WorldWideScience

Sample records for calpain inhibitor ak

  1. In Silico Affinity Profiling of Neuroactive Polyphenols for Post-Traumatic Calpain Inactivation: A Molecular Docking and Atomistic Simulation Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2014-12-01

    Full Text Available Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation and inhibition site recognition. Subsequently, two natural neuroactive polyphenols, curcumin and quercetin, were tested for their sensitivity and activity towards calpain’s proteolytic sequence and compared with the known calpain inhibitors via detailed molecular mechanics (MM, molecular dynamics (MD, and docking simulations. The MM and MD energy profiles (SJA6017 < AK275 < AK295 < PD151746 < quercetin < leupeptin < PD150606 < curcumin < ALLN < ALLM < MDL-28170 < calpeptin and the docking analysis (AK275 < AK295 < PD151746 < ALLN < PD150606 < curcumin < leupeptin < quercetin < calpeptin < SJA6017 < MDL-28170 < ALLM demonstrated that polyphenols conferred comparable calpain inhibition profiling. The modeling paradigm used in this study provides the first detailed account of corroboration of enzyme inhibition efficacy of calpain inhibitors and the respective calpain–calpain inhibitor molecular complexes’ energetic landscape and in addition stimulates the polyphenol bioactive paradigm for post-SCI intervention with implications reaching to experimental in vitro, in cyto, and in vivo studies.

  2. Mechanism of Action of Thalassospiramides, A New Class of Calpain Inhibitors

    KAUST Repository

    Lu, Liang

    2015-03-05

    Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic "warheads" in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide\\'s α,β-unsaturated carbonyl moiety to the thiol group of calpain\\'s catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.

  3. Mechanism of Action of Thalassospiramides, A New Class of Calpain Inhibitors

    KAUST Repository

    Lu, Liang; Meehan, Michael J.; Gu, Shuo; Chen, Zhilong; Zhang, Weipeng; Zhang, Gen; Liu, Lingli; Huang, Xuhui; Dorrestein, Pieter C.; Xu, Ying; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic "warheads" in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.

  4. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    Science.gov (United States)

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut.

    Directory of Open Access Journals (Sweden)

    Vítor Ennes-Vidal

    Full Text Available BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. CONCLUSIONS/SIGNIFICANCE: The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of

  6. Identification of active Plasmodium falciparum calpain to establish screening system for Pf-calpain-based drug development

    Directory of Open Access Journals (Sweden)

    Soh Byoung

    2013-02-01

    Full Text Available Abstract Background With the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development. Pf-calpain, a cysteine protease of Plasmodium falciparum, belongs to calpain-7 family, which is an atypical calpain not harboring Ca2+-binding regulatory motifs. In this present study, in order to establish the screening system for Pf-calpain specific inhibitors, the active form of Pf-calpain was first identified. Methods Recombinant Pf-calpain including catalytic subdomain IIa (rPfcal-IIa was heterologously expressed and purified. Enzymatic activity was determined by both fluorogenic substrate assay and gelatin zymography. Molecular homology modeling was carried out to address the activation mode of Pf-calpain in the aspect of structural moiety. Results Based on the measurement of enzymatic activity and protease inhibitor assay, it was found that the active form of Pf-calpain only contains the catalytic subdomain IIa, suggesting that Pf-calpain may function as a monomeric form. The sequence prediction indicates that the catalytic subdomain IIa contains all amino acid residues necessary for catalytic triad (Cys-His-Asn formation. Molecular modeling suggests that the Pf-calpain subdomain IIa makes an active site, holding the catalytic triad residues in their appropriate orientation for catalysis. The mutation analysis further supports that those amino acid residues are functional and have enzymatic activity. Conclusion The identified active form of Pf-calpain could be utilized to establish high-throughput screening system for Pf-calpain inhibitors. Due to its unique monomeric structural property, Pf-calpain could be served as a novel anti-malarial drug target, which has a high specificity for malaria parasite

  7. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP+ and rotenone

    Science.gov (United States)

    Knaryan, Varduhi H.; Samantaray, Supriti; Sookyoung, Park; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L.

    2014-01-01

    Complex pathophysiology of Parkinson’s disease (PD) involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in PD and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. In order to unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes respectively and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP+ and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP+ and rotenone dose-dependently elevated the levels of intracellular free Ca2+ and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP+ and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species (ROS) more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators (cyclooxygenase-2, Cox-2 and cleaved p10 fragment of caspase-1) were upregulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP+ or rotenone-induced ROS generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1–3 h after exposure to MPP+ or rotenone. Taken together these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. PMID:24341912

  8. Calpain Zymography: General Methodology and Protocol.

    Science.gov (United States)

    Wang, Kevin K W

    2017-01-01

    Casein zymography has become one of the gold standard assays for monitoring mammalian calcium-activated proteases (calpains) in purified enzyme, cell, or tissue samples. This calpain zymography method takes advantages of (1) casein is an excellent substrate for major isoforms of calpains (Calpain-1, 2 and 3), (2) the embedded casein is digested into small peptides where the calpain bands are located, thus creating a clear zone upon Commassie blue gel staining, and (3) the calpain isoforms have different gel mobility under native gel conditions. Casein zymography is also useful in studying reversibility of inhibitor binding to calpains.

  9. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes.

    Science.gov (United States)

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi

    2014-08-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.

  10. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  11. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  12. Effect and mechanism of calpains on pediatric lobar pneumonia.

    Science.gov (United States)

    Yin, Genquan; Zeng, Qiang; Zhao, Haijin; Wu, Peiqiong; Cai, Shaoxi; Deng, Li; Jiang, Wenhui

    2017-07-04

    Lobar pneumonia, one of the community-acquired pneumonia (CAP), is a common pediatric low respiratory tract infection. Calpains are Ca 2+ -activated cysteine proteases whose activation mechanism is elusive. The present study was undertaken to detect the role and mechanism of calpains in pediatric lobar pneumonia. The human acute lung infection model (ALIM) was constructed and infected by Streptococcus. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α. We observed the lactate dehydrogenase (LDH) release, calpains activity and calpain inhibitor effects in ALIM. The expression of proliferating cell nuclear antigen (PCNA) protein was quantified by western blotting. Then the effects of calpain 1 and 2 knockdown on expressions of inflammation factors and PCNA protein, LDH release and apoptosis were evaluated in lung MRC-5 cells. In constructed ALIM, expressions of IL-6 (P < 0.01), IL-8 (P < 0.01), TNF-α (P < 0.05) and PCNA protein (P < 0.05) were significantly reduced by the calpain inhibitor. Expressions of IL-6, IL-8, TNF-α, PCNA protein and relative LDH release were statistically reduced by the small interfering (si) RNA-calpain 1 and 2 in MRC-5 cells (P < 0.05). Calpains silence increased apoptotic cells from 5% (negative control) to more than 20% in MRC-5 cells. The present study suggests that calpains possess a significant effect on inflammations, cell proliferation and apoptosis. Suppression of calpains may provide a potential therapeutic target of lobar pneumonia.

  13. Neuroprotective effect of undecylenic acid extracted from Ricinus communis L. through inhibition of μ-calpain.

    Science.gov (United States)

    Lee, Eunyoung; Eom, Ji-Eun; Kim, Hye-Lin; Kang, Da-Hye; Jun, Kyu-Yeon; Jung, Duk Sang; Kwon, Youngjoo

    2012-05-12

    The key neuropathological features of Alzheimer's disease are abnormal deposition of Aβ plaques and insoluble Aβ peptides in extracellular brain and intracellular neurofibril tangles induced by abnormal tau hyperphosphorylation. μ-Calpain is one of the factors that bridge these Aβ- and hyperphosphorylated tau-mediated pathological pathways. Undecylenic acid (UDA), a naturally occurring unsaturated fatty acid, was discovered as a μ-calpain inhibitor by screening a chemical library using a substrate specific μ-calpain assay method. UDA inhibited Aβ oligomerization and Aβ fibrillation and reversed Aβ-induced neuronal cell death. In addition, UDA scavenged ROS and reversed the levels of proapoptotic proteins induced by ROS in SH-SY5Y cells. UDA inhibited μ-calpain activity with better potency than the known peptide-like μ-calpain inhibitor, MDL28170, in SH-SY5Y and HEK293T cells transfected with the catalytic subunit of μ-calpain. These results suggest that UDA is a novel non-peptide-like μ-calpain inhibitor with good cell permeability and potent neuroprotective effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Directory of Open Access Journals (Sweden)

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  15. Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.

    Science.gov (United States)

    Zhao, Jerry; Baudry, Michel; Jones, Susan

    2018-05-04

    Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca 2+ -dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca 2+ -dependent regulatory protein has not been identified. The role of the Ca 2+ -dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca 2+ -dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca 2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca 2+ -independent. In conclusion, Ca 2+ -dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca 2+ - and calpain-2-dependent NMDAR current rundown is developmentally regulated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Phosphorylation prevents C/EBPβ from the calpain-dependent degradation

    International Nuclear Information System (INIS)

    Zhang, Yuan-yuan; Li, Shu-fen; Qian, Shu-wen; Zhang, You-you; Liu, Yuan; Tang, Qi-Qun; Li, Xi

    2012-01-01

    Highlights: ► Phosphorylation protected C/EBPβ from μ-calpain-mediated proteolysis in vitro. ► Phosphorylation mimic C/EBPβ was insensitive to calpain accelerator and inhibitor. ► Phosphorylation on Thr 188 contributed more to the stabilization of C/EBPβ. -- Abstract: CCAAT/enhancer-binding protein (C/EBP) β plays an important role in proliferation and differentiation of 3T3-L1 preadipocytes. C/EBPβ is sequentially phosphorylated during the 3T3-L1 adipocyte differentiation program, first by MAPK/Cyclin A/cdk2 on Thr 188 and subsequently by GSK3β on Ser 184 or Thr 179 . Dual phosphorylation is critical for the gain of DNA binding activity of C/EBPβ. In this manuscript, we found that phosphorylation also contributed to the stability of C/EBPβ. Both ex vivo and in vitro experiments showed that phosphorylation by MAPK/Cyclin A/cdk2 and GSK3β protected C/EBPβ from μ-calpain-mediated proteolysis, while phosphorylation on Thr 188 by MAPK/Cyclin A/cdk2 contributed more to the stabilization of C/EBPβ, Further studies indicated that phosphorylation mimic C/EBPβ was insensitive to both calpain accelerator and calpain inhibitor. Thus, phosphorylation might contribute to the stability as well as the gain of DNA binding activity of C/EBPβ.

  17. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  18. Roles of calpain-calpastatin system (CCS) in human T cell activation.

    Science.gov (United States)

    Mikosik, Anna; Jasiulewicz, Aleksandra; Daca, Agnieszka; Henc, Izabella; Frąckowiak, Joanna E; Ruckemann-Dziurdzińska, Katarzyna; Foerster, Jerzy; Le Page, Aurelie; Bryl, Ewa; Fulop, Tamas; Witkowski, Jacek M

    2016-11-22

    The immune response is determined by the speed of the T cell reaction to antigens assured by a state of readiness for proliferation and cytokine secretion. Proliferation, apoptosis and motion of many cell types are controlled by cytoplasmic proteases - µ- and m-calpain - and their inhibitor calpastatin, together forming the "calpain-calpastatin system" (CCS), assumed to modify their targets only upon activation-dependent cytoplasmic Ca2+ increase. Contrastingly to this notion, using quantitative real time PCR and semiquantitative flow cytometry respectively, we show here that the CCS genes are constitutively expressed, and that both calpains are constitutively active in resting, circulating human CD4+ and CD8+ lymphocytes. Furthermore, we demonstrate that calpain inhibition in the resting T cells prevents them from proliferation in vitro and greatly reduces secretion of multiple cytokines. The mechanistic reason for these effects of calpain inhibition on T cell functions might be the demonstrated significant reduction of the expression of active (phosphorylated) upstream signalling molecules, including the phospholipase C gamma, p56Lck and NFκB, in the inhibitor-treated cells. Thus, we propose that the constitutive, self-regulatory calpain-calpastatin system activity in resting human T cells is a necessary, controlling element of their readiness for complex and effective response to antigenic challenge.

  19. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    Science.gov (United States)

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the

  20. Calpain: a molecule to induce AIF-mediated necroptosis in RGC-5 following elevated hydrostatic pressure

    Science.gov (United States)

    2014-01-01

    Background RIP3 (Receptor-interacting protein 3) pathway was mainly described as the molecular mechanism of necroptosis (programmed necrosis). But recently, non-RIP3 pathways were found to mediate necroptosis. We deliberate to investigate the effect of calpain, a molecule to induce necroptosis as reported (Cell Death Differ 19:245–256, 2012), in RGC-5 following elevated hydrostatic pressure. Results First, we identified the existence of necroptosis of RGC-5 after insult by using necrostatin-1 (Nec-1, necroptosis inhibitor) detected by flow cytometry. Immunofluorescence staining and western blot were used to detect the expression of calpain. Western blot analysis was carried out to describe the truncated AIF (tAIF) expression with or without pretreatment of ALLN (calpain activity inhibitor). Following elevated hydrostatic pressure, necroptotic cells pretreated with or without ALLN was stained by Annexin V/PI, The activity of calpain was also examined to confirm the inhibition effect of ALLN. The results showed that after cell injury there was an upregulation of calpain expression. Upon adding ALLN, the calpain activity was inhibited, and tAIF production was reduced upon injury along with the decreased number of necroptosis cells. Conclusion Our study found that calpain may induce necroptosis via tAIF-modulation in RGC-5 following elevated hydrostatic pressure. PMID:24884644

  1. Phosphorylation prevents C/EBP{beta} from the calpain-dependent degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan-yuan; Li, Shu-fen; Qian, Shu-wen; Zhang, You-you; Liu, Yuan; Tang, Qi-Qun; Li, Xi, E-mail: lixi@shmu.edu.cn

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Phosphorylation protected C/EBP{beta} from {mu}-calpain-mediated proteolysis in vitro. Black-Right-Pointing-Pointer Phosphorylation mimic C/EBP{beta} was insensitive to calpain accelerator and inhibitor. Black-Right-Pointing-Pointer Phosphorylation on Thr{sub 188} contributed more to the stabilization of C/EBP{beta}. -- Abstract: CCAAT/enhancer-binding protein (C/EBP) {beta} plays an important role in proliferation and differentiation of 3T3-L1 preadipocytes. C/EBP{beta} is sequentially phosphorylated during the 3T3-L1 adipocyte differentiation program, first by MAPK/Cyclin A/cdk2 on Thr{sub 188} and subsequently by GSK3{beta} on Ser{sub 184} or Thr{sub 179}. Dual phosphorylation is critical for the gain of DNA binding activity of C/EBP{beta}. In this manuscript, we found that phosphorylation also contributed to the stability of C/EBP{beta}. Both ex vivo and in vitro experiments showed that phosphorylation by MAPK/Cyclin A/cdk2 and GSK3{beta} protected C/EBP{beta} from {mu}-calpain-mediated proteolysis, while phosphorylation on Thr{sub 188} by MAPK/Cyclin A/cdk2 contributed more to the stabilization of C/EBP{beta}, Further studies indicated that phosphorylation mimic C/EBP{beta} was insensitive to both calpain accelerator and calpain inhibitor. Thus, phosphorylation might contribute to the stability as well as the gain of DNA binding activity of C/EBP{beta}.

  2. Ex vivo measurement of calpain activation in human peripheral blood lymphocytes by detection of immunoreactive products of calpastatin degradation.

