro with help of track measurement car. Equipment mounted on this car works only in contact mode and doesn't provide modem requirements for accuracy. Also important task is measurement at high speeds, but contact technology limits speed of movement up to 25mph on rail switches. Current system can't measure in real-time mode. For decision of these field of tasks non-contact photonic measurement system (KSIR) is constructed. The KSIR works at speeds up to 70 mph and measure seven track parameters. The KSIR contains four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FTP); contact rail measurement (FKR); speed, level and car locating (USI). KSIR contains five CCD matrix cameras, four line CCD cameras, five infrared stripe lasers and four spot infrared lasers. Laser forms shape on the rail. CCD-camera acquires rail image and transfers it into the digital signal processor which produces preliminary calculation ofrail shape. Then image is transferred into the central computer to calculate values of rail characteristics. Angles between photonic unit and rail bring distortions in images from cameras. Additional distortions are caused by short-focus optics and small distance between camera and track. This distance is limited by structure clearance. The transformation algorithms for distortions elimination are applied. It's based on surfaces spline-approximation. As a result the KSIR calculates coefficients of approximating polynomials. The calibration is performed for checking accuracy of measurement in BFSM, FTP and FKR units. Evaluation techniques of accuracy characteristics are considered.

  18. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers

    International Nuclear Information System (INIS)

    Stroian, G.; Falco, T.; Seuntjens, J.P.

    2004-01-01

    The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily

  19. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  20. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  1. Efficient Multiclass Object Detection: Detecting Pedestrians and Bicyclists in a Truck’s Blind Spot Camera

    OpenAIRE

    Van Beeck, Kristof; Goedemé, Toon

    2015-01-01

    In this paper we propose an efficient detection and tracking framework targeting vulnerable road users in the blind spot camera images of a truck. Existing non-vision based safety solutions are not able to handle this problem completely. Therefore we aim to develop an active safety system, based solely on the vision input of the blind spot camera. This is far from trivial: vulnerable road users are a diverse class and consist of a wide variety of poses and appearances. Evidently we need to ac...

  2. Characteristics of the Roof Behaviors and Mine Pressure Manifestations During the Mining of Steep Coal Seam

    Science.gov (United States)

    Hong-Sheng, Tu; Shi-Hao, Tu; Cun, Zhang; Lei, Zhang; Xiao-Gang, Zhang

    2017-12-01

    A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a "voussoir beam" structure in the strata's dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof's behaviors during the mining of a steep seam.

  3. Robust Real-Time Tracking for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Aguilera Josep

    2007-01-01

    Full Text Available This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i motion detection using a layered background model, (ii object tracking based on local appearance, (iii hierarchical object recognition, and (iv fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed.

  4. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  5. Real-Time Acquisition of High Quality Face Sequences from an Active Pan-Tilt-Zoom Camera

    DEFF Research Database (Denmark)

    Haque, Mohammad A.; Nasrollahi, Kamal; Moeslund, Thomas B.

    2013-01-01

    -based real-time high-quality face image acquisition system, which utilizes pan-tilt-zoom parameters of a camera to focus on a human face in a scene and employs a face quality assessment method to log the best quality faces from the captured frames. The system consists of four modules: face detection, camera...... control, face tracking, and face quality assessment before logging. Experimental results show that the proposed system can effectively log the high quality faces from the active camera in real-time (an average of 61.74ms was spent per frame) with an accuracy of 85.27% compared to human annotated data.......Traditional still camera-based facial image acquisition systems in surveillance applications produce low quality face images. This is mainly due to the distance between the camera and subjects of interest. Furthermore, people in such videos usually move around, change their head poses, and facial...

  6. New light field camera based on physical based rendering tracing

    Science.gov (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  7. Multi-view video segmentation and tracking for video surveillance

    Science.gov (United States)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  8. Evaluating the microsoft kinect skeleton joint tracking as a tool for home-based physiotherapy

    Directory of Open Access Journals (Sweden)

    Phommahavong Somphong

    2015-09-01

    Full Text Available In physiotherapy, rehabilitation outcome is majorly dependent on the patient to continue exercises at home. To support a continuous and correct execution of exercises composed by the physiotherapist it is important that the patient stays motivated. With the emergence of game consoles such as Nintendo Wii, PlayStation Eye or Microsoft Kinect that employ special controllers or camera based motion recognition as means of user input those technologies have also been found to be interesting for other real-life applications such as providing individual physiotherapy exercises and an encouraging rehabilitation routine. Due to the intended use of those motion tracking systems in a computer-game environment it remains questionable if the accuracy of the skeleton joint tracking hardware and algorithms is suflicient for physiotherapy applications. We present a basic evaluation of the joint tracking accuracy where angles between various body extremities calculated by a Kinect system were compared with a high resolution motion capture system. Results show promising results with tracking deviations between 2.7° and 14.2° with a mean of the absolute deviations of 8.7°.

  9. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  10. Accurate eye center location and tracking using isophote curvature

    NARCIS (Netherlands)

    Valenti, R.; Gevers, T.

    2008-01-01

    The ubiquitous application of eye tracking is precluded by the requirement of dedicated and expensive hardware, such as infrared high definition cameras. Therefore, systems based solely on appearance (i.e. not involving active infrared illumination) are being proposed in literature. However,

  11. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  12. The Investigation of Knitted Materials Bonded Seams Behaviour upon Cyclical Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2017-08-01

    Full Text Available In this research uniaxial tension behaviour of PES knitted materials with bonded seams is analysed. The objects of the investigation were two types of knitted materials, having the same fibre composition (93 % PES, 7 % EL, but different in knitting pattern, i. e. plain single jersey and rib 1 × 1. Bonded overlap seams were formed by changing the orientation of knitted materials strips, i. e. parallel/parallel, parallel/bias, parallel/perpendicular, bias/bias and bias/perpendicular. The strips of each knitted material were joined by two types of thermoplastic polyurethane (PU films different in thickness (75 mm and 150 mm. Mechanical characteristics of bonded seams were defined in longitudinal direction. During uniaxial tension such parameters as maximal force Fmax (N and maximal elongation ɛmax (% were recorded from typical tension diagrams. The changes of tested specimens strength and deformation were compared before and after cyclical fatigue tension the conditions of which were 50 cycles up to tension force F equal 24.5 N. The results have shown that changes before and after cyclical fatigue tension are mostly determined by the structure of knitted materials, the orientation of knitted materials strips in bonded seam, but not effected by thermoplastic polyurethane film. These results are opposite compared to the results of biaxial tension of the same type of specimens, which have shown that changes before and after cyclical fatigue punching are mostly determined by the type of thermoplastic film, but not effected by the orientation of knitted materials strips in bonded seams. DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16065

  13. Study of geological and technologic evaluation for steeply inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiao-bing; Wang Zhong-qiang; Zhang Wei (and others) [China University of Mining & Technology, Beijing (China). School of Resources and Safety Engineering

    2007-07-01

    In order to predict the mining effect and choice of the technical decision comprehensive evaluation on steep coal seams was taken. Based on technical test, mining practice and analysis of statistic data, the hierarchical structure of evaluation about steeply inclined coal seam was obtained. In the structure, there are 8 multiple factors, which can divide 13 fundamental factors. Using the method of comprehensive evaluation with multi-index and fuzzy mathematics, the evaluation functions of the influencing factors are structured, and the model of fuzzy evaluation is proposed. 289 mining faces in Datai mine were evaluated using this model and the single outputs of these faces were predicted. The result shows that the number of mining faces in the first class is 27, covering 9.43% of the total, the number of the second class is 87, covering 30.1% of the total, the number of the third class is 112, covering 38.75%, and the number of the fourth class is 63, covering 21.8%.The evaluation and the reality are largely uniform. 8 refs., 3 tabs.

  14. Design of microcontroller based system for automation of streak camera

    International Nuclear Information System (INIS)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P.

    2010-01-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  15. Design of microcontroller based system for automation of streak camera.

    Science.gov (United States)

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  16. Design of microcontroller based system for automation of streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P. [Laser Electronics Support Division, RRCAT, Indore 452013 (India)

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  17. Contribution to the tracking and the 3D reconstruction of scenes composed of torus from image sequences a acquired by a moving camera

    International Nuclear Information System (INIS)

    Naudet, S.

    1997-01-01

    The three-dimensional perception of the environment is often necessary for a robot to correctly perform its tasks. One solution, based on the dynamic vision, consists in analysing time-varying monocular images to estimate the spatial geometry of the scene. This thesis deals with the reconstruction of torus by dynamic vision. Though this object class is restrictive, it enables to tackle the problem of reconstruction of bent pipes usually encountered in industrial environments. The proposed method is based on the evolution of apparent contours of objects in the sequence. Using the expression of torus limb boundaries, it is possible to recursively estimate the object three-dimensional parameters by minimising the error between the predicted projected contours and the image contours. This process, which is performed by a Kalman filter, does not need a precise knowledge of the camera displacement or any matching of the tow limbs belonging to the same object. To complete this work, temporal tracking of objects which deals with occlusion situations is proposed. The approach consists in modeling and interpreting the apparent motion of objects in the successive images. The motion interpretation, based on a simplified representation of the scene, allows to recover pertinent three-dimensional information which is used to manage occlusion situations. Experiments, on synthetic and real images, proves he validity of the tracking and the reconstruction processes. (author)

  18. A mathematical model for camera calibration based on straight lines

    Directory of Open Access Journals (Sweden)

    Antonio M. G. Tommaselli

    2005-12-01

    Full Text Available In other to facilitate the automation of camera calibration process, a mathematical model using straight lines was developed, which is based on the equivalent planes mathematical model. Parameter estimation of the developed model is achieved by the Least Squares Method with Conditions and Observations. The same method of adjustment was used to implement camera calibration with bundles, which is based on points. Experiments using simulated and real data have shown that the developed model based on straight lines gives results comparable to the conventional method with points. Details concerning the mathematical development of the model and experiments with simulated and real data will be presented and the results with both methods of camera calibration, with straight lines and with points, will be compared.

  19. Adaptation Computing Parameters of Pan-Tilt-Zoom Cameras for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Ya Lin WU

    2014-01-01

    Full Text Available The Closed- CIRCUIT television (CCTV cameras have been widely used in recent years for traffic monitoring and surveillance applications. We can use CCTV cameras to extract automatically real-time traffic parameters according to the image processing and tracking technologies. Especially, the pan-tilt-zoom (PTZ cameras can provide flexible view selection as well as a wider observation range, and this makes the traffic parameters can be accurately calculated. Therefore, that the parameters of PTZ cameras are calibrated plays an important role in vision-based traffic applications. However, in the specific traffic environment, which is that the license plate number of the illegal parking is located, the parameters of PTZ cameras have to be updated according to the position and distance of illegal parking. In proposed traffic monitoring systems, we use the ordinary webcam and PTZ camera. We get vanishing-point of traffic lane lines in the pixel-based coordinate system by fixed webcam. The parameters of PTZ camera can be initialized by distance of the traffic monitoring and specific objectives and vanishing-point. And then we can use the coordinate position of the illegally parked car to update the parameters of PTZ camera and then get the real word coordinate position of the illegally parked car and use it to compute the distance. The result shows the error of the tested distance and real distance is only 0.2064 meter.

  20. Relaxation and gas drainage boreholes for high performance longwall operations in low permeability coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Imgrund, Thomas [DMT GmbH und Co. KG, Essen (Germany); Bauer, Frank [Hazemag und EPR GmbH, Duelmen (Germany). Mining

    2013-06-15

    With an increasing depth of cover, gas emission control and gas outbursts prevention has become an increasingly important issue in coal mining. Deep multi-seam mining often requires operation in an environment characterised by a high gas content and gas pressure. Control of gas related risks has to be realised during heading and close to the longwall by proper risk assessment and flexible drilling schemes. These cover exploration and relaxation drilling, in-seam drilling for pre-drainage and cross measure drilling for drainage of roof and the floor gas emissions. DMT provides comprehensive solutions based on a scientific background. These solutions are engineered considering their technical feasibility. Hazemag Mining offers a large number of complete machinery including tools systems for the implementation of those solutions. (orig.)

  1. Dynamic mapping of conical intersection seams: A general method for incorporating the geometric phase in adiabatic dynamics in polyatomic systems.

    Science.gov (United States)

    Xie, Changjian; Malbon, Christopher L; Yarkony, David R; Guo, Hua

    2017-07-28

    The incorporation of the geometric phase in single-state adiabatic dynamics near a conical intersection (CI) seam has so far been restricted to molecular systems with high symmetry or simple model Hamiltonians. This is due to the fact that the ab initio determined derivative coupling (DC) in a multi-dimensional space is not curl-free, thus making its line integral path dependent. In a recent work [C. L. Malbon et al., J. Chem. Phys. 145, 234111 (2016)], we proposed a new and general approach based on an ab initio determined diabatic representation consisting of only two electronic states, in which the DC is completely removable, so that its line integral is path independent in the simply connected domains that exclude the CI seam. Then with the CIs included, the line integral of the single-valued DC can be used to construct the complex geometry-dependent phase needed to exactly eliminate the double-valued character of the real-valued adiabatic electronic wavefunction. This geometry-dependent phase gives rise to a vector potential which, when included in the adiabatic representation, rigorously accounts for the geometric phase in a system with an arbitrary locus of the CI seam and an arbitrary number of internal coordinates. In this work, we demonstrate this approach in a three-dimensional treatment of the tunneling facilitated dissociation of the S 1 state of phenol, which is affected by a C s symmetry allowed but otherwise accidental seam of CI. Here, since the space is three-dimensional rather than two-dimensional, the seam is a curve rather than a point. The nodal structure of the ground state vibronic wavefunction is shown to map out the seam of CI.