    Directory of Open Access Journals (Sweden)

    Jacek M Witkowski

    2008-01-01

    Full Text Available Limited proteolysis of multiple intracellular proteins by endogenous Ca-dependent cysteine proteases--calpains--is an important regulatory mechanism for cell proliferation, apoptosis etc. Its importance for cellular functions is stressed by existence of endogenous calpain inhibitors--calpastatins. The calpain-calpastatin system within living cells is in a fragile balance, which depends on both partners. The interdependence of calpain--a protease--and calpastatin--an endogenous inhibitor and at the same time a substrate for this enzyme makes any assessment of actual activity of this enzyme in the cells very difficult. In this work we made an attempt to estimate and compare the activity of calpain in human peripheral blood lymphocytes by assessing the levels of limited proteolysis of calpastatin in these cells by western blot, while at the same time the levels of calpain protein inside these cells was measured by flow cytometry. Our results indicate that it is possible to compare (semi-quantitatively the activities of calpain in peripheral blood CD4+ and CD19+ lymphocytes from various donors that way. Preliminary results showed that calpain activity is increased in the CD4+ T cells isolated from peripheral blood of rheumatoid arthritis patients as compared to control lymphocytes. Extremely high intrinsic activity of calpain was detected in chronic lymphocytic leukemia (CD19+ cells. All this confirms the detection of immunoreactive products of calpastatin as a good maker of endogenous calpain activity.

  3. Perturbation with intrabodies reveals that calpain cleavage is required for degradation of huntingtin exon 1.

    Directory of Open Access Journals (Sweden)

    Amber L Southwell

    2011-01-01

    Full Text Available Proteolytic processing of mutant huntingtin (mHtt, the protein that causes Huntington's disease (HD, is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD.We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1 clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V(L12.3, turnover of soluble mHDx-1 in living cells is blocked.These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications.

  4. Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis.

    Directory of Open Access Journals (Sweden)

    Anna Mikosik

    Full Text Available Childhood acute lymphoblastic leukemia (ALL blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1 gene transcription, protein amounts and activity (but not those of m-calpain, with calpastatin amount and transcription of its gene (CAST greatly varying were observed in CD19(+ ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.

  5. Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal.

    Science.gov (United States)

    Chung, Kyung Min; Park, Hyunhee; Jung, Seonghee; Ha, Shinwon; Yoo, Seung-Jun; Woo, Hanwoong; Lee, Hyang Ju; Kim, Seong Who; Kim, Eun-Kyoung; Moon, Cheil; Yu, Seong-Woon

    2015-10-01

    Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca(2+) concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca(2+) levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. © 2015 AlphaMed Press.

  6. Unexpected role of the L-domain of calpastatin during the autoproteolytic activation of human erythrocyte calpain.

    Science.gov (United States)

    De Tullio, Roberta; Franchi, Alice; Martines, Antonino; Averna, Monica; Pedrazzi, Marco; Melloni, Edon; Sparatore, Bianca

    2018-04-26

    Autoproteolysis of human erythrocyte calpain-1 proceeds in vitro at high [Ca 2+ ], through the conversion of the 80-kDa catalytic subunit into a 75-kDa activated enzyme that requires lower [Ca 2+ ] for catalysis. Importantly, here we detect a similar 75 kDa calpain-1 form also in vivo , in human meningiomas. Although calpastatin is so far considered the specific inhibitor of calpains, we have previously identified in rat brain a calpastatin transcript truncated at the end of the L-domain (cast110, L-DOM), coding for a protein lacking the inhibitory units. Aim of the present study was to characterize the possible biochemical role of the L-DOM during calpain-1 autoproteolysis in vitro , at high (100 µM) and low (5 µM) [Ca 2+ ]. Here we demonstrate that the L-DOM binds the 80 kDa proenzyme in the absence of Ca 2+ Consequently, we have explored the ability of the 75 kDa activated protease to catalyze at 5 µM Ca 2+ the intermolecular activation of native calpain-1 associated with the L-DOM. Notably, this [Ca 2+ ] is too low to promote the autoproteolytic activation of calpain-1 but enough to support the catalysis of the 75 kDa calpain. We show for the first time that the L-DOM preserves native calpain-1 from the degradation mediated by the 75 kDa form. Taken together, our data suggest that the free L-domain of calpastatin is a novel member of the calpain/calpastatin system endowed with a function alternative to calpain inhibition. For this reason, it will be crucial to define the intracellular relevance of the L-domain in controlling calpain activation/activity in physiopathological conditions having altered Ca 2+ homeostasis. © 2018 The Author(s).

  7. Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia.

    Science.gov (United States)

    Lyons, Lisa C; Gardner, Jacob S; Lentsch, Cassidy T; Gandour, Catherine E; Krishnan, Harini C; Noakes, Eric J

    2017-01-01

    In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Martin K Childers

    2012-01-01

    Full Text Available Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD. Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD. Young (6 week-old GRMD dogs were treated daily with either C101 (17mg/kg twice daily oral dose, n=9 or placebo (vehicle only, n=7 for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every two weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors. C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.

  9. Calpain expression and activity during lens fiber cell differentiation.

    Science.gov (United States)

    De Maria, Alicia; Shi, Yanrong; Kumar, Nalin M; Bassnett, Steven

    2009-05-15

    In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.

  10. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  11. Calpain 4 is not necessary for LFA-1-mediated function in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Sarah A Wernimont

    2010-05-01

    Full Text Available T cell activation and immune synapse formation require the appropriate activation and clustering of the integrin, LFA-1. Previous work has reported that the calpain family of calcium-dependent proteases are important regulators of integrin activation and modulate T cell adhesion and migration. However, these studies have been limited by the use of calpain inhibitors, which have known off-target effects.Here, we used a LoxP/CRE system to specifically deplete calpain 4, a small regulatory calpain subunit required for expression and activity of ubiquitously expressed calpains 1 and 2, in CD4+ T cells. CD4+ and CD8+ T cells developed normally in Capn4(F/F:CD4-CRE mice and had severely diminished expression of Calpain 1 and 2, diminished talin proteolysis and impaired casein degradation. Calpain 4-deficient T cells showed no difference in adhesion or migration on the LFA-1 ligand ICAM-1 compared to control T cells. Moreover, there was no impairment in conjugation between Capn4(F/F:CD4-CRE T cells and antigen presenting cells, and the conjugates were still capable of polarizing LFA-1, PKC-theta and actin to the immune synapse. Furthermore, T cells from Capn4(F/F:CD4-CRE mice showed normal proliferation in response to either anti-CD3/CD28 coated beads or cognate antigen-loaded splenocytes. Finally, there were no differences in the rates of apoptosis following extrinsic and intrinsic apoptotic stimuli.Our findings demonstrate that calpain 4 is not necessary for LFA-1-mediated adhesion, conjugation or migration. These results challenge previous reports that implicate a central role for calpains in the regulation of T cell LFA-1 function.

  12. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...... was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration....

  13. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  14. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  15. Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. I. Biochemical studies.

    Science.gov (United States)

    Seubert, P; Ivy, G; Larson, J; Lee, J; Shahi, K; Baudry, M; Lynch, G

    1988-09-06

    Lesions of the rat entorhinal cortex cause extensive synaptic restructuring and perturbation of calcium regulation in the dentate gyrus of hippocampus. Calpain is a calcium-activated protease which has been implicated in degenerative phenomena in muscles and in peripheral nerves. In addition, calpain degrades several major structural neuronal proteins and has been proposed to play a critical role in the morphological changes observed following deafferentation. In this report we present evidence that lesions of the entorhinal cortex produce a marked increase in the breakdown of brain spectrin, a substrate for calpain, in the dentate gyrus. Two lines of evidence indicate that this effect is due to calpain activation: (i) the spectrin breakdown products observed following the lesion are indistinguishable from calpain-generated spectrin fragments in vitro; and (ii) their appearance can be reduced by prior intraventricular in fusion of leupeptin, a calpain inhibitor. Levels of spectrin breakdown products are increased as early as 4 h post-lesion, reach maximal values at 2 days, and remain above normal to some degree for at least 27 days. In addition, a small but significant increase in spectrin proteolysis is also observed in the hippocampus contralateral to the lesioned side in the first week postlesion. At 2 days postlesion the total spectrin immunoreactivity (native polypeptide plus breakdown products) increases by 40%, suggesting that denervation of the dentate gyrus produces not only an increased rate of spectrin degradation but also an increased rate of spectrin synthesis. These results indicate that calpain activation and spectrin degradation are early biochemical events following deafferentation and might well participate in the remodelling of postsynaptic structures. Finally, the magnitude of the observed effects as well as the stable nature of the breakdown products provide a sensitive assay for neuronal pathology.

  16. Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion.

    Directory of Open Access Journals (Sweden)

    V M Sangeetha

    Full Text Available BACKGROUND: Expansion of hematopoietic stem/progenitor cells (HSPCs is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB derived CD34(+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. CONCLUSION/SIGNIFICANCE: Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant

  17. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    Science.gov (United States)

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Partial autolysis of μ/m-calpain during post mortem aging of chicken muscle.

    Science.gov (United States)

    Zhao, Liang; Jiang, Nanqi; Li, Miaozhen; Huang, Ming; Zhou, Guanghong

    2016-12-01

    The objective of this study was to investigate changes occurring in μ/m-calpain in post mortem chicken muscles and to determine the origin of the unknown bands found in calpain casein zymography. The unknown bands were reported with slightly greater mobility compared to conventional μ/m-calpain bands in casein zymography. Identification of these bands was accomplished using native polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry and with protein phosphatase treatment. Results showed that the unknown bands were corresponding to μ/m-calpain, and dephosphorylation by protein phosphatase did not change their appearance. The calpain samples were then incubated with various concentrations of Ca 2+ to determine the relationship between changes in μ/m-calpain and the appearance of the unknown bands. The products of μ/m-calpain partial autolysis were found to be consistent with the appearance of the unknown bands. Therefore, the appearance of these bands did not result from phosphorylation of μ/m-calpain as previously hypothesized, but from partial autolysis of μ/m-calpain. Also their presence suggests that μ/m-calpain undergoes partial autolysis during aging which may play certain roles in meat quality improvement. © 2016 Japanese Society of Animal Science.

  20. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  1. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    Science.gov (United States)

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  3. Role of calpain-10 in the development of diabetes mellitus and its complications.

    Science.gov (United States)

    Pánico, Pablo; Salazar, Ana María; Burns, Anna L; Ostrosky-Wegman, Patricia

    2014-02-01

    Calpain activity has been implicated in several cellular processes such as cell signaling, apoptosis, exocytosis, mitochondrial metabolism and cytoskeletal remodeling. Evidence has indicated that the impairment of calpain expression and the activity of different calpain family members are involved in diverse pathologies. Calpain-10 has been implicated in the development of type 2 diabetes, and polymorphisms in the CAPN10 gene have been associated with an increased risk of developing this disease. The present work focused on the molecular biology of calpain-10, supporting its key participation in glucose metabolism. Current knowledge regarding the role of calpain-10 in the development of type 2 diabetes mellitus and diabetes-related diseases is additionally reviewed. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Effect of protein S-nitrosylation on autolysis and catalytic ability of μ-calpain.

    Science.gov (United States)

    Liu, Rui; Li, Yupin; Wang, Mengqin; Zhou, Guanghong; Zhang, Wangang

    2016-12-15

    The effect of S-nitrosylation on the autolysis and catalytic ability of μ-calpain in vitro in the presence of 50μM Ca(2 +) was investigated. μ-Calpain was incubated with different concentrations of nitric oxide donor S-nitrosoglutathione (GSNO) and subsequently reacted with purified myofibrils. Results showed that the amount of 80kDa μ-calpain subunit significantly decreased as GSNO increased from 0 to 300μM, but increases of GSNO to 300, 500 and 1000μM did not result in further inhibition. The catalytic ability of nitrosylated μ-calpain to degrade titin, nebulin, troponin-T and desmin was significantly reduced when the GSNO concentration was higher than 300μM. The cysteine residues of μ-calpain at positions 49, 351, 384, and 592 in the catalytic subunit and at 142 in small subunit were S-nitrosylated, which could be responsible for decreased μ-calpain activity. Thus, S-nitrosylation can negatively regulate the activation of μ-calpain resulting in decreased proteolytic ability on myofibrils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Immunological detection of m- and µ-calpains in the skeletal muscle of Marchigiana cattle

    Directory of Open Access Journals (Sweden)

    E. Varricchio

    2013-01-01

    Full Text Available Calpains are Ca2+-dependent proteases able to cleave a large number of proteins involved in many biological functions. Particularly, in skeletal muscle they are involved in meat tenderizing during post mortem storage. In this report we analyzed the presence and expression of µ- and m-calpains in two skeletal muscles of the Marchigiana cattle soon after slaughter, using immunocytochemical and immunohistochemical techniques, Western blotting analysis and Casein Zymography. Therefore, the presence and the activity of these proteases was investigated until 15th day post-mortem during normal process of meat tenderizing. The results showed m- and µ-calpain immunosignals in the cytoplasm both along the Z disk/I band regions and in the form of intracellular stores. Moreover, the expression level of µ-calpain but not m-calpain decreased after 10 days of storage. Such a decrease in µ-calpain was accompanied by a gradual reduction of activity. On the contrary, m-calpain activity persisted up to 15 days of post-mortem storage. Such data indicate that expression and activity of both µ-calpain and m-calpain analyzed in the Marchigiana cattle persist longer than reported in literature for other bovines and may be related to both the type of muscle and breed examined.

  6. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wan, Lei [Department of Pharmacology, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wang, Xudong, E-mail: xdwang@gmc.edu.cn [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China)

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.

  7. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    International Nuclear Information System (INIS)

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia; Wan, Lei; Wang, Xudong

    2014-01-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI

  8. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  9. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin mo...

  10. Influence of early pH decline on calpain activity in porcine muscle

    DEFF Research Database (Denmark)

    Pomponio, Luigi; Ertbjerg, Per; Karlsson, Anders H

    2010-01-01

    myofibril fragmentation at 24 h post-mortem was observed, which was no longer evident in the later phase of the tenderization process. In conclusion, the rate of early pH decline influenced l-calpain activity and the rate but not the extent of myofibrillar degradation, suggesting an early effect......This study investigated the influence of post-mortem pH decline on calpain activity and myofibrillar degradation.From 80 pigs, 30 Longissimus dorsi (LD) muscles were selected on the basis of pH values at 3 h post-mortem and classified into groups of 10 as fast, intermediate and slow pH decline...... measured. A faster decrease in pH resulted in reduced level of l-calpain activity and increased autolysis of the enzyme, and hence an earlier loss of activity due to activation of l-calpain in muscles with a fast pH decline. Paralleling the l-calpain activation in muscles with a fast pH decline a higher...

  11. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  12. Expression of calpain-calpastatin system (CCS) member proteins in human lymphocytes of young and elderly individuals; pilot baseline data for the CALPACENT project.

    Science.gov (United States)

    Mikosik, Anna; Foerster, Jerzy; Jasiulewicz, Aleksandra; Frąckowiak, Joanna; Colonna-Romano, Giuseppina; Bulati, Matteo; Buffa, Silvio; Martorana, Adriana; Caruso, Calogero; Bryl, Ewa; Witkowski, Jacek M

    2013-07-08

    Ubiquitous system of regulatory, calcium-dependent, cytoplasmic proteases - calpains - and their endogenous inhibitor - calpastatin - is implicated in the proteolytic regulation of activation, proliferation, and apoptosis of many cell types. However, it has not been thoroughly studied in resting and activated human lymphocytes yet, especially in relation to the subjects' ageing process. The CALPACENT project is an international (Polish-Italian) project aiming at verifying the hypothesis of the role of calpains in the function of peripheral blood immune cells of Polish (Pomeranian) and Italian (Sicilian) centenarians, apparently relatively preserved in comparison to the general elderly population. In this preliminary report we aimed at establishing and comparing the baseline levels of expression of μ- and m-calpain and calpastatin in various, phenotypically defined, populations of human peripheral blood lymphocytes for healthy elderly Sicilians and Poles, as compared to these values observed in young cohort. We have found significant differences in the expression of both μ- and m-calpain as well as calpastatin between various populations of peripheral blood lymphocytes (CD4+, CD8+ and CD19+), both between the age groups compared and within them. Interestingly, significantly higher amounts of μ- and m-calpains but not of calpastatin could be demonstrated in the CD4+CD28- and CD8+CD28- lymphocytes of old subjects (but not in the cells of young individuals), as compared to their CD28+ counterparts. Finally, decreased expression of both calpains in the elderly T cells is not related to the accumulation of effector/memory (CD45RO+) cells in the latter, as the expression of both calpains does not differ significantly between the naïve and memory T cells, while is significantly lower for elderly lymphocytes if both populations are taken separately. Observed differences in the amounts of CCS member proteins between various populations of lymphocytes of young and elderly

  13. Time course in calpain activity and autolysis in slow and fast skeletal muscle during clenbuterol treatment.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2011-02-01

    Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21 days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4 mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9 days of treatment, while hypertrophy was observed only in EDL after 9 days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14 days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.