  2. Analysis of Dead Time and Implementation of Smith Predictor Compensation in Tracking Servo Systems for Small Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Brashear , Jr, Thomas J

    2005-01-01

    .... Gimbaled video camera systems, designed at NPS, use two servo actuators to command line of sight orientation via serial controller while tracking a target and is termed Visual Based Target Tracking (VBTT...

  3. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  4. Automatic Moving Object Segmentation for Freely Moving Cameras

    Directory of Open Access Journals (Sweden)

    Yanli Wan

    2014-01-01

    Full Text Available This paper proposes a new moving object segmentation algorithm for freely moving cameras which is very common for the outdoor surveillance system, the car build-in surveillance system, and the robot navigation system. A two-layer based affine transformation model optimization method is proposed for camera compensation purpose, where the outer layer iteration is used to filter the non-background feature points, and the inner layer iteration is used to estimate a refined affine model based on the RANSAC method. Then the feature points are classified into foreground and background according to the detected motion information. A geodesic based graph cut algorithm is then employed to extract the moving foreground based on the classified features. Unlike the existing global optimization or the long term feature point tracking based method, our algorithm only performs on two successive frames to segment the moving foreground, which makes it suitable for the online video processing applications. The experiment results demonstrate the effectiveness of our algorithm in both of the high accuracy and the fast speed.

  5. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

    Science.gov (United States)

    Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong

    2009-09-15

    Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

  6. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    Science.gov (United States)

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  7. Visual tracking for multi-modality computer-assisted image guidance

    Science.gov (United States)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  8. Development of a reader for track etch detectors based on a commercially available slide scanner

    CERN Document Server

    Steele, J D; Tanner, R J; Bartlett, D T

    1999-01-01

    NRPB has operated a routine neutron personal dosimetry service based on the electrochemical etch of PADC elements since 1986. Since its inception it has used an automated reader based on a video camera and real time analysis. A new and more powerful replacement system has been developed using a commercially available photographic slide scanner. This permits a complete image of the dosemeter to be grabbed in a single scan, generating a 2592x3888 pixel file which is saved for subsequent analysis. This gives an effective pixel size of 10x10 mu m with an image of the entire dosemeter in one field of view. Custom written software subsequently analyses the image to assess the number of etched pits on the dosemeter and read the detector identification number (code). Batch scanning of up to 40 detectors is also possible using an autofeed attachment. The system can be used for electrochemically etched tracks for neutron detectors and chemically etched tracks for radon detectors.

  9. Detecting voids in coal seams in surface mining by means of a biophysical method

    Energy Technology Data Exchange (ETDEWEB)

    Bek, E.

    1985-07-01

    Soviet research institutes, in cooperation with research intitutes from other countries, developed the Radar 1 system for detecting abandoned workings in coal seams in surface mines. The system will be used for detecting voids in seams at depths to 50 m. The Academy of Sciences of Czechoslovakia tested use of dowsing for detecting abandoned workings in the Pohranicni straz, the Brezova and the Medard coal surface mines. The workings were situated at depths from 2 to 12 m from the ground surface (dowser position). The dowser was not informed of position or dimensions of the workings. Accuracy of determining position of abandoned workings in coal seams was high. Results of dowsing were checked by drilling. 4 references.

  10. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software

    Directory of Open Access Journals (Sweden)

    Brandon E. Jackson

    2016-09-01

    Full Text Available Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts.

  11. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    Science.gov (United States)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  12. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.F.; Qin, Y.; Song, D.Y.; Sang, S.X.; Jiang, B.; Zhu, Y.M.; Fu, X.H. [China University of Mining & Technology, Xuzhou (China). College for Resources & Geoscience

    2005-12-15

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolinite, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, AI, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  13. Coal petrology of coal seams from the Leao-Butia Coalfield, Lower Permian of the Parana Basin, Brazil - Implications for coal facies interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.B. [Laboratorio de Oceanografia Geologica, Departamento de Geociencias, Fundacao Universidade Federal do Rio Grande, FURG, Av. Italia km 08, Campus Carreiros, 96201-900, Rio Grande, RS (Brazil); Kalkreuth, W.; Holz, M. [Instituto de Geociencias, UFRGS, Av. Bento Goncalves, 9500 91501-970 Porto Alegre, RS (Brazil)

    2008-02-01

    In the Leao-Butia Coalfield, Rio Grande do Sul the coal seams occur in the Rio Bonito Formation, Guata Group, Tubarao Supergroup of the Parana Basin, Brazil and are of Permian (Artinskian-Kungurian) age. This study is the first detailed investigation on the coal petrographic characterization of the coal-bearing sequence in relation to the depositional settings of the precursor mires, both in terms of whole seam characterization and in-seam variations. The study is based on the analyses of nine coal seams (I2, CI, L4, L3, L2, L1, S3, S2, S1), which were selected from core of borehole D-193, Leao-Butia and represent the entire coal-bearing sequence. The interpretation of coal facies and depositional environment is based on lithotype, maceral and microlithotype analyses using different facies-critical petrographic indices, which were displayed in coal facies diagrams. The seams are characterized by the predominance of dull lithotypes (dull, banded dull). The dullness of the coal is attributed to relatively high mineral matter, inertinite and liptinite contents. The petrographic composition is dominated by vitrinite (28-70 vol.% mmf) and inertinite (> 30 vol.% mmf) groups. Liptinite contents range from 7 to 30 vol.% (mmf) and mineral matter from 4-30 vol.%. Microlithotypes associations are dominated by vitrite, duroclarite, carbominerite and inertite. It is suggested that the observed vertical variations in petrographic characteristics (lithotypes, microlithotypes, macerals, vitrinite reflectance) were controlled by groundwater level fluctuations in the ancient mires due to different accommodation/peat accumulation rates. Correlation of the borehole strata with the general sequence-stratigraphical setting suggests that the alluvial fan system and the coal-bearing mudstone succession are linked to a late transgressive systems tract of sequence 2. Based on average compositional values obtained from coal facies diagrams, a deposition in a limno-telmatic to limnic coal

  14. Camera calibration method of binocular stereo vision based on OpenCV

    Science.gov (United States)

    Zhong, Wanzhen; Dong, Xiaona

    2015-10-01

    Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.

  15. Acquisition, tracking, and pointing IV; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Gowrinathan, Sankaran

    1990-09-01

    Various papers on acquisition, tracking, and pointing are presented. Individual topics addressed include: backlash control techniques in geared servo mechanics; optical fiber and photodetector array for robotic seam tracking; star trackers for spacecraft applications; Starfire optical range tracking system for the 1.5 m telescope; real-time video image centroid tracker; optical alignment with a beamwalk system; line-of-sight stabilization requirements for target tracking system; image quality with narrow beam illumination in an active tracking system; IR sensor data fusion for target detection, identification, and tracking; target location and pointing algorithm for a three-axis stabilized line scanner. Also discussed are: adaptive control system techniques applied to inertial stabilization systems; supervisory control of electrooptic tracking and pointing; position loop compensation for flex-pivot-mounted gimbal stabilization systems; advanced testing methods for acquisition, tracking, and pointing; development of kinmatics for gimballed mirror systems.

  16. An algorithm of a real time image tracking system using a camera with pan/tilt motors on an embedded system

    Science.gov (United States)

    Kim, Hie-Sik; Nam, Chul; Ha, Kwan-Yong; Ayurzana, Odgeral; Kwon, Jong-Won

    2005-12-01

    The embedded systems have been applied to many fields, including households and industrial sites. The user interface technology with simple display on the screen was implemented more and more. The user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise. An embedded system for image tracking was implemented. This system is used a fixed IP for the reliable server operation on TCP/IP networks. Using an USB camera on the embedded Linux system developed a real time broadcasting of video image on the Internet. The digital camera is connected at the USB host port of the embedded board. All input images from the video camera are continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU, which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.

  17. Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV

    International Nuclear Information System (INIS)

    Kadouf, Hani Hunud A; Mustafah, Yasir Mohd

    2013-01-01

    With robotics becoming a fundamental aspect of modern society, further research and consequent application is ever increasing. Aerial robotics, in particular, covers applications such as surveillance in hostile military zones or search and rescue operations in disaster stricken areas, where ground navigation is impossible. The increased visual capacity of UAV's (Unmanned Air Vehicles) is also applicable in the support of ground vehicles to provide supplies for emergency assistance, for scouting purposes or to extend communication beyond insurmountable land or water barriers. The Quadrotor, which is a small UAV has its lift generated by four rotors and can be controlled by altering the speeds of its motors relative to each other. The four rotors allow for a higher payload than single or dual rotor UAVs, which makes it safer and more suitable to carry camera and transmitter equipment. An onboard camera is used to capture and transmit images of the Quadrotor's First Person View (FPV) while in flight, in real time, wirelessly to a base station. The aim of this research is to develop an autonomous quadrotor platform capable of transmitting real time video signals to a base station for processing. The result from the image analysis will be used as a feedback in the quadrotor positioning control. To validate the system, the algorithm should have the capacity to make the quadrotor identify, track or hover above stationary or moving objects

  18. Automated concept and relationship extraction for the semi-automated ontology management (SEAM) system.

    Science.gov (United States)

    Doing-Harris, Kristina; Livnat, Yarden; Meystre, Stephane

    2015-01-01

    We develop medical-specialty specific ontologies that contain the settled science and common term usage. We leverage current practices in information and relationship extraction to streamline the ontology development process. Our system combines different text types with information and relationship extraction techniques in a low overhead modifiable system. Our SEmi-Automated ontology Maintenance (SEAM) system features a natural language processing pipeline for information extraction. Synonym and hierarchical groups are identified using corpus-based semantics and lexico-syntactic patterns. The semantic vectors we use are term frequency by inverse document frequency and context vectors. Clinical documents contain the terms we want in an ontology. They also contain idiosyncratic usage and are unlikely to contain the linguistic constructs associated with synonym and hierarchy identification. By including both clinical and biomedical texts, SEAM can recommend terms from those appearing in both document types. The set of recommended terms is then used to filter the synonyms and hierarchical relationships extracted from the biomedical corpus. We demonstrate the generality of the system across three use cases: ontologies for acute changes in mental status, Medically Unexplained Syndromes, and echocardiogram summary statements. Across the three uses cases, we held the number of recommended terms relatively constant by changing SEAM's parameters. Experts seem to find more than 300 recommended terms to be overwhelming. The approval rate of recommended terms increased as the number and specificity of clinical documents in the corpus increased. It was 60% when there were 199 clinical documents that were not specific to the ontology domain and 90% when there were 2879 documents very specific to the target domain. We found that fewer than 100 recommended synonym groups were also preferred. Approval rates for synonym recommendations remained low varying from 43% to 25% as the

  19. Tracking a "facer's" behavior in a public plaza

    DEFF Research Database (Denmark)

    2014-01-01

    The video shows the tracking of a "facer's" behavior in a public plaza using a thermal camera (non-privacy violating) and a visualization of the tracks in a space-time cube in a 3D GIS. The tracking data is used in my PhD project on Human Movement Patterns in Smart Cities. The recording and analy...... and analysis of the thermal video has been made in collaboration with Rikke Gade from the Visual Analytics of People Lab at Aalborg University.......The video shows the tracking of a "facer's" behavior in a public plaza using a thermal camera (non-privacy violating) and a visualization of the tracks in a space-time cube in a 3D GIS. The tracking data is used in my PhD project on Human Movement Patterns in Smart Cities. The recording...

  20. Partial camera automation in an unmanned air vehicle.

    Science.gov (United States)

    Korteling, J E; van der Borg, W

    1997-03-01

    The present study focused on an intelligent, semiautonomous, interface for a camera operator of a simulated unmanned air vehicle (UAV). This interface used system "knowledge" concerning UAV motion in order to assist a camera operator in tracking an object moving through the landscape below. The semiautomated system compensated for the translations of the UAV relative to the earth. This compensation was accompanied by the appropriate joystick movements ensuring tactile (haptic) feedback of these system interventions. The operator had to superimpose self-initiated joystick manipulations over these system-initiated joystick motions in order to track the motion of a target (a driving truck) relative to the terrain. Tracking data showed that subjects performed substantially better with the active system. Apparently, the subjects had no difficulty in maintaining control, i.e., "following" the active stick while superimposing self-initiated control movements over the system-interventions. Furthermore, tracking performance with an active interface was clearly superior relative to the passive system. The magnitude of this effect was equal to the effect of update-frequency (2-5 Hz) of the monitor image. The benefits of update frequency enhancement and semiautomated tracking were the greatest under difficult steering conditions. Mental workload scores indicated that, for the difficult tracking-dynamics condition, both semiautomation and update frequency increase resulted in less experienced mental effort. For the easier dynamics this effect was only seen for update frequency.

  1. 保护层开采被保护层卸压增透效果的应用研究%Effect of protective seam mining on pressure relief and permeability enhancement of protected coal seam

    Institute of Scientific and Technical Information of China (English)

    冯拥军; 周玉军; 张喜传

    2014-01-01

    In view of the coal seam occurrence condition and geological condition of the west-ern region of Henan Province,the gas pressure releasing and drainage in protective coal seam was designed and the drilling design was investigated. In addition,the gas parameters and the dis-placement of roof and floor of B1 coal seam were determined. The research results showed that after the protective seam mining,coal seam gas pressure was decreased from the original 0.9 MPa to 0.12 MPa,the original gas content was reduced from the previous 6.52 m3/t to 3.1 m3/t,the expansion deformation of roof and floor reached 20.6 ‰,and the coal seam permeability coefficient was increased 810 times,so that the outburst danger at No. 12112 working face of B1 coal seam was eliminated in the pressure released area.%针对豫西煤田煤层赋存情况及地质状况,设计了被保护层的卸压抽采方案及考察钻孔,对瓦斯基础参数和二1煤层的煤层顶底板移近量进行了测定.研究结果表明,二1煤层在受到保护层开采后,煤层瓦斯压力由原始的0.9 MP a降为0.12 MP a ,原始瓦斯含量由以前的6.52 m3/t降为3.1 m3/t,顶底板膨胀变形量达到20.6‰,煤层透气性系数增大了810倍,在卸压区内完全消除了二1煤层12112工作面的突出危险性.

  2. Innovative technology summary report: Sealed-seam sack suits

    International Nuclear Information System (INIS)

    1998-09-01

    Sealed-seam sack suits are an improved/innovative safety and industrial hygiene technology designed to protect workers from dermal exposure to contamination. Most of these disposable, synthetic-fabric suits are more protective than cotton suits, and are also water-resistant and gas permeable. Some fabrics provide a filter to aerosols, which is important to protection against contamination, while allowing air to pass, increasing comfort level of workers. It is easier to detect body-moisture breakthrough with the disposable suits than with cotton, which is also important to protecting workers from contamination. These suits present a safe and cost-effective (6% to 17% less expensive than the baseline) alternative to traditional protective clothing. This report covers the period from October 1996 to August 1997. During that time, sealed-seam sack suits were demonstrated during daily activities under normal working conditions at the C Reactor and under environmentally controlled conditions at the Los Alamos National Laboratory (LANL)

  3. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  4. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  5. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  6. The fly's eye camera system

    Science.gov (United States)

    Mészáros, L.; Pál, A.; Csépány, G.; Jaskó, A.; Vida, K.; Oláh, K.; Mezö, G.

    2014-12-01

    We introduce the Fly's Eye Camera System, an all-sky monitoring device intended to perform time domain astronomy. This camera system design will provide complementary data sets for other synoptic sky surveys such as LSST or Pan-STARRS. The effective field of view is obtained by 19 cameras arranged in a spherical mosaic form. These individual cameras of the device stand on a hexapod mount that is fully capable of achieving sidereal tracking for the subsequent exposures. This platform has many advantages. First of all it requires only one type of moving component and does not include unique parts. Hence this design not only eliminates problems implied by unique elements, but the redundancy of the hexapod allows smooth operations even if one or two of the legs are stuck. In addition, it can calibrate itself by observed stars independently from both the geographical location (including northen and southern hemisphere) and the polar alignment of the full mount. All mechanical elements and electronics are designed within the confines of our institute Konkoly Observatory. Currently, our instrument is in testing phase with an operating hexapod and reduced number of cameras.

  7. Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

    Directory of Open Access Journals (Sweden)

    Michael Rudzsky

    2008-01-01

    Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.

  8. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    Science.gov (United States)

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  9. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2010-08-01

    Full Text Available The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem and dense disparity maps and u-v disparity (vision subsystem. Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  10. A software-based tool for video motion tracking in the surgical skills assessment landscape

    NARCIS (Netherlands)

    Ganni, S.; Botden, Sanne M.B.I.; Chmarra, M.K.; Goossens, R.H.M.; Jakimowicz, J.J.

    2018-01-01

    Background: The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine

  11. First experience with THE AUTOLAP™ SYSTEM: an image-based robotic camera steering device.

    Science.gov (United States)

    Wijsman, Paul J M; Broeders, Ivo A M J; Brenkman, Hylke J; Szold, Amir; Forgione, Antonello; Schreuder, Henk W R; Consten, Esther C J; Draaisma, Werner A; Verheijen, Paul M; Ruurda, Jelle P; Kaufman, Yuval

    2018-05-01

    Robotic camera holders for endoscopic surgery have been available for 20 years but market penetration is low. The current camera holders are controlled by voice, joystick, eyeball tracking, or head movements, and this type of steering has proven to be successful but excessive disturbance of surgical workflow has blocked widespread introduction. The Autolap™ system (MST, Israel) uses a radically different steering concept based on image analysis. This may improve acceptance by smooth, interactive, and fast steering. These two studies were conducted to prove safe and efficient performance of the core technology. A total of 66 various laparoscopic procedures were performed with the AutoLap™ by nine experienced surgeons, in two multi-center studies; 41 cholecystectomies, 13 fundoplications including hiatal hernia repair, 4 endometriosis surgeries, 2 inguinal hernia repairs, and 6 (bilateral) salpingo-oophorectomies. The use of the AutoLap™ system was evaluated in terms of safety, image stability, setup and procedural time, accuracy of imaged-based movements, and user satisfaction. Surgical procedures were completed with the AutoLap™ system in 64 cases (97%). The mean overall setup time of the AutoLap™ system was 4 min (04:08 ± 0.10). Procedure times were not prolonged due to the use of the system when compared to literature average. The reported user satisfaction was 3.85 and 3.96 on a scale of 1 to 5 in two studies. More than 90% of the image-based movements were accurate. No system-related adverse events were recorded while using the system. Safe and efficient use of the core technology of the AutoLap™ system was demonstrated with high image stability and good surgeon satisfaction. The results support further clinical studies that will focus on usability, improved ergonomics and additional image-based features.

  12. Eye Detection and Tracking for Intelligent Human Computer Interaction

    National Research Council Canada - National Science Library

    Yin, Lijun

    2006-01-01

    .... In this project, Dr. Lijun Yin has developed a new algorithm for detecting and tracking eyes under an unconstrained environment using a single ordinary camera or webcam. The new algorithm is advantageous in that it works in a non-intrusive way based on a socalled Topographic Context approach.

  13. Coal seam has boom - powering North Queensland industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Reduced operating costs, lower greenhouse gas emissions and security of supply are being cited by North Queensland industry leaders as the reasons for investing more than A$550 million to expand operations and convert to coal seam gas as their preferred fuel source. The article, by Enertrade, reports that just a few months after commissioning its North Queensland Gas Pipeline to transport coal seam gas from Moranbah to Townsville, Enertrade has signed contracts that will see combined cycle gas-fired baseload electricity generated in Townsville and the Queensland Nickel Refinery, and Xstrata Copper Refinery switch from liquid fuels to gas. The development has been driven by state government policy that 13% of Queensland's electricity be sourced from gas-fired power generation from 1 January 2005. Further information is available from Enertrade on Tel +617 3331 9929. 2 photos.

  14. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  15. Influence of Industrial Washing and Cyclic Fatigue on Slippage of Linen Fabric Threads along the Seam

    Directory of Open Access Journals (Sweden)

    Irina KORUNČAK

    2014-04-01

    Full Text Available All seams of garments shall withstand the established force effect in the longitudinal and transverse directions. Resistance to thread slippage along the seam is a major property of fabrics that is regulated by strict guidelines. In many research works, lining fabrics are chosen as the object of research as thread slippage is the most typical of them. What concerns the reports exploring slippage of linen fabric threads along the seam, just very few papers are available. Studies dealing with the influence made by industrial washing and cyclic load on the defect under investigation, thereby taking into account operational properties of garments are not readily available at all. The objective of the paper is to define the influence of industrial washing and cyclic tensile on slippage of linen fabric threads along the seam. For the research, five 100 % linen fabrics of plain weave have been selected. Control test specimens, unwashed and processed with different washing methods, have been analysed. Cyclic tensile of the test specimens has been carried out by a tensile machine “Tinius Olsen” at tensile force P = 20 N, tensile speed of 12.55 mm/s, number of cycles of 100. The carried-out testing has demonstrated that industrial washing decreased resistance of linen fabrics to thread slippage along the seam in the most cases. Analysis of the results obtained has shown that cyclic tensile led to particularly significant increase in the seam gap. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2486

  16. BENCHMARKING THE OPTICAL RESOLVING POWER OF UAV BASED CAMERA SYSTEMS

    Directory of Open Access Journals (Sweden)

    H. Meißner

    2017-08-01

    Full Text Available UAV based imaging and 3D object point generation is an established technology. Some of the UAV users try to address (very highaccuracy applications, i.e. inspection or monitoring scenarios. In order to guarantee such level of detail and accuracy high resolving imaging systems are mandatory. Furthermore, image quality considerably impacts photogrammetric processing, as the tie point transfer, mandatory for forming the block geometry, fully relies on the radiometric quality of images. Thus, empirical testing of radiometric camera performance is an important issue, in addition to standard (geometric calibration, which normally is covered primarily. Within this paper the resolving power of ten different camera/lens installations has been investigated. Selected systems represent different camera classes, like DSLRs, system cameras, larger format cameras and proprietary systems. As the systems have been tested in wellcontrolled laboratory conditions and objective quality measures have been derived, individual performance can be compared directly, thus representing a first benchmark on radiometric performance of UAV cameras. The results have shown, that not only the selection of appropriate lens and camera body has an impact, in addition the image pre-processing, i.e. the use of a specific debayering method, significantly influences the final resolving power.

  17. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  18. Sequence stratigraphy, organic petrology and chemistry applied to the upper and lower coal seams in the Candiota Coalfield, Parana Basin, RS, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.S. de; Kalkreuth, W. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil)

    2010-12-01

    The Permian age coal seams in the Candiota Coalfield represent the largest coal deposit of the country. Currently two seams are mined, called ''Camada Candiota Superior'' and ''Camada Candiota Inferior''. The other coal seams of the coalfield, seams S1-S9 (upper seams) and I1-I5 (lower seams) have as yet not been exploited. The objective of this paper is to perform a detailed sequence stratigraphic, petrologic and chemical study of the upper and lower coal seams, thereby generating data for assisting in the development and better use of the coal-bearing interval. The methodology includes application of the concepts of sequence stratigraphy, which includes the lithological interpretation of the core to establish the depositional environments and genetic correlation between facies associations to define parasequences and bounding surfaces; coal petrology (analysis of the reflectance of vitrinite, determination of the petrographic composition of the coals by maceral analyses), and chemical analyses such as sulphur determination, proximate analyses (ash, moisture, volatile matter, and fixed carbon), and elemental analyses. Three main depositional systems were so far identified: alluvial fan, fluvial system, lagoonal estuary system. This study shows that coal development was controlled by accommodation/accumulation rates, with coal seams with greater thickness and lateral continuity being formed within the transgressive systems tract (lagoonal depositional system) of parasequence 2 (PS2), indicating that the accumulation rates of the peat and distribution of the coal seams were controlled by stratigraphic setting. Vitrinite reflectances for the upper and lower coal seams are indicative of subbituminous rank (Rrandom = 0.36-0.47%), with evidence that anomalously low reflectance values are related to high mineral-matter contents. Maceral composition is highly variable, with some coal seams being extremely rich in inertinite (up to

  19. An interactive VR system based on full-body tracking and gesture recognition

    Science.gov (United States)

    Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru

    2016-10-01

    Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.

  20. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  1. Eye gaze tracking based on the shape of pupil image

    Science.gov (United States)

    Wang, Rui; Qiu, Jian; Luo, Kaiqing; Peng, Li; Han, Peng

    2018-01-01

    Eye tracker is an important instrument for research in psychology, widely used in attention, visual perception, reading and other fields of research. Because of its potential function in human-computer interaction, the eye gaze tracking has already been a topic of research in many fields over the last decades. Nowadays, with the development of technology, non-intrusive methods are more and more welcomed. In this paper, we will present a method based on the shape of pupil image to estimate the gaze point of human eyes without any other intrusive devices such as a hat, a pair of glasses and so on. After using the ellipse fitting algorithm to deal with the pupil image we get, we can determine the direction of the fixation by the shape of the pupil.The innovative aspect of this method is to utilize the new idea of the shape of the pupil so that we can avoid much complicated algorithm. The performance proposed is very helpful for the study of eye gaze tracking, which just needs one camera without infrared light to know the changes in the shape of the pupil to determine the direction of the eye gazing, no additional condition is required.

  2. Object tracking using active appearance models

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2001-01-01

    This paper demonstrates that (near) real-time object tracking can be accomplished by the deformable template model; the Active Appearance Model (AAM) using only low-cost consumer electronics such as a PC and a web-camera. Successful object tracking of perspective, rotational and translational...

  3. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias; Sharma, Gopal; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  4. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias

    2016-12-19

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  5. Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam

    Directory of Open Access Journals (Sweden)

    Li Yang

    2016-01-01

    Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.

  6. Face Recognition and Tracking in Videos

    Directory of Open Access Journals (Sweden)

    Swapnil Vitthal Tathe

    2017-07-01

    Full Text Available Advancement in computer vision technology and availability of video capturing devices such as surveillance cameras has evoked new video processing applications. The research in video face recognition is mostly biased towards law enforcement applications. Applications involves human recognition based on face and iris, human computer interaction, behavior analysis, video surveillance etc. This paper presents face tracking framework that is capable of face detection using Haar features, recognition using Gabor feature extraction, matching using correlation score and tracking using Kalman filter. The method has good recognition rate for real-life videos and robust performance to changes due to illumination, environmental factors, scale, pose and orientations.