  14. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  15. Autolytic activity of human calpain 7 is enhanced by ESCRT-III-related protein IST1 through MIT-MIM interaction.

    Science.gov (United States)

    Osako, Yohei; Maemoto, Yuki; Tanaka, Ryohei; Suzuki, Hironori; Shibata, Hideki; Maki, Masatoshi

    2010-11-01

    Calpain 7, a mammalian ortholog of yeast Cpl1/Rim13 and fungal PalB, is an atypical calpain that lacks a penta-EF-hand domain. Previously, we reported that a region containing a tandem repeat of microtubule-interacting and transport (MIT) domains in calpain 7 interacts with a subset of endosomal sorting complex required for transport (ESCRT)-III-related proteins, suggesting involvement of calpain 7 in the ESCRT system. Although yeast and fungal calpains are thought to be involved in alkaline adaptation via limited proteolysis of specific transcription factors, proteolytic activity of calpain 7 has not been demonstrated yet. In this study, we investigated the interaction between calpain 7 and a newly reported ESCRT-III family member, increased sodium tolerance-1 (IST1), which possesses two different types of MIT-interacting motifs (MIM1 and MIM2). We found that glutathione-S-transferase (GST)-fused tandem MIT domains of calpain 7 (calpain 7MIT) pulled down FLAG-tagged IST1 expressed in HEK293T cells. Coimmunoprecipitation assays with various deletion or point mutants of epitope-tagged calpain 7 and IST1 revealed that both repetitive MIT domains and MIMs are required for efficient interaction. Direct MIT-MIM binding was confirmed by a pulldown experiment with GST-fused IST1 MIM and purified recombinant calpain 7MIT. Furthermore, we found that the GST-MIM protein enhances the autolysis of purified Strep-tagged monomeric green fluorescent protein (mGFP)-fused calpain 7 (mGFP-calpain 7-Strep). The autolysis was almost completely abolished by 10 mmN-ethylmaleimide but only partially inhibited by 1 mm leupeptin or E-64. The putative catalytic Cys290-substituted mutant (mGFP-calpain 7(C290S)-Strep) showed no autolytic activity. These results demonstrate for the first time that human calpain 7 is proteolytically active, and imply that calpain 7 is activated in the ESCRT system. © 2010 The Authors Journal compilation © 2010 FEBS.

  16. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effect of phosphatidylinositol and inside-out erythrocyte vesicles on autolysis of mu- and m-calpain from bovine skeletal muscle.

    Science.gov (United States)

    Zalewska, Teresa; Thompson, Valery F; Goll, Darrel E

    2004-08-23

    The finding that phospholipid micelles lowered the Ca2+ concentration required for autolysis of the calpains led to a hypothesis suggesting that the calpains are translocated to the plasma membrane where they interact with phospholipids to initiate their autolysis. However, the effect of plasma membranes themselves on the Ca2+ concentration required for calpain autolysis has never been reported. Also, if interaction with a membrane lowers the Ca2+ required for autolysis, the membrane-bound-calpain must autolyze itself, because it would be the only calpain having the reduced Ca2+ requirement. This implies that the autolysis is an intramolecular process, although several studies have shown that autolysis of the calpains in an in vitro assay and in the absence of phospholipid is an intermolecular process. Inside-out vesicles prepared from erythrocytes had no effect on the Ca2+ concentration required for autolysis of either mu- or m-calpain, although phosphatidylinositol (PI) decreased the Ca2+ concentration required for autolysis of the same calpains. The presence of a substrate for the calpains, beta-casein, reduced the rate of autolysis of both mu- and m-calpain both in the presence and in the absence of PI, suggesting that mu- and m-calpain autolysis is an intermolecular process in the presence of PI just as it is in its absence. Because IOV have no effect on the Ca2+ concentration required for calpain autolysis, association with the plasma membrane, at least with erythrocyte plasma membranes, does not initiate calpain autolysis by reducing the Ca2+ concentration required for autolysis as suggested by the membrane-activation hypothesis. Interaction with a membrane may serve to bind calpains to their substrates rather than promoting autolysis.

  18. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  19. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  20. Expression of the gene for large subunit of m-calpain is elevated in ...

    Indian Academy of Sciences (India)

    have assessed the quantitative changes in mRNA specific for m-calpain. mRNA ... Journal of Genetics, Vol. 79, No. .... Dot-blot hybridization analysis of m-calpain mRNA in ... edge the financial support from the Department of Biotechnology,.

  1. Involvement of μ/m-calpain in the proteolysis and meat quality changes during postmortem storage of chicken breast muscle.

    Science.gov (United States)

    Zhao, Liang; Xing, Tong; Huang, Jichao; Qiao, Yan; Chen, Yulian; Huang, Ming

    2018-02-01

    The objective of this study was to investigate the role of calpain isotypes, especially poultry-specific μ/m-calpain in the proteolysis and meat quality changes of chicken breast muscle during postmortem storage. Calpain activity was detected by casein zymography, while the degradation of titin, desmin and Troponin-T was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis and western blot. Meat quality indicators such as water holding capacity and tenderness were also studied. The correlation analysis between calpain activity, proteolysis and the changes in meat quality indicators indicated that there were strong correlations for μ-calpain during the first 12 h of storage, while such strong correlations for μ/m-calpain were only found in samples stored from 12 h to 7 days. Our study suggested that μ-calpain played a major role in meat quality changes while μ/m-calpain could also be involved but played a limited role in the proteolysis and meat quality changes during 12 h to 7 days postmortem storage of chicken breast muscle. © 2017 Japanese Society of Animal Science.

  2. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status.

    Science.gov (United States)

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R

    2018-02-06

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment.

  3. Transient protective effect of caspase inhibitors in RCS rat.

    Science.gov (United States)

    Perche, O; Doly, M; Ranchon-Cole, I

    2008-03-01

    In most retinal degenerations in humans and in animal models, photoreceptor cells die by apoptosis. Although the biochemical features are similar in all apoptotic cells, different molecular events lead the cell to death. In the present study we used a rat model of inherited retinal degeneration, the RCS rats, to investigate the involvement of the proteases, caspases and/or calpains, in photoreceptor apoptosis. In the first experiments, rats were untreated or injected intravitreally at post natal day 27 (P27) with the large broad spectrum caspase inhibitor, ZVAD, the calpain inhibitor, MuhPhe, or with the vehicle, DMSO. Retinal status was evaluated at P35 and P42 by electroretinography, morphometry and apoptotic nuclei detection. DMSO and MuhPhe had no effect on RCS retinas as evidenced by equivalent loss of function and equivalent number of apoptotic cells than in untreated group. ZVAD transiently reduced apoptotic cells and preserved photoreceptor function at P35 but not at P42. These results suggest that caspases but not calpains are involved in retinal degeneration in the RCS. In the second experiments, RCS rats were injected twice at P27 and P35 with ZVAD or DMSO. Although ZVAD-treated retinas were preserved at P35 compared to the DMSO controls, the second injection of ZVAD did not extend the preserving effect to P42. Moreover, a single injection of ZVAD at P35 had no preserving effect at P42. All these data taken together suggest that caspases do not play a pivotal role after P35. In a fourth set of experiments, we used specific caspase inhibitors to elucidate which caspase was activated. The caspase-1/4 inhibitor (YVAD) or the caspase-3/7 inhibitor (DEVD) were injected intravitreally at P27 and retinal status was evaluated at P35 and P42. Electroretinograms and apoptotic nuclei detection demonstrated that YVAD and DEVD preserved photoreceptors at P35 but not at P42. These results suggest that both caspase-1/4 and caspase-3/7 play a major role in the apoptotic

  4. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2008-01-01

    . Stimulation due to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ influx in myocytes. Evidence of the involvement of Ca2+ -dependent activity in myoblast fusion, cell membrane and cytoskeleton component...... reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have...... demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown...

  5. Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sang Koo Lee

    2008-01-01

    Full Text Available Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa, and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control produced tumors of 2126 mm3 and 1638 mm3, respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434 mm3 in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.

  6. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2016-01-01

    Full Text Available Calpain, calcineurin (CaN, and nuclear factor of activated T cell (NFAT play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD are prone to develop atrial fibrillation (AF. Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR. Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes.

  7. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.

  8. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Albertas Undrovinas

    Full Text Available Calpain is an intracellular Ca²⁺-activated protease that is involved in numerous Ca²⁺ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca²⁺-dependent increase of the late sodium current (INaL in failing heart. Chronic heart failure (HF was induced in 2 dogs by multiple coronary artery embolization. Using a conventional patch-clamp technique, the whole-cell INaL was recorded in enzymatically isolated ventricular cardiomyocytes (VCMs in which INaL was activated by the presence of a higher (1 μM intracellular [Ca²⁺] in the patch pipette. Cell suspensions were exposed to a cell- permeant calpain inhibitor MDL-28170 for 1-2 h before INaL recordings. The numerical excitation-contraction coupling (ECC model was used to evaluate electrophysiological effects of calpain inhibition in silico. MDL caused acceleration of INaL decay evaluated by the two-exponential fit (τ₁ = 42±3.0 ms τ₂ = 435±27 ms, n = 6, in MDL vs. τ₁ = 52±2.1 ms τ₂ = 605±26 control no vehicle, n = 11, and vs. τ₁ = 52±2.8 ms τ₂ = 583±37 ms n = 7, control with vehicle, P<0.05 ANOVA. MDL significantly reduced INaL density recorded at -30 mV (0.488±0.03, n = 12, in control no vehicle, 0.4502±0.0210, n = 9 in vehicle vs. 0.166±0.05pA/pF, n = 5, in MDL. Our measurements of current-voltage relationships demonstrated that the INaL density was decreased by MDL in a wide range of potentials, including that for the action potential plateau. At the same time the membrane potential dependency of the steady-state activation and inactivation remained unchanged in the MDL-treated VCMs. Our ECC model predicted that calpain inhibition greatly improves myocyte function by reducing the action potential duration and intracellular diastolic Ca²⁺ accumulation in the pulse train.Calpain inhibition reverses INaL changes in failing dog ventricular

  9. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua; Sacco, Alessandra; Fowler, Velia M

    2014-03-01

    Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.

  10. Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition.

    Science.gov (United States)

    Olson, Mikel L; Ingebretson, Anna E; Harmelink, Katherine M

    2015-06-19

    The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM). Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.

  11. Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition

    Directory of Open Access Journals (Sweden)

    Mikel L. Olson

    2015-06-01

    Full Text Available The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM. Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.

  12. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  13. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo.

    Directory of Open Access Journals (Sweden)

    Takahiko Chimura

    Full Text Available The level of drebrin, an evolutionarily conserved f-actin-binding protein that regulates synaptic structure and function, is reduced in the brains of patients with chronic neurodegenerative diseases such as Alzheimer's disease (AD and Down's syndrome (DS. It was suggested that excitotoxic neuronal death caused by overactivation of NMDA-type glutamate receptors (NMDARs occurs in AD and DS; however, the relationship between excitotoxicity and drebrin loss is unknown. Here, we show that drebrin is a novel target of calpain-mediated proteolysis under excitotoxic conditions induced by the overactivation of NMDARs. In cultured rodent neurons, degradation of drebrin was confirmed by the detection of proteolytic fragments, as well as a reduction in the amount of full-length drebrin. Notably, the NMDA-induced degradation of drebrin in mature neurons occurred concomitantly with a loss of f-actin. Furthermore, pharmacological inhibition of f-actin loss facilitated the drebrin degradation, suggesting a functional linkage between f-actin and drebrin degradation. Biochemical analyses using purified drebrin and calpain revealed that calpain degraded drebrin directly in vitro. Furthermore, cerebral ischemia also induced the degradation of drebrin in vivo. These findings suggest that calpain-mediated degradation of drebrin is a fundamental pathology of neurodegenerative diseases mediated by excitotoxicity, regardless of whether they are acute or chronic. Drebrin regulates the synaptic clustering of NMDARs; therefore, degradation of drebrin under excitotoxic conditions may modulate NMDAR-mediated signal transductions, including pro-survival signaling. Overall, the results presented here provide novel insights into the molecular basis of cellular responses to excitotoxicity in vitro and in vivo.

  14. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.

    Science.gov (United States)

    Liu, Ke; Lyu, Lei; Chin, David; Gao, Junyuan; Sun, Xiurong; Shang, Fu; Caceres, Andrea; Chang, Min-Lee; Rowan, Sheldon; Peng, Junmin; Mathias, Richard; Kasahara, Hideko; Jiang, Shuhong; Taylor, Allen

    2015-01-27

    Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.

  15. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  16. 46 CFR 7.170 - Alaska Peninsula, AK to Aleutian Islands, AK.

    Science.gov (United States)

    2010-10-01

    ... BOUNDARY LINES Alaska § 7.170 Alaska Peninsula, AK to Aleutian Islands, AK. (a) A line drawn from the southernmost extremity of Cape Kumlium to the westernmost extremity of Nakchamik Island; thence to the... Light at Iliuliuk Bay entrance. (c) A line drawn from Arch Rock to the northernmost extremity of...

  17. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    that glutamate- induced changes of these proteins can be inhibited by estrogens, with Δ8,17β-estradiol, a novel equine estrogen being more potent than 17β-estradiol. To our knowledge, this is the first demonstration that glutamate-induced apoptosis involves regulation of multiple apoptotic effectors that can be inhibited by estrogens. Whether these observations can help in the development of novel therapeutic approaches for the prevention of neurodegenerative diseases with estrogens and calpain inhibitors remains to be investigated.

  18. Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation

    Science.gov (United States)

    Lhocine, Nouara; Andrieux, Alexandra; Nigro, Giulia; Mounier, Joëlle

    2017-01-01

    Disruption of the sumoylation/desumoylation equilibrium is associated with several disease states such as cancer and infections, however the mechanisms regulating the global SUMO balance remain poorly defined. Here, we show that infection by Shigella flexneri, the causative agent of human bacillary dysentery, switches off host sumoylation during epithelial cell infection in vitro and in vivo and that this effect is mainly mediated by a calcium/calpain-induced cleavage of the SUMO E1 enzyme SAE2, thus leading to sumoylation inhibition. Furthermore, we describe a mechanism by which Shigella promotes its own invasion by altering the sumoylation state of RhoGDIα, a master negative regulator of RhoGTPase activity and actin polymerization. Together, our data suggest that SUMO modification is essential to restrain pathogenic bacterial entry by limiting cytoskeletal rearrangement induced by bacterial effectors. Moreover, these findings identify calcium-activated calpains as powerful modulators of cellular sumoylation levels with potentially broad implications in several physiological and pathological situations. PMID:29231810

  19. Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus.

    Directory of Open Access Journals (Sweden)

    Elena Preziosa

    Full Text Available BACKGROUND: Calpains, a superfamily of intracellular calcium-dependent cysteine proteases, are involved in the cytoskeletal remodeling and wasting of skeletal muscle. Calpains are generated as inactive proenzymes which are activated by N-terminal autolysis induced by calcium-ions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we characterized the full-length cDNA sequences of three calpain genes, clpn1, clpn2, and clpn3 in channel catfish, and assessed the effect of nutrient restriction and subsequent re-feeding on the expression of these genes in skeletal muscle. The clpn1 cDNA sequence encodes a protein of 704 amino acids, Clpn2 of 696 amino acids, and Clpn3 of 741 amino acids. Phylogenetic analysis of deduced amino acid sequences indicate that catfish Clpn1 and Clpn2 share a sequence similarity of 61%; catfish Clpn1 and Clpn3 of 48%, and Clpn2 and Clpn3 of only 45%. The domain structure architectures of all three calpain genes in channel catfish are similar to those of other vertebrates, further supported by strong bootstrap values during phylogenetic analyses. Starvation of channel catfish (average weight, 15-20 g for 35 days influenced the expression of clpn1 (2.3-fold decrease, P<0.05, clpn2 (1.3-fold increase, P<0.05, and clpn3 (13.0-fold decrease, P<0.05, whereas the subsequent refeeding did not change the expression of these genes as measured by quantitative real-time PCR analysis. Calpain catalytic activity in channel catfish skeletal muscle showed significant differences only during the starvation period, with a 1.2- and 1.4- fold increase (P<0.01 after 17 and 35 days of starvation, respectively. CONCLUSION/SIGNIFICANCE: We have assessed that fasting and refeeding may provide a suitable experimental model to provide us insight into the role of calpains during fish muscle atrophy and how they respond to changes in nutrient supply.