  7. Reviewing Automated Sensor-Based Visitor Tracking Studies

    DEFF Research Database (Denmark)

    Mygind, Lærke; Bentsen, Peter

    2017-01-01

    The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems. This literat......The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems...... methods in terms of obtained level of detail, accuracy, level of obtrusiveness, automation of data entry, ability to time concurrent behaviors, and amount of observer training needed. Although individual sensor-based and traditional, observational methods had both strengths and weaknesses, all sensor......-based timing and tracking methods provided automated data entry and the opportunity to track a number of visitors simultaneously regardless of the available personnel....

  8. Law of Strata Pressure Behavior in Shallow Coal Seam

    Science.gov (United States)

    Zhao, Jian; Liu, Leibin; Zheng, Zhiyang

    2018-02-01

    The law of strata pressure behavior in shallow coal seam is analyzed, according to the load data of Jinjie Coal Mine 31109 working face hydraulic supports. The first weighting distance of main roof is 80 m, and the periodic weighting distance of main roof is about 20 m. And according to the load data in the middle and both ends of the working face, the working resistance of hydraulic supports and the setting load are a bit small, so they couldn’t meet the needs of supporting roof. Then, the front abutment pressure of working face is analyzed by numerical simulation. It does not only explain the reason that the load is too big, but also explains the reason that the strata pressure behavior in shallow coal seam is serious. The length of undamaged main roof rock beam verifies the correctness of the periodic weighting distance.

  9. Patient positioning in radiotherapy based on surface imaging using time of flight cameras

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, M., E-mail: marlene.gilles@univ-brest.fr; Fayad, H.; Clement, J. F.; Bert, J.; Visvikis, D. [INSERM, UMR 1101, LaTIM, Brest 29609 (France); Miglierini, P. [Academic Radiotherapy Department, CHRU Morvan, Brest 29200 (France); Scheib, S. [Varian Medical Systems Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Cozzi, L. [Radiotherapy and Radiosurgery Department, Instituto Clinico Humanitas, Rozzano 20089 (Italy); Boussion, N.; Schick, U.; Pradier, O. [INSERM, UMR 1101, LaTIM, Brest 29609, France and Academic Radiotherapy Department, CHRU Morvan, Brest 29200 (France)

    2016-08-15

    Purpose: To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. Methods: A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, and head and neck cancer patients. Results: The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. Conclusions: The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).

  10. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.

    Science.gov (United States)

    Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos

    2013-12-01

    Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  11. A Compton camera application for the GAMOS GEANT4-based framework

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Arce, P. [Department of Basic Research, CIEMAT, Madrid (Spain); Judson, D.S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dormand, J.; Jones, M.; Nolan, P.J.; Sampson, J.A.; Scraggs, D.P.; Sweeney, A. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2012-04-11

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  12. Multithreaded hybrid feature tracking for markerless augmented reality.

    Science.gov (United States)

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  13. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  14. Computer-aided target tracking in motion analysis studies

    Science.gov (United States)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  15. Real-time vehicle matching for multi-camera tunnel surveillance

    Science.gov (United States)

    Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.

  16. Mobile Robot Positioning by using Low-Cost Visual Tracking System

    Directory of Open Access Journals (Sweden)

    Ruangpayoongsak Niramon

    2017-01-01

    Full Text Available This paper presents an application of visual tracking system on mobile robot positioning. The proposed method is verified on a constructed low-cost tracking system consisting of 2 DOF pan-tilt unit, web camera and distance sensor. The motion of pan-tilt joints is realized and controlled by using LQR controller running on microcontroller. Without needs of camera calibration, robot trajectory is tracked by Kalman filter integrating distance information and joint positions. The experimental results demonstrate validity of the proposed positioning technique and the obtained mobile robot trajectory is benchmarked against laser rangefinder positioning. The implemented system can successfully track a mobile robot driving at 14 cm/s.

  17. Real-time object detection, tracking and occlusion reasoning

    Science.gov (United States)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir; Sawhney, Harpreet Singh; Zhu, Jiejie; Javed, Omar; Liu, Jingen; Cheng, Hui; Eledath, Jayakrishnan

    2018-02-27

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  18. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios

    International Nuclear Information System (INIS)

    García-Vázquez, V; Marinetto, E; Santos-Miranda, J A; Calvo, F A; Desco, M; Pascau, J

    2013-01-01

    Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios. (paper)

  19. Feature-based automatic color calibration for networked camera system

    Science.gov (United States)

    Yamamoto, Shoji; Taki, Keisuke; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2011-01-01

    In this paper, we have developed a feature-based automatic color calibration by using an area-based detection and adaptive nonlinear regression method. Simple color matching of chartless is achieved by using the characteristic of overlapping image area with each camera. Accurate detection of common object is achieved by the area-based detection that combines MSER with SIFT. Adaptive color calibration by using the color of detected object is calculated by nonlinear regression method. This method can indicate the contribution of object's color for color calibration, and automatic selection notification for user is performed by this function. Experimental result show that the accuracy of the calibration improves gradually. It is clear that this method can endure practical use of multi-camera color calibration if an enough sample is obtained.

  20. Innovative Extraction Method for a Coal Seam with a Thick Rock-Parting for Supporting Coal Mine Sustainability

    Directory of Open Access Journals (Sweden)

    Meng Li

    2017-10-01

    Full Text Available As thick rock partings delay the efficient mining of coal seams and constrain the sustainable development of coal mines, an innovative extraction method for a coal seam with thick rock parting was proposed. The coal seams were divided into different sub-zones according to the thickness of rock parting and then the sub-zones were mined by separately using three mining schemes involving full-seam mining, combined mining using backfill and caving (CMBC, and reducing height mining. Afterwards, the study introduced the basic mechanism and key devices for the CMBC and analysed the working state of the backfill support in detail. Moreover, the method for calculating the length of the backfill zone was proposed to design the length of backfill zone and the influences of four factors (including bulking coefficient of rock parting on the length of the backfill zone were also explored. By taking the No. 22203 panel, Buertai mine, Inner Mongolia, China as an example, the mined coal resource by using the CMBC extraction method will increase by 1.83 × 106 tons and the recovery ratio will rise from 56.2% to 92.4% compared with mining of the 2-2 upper coal seam alone. Moreover, by applying CMBC, a series of environmental and ecological problems caused by rock parting is reduced, which can improve the environment in mined areas. The research can provide technological guidance for mining panels of a coal seam with a thick rock parting and the disposal thereof under similar conditions.

  1. FPGA-Based HD Camera System for the Micropositioning of Biomedical Micro-Objects Using a Contactless Micro-Conveyor

    Directory of Open Access Journals (Sweden)

    Elmar Yusifli

    2017-03-01

    Full Text Available With recent advancements, micro-object contactless conveyers are becoming an essential part of the biomedical sector. They help avoid any infection and damage that can occur due to external contact. In this context, a smart micro-conveyor is devised. It is a Field Programmable Gate Array (FPGA-based system that employs a smart surface for conveyance along with an OmniVision complementary metal-oxide-semiconductor (CMOS HD camera for micro-object position detection and tracking. A specific FPGA-based hardware design and VHSIC (Very High Speed Integrated Circuit Hardware Description Language (VHDL implementation are realized. It is done without employing any Nios processor or System on a Programmable Chip (SOPC builder based Central Processing Unit (CPU core. It keeps the system efficient in terms of resource utilization and power consumption. The micro-object positioning status is captured with an embedded FPGA-based camera driver and it is communicated to the Image Processing, Decision Making and Command (IPDC module. The IPDC is programmed in C++ and can run on a Personal Computer (PC or on any appropriate embedded system. The IPDC decisions are sent back to the FPGA, which pilots the smart surface accordingly. In this way, an automated closed-loop system is employed to convey the micro-object towards a desired location. The devised system architecture and implementation principle is described. Its functionality is also verified. Results have confirmed the proper functionality of the developed system, along with its outperformance compared to other solutions.

  2. Petrographic properties of major coal seams in Turkey and their formation

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, Selami [Mineral Research and Exploration Directorate (MTA), 06520 Ankara (Turkey)

    2009-06-01

    Most types of coal in Turkey are generally low in rank: lignite, and subbituminous. Most of the coal was formed during the Miocene, Eocene, and Pliocene ages. There are only a few thin Jurassic-age coal occurrences in Turkey. Pennsylvanian age bituminous coal is found on the Black Sea coast. General implications of the petrographic properties of Turkey's coal seams and coal deposits have not yet been taken into consideration comparatively or as a whole. For this study, about 190 channel samples were collected from different locales. The composite profile samples of the seams were taken into considerations. The content and depositional properties as well as some chemical and physical properties of the main coal seams are compared. All coal samples tend to have similar coal petrographic properties and were deposited in intermontane lacustrine basins. Later, they were affected by faulting and post-depositional volcanic activity. As a result, there are variations in the properties and rank of the coal samples. The most abundant coal maceral group is huminite and the most abundant maceral is gelinite. The liptinite and inertinite contents of the coal are low and the maceral contents of the coals show great similarity. The depositional environments of the all coals are lacustrine dominated. (author)

  3. Classification of Birds and Bats Using Flight Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    2015-05-01

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant model for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.

  4. The AOTF-Based NO2 Camera

    Science.gov (United States)

    Dekemper, E.; Fussen, D.; Vanhellemont, F.; Vanhamel, J.; Pieroux, D.; Berkenbosch, S.

    2017-12-01

    In an urban environment, nitrogen dioxide is emitted by a multitude of static and moving point sources (cars, industry, power plants, heating systems,…). Air quality models generally rely on a limited number of monitoring stations which do not capture the whole pattern, neither allow for full validation. So far, there has been a lack of instrument capable of measuring NO2 fields with the necessary spatio-temporal resolution above major point sources (power plants), or more extended ones (cities). We have developed a new type of passive remote sensing instrument aiming at the measurement of 2-D distributions of NO2 slant column densities (SCDs) with a high spatial (meters) and temporal (minutes) resolution. The measurement principle has some similarities with the popular filter-based SO2 camera (used in volcanic and industrial sulfur emissions monitoring) as it relies on spectral images taken at wavelengths where the molecule absorption cross section is different. But contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. A first prototype was successfully tested with the plume of a coal-firing power plant in Romania, revealing the dynamics of the formation of NO2 in the early plume. A lighter version of the NO2 camera is now being tested on other targets, such as oil refineries and urban air masses.

  5. Fluid migration through geo-membrane seams and through the interface between geo-membrane and geo-synthetic clay liner

    International Nuclear Information System (INIS)

    Barroso, M.

    2005-03-01

    both in laboratory and in field conditions to study the suitability of this test to assess the quality of the seams in situ. The results obtained suggest that it is possible to assess the quality of the geo-membrane seams from a non-destructive test conducted in situ by determining the time constant. To address the problem of fluid migration through geo-membrane defects, composite liners comprising a geo-membrane with a circular hole over a GCL over a CCL were simulated in tests at three scales. Flow rates at the interface between the geo-membrane and the GCL were measured. Correspondent interface transmissivity was estimated based on final flow rates and observation of the wetted area. A parametric study was performed to evaluate the influence of the pre-hydration of the GCL, the hydraulic head on top of the liner and the confining stress over the liner system, on the flow rate through composite liners due to defects in the geo-membrane, as well as to check the feasibility of an extrapolation of the results obtained on small-scale tests to field conditions. It was found that the transmissivity does not seem to be affected by the pre-hydration of the GCLs when low confining stresses were used. It also does not seem to be influenced by the increase in confining stress when non-pre-hydrated GCLs are used. Finally, the transmissivity does not seem to be significantly affected by the increase in hydraulic head. The results also suggest that predictions on flow rates though composite liners due to defects in the geo-membrane, which are based on transmissivity values obtained in small scale tests, are conservative. Lastly, based on the transmissivities obtained in this study, empirical equations for predicting the flow rate through composite liners consisting of a geo-membrane over a GCL over a CCL are proposed. Flow rates calculated using these equations are in better agreement with the flow rates measured experimentally than the empirical equations reported in literature

  6. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  7. Re-identification of persons in multi-camera surveillance under varying viewpoints and illumination

    NARCIS (Netherlands)

    Bouma, H.; Borsboom, A.S.; Hollander, R.J.M. den; Landsmeer, S.H.; Worring, M.

    2012-01-01

    The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints

  8. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    Science.gov (United States)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  9. LEA Detection and Tracking Method for Color-Independent Visual-MIMO

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-07-01

    Full Text Available Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO technique is deteriorated by light emitting array (LEA detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER performance improvement.

  10. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    Science.gov (United States)

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  11. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  12. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-06-01

    Full Text Available This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i automatic camera calibration using both moving objects and a background structure; (ii object depth estimation; and (iii detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems.

  13. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    Science.gov (United States)

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  14. 3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam

    Science.gov (United States)

    Klishin, S. V.; Revuzhenko, A. F.

    2017-09-01

    Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.

  15. The Single Needle Lockstitch Machine. [Sewing Seams.] Module 4.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on sewing seams, one in a series on the single needle lockstitch sewing machine for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final checklist.…

  16. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  17. Development of an integrated response generator for Si/CdTe semiconductor Compton cameras

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Sugimoto, Soichiro; Ishikawa, Shin-nosuke; Katsuta, Junichiro; Koseki, Yuu; Fukuyama, Taro; Saito, Shinya; Sato, Rie; Sato, Goro; Watanabe, Shin

    2010-01-01

    We have developed an integrated response generator based on Monte Carlo simulation for Compton cameras composed of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. In order to construct an accurate detector response function, the simulation is required to include a comprehensive treatment of the semiconductor detector devices and the data processing system in addition to simulating particle tracking. Although CdTe is an excellent semiconductor material for detection of soft gamma rays, its ineffective charge transport property distorts its spectral response. We investigated the response of CdTe pad detectors in the simulation and present our initial results here. We also performed the full simulation of prototypes of Si/CdTe semiconductor Compton cameras and report on the reproducibility of detection efficiencies and angular resolutions of the cameras, both of which are essential performance parameters of astrophysical instruments.

  18. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi

    2011-01-01

    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  19. Construct and face validity of a virtual reality-based camera navigation curriculum.

    Science.gov (United States)

    Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J

    2012-10-01

    Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  1. Spatio-temporal evolution of apparent resistivity during coal-seam hydraulic flushing

    Science.gov (United States)

    Li, Dexing; Wang, Enyuan; Song, Dazhao; Qiu, Liming; Kong, Xiangguo

    2018-06-01

    Hydraulic flushing in gas predrainage is widely used, but the hydraulic-flushing effect is evaluated in a traditional way, by determining the desorption volume, moisture content, gas drainage rate and other conventional indices. To verify the rationality and feasibility of the multielectrode resistivity method in the evaluation of coal-seam hydraulic flushing and to research the spatio-temporal evolution of apparent resistivity during hydraulic flushing, a field test was conducted in 17# coal seam at Nuodong Mine, Guizhou. During hydraulic flushing, four stages were defined according to the variation in coal rock resistivity with time, namely, the preparation stage, the sharply decreasing stage, the rapidly increasing stage and the steady stage. The apparent resistivity of the coal rock mass is affected mainly by its own degree of fragmentation and flushing volume. A more serious rupture and a greater flushing volume yield a smaller apparent resistivity during the sharply decreasing stage and a higher resistivity during the stable stage. After three months of gas predrainage, the residual gas content and the gas pressure at different points in the expected affected area decrease below the critical value. Changes in the residual gas content and gas pressure at these points are consistent with the apparent resistivity, which validates the rationality and feasibility of the multielectrode resistivity method in evaluating coal-seam hydraulic flushing.

  2. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  3. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer

    Directory of Open Access Journals (Sweden)

    Bailey Y. Shen

    2017-01-01

    Full Text Available Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm×91mm×45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  4. Effect of Seams on Drape of Fabrics (Pp. 62-72)

    African Journals Online (AJOL)

    Nekky Umera

    Jinlian ... Drape profile of fabrics with seams provide guidance for garment designs ... holder consists of flat plates, circular in shape, mounted on a shaft coming through ... The image of this draped pattern is cast onto a sheet by means of a lens.

  5. Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    Directory of Open Access Journals (Sweden)

    Mingchi Feng

    2017-10-01

    Full Text Available Multi-camera systems are widely applied in the three dimensional (3D computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out.

  6. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  7. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  8. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    Science.gov (United States)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  9. Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt

    Science.gov (United States)

    Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana

    2018-04-01

    Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing

  10. Proposal of balloon and satellite observations of MeV gammas using Electron Tracking Compton Camera for reaching a high sensitivity of 1 mCrab

    Science.gov (United States)

    Takada, Atsushi; Tanimori, Toru

    2016-04-01

    ETCC with a gas Time Projection Chamber (TPC) and pixel GSO scintillators, by measuring electron tracks precisely, provides both a strong background rejection by dE/dx of the track and well-defined 2-dimensional Point Spread Function (PDF) with better than several degrees by adding the arc direction of incident gammas (SPD: Scatter Plane Deviation) with the ARM (angular Resolution Measure) direction measured in standard Compton Camera (CC). In 2006 its background rejection was revealed by SMILE-I balloon experiment with 10cm-cubic ETCC using the dE/dx of tracks. In 2013, 30cm-cube-ETCC has been developed to catch gammas from Crab in next SMILE-II balloon with >5sigma detection for 4 hrs. Now its sensitivity has been improved to 10sigma by attaining the angular resolution of the track (SPD angle) to that determined by multiple scattering of the gas. Thus, we show the ability of ETCC to give a better significance by a factor of 10 than that of standard CCs having same detection area by electron tracking?and we have found that SPD is an essential to define the PSF of Compton imaging quantitatively. Such a well-defined PSF is, for the first time, able to provide reliable sensitivity in Compton imaging without assuming the use of optimization algorithm. These studies uncover the uncertainties of CCs from both points of view of the intense background and the difficulty of the definition of the PSF, and overcome the above problems. Based on this technology, SMILE-II with 3atm CF4 gas is expected to provide a 5times better sensitivity than COMPTEL in one month balloon, and 4modules of 50cm-cube ETCCs would exceed over 10^-12 erg/cm^2s^1 (1mCrab) in satellite. Here we summarize the performance of the ETCC and new astrophysics opened in near future by high sensitive observation of MeV gamma-rays.

  11. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  12. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  13. Coal forming conditions for coal seams and coal measures of the Heshan Group Upper Permian Series in Guangxi Province (part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1980-10-01

    Coal forming conditions for the coal measures of the Heshan Group are discussed based on the analysis of the historical background and paleogeographical environment of the Permian in Guangxi Province. The roof, floor, and partings of the seams are composed of algal micritic limestone, therefore affirming that the central part of Guangxi Province in the late Permian was a typical epi-continental sea. The compensative deposit of algea on the carbonate platform in very shallow water created the conditions for the occurrence of the peat swamp and established the supra-tidal swampy facies. The environment for the accumulation of the major coal seams are analyzed. (In Chinese)

  14. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    Hamid, N F A; Ahmad, A

    2014-01-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  15. Distributed Sensing and Processing for Multi-Camera Networks

    Science.gov (United States)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  16. PC based simulation of gamma camera for training of operating and maintenance staff

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2000-01-01

    Gamma camera- a sophisticated imaging system is used for functional assessment of biological subsystems/organs in nuclear medicine. The radioactive tracer attached to the native substance is injected into the patient. The distribution of radioactivity in the patient is imaged by the gamma camera. This report describes a PC based package for simulation of gamma cameras and effect of malfunctioning of its subsystems on images of different phantoms

  17. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Stereo)

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11820 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11820 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. This view is the right-eye member of a stereo pair presented as a cylindrical-perspective projection with geometric seam correction. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a cylindrical-perspective projection with geometric seam correction.

  18. Blood pulsation measurement using cameras operating in visible light: limitations.

    Science.gov (United States)

    Koprowski, Robert

    2016-10-03

    The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).

  19. Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm

    Science.gov (United States)

    Gao, X.; Li, M.; Xing, L.; Liu, Y.

    2018-04-01

    Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.

  20. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components

    Science.gov (United States)

    Feng, Lei; Zhang, Yugui

    2017-08-01

    Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.

  1. Precise Head Tracking in Hearing Applications

    Science.gov (United States)

    Helle, A. M.; Pilinski, J.; Luhmann, T.

    2015-05-01

    The paper gives an overview about two research projects, both dealing with optical head tracking in hearing applications. As part of the project "Development of a real-time low-cost tracking system for medical and audiological problems (ELCoT)" a cost-effective single camera 3D tracking system has been developed which enables the detection of arm and head movements of human patients. Amongst others, the measuring system is designed for a new hearing test (based on the "Mainzer Kindertisch"), which analyzes the directional hearing capabilities of children in cooperation with the research project ERKI (Evaluation of acoustic sound source localization for children). As part of the research project framework "Hearing in everyday life (HALLO)" a stereo tracking system is being used for analyzing the head movement of human patients during complex acoustic events. Together with the consideration of biosignals like skin conductance the speech comprehension and listening effort of persons with reduced hearing ability, especially in situations with background noise, is evaluated. For both projects the system design, accuracy aspects and results of practical tests are discussed.

  2. Multisensor Distributed Track Fusion AlgorithmBased on Strong Tracking Filter and Feedback Integration1)

    Institute of Scientific and Technical Information of China (English)

    YANGGuo-Sheng; WENCheng-Lin; TANMin

    2004-01-01

    A new multisensor distributed track fusion algorithm is put forward based on combiningthe feedback integration with the strong tracking Kalman filter. Firstly, an effective tracking gateis constructed by taking the intersection of the tracking gates formed before and after feedback.Secondly, on the basis of the constructed effective tracking gate, probabilistic data association andstrong tracking Kalman filter are combined to form the new multisensor distributed track fusionalgorithm. At last, simulation is performed on the original algorithm and the algorithm presented.

  3. A comparison of geochemical features of extracts from coal-seams source rocks with different polarity solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianping; Deng, Chunping; Wang, Huitong

    2009-02-15

    There exists a great difference in group-type fractions and biomarker distributions of chloroform extracts from coals and coal-seams oils, which makes the source identification of coal-seams oils in sedimentary basins rather difficult. The experiment, in which four different polarity solvents, n-hexane, benzene, dichloromethane and chloroform, were used to extract 9 coal-seams source rocks and 3 typical lacustrine source rocks, showed that the yield of extracts increased gradually with increasing solvent polarity. The distribution features of their n-alkanes, isoprenoids and sterane and terpane biomarkers remained, in general, similar, showing no distinct enrichment or depletion for a certain fraction by any solvent. The compositional analysis on n-hexane and chloroform extracts showed that the absolute amount (concentration) of biomarkers was relatively low for the n-hexane extract but comparatively high for the chloroform extract, this difference became great among coal-seams source rocks but small among lacustrine mudstones. The statistical analysis on the relative amount of the 18 major biomarkers in n-hexane and chloroform extracts from 10 source rock samples showed that extracts with a proportional error for the same biomarker of less than 5% (including the analytical error) accounted for 84% while those with a proportional error over 10% amounted to below 5%. This suggested that the outcome of oil-source correlation made by these biomarkers will be independent of variations in amounts of saturates and biomarkers arising from solvent polarity. Therefore, biomarkers obtained from organic-rich source rocks including coals by the extraction with the commonly used chloroform solvent can be applied for the oilsource correlation of coal-seams petroliferous basins.

  4. Adult Education and Radical Habitus in an Environmental Campaign: Learning in the Coal Seam Gas Protests in Australia

    Science.gov (United States)

    Ollis, Tracey; Hamel-Green, Michael

    2015-01-01

    This paper examines the adult learning dimensions of protestors as they participate in a campaign to stop coal seam gas exploration in Gippsland in Central Victoria, Australia. On a global level, the imposition of coal seam gas exploration by governments and mining companies has been the trigger for movements of resistance from environmental…

  5. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  6. Analysis of support installation and strata control in ventilation tunnels and coal chutes in steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, V D; Belyaev, A N; Kostyuk, I S

    1984-01-01

    The VNIMI and the Donugi branch in Gorlovka developed and tested a system for strata control in gate roads for ventilation and in coal chutes in inclined and steep medium and thick coal seams. The roof is supported by cribbings made of slabs of reinforced concrete with yielding elements. Timber is used as yielding material. Tests showed that thickness of yielding layers between concrete slabs should range from 15 to 20% of coal seam thickness. Yielding elements increase yield strength of the system to about 2 MN (load distribution is more regular). The tests show that the cribbings are an efficient system for strata control in workings driven in coal seams with dip angle from 35 to 60 degrees. Performance of concrete cribbings in ventilation gate roads and coal chutes in selected mines of the Ukrainian SSR is analyzed.

  7. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  8. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  9. A simultaneous localization and tracking method for a worm tracking system

    Directory of Open Access Journals (Sweden)

    Kowalski Mateusz

    2014-09-01

    Full Text Available The idea of worm tracking refers to the path analysis of Caenorhabditis elegans nematodes and is an important tool in neurobiology which helps to describe their behavior. Knowledge about nematode behavior can be applied as a model to study the physiological addiction process or other nervous system processes in animals and humans. Tracking is performed by using a special manipulator positioning a microscope with a camera over a dish with an observed individual. In the paper, the accuracy of a nematode’s trajectory reconstruction is investigated. Special attention is paid to analyzing errors that occurred during the microscope displacements. Two sources of errors in the trajectory reconstruction are shown. One is due to the difficulty in accurately measuring the microscope shift, the other is due to a nematode displacement during the microscope movement. A new method that increases path reconstruction accuracy based only on the registered sequence of images is proposed. The method Simultaneously Localizes And Tracks (SLAT the nematodes, and is robust to the positioning system displacement errors. The proposed method predicts the nematode position by using NonParametric Regression (NPR. In addition, two other methods of the SLAT problem are implemented to evaluate the NPR method. The first consists in ignoring the nematode displacement during microscope movement, and the second is based on a Kalman filter. The results suggest that the SLAT method based on nonparametric regression gives the most promising results and decreases the error of trajectory reconstruction by 25% compared with reconstruction based on data from the positioning system

  10. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.

    2011-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  11. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    International Nuclear Information System (INIS)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.

    2015-01-01

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments

  12. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H., E-mail: jwerner@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, New Mexico 87545 (United States); Cleyrat, C.; Lidke, D. S.; Wilson, B. S. [Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-12-15

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  13. DETECTING LASER SPOT IN SHOOTING SIMULATOR USING AN EMBEDDED CAMERA

    OpenAIRE

    Soetedjo, Aryuanto; Mahmudi, Ali; Ibrahim Ashari, M.; Ismail Nakhoda, Yusuf

    2017-01-01

    This paper presents the application of an embedded camera system for detecting laser spot in the shooting simulator. The proposed shooting simulator uses a specific target box, where the circular pattern target is mounted. The embedded camera is installed inside the box to capture the circular pattern target and laser spot image. To localize the circular pattern automatically, two colored solid circles are painted on the target. This technique allows the simple and fast color tracking to trac...