  20. Similar to spironolactone, oxymatrine is protective in aldosterone-induced cardiomyocyte injury via inhibition of calpain and apoptosis-inducing factor signaling.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Xiao

    Full Text Available Accumulating evidence indicates that oxymatrine (OMT possesses variously pharmacological properties, especially on the cardiovascular system. We previously demonstrated that activated calpain/apoptosis-inducing factor (AIF-mediated pathway was the key molecular mechanism in aldosterone (ALD induces cardiomyocytes apoptosis. In the present study, we extended the experimentation by investigating the effect of OMT on cardiomyocytes exposed to ALD, as compared to spironolactone (Spiro, a classical ALD receptor antagonist. Cardiomyocytes were pre-incubated with OMT, Spiro or vehicle for 1 h, and then, cardiomyocytes were exposed to ALD 24 h. The cell injury was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and lactate dehydrogenase (LDH leakage ratio. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay, annexin V/PI staining, and relative caspase-3 activity assay. Furthermore, expression of pro-apoptotic proteins including truncated Bid (tBid, calpain and AIF were evaluated by western blot analysis. ALD stimulation increased cardiomyocytes apoptosis, caspase-3 activity and protein expression of calpain, tBid and AIF in the cytosol (p<0.05. Pre-incubated with cardiomyocytes injury and increased caspase-3 activity were significantly attenuated (p<0.05. Furthermore, OMT suppressed ALD-induced high expression of calpain and AIF. And these effects of OMT could be comparable to Spiro. These findings indicated that OMT might be a potential cardioprotective-agent against excessive ALD-induced cardiotoxicity, at least in part, mediated through inhibition of calpain/AIF signaling.

  1. AK-SYS: An adaptation of the AK-MCS method for system reliability

    International Nuclear Information System (INIS)

    Fauriat, W.; Gayton, N.

    2014-01-01

    A lot of research work has been proposed over the last two decades to evaluate the probability of failure of a structure involving a very time-consuming mechanical model. Surrogate model approaches based on Kriging, such as the Efficient Global Reliability Analysis (EGRA) or the Active learning and Kriging-based Monte-Carlo Simulation (AK-MCS) methods, are very efficient and each has advantages of its own. EGRA is well suited to evaluating small probabilities, as the surrogate can be used to classify any population. AK-MCS is built in relation to a given population and requires no optimization program for the active learning procedure to be performed. It is therefore easier to implement and more likely to spend computational effort on areas with a significant probability content. When assessing system reliability, analytical approaches and first-order approximation are widely used in the literature. However, in the present paper we rather focus on sampling techniques and, considering the recent adaptation of the EGRA method for systems, a strategy is presented to adapt the AK-MCS method for system reliability. The AK-SYS method, “Active learning and Kriging-based SYStem reliability method”, is presented. Its high efficiency and accuracy are illustrated via various examples

  2. Dicty_cDB: FC-AK01 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AK01 (Link to dictyBase) - - - Contig-U15038-1 FC-AK01E (Li...nk to Original site) - - - - - - FC-AK01E 996 Show FC-AK01 Library FC (Link to library) Clone ID FC-AK01 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15038-1 Original site URL http://dict...s clone omyk-evn... 172 6e-79 AF401557_1( AF401557 |pid:none) Ictalurus punctatus...reticulum 4.0 %: vacuolar >> prediction for FC-AK01 is mit 5' end seq. ID - 5' end seq. - Length of 5' end s

  3. 76 FR 75447 - Amendment of Class E Airspace; Emmonak, AK

    Science.gov (United States)

    2011-12-02

    .... * * * * * AAL AK E5 Emmonak, AK [Modified] Emmonak Airport, AK (Lat. 62[deg]47'10'' N., long. 164[deg]29'27'' W...-0880; Airspace Docket No. 11-AAL-17] Amendment of Class E Airspace; Emmonak, AK AGENCY: Federal... Emmonak, AK. The revision of two standard instrument approach procedures at the Emmonak Airport has made...

  4. 78 FR 16399 - Amendment of Class E Airspace; Unalakleet, AK

    Science.gov (United States)

    2013-03-15

    ..., AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57'' W.) That airspace within a 4.2-mile radius of.... * * * * * AAL AK E5 Unalakleet, AK [Modified] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47...; Airspace Docket No. 12-AAL-3] Amendment of Class E Airspace; Unalakleet, AK AGENCY: Federal Aviation...

  5. 75 FR 62459 - Revision of Class E Airspace; Unalakleet, AK

    Science.gov (United States)

    2010-10-12

    ...] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57'' W.) Unalakleet Localizer (Lat. 63[deg]52'52'' N., long. 160[deg]47'42'' W.) Within a 4.2-mile radius of the Unalakleet Airport, AK, and.... * * * * * AAL AK E5 Unalakleet, AK [Revised] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57...

  6. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia.

    Science.gov (United States)

    Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J

    2016-03-01

    Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.

  7. GenBank blastx search result: AK242766 [KOME

    Lifescience Database Archive (English)

    Full Text Available r calpain 6, a glutamate dehydrogenase 1 (GLUD1) pseudogene and the 3' end of the DCX gene for doublecortex; lissencephaly, X-linked (doublecortin), complete sequence. PRI 2e-33 1 ...

  8. GenBank blastx search result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available r calpain 6, a glutamate dehydrogenase 1 (GLUD1) pseudogene and the 3' end of the DCX gene for doublecortex; lissencephaly, X-linked (doublecortin), complete sequence. PRI 2e-37 1 ...

  9. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  10. Mechanical stimulation of C2C12 cells increases m-calpain expression and activity, focal adhesion plaque degradation and cell fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders Hans; Lawson, Moira A.

    2005-01-01

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. During embryonic development, myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...

  11. 76 FR 54148 - Proposed Amendment of Class E Airspace; Emmonak, AK

    Science.gov (United States)

    2011-08-31

    ... AK E5 Emmonak, AK [Revised] Emmonak Airport, AK (Lat. 62[deg]47'10'' N., long. 164[deg]29'27'' W...-0880 Airspace Docket No. 11-AAL-17] Proposed Amendment of Class E Airspace; Emmonak, AK AGENCY: Federal... proposes to revise Class E airspace at Emmonak, AK. The amendment of two standard instrument approach...

  12. Calpain 3 Is Activated through Autolysis within the Active Site and Lyses Sarcomeric and Sarcolemmal Components

    Science.gov (United States)

    Taveau, Mathieu; Bourg, Nathalie; Sillon, Guillaume; Roudaut, Carinne; Bartoli, Marc; Richard, Isabelle

    2003-01-01

    Calpain 3 (Capn3) is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. This enigmatic protease has many unique features among the calpain family and, importantly, mutations in Capn3 have been shown to be responsible for limb girdle muscular dystrophy type 2A. Here we demonstrate that the Capn3 activation mechanism is similar to the universal activation of caspases and corresponds to an autolysis within the active site of the protease. We undertook a search for substrates in immature muscle cells, as several lines of evidence suggest that Capn3 is mostly in an inactive state in muscle and needs a signal to be activated. In this model, Capn3 proteolytic activity leads to disruption of the actin cytoskeleton and disorganization of focal adhesions through cleavage of several endogenous proteins. In addition, we show that titin, a previously identified Capn3 partner, and filamin C are further substrates of Capn3. Finally, we report that Capn3 colocalizes in vivo with its substrates at various sites along cytoskeletal structures. We propose that Capn3-mediated cleavage produces an adaptive response of muscle cells to external and/or internal stimuli, establishing Capn3 as a muscle cytoskeleton regulator. PMID:14645524

  13. 77 FR 27149 - Proposed Modification of Class E Airspace; Unalakleet, AK

    Science.gov (United States)

    2012-05-09

    ...] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57'' W.) That airspace within a 4.2-mile.... * * * * * AAL AK E5 Unalakleet, AK [Modified] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47...-0322; Airspace Docket No. 12-AAL-3] Proposed Modification of Class E Airspace; Unalakleet, AK AGENCY...

  14. Inhibitors of nuclear factor kappa B cause apoptosis in cultured macrophages

    Directory of Open Access Journals (Sweden)

    E. E. Mannick

    1997-01-01

    Full Text Available The precise role of the transcription factor nuclear factor kappa B (NF- κB in the regulation of cell survival and cell death is still unresolved and may depend on cell type and position in the cell cycle. The aim of this study was to determine if three pharmacologic inhibitors of NF-κB, pyrrolidine dithiocarbamate, N-tosyl-L-lysl chloromethyl ketone and calpain I inhibitor, induce apoptosis in a murine macrophage cell line (RAW 264.7 at doses similar to those required for NF-κB inhibition. We found that each of the three inhibitors resulted in a dose- and time-dependent increase in morphologic indices of apoptosis in unstimulated, LPS-stimulated and TNF-stimulated cells. Lethal doses were consistent with those required for NF- κB inhibition. We conclude that nuclear NF-κB activation may represent an important survival mechanism in macrophages.

  15. 75 FR 32865 - Proposed Revision of Class E Airspace; Unalakleet, AK

    Science.gov (United States)

    2010-06-10

    ...] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57'' W.) Unalakleet Localizer (Lat. 63[deg]52'52'' N., long. 160[deg]47'42'' W.) Within a 4.2-mile radius of the Unalakleet Airport, AK, and.... * * * * * AAL AK E5 Unalakleet, AK [Revised] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57...

  16. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study

    Directory of Open Access Journals (Sweden)

    Bell Angus

    2003-06-01

    Full Text Available Abstract Background Inhibitors of the protease calpain are known to have selectively toxic effects on Plasmodium falciparum. The enzyme has a natural inhibitor calpastatin and in eukaryotes is responsible for turnover of proteins containing short sequences enriched in certain amino acids (PEST sequences. The genome of P. falciparum was searched for this protease, its natural inhibitor and putative substrates. Methods The publicly available P. falciparum genome was found to have too many errors to permit reliable analysis. An earlier annotation of chromosome 2 was instead examined. PEST scores were determined for all annotated proteins. The published genome was searched for calpain and calpastatin homologs. Results Typical PEST sequences were found in 13% of the proteins on chromosome 2, including a surprising number of cell-surface proteins. The annotated calpain gene has a non-biological "intron" that appears to have been created to avoid an unrecognized frameshift. Only the catalytic domain has significant similarity with the vertebrate calpains. No calpastatin homologs were found in the published annotation. Conclusion A calpain gene is present in the genome and many putative substrates of this enzyme have been found. Calpastatin homologs may be found once the re-annotation is completed. Given the selective toxicity of calpain inhibitors, this enzyme may be worth exploring further as a potential drug target.

  17. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  18. Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis.

    Science.gov (United States)

    Bochner, Ron; Samuelov, Liat; Sarig, Ofer; Li, Qiaoli; Adase, Christopher A; Isakov, Ofer; Malchin, Natalia; Vodo, Dan; Shayevitch, Ronna; Peled, Alon; Yu, Benjamin D; Fainberg, Gilad; Warshauer, Emily; Adir, Noam; Erez, Noam; Gat, Andrea; Gottlieb, Yehonatan; Rogers, Tova; Pavlovsky, Mor; Goldberg, Ilan; Shomron, Noam; Sandilands, Aileen; Campbell, Linda E; MacCallum, Stephanie; McLean, W H Irwin; Ast, Gil; Gallo, Richard L; Uitto, Jouni; Sprecher, Eli

    2017-02-01

    Congenital erythroderma is a rare and often life-threatening condition, which has been shown to result from mutations in several genes encoding important components of the epidermal differentiation program. Using whole exome sequencing, we identified in a child with congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy and failure to thrive, two heterozygous mutations in ABCA12 (c.2956C>T, p.R986W; c.5778+2T>C, p. G1900Mfs*16), a gene known to be associated with two forms of ichthyosis, autosomal recessive congenital ichthyosis, and harlequin ichthyosis. Because the patient displayed an atypical phenotype, including severe hair and nail manifestations, we scrutinized the exome sequencing data for additional potentially deleterious genetic variations in genes of relevance to the cornification process. Two mutations were identified in CAPN12, encoding a member of the calpain proteases: a paternal missense mutation (c.1511C>A; p.P504Q) and a maternal deletion due to activation of a cryptic splice site in exon 9 of the gene (c.1090_1129del; p.Val364Lysfs*11). The calpain 12 protein was found to be expressed in both the epidermis and hair follicle of normal skin, but its expression was dramatically reduced in the patient's skin. The downregulation of capn12 expression in zebrafish was associated with abnormal epidermal morphogenesis. Small interfering RNA knockdown of CAPN12 in three-dimensional human skin models was associated with acanthosis, disorganized epidermal architecture, and downregulation of several differentiation markers, including filaggrin. Accordingly, filaggrin expression was almost absent in the patient skin. Using ex vivo live imaging, small interfering RNA knockdown of calpain 12 in skin from K14-H2B GFP mice led to significant hair follicle catagen transformation compared with controls. In summary, our results indicate that calpain 12 plays an essential role during epidermal ontogenesis and normal hair follicle cycling and that

  19. Dexamethasone enhances necrosis-like neuronal death in ischemic rat hippocampus involving μ-calpain activation

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Hasseldam, Henrik; Rasmussen, Rune Skovgaard

    2014-01-01

    - and necrosis-like cell death morphologies in CA1 of rats treated with dexamethasone prior to TFI (DPTI). In addition, apoptosis- (casp-9, casp-3, casp-3-cleaved PARP and cleaved α-spectrin 145/150 and 120kDa) and necrosis-related (calpain-specific casp-9 cleavage, μ-calpain upregulation and cleaved α......Transient forebrain ischemia (TFI) leads to hippocampal CA1 pyramidal cell death which is aggravated by glucocorticoids (GC). It is unknown how GC affect apoptosis and necrosis in cerebral ischemia. We therefore investigated the co-localization of activated caspase-3 (casp-3) with apoptosis......-spectrin 145/150kDa) cell death mechanisms were investigated by Western blot analysis. DPTI expedited CA1 neuronal death from day 4 to day 1 and increased the magnitude of CA1 neuronal death from 66.2% to 91.3% at day 7. Furthermore, DPTI decreased the overall (days 1-7) percentage of dying neurons displaying...

  20. Arsenite reduces insulin secretion in rat pancreatic β-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Salazar, Ana Maria; Sordo, Monserrat; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2008-01-01

    An increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic β-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells. Cell cycle and proliferation analysis were also performed to complement the characterization. Free [Ca 2+ ]i oscillations needed for glucose-stimulated insulin secretion were abated in the presence of subchronic low arsenite doses (0.5-2 μM). The global activity of calpains increased with 2 μM arsenite. However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 μM arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. Both proteins are needed to fuse insulin granules with the membrane to produce insulin exocytosis. Arsenite also induced a slowdown in the β cell line proliferation in a dose-dependent manner, reflected by a reduction of dividing cells and in their arrest in G2/M. Data obtained showed that one of the mechanisms by which arsenite impairs insulin secretion is by decreasing the oscillations of free [Ca 2+ ]i, thus reducing calcium-dependent calpain-10 partial proteolysis of SNAP-25. The effects in cell division and proliferation observed with arsenite exposure can be an indirect consequence of the decrease in insulin secretion

  1. GenBank blastx search result: AK107763 [KOME

    Lifescience Database Archive (English)

    Full Text Available isease and variant metachromatic leukodystrophy) variant, clone: SYN03435.|PRI PRI 3e-11 +3 ... ...AK107763 002-133-A11 AK223290.1 Homo sapiens mRNA for prosaposin (variant Gaucher d

  2. 76 FR 54152 - Proposed Amendment of Class E Airspace Galbraith Lake, AK

    Science.gov (United States)

    2011-08-31

    ..., AK [Revised] Galbraith Lake Airport, AK (Lat. 68[deg]28'47'' N., long. 149[deg]29'24'' W) That...-0865; Airspace Docket No. 11-AAL-14] Proposed Amendment of Class E Airspace Galbraith Lake, AK AGENCY... action proposes to amend Class E airspace at Galbraith Lake AK. The creation of two special instrument...