  14. Camera Coverage Estimation Based on Multistage Grid Subdivision

    Directory of Open Access Journals (Sweden)

    Meizhen Wang

    2017-04-01

    Full Text Available Visual coverage is one of the most important quality indexes for depicting the usability of an individual camera or camera network. It is the basis for camera network deployment, placement, coverage-enhancement, planning, etc. Precision and efficiency are critical influences on applications, especially those involving several cameras. This paper proposes a new method to efficiently estimate superior camera coverage. First, the geographic area that is covered by the camera and its minimum bounding rectangle (MBR without considering obstacles is computed using the camera parameters. Second, the MBR is divided into grids using the initial grid size. The status of the four corners of each grid is estimated by a line of sight (LOS algorithm. If the camera, considering obstacles, covers a corner, the status is represented by 1, otherwise by 0. Consequently, the status of a grid can be represented by a code that is a combination of 0s or 1s. If the code is not homogeneous (not four 0s or four 1s, the grid will be divided into four sub-grids until the sub-grids are divided into a specific maximum level or their codes are homogeneous. Finally, after performing the process above, total camera coverage is estimated according to the size and status of all grids. Experimental results illustrate that the proposed method’s accuracy is determined by the method that divided the coverage area into the smallest grids at the maximum level, while its efficacy is closer to the method that divided the coverage area into the initial grids. It considers both efficiency and accuracy. The initial grid size and maximum level are two critical influences on the proposed method, which can be determined by weighing efficiency and accuracy.

  15. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  16. Indirect iterative learning control for a discrete visual servo without a camera-robot model.

    Science.gov (United States)

    Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan

    2007-08-01

    This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.

  17. Omnidirectional sparse visual path following with occlusion-robust feature tracking

    OpenAIRE

    Goedemé, Toon; Tuytelaars, Tinne; Van Gool, Luc; Vanacker, Gerolf; Nuttin, Marnix

    2005-01-01

    Goedemé T., Tuytelaars T., Van Gool L., Vanacker G., Nuttin M., ''Omnidirectional sparse visual path following with occlusion-robust feature tracking'', Proceedings 6th workshop on omnidirectional vision, camera networks and non-classical cameras, 8 pp., October 21, 2005, Beijing, China.

  18. Development of Measurement Device of Working Radius of Crane Based on Single CCD Camera and Laser Range Finder

    Science.gov (United States)

    Nara, Shunsuke; Takahashi, Satoru

    In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.

  19. Validating activity indices from camera traps for commensal rodents and other wildlife in and around farm buildings.

    Science.gov (United States)

    Lambert, Mark; Bellamy, Fiona; Budgey, Richard; Callaby, Rebecca; Coats, Julia; Talling, Janet

    2018-01-01

    Indices of rodent activity are used as indicators of population change during field evaluation of rodenticides. We investigated the potential for using camera traps to determine activity indices for commensal rodents living in and around farm buildings, and sought to compare these indices against previously calibrated survey methods. We recorded 41 263 images of 23 species, including Norway rats (Rattus norvegicus Berk.) and house mice (Mus musculus L.). We found a positive correlation between activity indices from camera traps and activity indices from a method (footprint tracking) previously shown to have a linear relationship with population size for Norway rats. Filtering the camera trap data to simulate a 30-s delay between camera trigger events removed 59.9% of data and did not adversely affect the correlation between activity indices from camera traps and footprint tracking. The relationship between activity indices from footprint tracking and Norway rat population size is known from a previous study; from this, we determined the relationship between activity indices from camera traps and population size for Norway rats living in and around farm buildings. Systematic use of camera traps was used to determine activity indices for Norway rats living in and around farm buildings; the activity indices were positively correlated with those derived from a method previously calibrated against known population size for this species in this context. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.

  20. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, Bernd

    2011-09-15

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  1. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    International Nuclear Information System (INIS)

    Schuette, Bernd

    2011-09-01

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  2. Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2015-01-01

    Full Text Available Mechanized mining technical process (MMTP related to the control method of the shearer is a vital process in thin coal seam mining operations. An appropriate MMTP is closely related to safety, productivity, labour intensity, and efficiency. Hence, the evaluation of alternative MMTP is an important part of the mining design. Several parameters should be considered in MMTP evaluation, so the evaluation is complex and must be compliant with a set of criteria. In this paper, two multiple criteria decision-making (MCDM methods, Analytic Hierarchy Process (AHP and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, were adopted for this evaluation. Then, the most appropriate MMTP for a thin coal seam working face was selected in China.

  3. The Siegen automatic measuring system for track detectors: new developments

    International Nuclear Information System (INIS)

    Rusch, G.; Winkel, E.; Noll, A.; Heinrich, W.

    1991-01-01

    Starting twelve years ago we have developed completely automatic scanning and measuring systems for nuclear track detectors. The hardware and software of these systems have continuously been improved. They were used in different heavy ion and cosmic ray experiments. In this paper we describe methods for high resolution REL measurements in plastic nuclear track detectors and methods to scan and measure nuclear disintegration stars in AgCl detectors using an automatic measuring technique. The system uses a stepping motor driven microscope stage, a video camera and an image analysis computer based on a MC68020 microprocessor. (author)

  4. A mobile light source for carbon/nitrogen cameras

    International Nuclear Information System (INIS)

    Trower, W.P.; Melekhin, V.N.; Shvedunov, V.I.; Sobenin, N.P.

    1995-01-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck. (orig.)

  5. A mobile light source for carbon/nitrogen cameras

    Science.gov (United States)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  6. Re-identification of persons in multi-camera surveillance under varying viewpoints and illumination

    Science.gov (United States)

    Bouma, Henri; Borsboom, Sander; den Hollander, Richard J. M.; Landsmeer, Sander H.; Worring, Marcel

    2012-06-01

    The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints and illumination is limited. Hence performance in realistic settings is also limited. In this paper, we present a novel method for the automatic re-identification of persons in video from surveillance cameras in a realistic setting. The method is computationally efficient, robust to a wide variety of viewpoints and illumination, simple to implement and it requires no training. We compare the performance of our method to several state-of-the-art methods on a publically available dataset that contains the variety of viewpoints and illumination to allow benchmarking. The results indicate that our method shows good performance and enables a human operator to track persons five times faster.

  7. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.

    Science.gov (United States)

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2016-06-01

    Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.

  8. Using a Camera Phone as a Mixed-Reality Laser Cannon

    Directory of Open Access Journals (Sweden)

    Fadi Chehimi

    2008-01-01

    Full Text Available Despite the ubiquity and rich features of current mobile phones, mobile games have failed to reach even the lowest estimates of expected revenues. This is unfortunate as mobile phones offer unique possibilities for creating games aimed at attracting demographics not currently catered for by the traditional console market. As a result, there has been a growing call for greater innovation within the mobile games industry and support for games outside the current console genres. In this paper, we present the design and implementation of a novel location-based game which allows us turn a camera phone into a mixed-reality laser cannon. The game uses specially designed coloured tags, which are worn by the players, and advanced colour tracking software running on a camera phone, to create a novel first person shoot-em-up (FPS with innovative game interactions and play.

  9. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-01-01

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  10. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  11. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  12. Shape tracking with occlusions via coarse-to-fine region-based sobolev descent

    KAUST Repository

    Yang, Yanchao

    2015-05-01

    We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. © 2014 IEEE.

  13. People counting with stereo cameras : two template-based solutions

    NARCIS (Netherlands)

    Englebienne, Gwenn; van Oosterhout, Tim; Kröse, B.J.A.

    2012-01-01

    People counting is a challenging task with many applications. We propose a method with a fixed stereo camera that is based on projecting a template onto the depth image. The method was tested on a challenging outdoor dataset with good results and runs in real time.

  14. Contribution to the tracking and the 3D reconstruction of scenes composed of torus from image sequences a acquired by a moving camera; Contribution au suivi et a la reconstruction de scenes constituees d`objet toriques a partir de sequences d`images acquises par une camera mobile

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, S

    1997-01-31

    The three-dimensional perception of the environment is often necessary for a robot to correctly perform its tasks. One solution, based on the dynamic vision, consists in analysing time-varying monocular images to estimate the spatial geometry of the scene. This thesis deals with the reconstruction of torus by dynamic vision. Though this object class is restrictive, it enables to tackle the problem of reconstruction of bent pipes usually encountered in industrial environments. The proposed method is based on the evolution of apparent contours of objects in the sequence. Using the expression of torus limb boundaries, it is possible to recursively estimate the object three-dimensional parameters by minimising the error between the predicted projected contours and the image contours. This process, which is performed by a Kalman filter, does not need a precise knowledge of the camera displacement or any matching of the tow limbs belonging to the same object. To complete this work, temporal tracking of objects which deals with occlusion situations is proposed. The approach consists in modeling and interpreting the apparent motion of objects in the successive images. The motion interpretation, based on a simplified representation of the scene, allows to recover pertinent three-dimensional information which is used to manage occlusion situations. Experiments, on synthetic and real images, proves he validity of the tracking and the reconstruction processes. (author) 127 refs.

  15. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  16. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes.

    Science.gov (United States)

    Cordelières, Fabrice P; Petit, Valérie; Kumasaka, Mayuko; Debeir, Olivier; Letort, Véronique; Gallagher, Stuart J; Larue, Lionel

    2013-01-01

    Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t) of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  17. Automated cell tracking and analysis in phase-contrast videos (iTrack4U: development of Java software based on combined mean-shift processes.

    Directory of Open Access Journals (Sweden)

    Fabrice P Cordelières

    Full Text Available Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  18. Opportunity's Surroundings on Sol 1798 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  19. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a polar projection with geometric seam correction.

  20. Opportunity's Surroundings on Sol 1798 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a vertical projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  1. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a vertical projection with geometric seam correction.

  2. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a cylindrical projection with geometric seam correction.

  3. Opportunity's Surroundings on Sol 1798

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  4. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    Science.gov (United States)

    2013-01-01

    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293

  5. Construction of a frameless camera-based stereotactic neuronavigator.

    Science.gov (United States)

    Cornejo, A; Algorri, M E

    2004-01-01

    We built an infrared vision system to be used as the real time 3D motion sensor in a prototype low cost, high precision, frameless neuronavigator. The objective of the prototype is to develop accessible technology for increased availability of neuronavigation systems in research labs and small clinics and hospitals. We present our choice of technology including camera and IR emitter characteristics. We describe the methodology for setting up the 3D motion sensor, from the arrangement of the cameras and the IR emitters on surgical instruments, to triangulation equations from stereo camera pairs, high bandwidth computer communication with the cameras and real time image processing algorithms. We briefly cover the issues of camera calibration and characterization. Although our performance results do not yet fully meet the high precision, real time requirements of neuronavigation systems we describe the current improvements being made to the 3D motion sensor that will make it suitable for surgical applications.

  6. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    Science.gov (United States)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  7. Improved coal winning in Zollverein 7/8 seam by toe-in plough 9. 30 v supplied by GEW Luenen

    Energy Technology Data Exchange (ETDEWEB)

    Schwolow, G; Dornack, M; Plich, H

    1982-04-01

    The project aimed at mining Zollverein 7/8 seam more efficiently than with drag-hook ploughs. Zollverein 7/8 seam is characterized by mechanically tough coal changing, seam thickness, a somewhat 'corrugated' shape, and a soft floor. Comparative investigations on one toe-in plough face and one drag-hook plough face in two neighbouring panels of said seam were made for individual plough travels as well as over several months of operation. These investigations were backed up by measuring. The measuring conditions were identical in both panels. The face equipments were identical except for the plough systems. The energy pick-up relative to the web is by 43% lower with the toe-in plough compared to the drag-hook plough. As to wear, for the toe-in plough in comparison to the drag-hook plough twice the longevity of the latter was recorded. For the noise level on the plough guides only marginal difference in favor to the toe-in plough could be recorded. Analyses of dust and particle-size distribution showed no obvious advantages for either of both plough systems.

  8. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  9. Trained neurons-based motion detection in optical camera communications

    Science.gov (United States)

    Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho

    2018-04-01

    A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.

  10. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  11. Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System

    Science.gov (United States)

    Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael

    2018-01-01

    This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078

  12. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    Science.gov (United States)

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  13. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  14. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  15. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Ki Wan Kim

    2017-06-01

    Full Text Available The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

  16. "Knitting Nannas" and "Frackman": A Gender Analysis of Australian Anti-Coal Seam Gas Documentaries (CSG) and Implications for Environmental Adult Education

    Science.gov (United States)

    Larri, Larraine J.; Newlands, Maxine

    2017-01-01

    "Frackman" ("FM") and "Knitting Nannas" ("KN") are two documentaries about the anti-coal seam gas movement in Australia. "Frackman" features a former construction worker turned eco-activist, Dayne Pratzky (DP), fighting coal seam gas extraction. "Knitting Nannas" follows a group of women…

  17. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  18. Handheld pose tracking using vision-inertial sensors with occlusion handling

    Science.gov (United States)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  19. A novel track imaging system as a range counter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [National Institute of Radiological Sciences (Japan); Matsufuji, N. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kanayama, S. [Chiba University (Japan); Ishida, A. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kohno, T. [Tokyo Institute of Technology (Japan); Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T. [National Institute of Radiological Sciences (Japan)

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion ({sup 12}C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  20. Simulation-Based Optimization of Camera Placement in the Context of Industrial Pose Estimation

    DEFF Research Database (Denmark)

    Jørgensen, Troels Bo; Iversen, Thorbjørn Mosekjær; Lindvig, Anders Prier

    2018-01-01

    In this paper, we optimize the placement of a camera in simulation in order to achieve a high success rate for a pose estimation problem. This is achieved by simulating 2D images from a stereo camera in a virtual scene. The stereo images are then used to generate 3D point clouds based on two diff...