  3. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... eccentric exercise bout (P muscle Ca2+-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P

  4. Selectrion procedures for sites of rdatioactive waste disposal. Recommendations of the AkEnd; Auswahlverfahren fuer Endlagerstandorte. Empfehlungen des AkEnd

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The Working Group on Procedures for the Selection of Repository Sites (AkEnd) had been appointed by the German Federal Ministry for the Environment (BMU) to develop procedures and criteria for the search for, and selection of, a repository site for all kinds of radioactive waste in deep geologic formations in Germany. ILK in principle welcomes the attempt on the part of AkEnd to develop a systematic procedure. On the other hand, ILK considers the two constraints imposed by BMU inappropriate: AkEnd was not to take into account the two existing sites of Konrad and Gorleben and, instead, work from a so-called white map of Germany.

  5. 46 CFR 7.180 - Kotzebue Sound, AK.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Kotzebue Sound, AK. 7.180 Section 7.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.180 Kotzebue Sound, AK. A line drawn from Cape Espenberg Light to latitude 66°52′ N. longitude 163°28′ W.; and...

  6. Pretreatment with Pancaspase Inhibitor (Z-VAD-FMK Delays but Does Not Prevent Intraperitoneal Heat-Killed Group B Streptococcus-Induced Preterm Delivery in a Pregnant Mouse Model

    Directory of Open Access Journals (Sweden)

    Ozlem Equils

    2009-01-01

    Full Text Available Caspases and apoptosis are thought to play a role in infection-associated preterm-delivery. We have shown that in vitro treatment with pancaspase inhibitor Z-VAD-FMK protects trophoblasts from microbial antigen-induced apoptosis. Objective. To examine whether in vivo administration of Z-VAD-FMK would prevent infection-induced preterm-delivery. Methods. We injected 14.5 day-pregnant-mice with heat-killed group B streptococcus (HK-GBS. Apoptosis within placentas and membranes was assessed by TUNEL staining. Calpain expression and caspase-3 activation were assessed by immunohistochemistry. Preterm-delivery was defined as expulsion of a fetus within 48 hours after injection. Results. Intrauterine (i.u. or intraperitoneal (i.p. HK-GBS injection led to preterm-delivery and induced apoptosis in placentas and membranes at 14 hours. The expression of calpain, a caspase-independent inducer of apoptosis, was increased in placenta. Treatment with the specific caspase inhibitor Z-VAD-FMK (i.p. prior to HK-GBS (i.p. delayed but did not prevent preterm-delivery. Conclusion. Caspase-dependent apoptosis appears to play a role in the timing but not the occurrence of GBS-induced preterm delivery in the mouse.

  7. 75 FR 30746 - Proposed Revocation and Establishment of Class E Airspace; Northeast, AK

    Science.gov (United States)

    2010-06-02

    ... Management System Office (see ADDRESSES section for address and phone number) between 9 a.m. and 5 p.m... Distribution System, which describes the application procedure. The Proposal This action proposes to amend.... * * * * * AAL AK E6 Barter Island, AK [Removed] * * * * * AAL AK E6 Mentasta Lake/Mountains Area, AK [Removed...

  8. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria.

    Science.gov (United States)

    Li, Xuerong; Chen, Huiqing; Jeong, Jong-Jin; Chishti, Athar H

    2007-09-01

    Falcipains, the papain-family cysteine proteases of the Plasmodium falciparum, are potential drug targets for malaria parasite. Pharmacological inhibition of falcipains can block the hydrolysis of hemoglobin, parasite development, and egress, suggesting that falcipains play a key role at the blood stage of parasite life cycle. In the present study, we evaluated the anti-malarial effects of BDA-410, a novel cysteine protease inhibitor as a potential anti-malarial drug. Recombinant falcipain (MBP-FP-2B) and P. falciparum trophozoite extract containing native falcipains were used for enzyme inhibition studies in vitro. The effect of BDA-410 on the malaria parasite development in vitro as well as its anti-malarial activity in vivo was evaluated using the Plasmodium chabaudi infection rodent model. The 50% inhibitory concentrations of BDA-410 were determined to be 628 and 534nM for recombinant falcipain-2B and parasite extract, respectively. BDA-410 inhibited the malaria parasite growth in vitro with an IC(50) value of 173nM causing irreversible damage to the intracellular parasite. In vivo, the BDA-410 delayed the progression of malaria infection significantly using a mouse model of malaria pathogenesis. The characterization of BDA-410 as a potent inhibitor of P. falciparum cysteine proteases, and the demonstration of its efficacy in blocking parasite growth both in vitro and in vivo assays identifies BDA-410 is an important lead compound for the development of novel anti-malarial drugs.

  9. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  10. Turonian Radiolarians in the Section of Ak Mountain, Crimea

    Science.gov (United States)

    Bragina, L. G.

    2018-01-01

    In the sections from the western and eastern peaks of Ak Mountain, the Patellula selbukhraensis Zone (upper part of the lower Turonian), which is established for the first time in the southwestern Mountainous Crimea, is traced. The first data on the radiolarian distribution in the section of the eastern peak of Ak Mountain, which is stratotypical of the Phaseliforma turovi (middle Turonian, without the upper part) and Actinomma (?) belbekense (upper part of the middle Turonian-upper Turonian) zones, are presented. These zones are also traced in the parallel section of the western peak of Ak Mountain.

  11. Crystal structures of T. b. rhodesiense adenosine kinase complexed with inhibitor and activator: implications for catalysis and hyperactivation.

    Directory of Open Access Journals (Sweden)

    Sabine Kuettel

    2011-05-01

    Full Text Available BACKGROUND: The essential purine salvage pathway of Trypanosoma brucei bears interesting catalytic enzymes for chemotherapeutic intervention of Human African Trypanosomiasis. Unlike mammalian cells, trypanosomes lack de novo purine synthesis and completely rely on salvage from their hosts. One of the key enzymes is adenosine kinase which catalyzes the phosphorylation of ingested adenosine to form adenosine monophosphate (AMP utilizing adenosine triphosphate (ATP as the preferred phosphoryl donor. METHODS AND FINDINGS: Here, we present the first structures of Trypanosoma brucei rhodesiense adenosine kinase (TbrAK: the structure of TbrAK in complex with the bisubstrate inhibitor P(1,P(5-di(adenosine-5'-pentaphosphate (AP5A at 1.55 Å, and TbrAK complexed with the recently discovered activator 4-[5-(4-phenoxyphenyl-2H-pyrazol-3-yl]morpholine (compound 1 at 2.8 Å resolution. CONCLUSIONS: The structural details and their comparison give new insights into substrate and activator binding to TbrAK at the molecular level. Further structure-activity relationship analyses of a series of derivatives of compound 1 support the observed binding mode of the activator and provide a possible mechanism of action with respect to their activating effect towards TbrAK.

  12. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Science.gov (United States)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  13. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    Science.gov (United States)

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.

  14. Chapter 1. The characteristics of borosilicate ores of Ak-Arkhar Deposit of Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to characteristics of borosilicate ores of Ak-Arkhar Deposit of Tajikistan. The chemical composition of danburite ore of Ak-Arkhar Deposit was defined. The chemical composition of danburite ore concentrate of Ak-Arkhar Deposit was defined as well.

  15. Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice.

    Directory of Open Access Journals (Sweden)

    Shing Hwa Liu

    Full Text Available BACKGROUND: Honokiol, a small-molecular weight natural product, has previously been reported to activate apoptosis and inhibit gastric tumorigenesis. Whether honokiol inhibits the angiogenesis and metastasis of gastric cancer cells remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We tested the effects of honokiol on angiogenic activity and peritoneal dissemination using in vivo, ex vivo and in vitro assay systems. The signaling responses in human gastric cancer cells, human umbilical vascular endothelial cells (HUVECs, and isolated tumors were detected and analyzed. In a xenograft gastric tumor mouse model, honokiol significantly inhibited the peritoneal dissemination detected by PET/CT technique. Honokiol also effectively attenuated the angiogenesis detected by chick chorioallantoic membrane assay, mouse matrigel plug assay, rat aortic ring endothelial cell sprouting assay, and endothelial cell tube formation assay. Furthermore, honokiol effectively enhanced signal transducer and activator of transcription (STAT-3 dephosphorylation and inhibited STAT-3 DNA binding activity in human gastric cancer cells and HUVECs, which was correlated with the up-regulation of the activity and protein expression of Src homology 2 (SH2-containing tyrosine phosphatase-1 (SHP-1. Calpain-II inhibitor and siRNA transfection significantly reversed the honokiol-induced SHP-1 activity. The decreased STAT-3 phosphorylation and increased SHP-1 expression were also shown in isolated peritoneal metastatic tumors. Honokiol was also capable of inhibiting VEGF generation, which could be reversed by SHP-1 siRNA transfection. CONCLUSIONS/SIGNIFICANCE: Honokiol increases expression and activity of SPH-1 that further deactivates STAT3 pathway. These findings also suggest that honokiol is a novel and potent inhibitor of angiogenesis and peritoneal dissemination of gastric cancer cells, providing support for the application potential of honokiol in gastric cancer therapy.

  16. Product annotations: AK240885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240885 J065029A17 BLASTN AF335504.1 PLN AF335504 Oryza sativa (japonica cultivar-group) hemoglobin... 1 (hb1), hemoglobin 3 (hb3), and hemoglobin 4 (hb4) genes, complete cds. 0.0 ...

  17. Genetic disruption of calpain correlates with loss of membrane blebbing and differential expression of RhoGDI-1, cofilin and tropomyosin

    DEFF Research Database (Denmark)

    Larsen, Anna Karina; Lametsch, Rene; Elce, John S.

    2008-01-01

    Dynamic regulation of the actin cytoskeleton is important for cell motility, spreading and the formation of membrane surface extensions such as lamellipodia, ruffles and blebs. The ubiquitous calpains contribute to integrin-mediated cytoskeletal remodelling during cell migration and spreading, by...

  18. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons.

    Science.gov (United States)

    Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Castro-Obregón, Susana; Massieu, Lourdes

    2017-06-29

    Autophagy is triggered during nutrient and energy deprivation in a variety of cells as a homeostatic response to metabolic stress. In the CNS, deficient autophagy has been implicated in neurodegenerative diseases and ischemic brain injury. However, its role in hypoglycemic damage is poorly understood and the dynamics of autophagy during the hypoglycemic and the glucose reperfusion periods, has not been fully described. In the present study, we analyzed the changes in the content of the autophagy proteins BECN1, LC3-II and p62/SQSTM1 by western blot, and autophagosome formation was followed through time-lapse experiments, during glucose deprivation (GD) and glucose reintroduction (GR) in cortical cultures. According to the results, autophagosome formation rapidly increased during GD, and was followed by an active autophagic flux early after glucose replenishment. However, cells progressively died during GR and autophagy inhibition reduced neuronal death. Neurons undergoing apoptosis during GR did not form autophagosomes, while those surviving up to late GR showed autophagosomes. Calpain activity strongly increased during GR and remained elevated during progressive neuronal death. Its activation led to the cleavage of LAMP2 resulting in lysosome membrane permeabilization (LMP) and release of cathepsin B to the cytosol. Calpain inhibition prevented LMP and increased the number of neurons containing lysosomes and autophagosomes increasing cell viability. Taken together, the present results suggest that calpain-mediated lysosome dysfunction during GR turns an adaptive autophagy response to energy stress into a defective autophagy pathway, which contributes to neuronal death. In these conditions, autophagy inhibition results in the improvement of cell survival.

  19. Comparison of protein degradation, protein oxidation, and μ-calpain activation between pale, soft, and exudative and red, firm, and nonexudative pork during postmortem aging.

    Science.gov (United States)

    Yin, Y; Zhang, W G; Zhou, G H; Guo, B

    2014-08-01

    The objective of this study was to investigate the differences in protein modifications between pale, soft, and exudative (PSE) and red, firm, and nonexudative (RFN) pork during postmortem (PM) aging. Longissimus dorsi (LD) including 8 PSE and 8 RFN muscles were individually removed from 16 carcasses. These 16 LD muscles were vacuum packaged at 24 h after slaughter and stored at 4°C for 1, 3, and 5 d. The centrifugation loss, drip loss, color, protein solubility, protein oxidation, protein degradation including desmin, troponin T, and integrin, and μ-calpain activation were determined. The pH of PSE samples was significantly lower than that of RFN samples at both 1 and 24 h PM (P 0.05). In addition, PSE pork presented a lower solubility of sarcoplasmic protein, myofibrillar protein, and total protein than RFN pork except the solubility of myofibrillar protein at d 1 (P firm, and nonexudative pork presented lower intensity of intact 80 kDa calpain and greater intensity of autolyzed 76 kDa product compared to PSE pork (P < 0.01). The results indicate that the degree of μ-calpain activation, the extent of protein degradation including desmin and integrin, and the level of protein solubility in PSE pork could contribute to its low water holding capacity during PM storage.

  20. A study on association of SNP-43 polymorphism in Calpain-10 gene with type 2 diabetes mellitus in the population of Eastern Azerbaijan province

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahreini

    2012-04-01

    Full Text Available Background: Genome – wide analysis of genetic predisposition to type 2 diabetes mellitus in different populations have yielded variable results. Calpain10, a gene that encodes a non-lysosomal cysteine protease, has been recently proposed as a type 2 diabetes susceptibility genes in the non-insulin-dependent diabetes mellitus NIDDM1 region. Aim of the study is to evaluate the relation between SNP43 and type2 diabetes. Methods: A total of 102 diabetic subjects and 100 undiabetic controls enrolled in a case-control study in Eastern Azerbaijan Azerbaijan Province. The polymerase chain reaction restriction fragment length polymorphism technique (PCR–RFLP was applied. We use X2 test and logistic regression to analysis of data. Results: Genotypes distribution of calpain10 gene in control group were 11(11%, 86(86% and 3(3% with respected to A/G, G/G and A/A genotypes, respectively. In diabetic group genotypes distribution were 7(6.9%, 95(93.1% and zero, respectively. The G allele frequency was significant difference in case and control groups. Conclusion: Since G allele is a risk factor to affect type 2 diabetes disease hence SNP43 of calpain10 gene had significant association with type 2 diabetes in Eastern Azerbaijan.

  1. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    Science.gov (United States)

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  2. Čačak and its daily urban system: 1st part

    Directory of Open Access Journals (Sweden)

    Stamenković Srboljub Đ.

    2006-01-01

    Full Text Available According to its functional capacity and the range of convergent and divergent gravitational influences, Čačak belongs to the group of macroregional centers of Serbia, with spatially and demographically strongly expressed and branchy urban system. In this article, we have analyzed daily convergent and divergent areas of labor force only, while other segments of urban system of Čačak will be treated in our forthcoming articles. Every day 10011 people travel toward Čačak, as well as from the city toward surroundings, to work or study. In the convergent daily gravitation, 8537 commuters take place (6592 workers or 77.2%, and 1945 schoolchildren and students or 22.8%, of which workers traveling from 166 settlements situated in the city surrounding. Divergent daily urban influence of Čačak has significantly smaller mass - 1474 commuters (1089 workers or 73.9%, and 385 pupils and students or 26.1%, as well as less settlements toward which distribution workers of commuters is distributed (91 settlements. Daily urban area of labor force of Čačak is wider and demographically more expressed comparing to the same area of pupils and students.

  3. Psiguajadials A-K: Unusual Psidium Meroterpenoids as Phosphodiesterase-4 Inhibitors from the Leaves of Psidium guajava.

    Science.gov (United States)

    Tang, Gui-Hua; Dong, Zhen; Guo, Yan-Qiong; Cheng, Zhong-Bin; Zhou, Chu-Jun; Yin, Sheng

    2017-04-21

    Bioassay-guided fractionation of the ethanolic extract of the leaves of Psidium guajava led to the isolation of 11 new Psidium meroterpenoids, psiguajadials A-K (1-11), along with 17 known ones (12-28). Their structures and absolute configurations were elucidated by spectroscopic methods and comparison of experimental and calculated ECD. Compounds 1 and 2 represent two unprecedented skeletons of 3,5-diformyl-benzyl phloroglucinol-coupled sesquiterpenoid, while 3 is the first example of Psidium meroterpenoids coupling via an oxepane ring. Putative biosynthetic pathways towards 1 and 2 are proposed. Compounds 1-13 and 16-26 exhibited moderate inhibitory activities against phosphodiesterase-4 (PDE4), a drug target for asthma and chronic obstructive pulmonary disease, with IC 50 values in the range of 1.34-7.26 μM.

  4. Results of testing the frontal AK-3 extraction unit

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, N I; Dolinskii, A M; Kolesnikov, M A

    1978-10-01

    From August to November 1970, on site testing of a protype frontal AK excavating rig developed by Giprouglemesh for use on gentle sloping seams was conducted in the Novaya mine of the Kuzbass Ugol Consolidated. The AK-3 consists of a cutting assembly in the form of a ring frontal slicer with two drives, hydraulic operated sectionalized support timbers of the enclosed lift type, conjugated timbering with ventilation and conveyor shafts, personnel elevator and hydraulic and electrical ancillary equipment. The production capacity of the rig in longwalls is 2.2 times greater on the average than by using drillhole blasting methods. Tests demonstrated that the main advantage of the Ak-3 was the single operation, continuous flow mode of coal extraction and remote frontal movement of timber sections, which ensured high capacity loading at the face and the capability of automating all procedures and eliminating all workers from the extraction face.

  5. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (O86781) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_STRCO 2e-50 ...

  6. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (P57963) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_PASMU 3e-98 ...

  7. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q56275) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_THIFE 3e-82 ...

  8. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (P17169) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_ECOLI 4e-72 ...

  9. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (O19908) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CYACA 1e-46 ...

  10. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (P40831) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_MYCLE 5e-62 ...

  11. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (O57981) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_PYRHO 3e-59 ...

  12. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (P40831) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_MYCLE 9e-47 ...

  13. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (O68956) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_MYCSM 2e-62 ...

  14. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P21927) Cholinesterase precursor (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) CHLE_RABIT 4e-36 ...

  15. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P32751) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (Fragment) CHLE_MACMU 2e-18 ...

  16. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P32752) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (Fragment) CHLE_PIG 5e-18 ...

  17. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P06276) Cholinesterase precursor (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) CHLE_HUMAN 3e-37 ...

  18. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P32753) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (Fragment) CHLE_SHEEP 2e-18 ...

  19. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P32749) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (Fragment) CHLE_BOVIN 2e-18 ...

  20. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (Q03311) Cholinesterase precursor (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) CHLE_MOUSE 2e-39 ...

  1. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P32750) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (Fragment) CHLE_CANFA 5e-19 ...

  2. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (O62761) Cholinesterase precursor (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) CHLE_PANTT 3e-35 ...

  3. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (O62760) Cholinesterase precursor (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) CHLE_FELCA 1e-35 ...

  4. The nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Kurbonov, A.S.; Mamatov, E.D.; Suleymani, M.; Borudzherdi, A.; Mirsaidov, U.M.

    2011-01-01

    Present article is devoted to nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit of Tajikistan. The obtaining of boric acid from pre backed danburite concentrate by decomposition of nitric acid was studied. The chemical composition of danburite concentrate was determined. The laboratory study of danburite leaching by nitric acid was conducted. The influence of temperature, process duration, nitric acid concentration on nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit was studied as well. The optimal conditions of nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit, including temperature, process duration, nitric acid concentration and particle size were proposed.

  5. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (P72720) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_SYNY3 4e-49 ...

  6. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q56213) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_THET8 5e-55 ...

  7. SwissProt search result: AK107259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107259 002-125-G11 (P81908) Cholinesterase (EC 3.1.1.8) (Acylcholine acylhydrolase) (Choli...ne esterase II) (Butyrylcholine esterase) (Pseudocholinesterase) (EQ-BCHE) CHLE_HORSE 1e-35 ...

  8. Arabidopsis CDS blastp result: AK102305 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102305 J033089P03 At3g21350.1 RNA polymerase transcriptional regulation mediator-...related contains weak similarity to RNA polymerase transcriptional regulation mediator, subunit 6 homolog (A

  9. SwissProt search result: AK069337 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069337 J023014F07 (Q28727) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  10. SwissProt search result: AK072870 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072870 J023142A17 (Q28727) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  11. SwissProt search result: AK104932 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104932 001-047-B10 (Q28727) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transp

  12. SwissProt search result: AK104932 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104932 001-047-B10 (Q60414) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transp

  13. SwissProt search result: AK072870 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072870 J023142A17 (Q60414) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  14. SwissProt search result: AK069337 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069337 J023014F07 (Q60414) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  15. SwissProt search result: AK069337 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069337 J023014F07 (P70172) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  16. SwissProt search result: AK072870 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072870 J023142A17 (P70172) Ileal sodium/bile acid cotransporter (Ileal Na(+)/bile... acid cotransporter) (Na(+) dependent ileal bile acid transporter) (Ileal sodium-dependent bile acid transpo

  17. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q7VRZ3) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BORPE 1e-52 ...

  18. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q9JWN9) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_NEIMA 3e-66 ...

  19. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q9ZJ94) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_HELPJ 1e-31 ...

  20. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8CX33) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_SHEON 3e-68 ...

  1. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q9PH05) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_XYLFA 3e-64 ...

  2. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q8RG65) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_FUSNN 2e-47 ...

  3. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q6HPL2) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BACHK 3e-41 ...

  4. SwissProt search result: AK107595 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107595 002-131-A11 (Q74GH6) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_GEOSL 1e-11 ...

  5. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q74GH6) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_GEOSL 1e-59 ...

  6. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8NND3) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CORGL 2e-90 ...

  7. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q8Y915) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_LISMO 1e-41 ...

  8. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8KA75) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BUCAP 1e-96 ...

  9. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q7MP62) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_VIBVY 4e-69 ...

  10. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q7NIG8) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_GLOVI 3e-62 ...

  11. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q8XHZ7) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CLOPE 9e-55 ...

  12. SwissProt search result: AK107595 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107595 002-131-A11 (Q6FZH6) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BARQU 2e-11 ...

  13. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q8CX33) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_SHEON 4e-53 ...

  14. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8CY30) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BRUSU 4e-69 ...

  15. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q98LX5) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_RHILO 6e-90 ...

  16. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q8DJI6) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_SYNEL 6e-49 ...

  17. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q5HM69) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_STAEQ 1e-40 ...

  18. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q97SQ9) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_STRPN 1e-53 ...

  19. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q890U2) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CLOTE 1e-50 ...

  20. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q663R1) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_YERPS 2e-56 ...

  1. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q5FUY5) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_GLUOX 4e-49 ...

  2. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q821Z7) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CHLCV 1e-39 ...

  3. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q81VN5) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_BACAN 2e-41 ...

  4. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8DEF3) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_VIBVU 9e-70 ...

  5. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q9KUM8) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_VIBCH 9e-52 ...

  6. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q5QZH5) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_IDILO 2e-51 ...

  7. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q9HT00) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_HALSA 6e-44 ...

  8. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q88YE7) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_LACPL 1e-47 ...

  9. SwissProt search result: AK102820 [KOME

    Lifescience Database Archive (English)

    Full Text Available coprotein) (Oviductin) (Estrogen-dependent oviduct protein) (Estrus-associated oviducal glycoprotein) (OEGP) OVGP1_SHEEP 2e-24 ... ...AK102820 J033108N22 (Q28542) Oviduct-specific glycoprotein precursor (Oviductal gly

  10. SwissProt search result: AK069901 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069901 J023034C14 (O95394) Phosphoacetylglucosamine mutase (EC 5.4.2.3) (PAGM) (Acetylglucosa...mine phosphomutase) (N-acetylglucosamine-phosphate mutase) (Phosphoglucomutase 3) AGM1_HUMAN 1e-102 ...

  11. SwissProt search result: AK069901 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069901 J023034C14 (Q09770) Probable phosphoacetylglucosamine mutase 2 (EC 5.4.2.3) (PAGM) (Acetylglucosa...mine phosphomutase) (N-acetylglucosamine-phosphate mutase) AGM2_SCHPO 3e-89 ...

  12. Arabidopsis CDS blastp result: AK105135 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105135 001-102-A05 At2g27170.1 structural maintenance of chromosomes (SMC) family protein similar to basem...ent membrane-associated chondroitin proteoglycan Bamacan [Rattus norvegicus] GI:178

  13. Arabidopsis CDS blastp result: AK098986 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK098986 J013093P06 At1g50940.1 electron transfer flavoprotein alpha subunit family... protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  14. Arabidopsis CDS blastp result: AK063110 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063110 001-111-D06 At5g43430.1 electron transfer flavoprotein beta subunit family... protein contains Pfam profile: PF01012 electron transfer flavoprotein, beta subunit 1e-100 ...

  15. SwissProt search result: AK104749 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104749 001-038-F04 (O95571) ETHE1 protein, mitochondrial precursor (EC 3.-.-.-) (Ethylmalonic encephalopat...hy protein 1) (Hepatoma subtracted clone one protein) ETHE1_HUMAN 2e-70 ...

  16. SwissProt search result: AK104104 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104104 006-202-B10 (O95571) ETHE1 protein, mitochondrial precursor (EC 3.-.-.-) (Ethylmalonic encephalopat...hy protein 1) (Hepatoma subtracted clone one protein) ETHE1_HUMAN 2e-70 ...

  17. Arabidopsis CDS blastp result: AK106306 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  18. Arabidopsis CDS blastp result: AK109848 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  19. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q8DRA8) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_STRR6 4e-54 ...

  20. Arabidopsis CDS blastp result: AK105677 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105677 001-201-B01 At2g39090.1 tetratricopeptide repeat (TPR)-containing protein low similarity to prediab...etic NOD sera-reactive autoantigen [Mus musculus] GI:6670773, anaphase-promoting co

  1. Arabidopsis CDS blastp result: AK119376 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119376 001-132-A09 At2g39090.1 tetratricopeptide repeat (TPR)-containing protein low similarity to prediab...etic NOD sera-reactive autoantigen [Mus musculus] GI:6670773, anaphase-promoting co

  2. Arabidopsis CDS blastp result: AK101105 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101105 J033025D11 At2g39090.1 tetratricopeptide repeat (TPR)-containing protein low similarity to prediabe...tic NOD sera-reactive autoantigen [Mus musculus] GI:6670773, anaphase-promoting com

  3. Arabidopsis CDS blastp result: AK061773 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061773 001-039-D01 At1g50940.1 electron transfer flavoprotein alpha subunit famil...y protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  4. Arabidopsis CDS blastp result: AK105896 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105896 001-204-F02 At1g50940.1 electron transfer flavoprotein alpha subunit famil...y protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  5. InterPro search result: AK064387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064387 002-108-E11 IPR009059 Bipartite response regulator, C-terminal effector su...perfamily SSF46894 C-terminal effector domain of the bipartite response regulators T102-163 0.0018 ...

  6. InterPro search result: AK102660 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102660 J033101I16 IPR009059 Bipartite response regulator, C-terminal effector sup...erfamily SSF46894 C-terminal effector domain of the bipartite response regulators T102-163 0.0018 ...

  7. The AK Party’s Islamic Realist Political Vision: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Malik Mufti

    2014-10-01

    Full Text Available The currently governing Turkish AK Party’s reformist agenda at home and its increasingly assertive policies abroad, like the “soft” and “hard” power elements of its foreign policy, reflect a remarkable coherence and continuity in the political vision of the party leadership. That vision—a contemporary manifestation (sometimes described as “neo-Ottomanism” of an older tradition of Islamic realism—is explicated through a detailed analysis of the speeches and writings of the main AK Party leaders, as well as of their opponents within the Islamist movement, and correlated with actual policy practice. It is further suggested that the AK Party’s preoccupation with its traditional secular-nationalist (Kemalist adversaries has left it unprepared to confront an even more formidable looming challenge: liberalism.

  8. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q6F6U8) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_ACIAD 4e-88 ...

  9. SwissProt search result: AK107318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107318 002-126-E03 (Q9Z6U0) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CHLPN 2e-51 ...

  10. SwissProt search result: AK105856 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105856 001-203-H06 (Q9Z6U0) Glucosamine--fructose-6-phosphate aminotransferase [i...) (L-glutamine-D-fructose-6-phosphate amidotransferase) (Glucosamine-6-ph GLMS_CHLPN 1e-36 ...

  11. SwissProt search result: AK069901 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069901 J023034C14 (Q9CYR6) Phosphoacetylglucosamine mutase (EC 5.4.2.3) (PAGM) (Acetylglucosa...mine phosphomutase) (N-acetylglucosamine-phosphate mutase) (Phosphoglucomutase 3) AGM1_MOUSE 1e-103 ...

  12. Arabidopsis CDS blastp result: AK121033 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121033 J023050K24 At5g01650.1 macrophage migration inhibitory factor family prote...in / MIF family protein contains pfam profile: PF001187 Macrophage migration inhibitory factor 1e-44 ...

  13. Arabidopsis CDS blastp result: AK104980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104980 001-125-D09 At1g70550.2 expressed protein similar to hypothetical protein ...GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabido

  14. Arabidopsis CDS blastp result: AK064571 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064571 002-112-D09 At1g67120.1 midasin-related similar to Midasin (MIDAS-containi...ng protein) (Swiss-Prot:Q12019) [Saccharomyces cerevisiae]; similar to Midasin (MIDAS-containing protein) (S

  15. Arabidopsis CDS blastp result: AK287673 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  16. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  17. Arabidopsis CDS blastp result: AK241712 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  18. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  19. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  20. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  1. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  2. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  3. SwissProt search result: AK100101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100101 J023004I20 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 9e-15 ...

  4. SwissProt search result: AK104489 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104489 006-302-B08 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-14 ...

  5. SwissProt search result: AK100904 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100904 J023132A08 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-16 ...

  6. SwissProt search result: AK067260 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067260 J013096N13 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-15 ...

  7. SwissProt search result: AK104715 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104715 001-038-A04 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-14 ...

  8. SwissProt search result: AK067492 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067492 J013110L09 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-14 ...

  9. SwissProt search result: AK098867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK098867 J013001A12 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-17 ...

  10. SwissProt search result: AK070743 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070743 J023062K14 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 7e-18 ...

  11. SwissProt search result: AK068720 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068720 J013169L09 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 7e-14 ...

  12. SwissProt search result: AK120313 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120313 J013055L11 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 5e-16 ...

  13. SwissProt search result: AK065167 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065167 J013002C13 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-17 ...

  14. SwissProt search result: AK070850 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070850 J023066B20 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-17 ...

  15. SwissProt search result: AK120437 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120437 J013098D14 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-13 ...

  16. SwissProt search result: AK121107 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121107 J023072J20 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-11 ...

  17. SwissProt search result: AK060161 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060161 006-310-H10 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-13 ...

  18. SwissProt search result: AK061041 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061041 006-205-D04 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-11 ...

  19. SwissProt search result: AK072804 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072804 J023135B10 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-12 ...

  20. SwissProt search result: AK120962 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120962 J023039O15 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 4e-12 ...

  1. SwissProt search result: AK101214 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101214 J033031B04 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 5e-18 ...