  1. Simultaneous Tracking of Multiple Points Using a Wiimote

    Science.gov (United States)

    Skeffington, Alex; Scully, Kyle

    2012-01-01

    This paper reviews the construction of an inexpensive motion tracking and data logging system, which can be used for a wide variety of teaching experiments ranging from entry-level physics courses to advanced courses. The system utilizes an affordable infrared camera found in a Nintendo Wiimote to track IR LEDs mounted to the objects to be…

  2. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khurram Khan

    2011-01-01

    Full Text Available Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  3. SIFT based algorithm for point feature tracking

    Directory of Open Access Journals (Sweden)

    Adrian BURLACU

    2007-12-01

    Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.

  4. Traffic intensity monitoring using multiple object detection with traffic surveillance cameras

    Science.gov (United States)

    Hamdan, H. G. Muhammad; Khalifah, O. O.

    2017-11-01

    Object detection and tracking is a field of research that has many applications in the current generation with increasing number of cameras on the streets and lower cost for Internet of Things(IoT). In this paper, a traffic intensity monitoring system is implemented based on the Macroscopic Urban Traffic model is proposed using computer vision as its source. The input of this program is extracted from a traffic surveillance camera which has another program running a neural network classification which can identify and differentiate the vehicle type is implanted. The neural network toolbox is trained with positive and negative input to increase accuracy. The accuracy of the program is compared to other related works done and the trends of the traffic intensity from a road is also calculated. relevant articles in literature searches, great care should be taken in constructing both. Lastly the limitation and the future work is concluded.

  5. Comparison of ergometer- and track-based testing in junior track-sprint cyclists. Implications for talent identification and development.

    Science.gov (United States)

    Tofari, Paul J; Cormack, Stuart J; Ebert, Tammie R; Gardner, A Scott; Kemp, Justin G

    2017-10-01

    Talent identification (TID) and talent development (TDE) programmes in track sprint cycling use ergometer- and track-based tests to select junior athletes and assess their development. The purpose of this study was to assess which tests are best at monitoring TID and TDE. Ten male participants (16.2 ± 1.1 year; 178.5 ± 6.0 cm and 73.6 ± 7.6 kg) were selected into the national TID squad based on initial testing. These tests consisted of two 6-s maximal sprints on a custom-built ergometer and 4 maximal track-based tests (2 rolling and 2 standing starts) using 2 gear ratios. Magnitude-based inferences and correlation coefficients assessed changes following a 3-month TDE programme. Training elicited meaningful improvements (80-100% likely) in all ergometer parameters. The standing and rolling small gear, track-based effort times were likely and very likely (3.2 ± 2.4% and 3.3 ± 1.9%, respectively) improved by training. Stronger correlations between ergometer- and track-based measures were very likely following training. Ergometer-based testing provides a more sensitive tool than track-based testing to monitor changes in neuromuscular function during the early stages of TDE. However, track-based testing can indicate skill-based improvements in performance when interpreted with ergometer testing. In combination, these tests provide information on overall talent development.

  6. Efficient color correction method for smartphone camera-based health monitoring application.

    Science.gov (United States)

    Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong

    2017-07-01

    Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.

  7. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  8. Phase camera experiment for Advanced Virgo

    International Nuclear Information System (INIS)

    Agatsuma, Kazuhiro; Beuzekom, Martin van; Schaaf, Laura van der; Brand, Jo van den

    2016-01-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO 2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  9. Phase camera experiment for Advanced Virgo

    Energy Technology Data Exchange (ETDEWEB)

    Agatsuma, Kazuhiro, E-mail: agatsuma@nikhef.nl [National Institute for Subatomic Physics, Amsterdam (Netherlands); Beuzekom, Martin van; Schaaf, Laura van der [National Institute for Subatomic Physics, Amsterdam (Netherlands); Brand, Jo van den [National Institute for Subatomic Physics, Amsterdam (Netherlands); VU University, Amsterdam (Netherlands)

    2016-07-11

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO{sub 2} lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  10. Camera Networks The Acquisition and Analysis of Videos over Wide Areas

    CERN Document Server

    Roy-Chowdhury, Amit K

    2012-01-01

    As networks of video cameras are installed in many applications like security and surveillance, environmental monitoring, disaster response, and assisted living facilities, among others, image understanding in camera networks is becoming an important area of research and technology development. There are many challenges that need to be addressed in the process. Some of them are listed below: - Traditional computer vision challenges in tracking and recognition, robustness to pose, illumination, occlusion, clutter, recognition of objects, and activities; - Aggregating local information for wide

  11. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  12. Comparison of clustering methods for tracking features in RGB-D images

    CSIR Research Space (South Africa)

    Pancham, Ardhisha

    2016-10-01

    Full Text Available difficult to track individually over an image sequence. Clustering techniques have been recommended and used to cluster image features to improve tracking results. New and affordable RGB-D cameras, provide both color and depth information. This paper...

  13. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    Science.gov (United States)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  14. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  15. Multiparametric electronic devices based on nuclear tracks

    International Nuclear Information System (INIS)

    Fink, D.; Saad, A.; Dhamodaran, S.; Chandra, A.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T.

    2008-01-01

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r ROI around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1μm leading to nanometric TEMPOS structures

  16. Fault capability problem about seams in Shika NPP

    International Nuclear Information System (INIS)

    Katagawa, H.

    2016-01-01

    Against the opinion of the Nuclear Regulation Authority that insists that the on-site seams of Shika Nuclear Power Plant is fault, Hokuriku Electric Power Company shows the view that they are not the fault. Additional survey result was submitted by Hokuriku Electric Power Company, and the evaluation draft for it by the expert meeting of Nuclear Regulation Authority, as well as the peer review were published. The evaluation draft mentioned that the seams cannot be denied for the possibility to become active, and the peer review issued many evaluations different from the evaluation draft. This paper describes the contents of the evaluation draft and peer review summarized by Hokuriku Electric Power Company. Against the three major points of the evaluation draft, the peer review pointed out the defect of fact recognition in every issue of discussion that lacks in examination on the points that should have been checked, and questioned the eligibility of the contents of evaluation. Many of the suggestions and comments of the peer review were the contents that approved the on-site survey and the report at the expert meeting made by Hokuriku Electric Power Company. In addition, this paper summarizes the focal points of the evaluation draft, and points out the question for fault assumption and discrepancies in the case of existence of fault. Hokuriku Electric Power Company has published a rebuttal to the evaluation draft as the written opinion. (A.O.)

  17. Parallelised photoacoustic signal acquisition using a Fabry-Perot sensor and a camera-based interrogation scheme

    Science.gov (United States)

    Saeb Gilani, T.; Villringer, C.; Zhang, E.; Gundlach, H.; Buchmann, J.; Schrader, S.; Laufer, J.

    2018-02-01

    Tomographic photoacoustic (PA) images acquired using a Fabry-Perot (FP) based scanner offer high resolution and image fidelity but can result in long acquisition times due to the need for raster scanning. To reduce the acquisition times, a parallelised camera-based PA signal detection scheme is developed. The scheme is based on using a sCMOScamera and FPI sensors with high homogeneity of optical thickness. PA signals were acquired using the camera-based setup and the signal to noise ratio (SNR) was measured. A comparison of the SNR of PA signal detected using 1) a photodiode in a conventional raster scanning detection scheme and 2) a sCMOS camera in parallelised detection scheme is made. The results show that the parallelised interrogation scheme has the potential to provide high speed PA imaging.

  18. THE EFFECTS OF DIFFERENT WORK-LOADING APPLIED TO THE WORKERS THAT WORK PRODUCING OF SHIRT TO THE SEAM FAULT RATES

    Directory of Open Access Journals (Sweden)

    Önder YÜCEL

    2001-03-01

    Full Text Available Human efficiency is of big importance in the clothing industry. So as to provide high quality and productivity stabilized work –loading must be given to the workers that work in the cloth production lines. In addition to it, the kind of work must be paid attention in the studies to be done on stabilized work-loading. The aim of this study is to determine the effects of different work-loading to the seam fault rates. For this purpose, four different work-loading had been applied to the workers and determined seam faults on the clothes had been recorded. As a result of this study, seam fault rates in the different work-loading had been evaluated.

  19. NEMA NU-1 2007 based and independent quality control software for gamma cameras and SPECT

    International Nuclear Information System (INIS)

    Vickery, A; Joergensen, T; De Nijs, R

    2011-01-01

    A thorough quality assurance of gamma and SPECT cameras requires a careful handling of the measured quality control (QC) data. Most gamma camera manufacturers provide the users with camera specific QC Software. This QC software is indeed a useful tool for the following of day-to-day performance of a single camera. However, when it comes to objective performance comparison of different gamma cameras and a deeper understanding of the calculated numbers, the use of camera specific QC software without access to the source code is rather avoided. Calculations and definitions might differ, and manufacturer independent standardized results are preferred. Based upon the NEMA Standards Publication NU 1-2007, we have developed a suite of easy-to-use data handling software for processing acquired QC data providing the user with instructive images and text files with the results.

  20. A Cherenkov camera with integrated electronics based on the 'Smart Pixel' concept

    International Nuclear Information System (INIS)

    Bulian, Norbert; Hirsch, Thomas; Hofmann, Werner; Kihm, Thomas; Kohnle, Antje; Panter, Michael; Stein, Michael

    2000-01-01

    An option for the cameras of the HESS telescopes, the concept of a modular camera based on 'Smart Pixels' was developed. A Smart Pixel contains the photomultiplier, the high voltage supply for the photomultiplier, a dual-gain sample-and-hold circuit with a 14 bit dynamic range, a time-to-voltage converter, a trigger discriminator, trigger logic to detect a coincidence of X=1...7 neighboring pixels, and an analog ratemeter. The Smart Pixels plug into a common backplane which provides power, communicates trigger signals between neighboring pixels, and holds a digital control bus as well as an analog bus for multiplexed readout of pixel signals. The performance of the Smart Pixels has been studied using a 19-pixel test camera

  1. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    Science.gov (United States)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  2. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  3. Remote gaze tracking system for 3D environments.

    Science.gov (United States)

    Congcong Liu; Herrup, Karl; Shi, Bertram E

    2017-07-01

    Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.

  4. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    Science.gov (United States)

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  5. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    Directory of Open Access Journals (Sweden)

    Shaowu Pan

    2015-04-01

    Full Text Available A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT, which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  6. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    Science.gov (United States)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  7. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  8. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  9. Glue detection based on teaching points constraint and tracking model of pixel convolution

    Science.gov (United States)

    Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen

    2018-01-01

    On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.

  10. Neutron cameras for ITER

    International Nuclear Information System (INIS)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-01-01

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from 16 N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with 16 N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins

  11. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks.

    Science.gov (United States)

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P

    2017-01-07

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot

  12. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    OpenAIRE

    Orts-Escolano, Sergio; Garcia-Rodriguez, Jose; Morell, Vicente; Cazorla, Miguel; Azorin-Lopez, Jorge; García-Chamizo, Juan Manuel

    2014-01-01

    In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mob...

  13. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  14. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M [Kyoto University, Graduate School of Medicine, Kyoto (Japan); Nakao, M [Kyoto University, Graduate School of Informatics, Kyoto (Japan)

    2016-06-15

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  15. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    International Nuclear Information System (INIS)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M; Nakao, M

    2016-01-01

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  16. A RSSI-based parameter tracking strategy for constrained position localization

    Science.gov (United States)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  17. An Approach to Evaluate Stability for Cable-Based Parallel Camera Robots with Hybrid Tension-Stiffness Properties

    Directory of Open Access Journals (Sweden)

    Huiling Wei

    2015-12-01

    Full Text Available This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions are solved and a tension factor is defined. In order to obtain the tension factor, an optimization of the cable tensions is carried out. Then, an expression of the system's stiffness is deduced and a stiffness factor is defined. Furthermore, an approach to evaluate the stability of the cable-based camera robots with hybrid tension-stiffness properties is presented. Finally, a typical three-degree-of-freedom cable-based parallel camera robot with four cables is studied as a numerical example. The simulation results show that the approach is both reasonable and effective.

  18. Learning based particle filtering object tracking for visible-light systems.

    Science.gov (United States)

    Sun, Wei

    2015-10-01

    We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tracking loop starts with Lucas-Kanade (LK) affine template matching and follows by learning-based particle filter tracking. Lucas-Kanade method estimates errors and updates object template in the positive samples dataset, and learning-based particle filter tracker will start if the LK tracker loses the object. Finally, SVM classifier evaluates every tracked appearance to update the training set or restart the tracking loop if necessary. Experimental results show that our method is robust to challenging light, scale and pose changing, and test on eButton image sequence also achieves satisfactory tracking performance.