  2. SwissProt search result: AK101593 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101593 J033051E20 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-14 ...

  3. SwissProt search result: AK061072 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061072 006-206-D01 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 6e-15 ...

  4. SwissProt search result: AK108879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108879 002-152-D05 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 5e-21 ...

  5. SwissProt search result: AK069912 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069912 J023037G11 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 6e-16 ...

  6. SwissProt search result: AK099501 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099501 J013028I07 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-15 ...

  7. SwissProt search result: AK073225 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073225 J033023C04 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-15 ...

  8. SwissProt search result: AK067816 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067816 J013116F07 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-21 ...

  9. SwissProt search result: AK103490 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103490 J033130N07 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 4e-19 ...

  10. SwissProt search result: AK067210 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067210 J013096J03 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 6e-21 ...

  11. SwissProt search result: AK069121 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069121 J023007A14 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 8e-17 ...

  12. SwissProt search result: AK121802 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121802 J033097J11 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-12 ...

  13. SwissProt search result: AK060597 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060597 001-024-G08 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 2e-15 ...

  14. SwissProt search result: AK241310 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241310 J065141C01 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 6e-14 ...

  15. SwissProt search result: AK060178 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060178 001-001-A05 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 7e-15 ...

  16. SwissProt search result: AK119872 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119872 002-179-D03 (P98192) Dihydroxyacetone phosphate acyltransferase (EC 2.3.1....42) (DHAP-AT) (DAP-AT) (Glycerone-phosphate O-acyltransferase) (Acyl-CoA:dihydroxyacetonephosphateacyltransferase) GNPAT_MOUSE 8e-56 ...

  17. SwissProt search result: AK119872 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119872 002-179-D03 (O15228) Dihydroxyacetone phosphate acyltransferase (EC 2.3.1....42) (DHAP-AT) (DAP-AT) (Glycerone-phosphate O-acyltransferase) (Acyl-CoA:dihydroxyacetonephosphateacyltransferase) GNPAT_HUMAN 9e-55 ...

  18. SwissProt search result: AK067252 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067252 J013098L06 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 3e-14 ...

  19. SwissProt search result: AK073796 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073796 J033067B10 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 5e-17 ...

  20. SwissProt search result: AK101706 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101706 J033060I24 (Q14576) ELAV-like protein 3 (Hu-antigen C) (HuC) (Paraneoplastic... cerebellar degeneration-associated antigen) (Paraneoplastic limbic encephalitis antigen 21) ELAV3_HUMAN 1e-21 ...

  1. SwissProt search result: AK112005 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112005 006-202-F10 (Q08048) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_MOUSE 3e-12 ...

  2. SwissProt search result: AK112005 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112005 006-202-F10 (P14210) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_HUMAN 4e-13 ...

  3. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (Q08048) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_MOUSE 1e-12 ...

  4. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P17945) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_RAT 1e-15 ...

  5. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (Q08048) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_MOUSE 1e-15 ...

  6. SwissProt search result: AK112005 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112005 006-202-F10 (P17945) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_RAT 3e-12 ...

  7. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P14210) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_HUMAN 1e-15 ...

  8. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P14210) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_HUMAN 1e-13 ...

  9. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P17945) Hepatocyte growth factor precursor (Scatter factor) (...SF) (Hepatopoeitin A) [Contains: Hepatocyte growth factor alpha chain; Hepatocyte growth factor beta chain] HGF_RAT 1e-12 ...

  10. Arabidopsis CDS blastp result: AK120103 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120103 J013022N16 At5g57170.1 macrophage migration inhibitory factor family prote...in / MIF family protein contains Pfam profile: PF01187 Macrophage migration inhibitory factor(MIF) 3e-34 ...

  11. Arabidopsis CDS blastp result: AK062047 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062047 001-044-A11 At5g57170.1 macrophage migration inhibitory factor family prot...ein / MIF family protein contains Pfam profile: PF01187 Macrophage migration inhibitory factor(MIF) 3e-34 ...

  12. Arabidopsis CDS blastp result: AK073288 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073288 J033028L24 At1g70550.2 expressed protein similar to hypothetical protein G...B:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16072 [Arabidop

  13. SwissProt search result: AK104749 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104749 001-038-F04 (Q9DCM0) ETHE1 protein, mitochondrial precursor (EC 3.-.-.-) (Ethylmalonic encephalopat...hy protein 1 homolog) (Hepatoma subtracted clone one protein) ETHE1_MOUSE 4e-72 ...

  14. SwissProt search result: AK104104 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104104 006-202-B10 (Q9DCM0) ETHE1 protein, mitochondrial precursor (EC 3.-.-.-) (Ethylmalonic encephalopat...hy protein 1 homolog) (Hepatoma subtracted clone one protein) ETHE1_MOUSE 4e-72 ...

  15. SwissProt search result: AK119633 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119633 002-130-E12 (P15713) Non-hemolytic phospholipase C precursor (EC 3.1.4.3) (PLC-N) (Phosphatidylchol...ine cholinephosphohydrolase) (Phosphatidylcholine-hydrolyzing phospholipase C) (PC-PLC) PHLN_PSEAE 1e-13 ...

  16. SwissProt search result: AK101291 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101291 J033033G16 (P15713) Non-hemolytic phospholipase C precursor (EC 3.1.4.3) (PLC-N) (Phosphatidylcholi...ne cholinephosphohydrolase) (Phosphatidylcholine-hydrolyzing phospholipase C) (PC-PLC) PHLN_PSEAE 1e-13 ...

  17. SwissProt search result: AK243286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243286 J100052F22 (P15713) Non-hemolytic phospholipase C precursor (EC 3.1.4.3) (PLC-N) (Phosphatidylcholi...ne cholinephosphohydrolase) (Phosphatidylcholine-hydrolyzing phospholipase C) (PC-PLC) PHLN_PSEAE 2e-16 ...

  18. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  20. Arabidopsis CDS blastp result: AK110467 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110467 002-166-G08 At3g03050.1 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-7 (gi:962

  1. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At3g03050.1 68416.m00301 cellulose synthase family protein (CslD3) similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose syntha

  2. Arabidopsis CDS blastp result: AK071195 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071195 J023087O18 At3g18660.1 glycogenin glucosyltransferase (glycogenin)-related low similarity to glycog...enin-1 from Homo sapiens [SP|P46976], Oryctolagus cuniculus [SP|P13280] 0.0 ...

  3. Arabidopsis CDS blastp result: AK119613 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119613 002-117-G04 At4g33330.1 glycogenin glucosyltransferase (glycogenin)-related similar to glycogen...in glucosyltransferase (glycogenin-1) (EC 2.4.1.186) from Homo sapiens [SP|P46976], Mus

  4. Arabidopsis CDS blastp result: AK100345 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100345 J023082H20 At3g18660.1 glycogenin glucosyltransferase (glycogenin)-related low similarity to glycog...enin-1 from Homo sapiens [SP|P46976], Oryctolagus cuniculus [SP|P13280] 0.0 ...

  5. Arabidopsis CDS blastp result: AK120569 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120569 J013134B09 At4g33330.1 glycogenin glucosyltransferase (glycogenin)-related similar to glycogen...in glucosyltransferase (glycogenin-1) (EC 2.4.1.186) from Homo sapiens [SP|P46976], Mus

  6. SwissProt search result: AK119378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119378 001-132-A12 (O08628) Procollagen C-proteinase enhancer protein precursor (PCPE) (Type I procollage...n COOH-terminal proteinase enhancer) (Type 1 procollagen C-proteinase enhancer protein) PCOLC_RAT 4e-87 ...

  7. SwissProt search result: AK119378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119378 001-132-A12 (Q15113) Procollagen C-proteinase enhancer protein precursor (PCPE) (Type I procollage...n COOH-terminal proteinase enhancer) (Type 1 procollagen C-proteinase enhancer protein) PCOLC_HUMAN 1e-106 ...

  8. Arabidopsis CDS blastp result: AK241380 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241380 J065155L15 At2g22990.2 68415.m02737 sinapoylglucose:malate sinapoyltransfe... PF00450: Serine carboxypeptidase; identical to cDNA sinapoylglucose:malate sinapoyltransferase (SNG1) GI:8699618 4e-25 ...

  9. Arabidopsis CDS blastp result: AK241380 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241380 J065155L15 At2g22990.4 68415.m02733 sinapoylglucose:malate sinapoyltransfe... PF00450: Serine carboxypeptidase; identical to cDNA sinapoylglucose:malate sinapoyltransferase (SNG1) GI:8699618 8e-30 ...

  10. Arabidopsis CDS blastp result: AK287750 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287750 J065155L15 At2g22990.5 68415.m02735 sinapoylglucose:malate sinapoyltransfe... PF00450: Serine carboxypeptidase; identical to cDNA sinapoylglucose:malate sinapoyltransferase (SNG1) GI:8699618 2e-32 ...

  11. Arabidopsis CDS blastp result: AK241380 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241380 J065155L15 At2g22990.5 68415.m02735 sinapoylglucose:malate sinapoyltransfe... PF00450: Serine carboxypeptidase; identical to cDNA sinapoylglucose:malate sinapoyltransferase (SNG1) GI:8699618 2e-32 ...

  12. Arabidopsis CDS blastp result: AK240887 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240887 J065029G04 At5g01650.1 68418.m00081 macrophage migration inhibitory factor... family protein / MIF family protein contains pfam profile: PF001187 Macrophage migration inhibitory factor 3e-49 ...

  13. Arabidopsis CDS blastp result: AK063995 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063995 001-124-E11 At5g51970.2 sorbitol dehydrogenase, putative / L-iditol 2-dehy...drogenase, putative similar to NAD-dependent sorbitol dehydrogenase from Malus x domestica [gi:4519539] 1e-162 ...

  14. Arabidopsis CDS blastp result: AK101517 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101517 J033046H09 At5g51970.2 sorbitol dehydrogenase, putative / L-iditol 2-dehyd...rogenase, putative similar to NAD-dependent sorbitol dehydrogenase from Malus x domestica [gi:4519539] 1e-162 ...

  15. SwissProt search result: AK119872 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119872 002-179-D03 (Q9ES71) Dihydroxyacetone phosphate acyltransferase (EC 2.3.1....42) (DHAP-AT) (DAP-AT) (Glycerone-phosphate O-acyltransferase) (Acyl-CoA:dihydroxyacetonephosphateacyltransferase) GNPAT_RAT 1e-55 ...

  16. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  17. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  18. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  19. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  20. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK064877 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064877 J013000J17 At3g18660.1 glycogenin glucosyltransferase (glycogenin)-related low similarity to glycog...enin-1 from Homo sapiens [SP|P46976], Oryctolagus cuniculus [SP|P13280] 6e-59 ...

  2. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    Science.gov (United States)

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  3. MATERIAL CHOICE AND BLANKS OPERATION TECHNOLOGY OF AK6 ALUMINIUM ALLOY

    Directory of Open Access Journals (Sweden)

    N. YE. Kalinina

    2014-03-01

    Full Text Available Purpose. Justification of the material and heat treatment method of aluminum alloy for the manufacturing of parts, type «plate» based on the results of microstructure and mechanical properties research; development of technological process of blanks operation of AK6 aluminum alloy. Methodology. Powdered alloy based on aluminum type AK6 was the research material. Finished forgings with the size 2520×1520×65 mm were obtained as a result of the preparation and forging of the blanks. After mechanical treatment of the blanks they were exposed to thermal processing and milling. Structure of the metal was examined under light microscope MIM-8M. Brinell hardness was used as the strength alloy characteristic. Findings. Influence analysis of alloy elements on the structure of deformable aluminum alloys was carried out. Research of influence of heat treatment modes on structure and properties of the AK6 alloy were performed. The improved technological process, which made it possible to obtain the item with the improved structure and properties and lower costs is offered. Originality. The samples of AK6 powdered alloy on fire resistance were tested. It is established that under heating of an example in the oxidative flame, it does not ignite to a temperature of 705 °C. The cause of high fire resistance of AK6 alloy samples was found, it is connected with the presence in the material the evenly distributed, small oxide inclusions and amorphous oxide film on the surface. Practical value. Hard conditions of work (corrosion in marine and industrial atmosphere, static and shock loads, cyclic temperature allow the use of the item in various designs.

  4. 75 FR 8297 - Tongass National Forest, Thorne Bay Ranger District, Thorne Bay, AK

    Science.gov (United States)

    2010-02-24

    ..., Thorne Bay, AK AGENCY: Forest Service, USDA. ACTION: Cancellation of Notice of intent to prepare an... Roberts, Zone Planner, Thorne Bay Ranger District, Tongass National Forest, P.O. Box 19001, Thorne Bay, AK 99919, telephone: 907-828-3250. SUPPLEMENTARY INFORMATION: The 47,007-acre Kosciusko Project Area is...

  5. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  6. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P15156) Calcium-dependent serine proteinase precursor (EC 3.4....21.-) (CASP) [Contains: Calcium-dependent serine proteinase heavy chain; Calcium-dependent serine proteinase light chain] CASP_MESAU 4e-16 ...

  7. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P15156) Calcium-dependent serine proteinase precursor (EC 3.4....21.-) (CASP) [Contains: Calcium-dependent serine proteinase heavy chain; Calcium-dependent serine proteinase light chain] CASP_MESAU 3e-12 ...

  8. SwissProt search result: AK112005 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112005 006-202-F10 (P15156) Calcium-dependent serine proteinase precursor (EC 3.4....21.-) (CASP) [Contains: Calcium-dependent serine proteinase heavy chain; Calcium-dependent serine proteinase light chain] CASP_MESAU 5e-12 ...

  9. SwissProt search result: AK120785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120785 J023010H23 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 2e-24 ...

  10. SwissProt search result: AK122019 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK122019 J033111M24 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 3e-15 ...

  11. SwissProt search result: AK111184 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111184 002-177-G09 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 1e-110 ...

  12. SwissProt search result: AK109505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109505 002-100-A02 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 2e-15 ...

  13. Arabidopsis CDS blastp result: AK240887 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240887 J065029G04 At5g57170.1 68418.m07141 macrophage migration inhibitory factor... family protein / MIF family protein contains Pfam profile: PF01187 Macrophage migration inhibitory factor(MIF) 1e-36 ...

  14. Arabidopsis CDS blastp result: AK099152 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099152 J023070H02 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  15. Arabidopsis CDS blastp result: AK068407 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068407 J013149B08 At4g01900.1 P II nitrogen sensing protein (GLB I) identical to P II nitrogen... sensing protein GLB I (GI:7268574) [Arabidopsis thaliana]; similar to nitrogen regulatory prot

  16. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P14272) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_RAT 7e-33 ...

  17. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P03952) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_HUMAN 2e-21 ...

  18. SwissProt search result: AK112005 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112005 006-202-F10 (P03952) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_HUMAN 5e-21 ...

  19. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P26262) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_MOUSE 3e-34 ...

  20. SwissProt search result: AK109059 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109059 002-154-F02 (P26262) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_MOUSE 8e-27 ...

  1. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P26262) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_MOUSE 3e-25 ...

  2. SwissProt search result: AK112119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK112119 006-303-H09 (P14272) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_RAT 8e-24 ...

  3. SwissProt search result: AK109059 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109059 002-154-F02 (P14272) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_RAT 1e-26 ...

  4. SwissProt search result: AK061101 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061101 006-207-A12 (P03952) Plasma kallikrein precursor (EC 3.4.21.34) (Plasma prekallikrein...) (Kininogenin) (Fletcher factor) [Contains: Plasma kallikrein heavy chain; Plasma kallikrein light chain] KLKB1_HUMAN 4e-37 ...

  5. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  6. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  7. Arabidopsis CDS blastp result: AK242707 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242707 J090040M15 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  8. Arabidopsis CDS blastp result: AK241860 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241860 J065216G12 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  9. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.2 68414.m08120 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  10. Arabidopsis CDS blastp result: AK242472 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242472 J080303B22 At1g70550.1 68414.m08119 expressed protein similar to hypotheti...cal protein GB:AAD31338 [Arabidopsis thaliana] and to putative putative carboxyl-terminal peptidase GB:AAC16

  11. Arabidopsis CDS blastp result: AK059635 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059635 001-031-A08 At4g14330.1 phragmoplast-associated kinesin-related protein 2 ...(PAKRP2) identical to cDNA phragmoplast-associated kinesin-related protein 2 (PAKRP2) GI:16973450 6e-18 ...