  19. Low-cost asset tracking using location-aware camera phones

    Science.gov (United States)

    Chen, David; Tsai, Sam; Kim, Kyu-Han; Hsu, Cheng-Hsin; Singh, Jatinder Pal; Girod, Bernd

    2010-08-01

    Maintaining an accurate and up-to-date inventory of one's assets is a labor-intensive, tedious, and costly operation. To ease this difficult but important task, we design and implement a mobile asset tracking system for automatically generating an inventory by snapping photos of the assets with a smartphone. Since smartphones are becoming ubiquitous, construction and deployment of our inventory management solution is simple and costeffective. Automatic asset recognition is achieved by first segmenting individual assets out of the query photo and then performing bag-of-visual-features (BoVF) image matching on the segmented regions. The smartphone's sensor readings, such as digital compass and accelerometer measurements, can be used to determine the location of each asset, and this location information is stored in the inventory for each recognized asset. As a special case study, we demonstrate a mobile book tracking system, where users snap photos of books stacked on bookshelves to generate a location-aware book inventory. It is shown that segmenting the book spines is very important for accurate feature-based image matching into a database of book spines. Segmentation also provides the exact orientation of each book spine, so more discriminative upright local features can be employed for improved recognition. This system's mobile client has been implemented for smartphones running the Symbian or Android operating systems. The client enables a user to snap a picture of a bookshelf and to subsequently view the recognized spines in the smartphone's viewfinder. Two different pose estimates, one from BoVF geometric matching and the other from segmentation boundaries, are both utilized to accurately draw the boundary of each spine in the viewfinder for easy visualization. The BoVF representation also allows matching each photo of a bookshelf rack against a photo of the entire bookshelf, and the resulting feature matches are used in conjunction with the smartphone

  20. Motion camera based on a custom vision sensor and an FPGA architecture

    Science.gov (United States)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  1. Influencing factors for condition-based maintenance in railway tracks using knowledge-based approach

    NARCIS (Netherlands)

    Jamshidi, A.; Hajizadeh, S.; Naeimi, M.; Nunez Vicencio, Alfredo; Li, Z.

    2017-01-01

    In this paper, we present a condition-based maintenance decision method using
    knowledge-based approach for rail surface defects. A railway track may contain a considerable number of surface defects which influence track maintenance decisions. The proposed method is based on two sets of

  2. Single charged-particle damage to living cells: a new method based on track-etch detectors

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G.

    1994-01-01

    Biological effects of ionizing radiation are usually expressed as a function of the absorbed dose. Low doses of high-LET radiation correspond to one or few particle traversals through the cell. In order to study the biological effectiveness of single charged particles, we have developed a new method based on solid state nuclear track detectors. Cells are seeded on mylar and a LR-115 film is stuck below the mylar base. After irradiation, the LR-115 film is etched and cells observed at a phase contrast microscope connected to a video camera and an image analyzer. In this way, it is possible to measure the number of traversals through the cell nucleus or cytoplasm. Coordinates of each cell on the microscope bench are saved. After incubation for about one week, cells are fixed and stained and the colonies observed at the microscope. The fate of each irradiated cell is therefore correlated to the number of traversals. We have tested this method with two different rodent embryo fibroblast cell lines, C3H 10T1/2 and V79, exposed to 3.2 MeV accelerated α-particles (LET =124 keV/μm). The studied endpoint was cell killing. Preliminary biological results suggest that few α-particle tracks in V79 hamster cells are sufficient to reduce surviving fraction. ((orig.))

  3. A drone detection with aircraft classification based on a camera array

    Science.gov (United States)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  4. Robot Tracer with Visual Camera

    Science.gov (United States)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  5. TH-AB-202-11: Spatial and Rotational Quality Assurance of 6DOF Patient Tracking Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, AH; Liu, X; Grelewicz, Z; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: External tracking systems used for patient positioning and motion monitoring during radiotherapy are now capable of detecting both translations and rotations (6DOF). In this work, we develop a novel technique to evaluate the 6DOF performance of external motion tracking systems. We apply this methodology to an infrared (IR) marker tracking system and two 3D optical surface mapping systems in a common tumor 6DOF workspace. Methods: An in-house designed and built 6DOF parallel kinematics robotic motion phantom was used to follow input trajectories with sub-millimeter and sub-degree accuracy. The 6DOF positions of the robotic system were then tracked and recorded independently by three optical camera systems. A calibration methodology which associates the motion phantom and camera coordinate frames was first employed, followed by a comprehensive 6DOF trajectory evaluation, which spanned a full range of positions and orientations in a 20×20×16 mm and 5×5×5 degree workspace. The intended input motions were compared to the calibrated 6DOF measured points. Results: The technique found the accuracy of the IR marker tracking system to have maximal root mean square error (RMSE) values of 0.25 mm translationally and 0.09 degrees rotationally, in any one axis, comparing intended 6DOF positions to positions measured by the IR camera. The 6DOF RSME discrepancy for the first 3D optical surface tracking unit yielded maximal values of 0.60 mm and 0.11 degrees over the same 6DOF volume. An earlier generation 3D optical surface tracker was observed to have worse tracking capabilities than both the IR camera unit and the newer 3D surface tracking system with maximal RMSE of 0.74 mm and 0.28 degrees within the same 6DOF evaluation space. Conclusion: The proposed technique was effective at evaluating the performance of 6DOF patient tracking systems. All systems examined exhibited tracking capabilities at the sub-millimeter and sub-degree level within a 6DOF workspace.

  6. MICROCONTROLLER BASED SOLAR-TRACKING SYSTEM AND ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Okan BİNGÖL

    2006-02-01

    Full Text Available In this paper, a new micro-controller based solar-tracking system is proposed, implemented and tested. The scheme presented here can be operated as independent of the geographical location of the site of setting up. The system checks the position of the sun and controls the movement of a solar panel so that radiation of the sun comes normally to the surface of the solar panel. The developed-tracking system tracks the sun both in the azimuth as well as in the elevation plane. PC based system monitoring facility is also included in the design.

  7. Development and evaluation of tracking method for augmented reality system for nuclear power plant maintenance support

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Bian, Zhiqiang; Sekiyama, Tomoki; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Izumi, Masanori; Kanehira, Yoshiki; Morishita, Yoshitsugu

    2007-01-01

    This study aims at developing an augmented reality system to support maintenance work of nuclear power plants. An accurate and wide-range tracking method is required as a key technology in order to realize the system. In this study, a new tracking method using multi-camera and gyro sensor has been developed in order to enlarge the area where the tracking is available with limited number of markers. Experimental evaluation result shows that the area where the developed method can cover is about 3 times larger than the method using only single camera. (author)

  8. Development and evaluation of tracking method for augmented reality system for nuclear power plant maintenance support

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Bian, Zhiqiang; Sekiyama, Tomoki; Shimoda, Hiroshi; Yoshikawa, Hidekazu; Izumi, Masanori; Kanehira, Yoshiki; Morishita, Yoshitsugu

    2006-01-01

    This study aims at developing an augmented reality system to support maintenance work of nuclear power plants. An accurate and wide-range tracking method is required as a key technology in order to realize the system. In this study, a new tracking method using multi-camera and gyro sensor has been developed in order to enlarge the area where the tracking is available with limited number of markers. Experimental evaluation result shows that the area where the developed method can cover is about 3 times larger than the method using single camera. (author)

  9. Coiled-tubing fracturing of coal seams on the Vermejo Park Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2003-06-01

    Coiled-tubing (CT) fracturing currently is used to stimulate the Vermejo and Raton coal seams on the Vermejo Park Ranch in northern New Mexico. The CT fracturing process increased the number of stimulation stages from 4 to 18 per well. CT fracturing results in more accurate proppant placement and more effective stimulation of the producing zones.

  10. A configurable tracking algorithm to detect cosmic muon tracks for the CMS-RPC based technical trigger

    CERN Document Server

    Rajan, R T; Loddo, F; Maggi, M; Ranieri, A; Abbrescia, M; Guida, R; Iaselli, G; Nuzzo, S; Pugliese, G; Roselli, G; Trentadue, R; Tupputi, b, S; Benussi, L; Bertani, M; Bianco, S; Fabbri, F; Cavallo, N; Cimmino, e, A; Lomidze, D; Noli, P; Paolucci, P; Piccolo, D; Polese, G; Sciacca, C; Baesso, g, P; Belli, G; Necchi, M; Ratti, S P; Pagano, D; Vitulo, P; Viviani, C; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Genchev, V; Iaydjiev, P; Bunkowski, K; Kierzkowski, K; Konecki, M; Kudla, I; Pietrusinski, M; Pozniak, K

    2009-01-01

    In the CERN CMS experiment at LHC Collider special trigger signals called Technical Triggers will be used for the purpose of test and calibration. The Resistive Plate Chambers (RPC) based Technical Trigger system is a part of the CMS muon trigger system and is designed to detect cosmic muon tracks. It is based on two boards, namely RBC (RPC Balcony Collector) and TTU (Technical Trigger Unit). The proposed tracking algorithm (TA) written in VHDL and implemented in the TTU board detects single or multiple cosmic muon tracks at every bunch crossing along with their track lengths and corresponding chamber coordinates. The TA implementation in VHDL and its preliminary simulation results are presented.

  11. Clustering method for counting passengers getting in a bus with single camera

    Science.gov (United States)

    Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying

    2010-03-01

    Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.

  12. Augmented Reality for Searching Potential Assets in Medan using GPS based Tracking

    Science.gov (United States)

    Muchtar, M. A.; Syahputra, M. F.; Syahputra, N.; Ashrafia, S.; Rahmat, R. F.

    2017-01-01

    Every city is required to introduce its variety of potential assets so that the people know how to utilize or to develop their area. Potential assets include infrastructure, facilities, people, communities, organizations, customs that affects the characteristics and the way of life in Medan. Due to lack of socialization and information, most of people in Medan only know a few parts of the assets. Recently, so many mobile apps provide search and mapping locations used to find the location of potential assets in user’s area. However, the available information, such as text and digital maps, sometimes do not much help the user clearly and dynamically. Therefore, Augmented Reality technology able to display information in real world vision is implemented in this research so that the information can be more interactive and easily understood by user. This technology will be implemented in mobile apps using GPS based tracking and define the coordinate of user’s smartphone as a marker so that it can help people dynamically and easily find the location of potential assets in the nearest area based on the direction of user’s view on camera.

  13. Camera calibration based on the back projection process

    Science.gov (United States)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  14. Real-Time FPGA-Based Object Tracker with Automatic Pan-Tilt Features for Smart Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2017-05-01

    Full Text Available The design of smart video surveillance systems is an active research field among the computer vision community because of their ability to perform automatic scene analysis by selecting and tracking the objects of interest. In this paper, we present the design and implementation of an FPGA-based standalone working prototype system for real-time tracking of an object of interest in live video streams for such systems. In addition to real-time tracking of the object of interest, the implemented system is also capable of providing purposive automatic camera movement (pan-tilt in the direction determined by movement of the tracked object. The complete system, including camera interface, DDR2 external memory interface controller, designed object tracking VLSI architecture, camera movement controller and display interface, has been implemented on the Xilinx ML510 (Virtex-5 FX130T FPGA Board. Our proposed, designed and implemented system robustly tracks the target object present in the scene in real time for standard PAL (720 × 576 resolution color video and automatically controls camera movement in the direction determined by the movement of the tracked object.

  15. Development and experimental evaluation of an automatic marker registration system for tracking of augmented reality

    International Nuclear Information System (INIS)

    Yan, Wei-da; Yang Shou-feng; Ishii, Hirotake; Shimoda, Hiroshi; Izumi, Masanori

    2010-01-01

    In order to apply augmented reality in plant maintenance activities it is necessary to use real-time high accuracy tracking technology. One of the most efficient tracking methods is using paper-based markers and computing the relative position and orientation between a vision sensor (camera) and the markers through image processing and geometry calculations. In this method, the 3D-position of each marker is needed before tracking, but it is inefficient to measure all the markers manually. In this study, an automatic marker registration system was developed so as to measure the 3D-position of each marker automatically. The system is composed of a camera, a laser rangefinder and a motion base, which is used to control the pose of the laser rangefinder. A computer, connected to them, is used for controlling the system and for data transport. The results of the experimental evaluations show that the measurement takes about 21 seconds per marker and that the Root Mean Square Error (RMSE) of the position measurements is 3.5 mm. The feasibility evaluation of the system was conducted in Fugen nuclear plant. The results show that the system can largely reduce the preparatory workload of an AR application in a Nuclear Power Plant (NPP). (author)

  16. Graph-based geometric-iconic guide-wire tracking.

    Science.gov (United States)

    Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos

    2011-01-01

    In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.

  17. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  18. 近距离煤层群上行开采研究%Study on ascending mining of close distance coal seams group

    Institute of Scientific and Technical Information of China (English)

    庞冬冬

    2017-01-01

    为研究8煤开采对上部11煤的影响,综合运用理论分析和数值计算的方法,对上行开采过程中,上部11煤底板位移场.应力场变化规律进行研究.结果表明:11煤位于8煤开采的弯曲下沉带内,煤体有一定的破坏,但保持了很好的连续性,而且14128工作面的开采降低了上煤层的应力,形成应力降低区;同时,增大了11煤的透气性,减小瓦斯压力,卸压效果显著,对高瓦斯的11煤安全开采提供了保障.最后,计算得出了卸压影响范围.%In order to study the influence of No.8 seam mining on the upper No.11 seam,theoretical analysis and numerical calculation were used to study the change law of the displacement field and stress field of the upper No.11 seam floor during ascending mining.The results show that No.11 seam is located in the curve subsidence zone of No.8 seam mining,the coal body has certain damage,but it has a good continuity,and the stress of the upper coal seam is reduced because of the mining of 14128 working face and the stress decreasing zone has formed;at the same time,the permeability of No.11 coal increases,the gas pressure reduces,and pressure-relaxing effect is obvious,and it provides protection for the safe mining of No.11 seam which is of high gas.At last,the influence range of pressure relief is calculated.

  19. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    Science.gov (United States)

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  20. Development of a real time multiple target, multi camera tracker for civil security applications

    Science.gov (United States)

    Åkerlund, Hans

    2009-09-01

    A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.