  12. Arabidopsis CDS blastp result: AK073201 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073201 J033021C11 At2g35730.1 heavy-metal-associated domain-containing protein contains PS1047 Heavy...-metal-associated domain contains Pfam profile PF00403: Heavy-metal-associated domain 5e-11 ...

  13. Arabidopsis CDS blastp result: AK073859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073859 J033073L16 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 5e-21 ...

  14. Arabidopsis CDS blastp result: AK067891 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067891 J013124H21 At4g22260.1 alternative oxidase, putative / immutans protein (I...M) identical to IMMUTANS from Arabidopsis thaliana [gi:4138855]; contains Pfam profile PF01786 alternative oxidase 1e-110 ...

  15. Arabidopsis CDS blastp result: AK102766 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102766 J033107E04 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 0.0 ...

  16. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  17. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  18. Arabidopsis CDS blastp result: AK067424 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067424 J013107C16 At1g02730.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 0.0 ...

  19. Arabidopsis CDS blastp result: AK101487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101487 J033042D19 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 0.0 ...

  20. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  1. Selectrion procedures for sites of rdatioactive waste disposal. Recommendations of the AkEnd

    International Nuclear Information System (INIS)

    2002-12-01

    The Working Group on Procedures for the Selection of Repository Sites (AkEnd) had been appointed by the German Federal Ministry for the Environment (BMU) to develop procedures and criteria for the search for, and selection of, a repository site for all kinds of radioactive waste in deep geologic formations in Germany. ILK in principle welcomes the attempt on the part of AkEnd to develop a systematic procedure. On the other hand, ILK considers the two constraints imposed by BMU inappropriate: AkEnd was not to take into account the two existing sites of Konrad and Gorleben and, instead, work from a so-called white map of Germany

  2. Arabidopsis CDS blastp result: AK243131 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243131 J100030A12 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 4e-46 ...

  3. Arabidopsis CDS blastp result: AK242412 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242412 J080076J05 At1g21450.1 68414.m02682 scarecrow-like transcription factor 1 ...(SCL1) identical to scarecrow-like 1 GB:AAF21043 GI:6644390 from [Arabidopsis thaliana] 1e-36 ...

  4. SwissProt search result: AK101919 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101919 J033071J10 (O14974) Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase target...ing subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) MYPT1_HUMAN 1e-12 ...

  5. SwissProt search result: AK065120 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065120 J013001O15 (P50542) Peroxisomal targeting signal 1 receptor (Peroxismore r...eceptor 1) (Peroxisomal C-terminal targeting signal import receptor) (PTS1-BP) (Peroxin-5) (PTS1 receptor) PEX5_HUMAN 6e-53 ...

  6. SwissProt search result: AK102584 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102584 J033098E05 (O14974) Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase target...ing subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) MYPT1_HUMAN 6e-11 ...

  7. SwissProt search result: AK101292 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101292 J033033G18 (O14974) Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase target...ing subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) MYPT1_HUMAN 1e-12 ...

  8. SwissProt search result: AK111573 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111573 J013073E13 (O14974) Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase target...ing subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) MYPT1_HUMAN 3e-15 ...

  9. Arabidopsis CDS blastp result: AK107061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107061 002-121-E01 At3g52720.1 carbonic anhydrase family protein low similarity to storage protein (diosco...rin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 2e-37 ...

  10. Arabidopsis CDS blastp result: AK059525 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059525 001-029-D02 At3g52720.1 carbonic anhydrase family protein low similarity to storage protein (diosco...rin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 6e-60 ...

  11. SwissProt search result: AK119378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119378 001-132-A12 (Q61398) Procollagen C-proteinase enhancer protein precursor (PCPE) (Type I procollage...n COOH-terminal proteinase enhancer) (Type 1 procollagen C-proteinase enhancer protein) (P14) PCOLC_MOUSE 4e-87 ...

  12. SwissProt search result: AK107138 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107138 002-124-C12 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 4e-40 ...

  13. SwissProt search result: AK100511 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100511 J023099N19 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase prec...ursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 2e-58 ...

  14. SwissProt search result: AK100511 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100511 J023099N19 (Q64194) Lysosomal acid lipase/cholesteryl ester hydrolase prec...ursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_RAT 4e-51 ...

  15. SwissProt search result: AK064554 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064554 002-112-C03 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 6e-15 ...

  16. SwissProt search result: AK107138 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107138 002-124-C12 (Q64194) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_RAT 7e-40 ...

  17. SwissProt search result: AK243532 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243532 J100077E15 (Q64194) Lysosomal acid lipase/cholesteryl ester hydrolase prec...ursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_RAT 2e-31 ...

  18. SwissProt search result: AK064554 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064554 002-112-C03 (Q64194) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_RAT 1e-11 ...

  19. SwissProt search result: AK243532 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243532 J100077E15 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase prec...ursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 9e-36 ...

  20. Arabidopsis CDS blastp result: AK240887 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240887 J065029G04 At3g51660.1 68416.m05665 macrophage migration inhibitory factor... family protein / MIF family protein contains Pfam profile: PF01187 Macrophage migration inhibitory factor family(MIF) 2e-24 ...

  1. SwissProt search result: AK069901 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069901 J023034C14 (P57750) Probable phosphoacetylglucosamine mutase (EC 5.4.2.3) (PAGM) (Acetylglucosa...mine phosphomutase) (N-acetylglucosamine-phosphate mutase) (DNA-damage-repair/toleration protein DRT101) AGM1_ARATH 1e-174 ...

  2. SwissProt search result: AK060777 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060777 001-033-C01 (P17067) Carbonic anhydrase, chloroplast precursor (EC 4.2.1.1) (Carbon...ate dehydratase) [Contains: Carbonic anhydrase, 27 kDa isoform; Carbonic anhydrase, 25 kDa isoform] CAHC_PEA 2e-44 ...

  3. Arabidopsis CDS blastp result: AK062499 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062499 001-104-A06 At4g27250.1 dihydroflavonol 4-reductase family / dihydrokaempferol... 4-reductase family similar to dihydrokaempferol 4-reductase, Ipomoea purpurea (GI:4239849), Medicago sativa, PIR2:S61416 8e-45 ...

  4. Arabidopsis CDS blastp result: AK067272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067272 J013098D22 At4g27250.1 dihydroflavonol 4-reductase family / dihydrokaempferol... 4-reductase family similar to dihydrokaempferol 4-reductase, Ipomoea purpurea (GI:4239849), Medicago sativa, PIR2:S61416 7e-40 ...

  5. Arabidopsis CDS blastp result: AK099340 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099340 J033024N22 At4g27250.1 dihydroflavonol 4-reductase family / dihydrokaempferol... 4-reductase family similar to dihydrokaempferol 4-reductase, Ipomoea purpurea (GI:4239849), Medicago sativa, PIR2:S61416 2e-40 ...

  6. Arabidopsis CDS blastp result: AK241265 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241265 J065132C02 At5g51970.2 68418.m06450 sorbitol dehydrogenase, putative / L-i...ditol 2-dehydrogenase, putative similar to NAD-dependent sorbitol dehydrogenase from Malus x domestica [gi:4519539] 1e-15 ...

  7. Arabidopsis CDS blastp result: AK241265 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241265 J065132C02 At5g51970.1 68418.m06449 sorbitol dehydrogenase, putative / L-i...ditol 2-dehydrogenase, putative similar to NAD-dependent sorbitol dehydrogenase from Malus x domestica [gi:4519539] 1e-15 ...

  8. Arabidopsis CDS blastp result: AK287708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287708 J065132C02 At5g51970.2 68418.m06450 sorbitol dehydrogenase, putative / L-i...ditol 2-dehydrogenase, putative similar to NAD-dependent sorbitol dehydrogenase from Malus x domestica [gi:4519539] 1e-15 ...

  9. SwissProt search result: AK103807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103807 J033147A07 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-41 ...

  10. SwissProt search result: AK104786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104786 001-039-D11 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 2e-37 ...

  11. SwissProt search result: AK072519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072519 J023128K12 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-43 ...

  12. SwissProt search result: AK061782 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061782 001-039-E03 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-45 ...

  13. SwissProt search result: AK104270 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104270 006-311-F03 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-27 ...

  14. SwissProt search result: AK061769 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061769 001-039-C05 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-41 ...

  15. SwissProt search result: AK104464 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104464 006-301-C06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-28 ...

  16. SwissProt search result: AK119719 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119719 002-157-G06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 5e-33 ...

  17. SwissProt search result: AK065188 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065188 J013002E02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-44 ...

  18. SwissProt search result: AK064728 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064728 002-120-A10 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 7e-27 ...

  19. SwissProt search result: AK067792 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067792 J013118N06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 2e-37 ...

  20. SwissProt search result: AK058322 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058322 001-014-B06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 4e-24 ...

  1. SwissProt search result: AK109024 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109024 002-154-B04 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 5e-30 ...

  2. SwissProt search result: AK104736 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104736 001-038-D02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-44 ...

  3. SwissProt search result: AK108116 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108116 002-139-C05 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-20 ...

  4. SwissProt search result: AK099616 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099616 J013050J20 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-28 ...

  5. SwissProt search result: AK072966 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072966 J023144P06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 5e-19 ...

  6. SwissProt search result: AK111747 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111747 J023050B20 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-33 ...

  7. SwissProt search result: AK104037 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104037 001-021-F07 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 5e-19 ...

  8. SwissProt search result: AK073531 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073531 J033044F19 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-27 ...

  9. SwissProt search result: AK100193 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100193 J023036J06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 1e-14 ...

  10. SwissProt search result: AK068986 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068986 J023003E16 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 4e-24 ...

  11. SwissProt search result: AK099141 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099141 J023055A02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-28 ...

  12. SwissProt search result: AK243592 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243592 J100083L19 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-42 ...

  13. SwissProt search result: AK072632 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072632 J023132K03 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 7e-45 ...

  14. SwissProt search result: AK058323 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058323 001-014-B07 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 2e-44 ...

  15. SwissProt search result: AK102174 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102174 J033086K14 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-43 ...

  16. SwissProt search result: AK104658 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104658 006-311-D06 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 7e-41 ...

  17. SwissProt search result: AK099015 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099015 J013116H02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-28 ...

  18. SwissProt search result: AK069592 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069592 J023019I12 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 6e-23 ...

  19. SwissProt search result: AK107700 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107700 002-132-C10 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 9e-18 ...

  20. SwissProt search result: AK061491 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061491 006-309-B05 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-41 ...

  1. SwissProt search result: AK069842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069842 J023031E16 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-19 ...

  2. SwissProt search result: AK111768 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111768 J023066H10 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel pr...otein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 5e-34 ...

  3. SwissProt search result: AK106746 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106746 002-115-C02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 3e-36 ...

  4. SwissProt search result: AK059438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059438 001-027-G11 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 2e-14 ...

  5. SwissProt search result: AK105524 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105524 001-127-G02 (P47865) Aquaporin-1 (AQP-1) (Aquaporin-CHIP) (Water channel p...rotein for red blood cells and kidney proximal tubule) (Water channel protein CHIP29) AQP1_BOVIN 7e-36 ...

  6. SwissProt search result: AK102383 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102383 J033092C12 (Q14978) Nucleolar phosphoprotein p130 (Nucleolar 130 kDa protein) (140 kDa nucleol...ar phosphoprotein) (Nopp140) (Nucleolar and coiled-body phosphoprotein 1) NOLC1_HUMAN 3e-16 ...

  7. Arabidopsis CDS blastp result: AK119904 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119904 002-182-A05 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-78 ...

  8. Arabidopsis CDS blastp result: AK070528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070528 J023060D13 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  9. Arabidopsis CDS blastp result: AK104030 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104030 001-020-C01 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  10. Arabidopsis CDS blastp result: AK104160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104160 006-211-E09 At3g10920.1 superoxide dismutase [Mn], mitochondrial (SODA) / manga...nese superoxide dismutase (MSD1) identical to manganese superoxide dismutase [Arabidopsis thaliana] gi|3273751|gb|AAC24832 9e-99 ...

  11. Arabidopsis CDS blastp result: AK072052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072052 J013111I10 At4g32770.1 tocopherol cyclase, chloroplast / vitamin E deficie...nt 1 (VTE1) / sucrose export defective 1 (SXD1) identical to SP|Q94FY7 Tocopherol cyclase, chloroplast precu

  12. SwissProt search result: AK120080 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120080 J013012I05 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 5e-17 ...

  13. SwissProt search result: AK059413 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059413 001-027-D02 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 5e-37 ...

  14. SwissProt search result: AK107266 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107266 002-125-H06 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 9e-98 ...

  15. SwissProt search result: AK105701 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105701 001-201-D07 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-92 ...

  16. SwissProt search result: AK069949 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069949 J023034K12 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-93 ...

  17. SwissProt search result: AK065883 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065883 J013048I04 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 1e-72 ...

  18. SwissProt search result: AK059663 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059663 001-031-E04 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-51 ...

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 2e-27 ...

  20. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  1. Arabidopsis CDS blastp result: AK103810 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103810 J033147A19 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-179 ...

  2. Arabidopsis CDS blastp result: AK120054 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120054 J013000L05 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-148 ...

  3. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  4. Arabidopsis CDS blastp result: AK107881 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107881 002-134-D06 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 5e-51 ...

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 5e-27 ...

  6. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 1e-123 ...

  7. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-48 ...

  8. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  9. Arabidopsis CDS blastp result: AK111344 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111344 002-181-F12 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 2e-15 ...

  10. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-25 ...

  11. Arabidopsis CDS blastp result: AK061639 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061639 001-036-B01 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 4e-49 ...

  12. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  13. SwissProt search result: AK110082 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110082 002-160-G01 (O14901) Transforming growth factor-beta-inducible early growth... response protein 2 (TGFB-inducible early growth response protein 2) (TIEG-2) (Krueppel-like factor 11) KLF11_HUMAN 8e-16 ...

  14. SwissProt search result: AK111700 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111700 J023005G06 (Q05688) Insulin-like growth factor 1 receptor precursor (EC 2....7.1.112) (Insulin-like growth factor I receptor) [Contains: Insulin-like growth factor 1 receptor alpha chain; Insulin-like growth

  15. SwissProt search result: AK111885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111885 J033068D10 (Q05688) Insulin-like growth factor 1 receptor precursor (EC 2....7.1.112) (Insulin-like growth factor I receptor) [Contains: Insulin-like growth factor 1 receptor alpha chain; Insulin-like growth

  16. SwissProt search result: AK110194 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110194 002-162-A11 (Q13118) Transforming growth factor-beta-inducible early growth... response protein 1 (TGFB-inducible early growth response protein 1) (TIEG-1) (Krueppel-like factor 10) (EGRalpha) KLF10_HUMAN 2e-11 ...

  17. SwissProt search result: AK099528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099528 J013031H23 (O14901) Transforming growth factor-beta-inducible early growth... response protein 2 (TGFB-inducible early growth response protein 2) (TIEG-2) (Krueppel-like factor 11) KLF11_HUMAN 9e-11 ...

  18. SwissProt search result: AK103760 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103760 J033143G04 (Q13118) Transforming growth factor-beta-inducible early growth... response protein 1 (TGFB-inducible early growth response protein 1) (TIEG-1) (Krueppel-like factor 10) (EGRalpha) KLF10_HUMAN 7e-13 ...

  19. SwissProt search result: AK103444 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103444 J033129E14 (O14901) Transforming growth factor-beta-inducible early growth... response protein 2 (TGFB-inducible early growth response protein 2) (TIEG-2) (Krueppel-like factor 11) KLF11_HUMAN 5e-13 ...

  20. SwissProt search result: AK110195 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110195 002-162-A12 (O14901) Transforming growth factor-beta-inducible early growth... response protein 2 (TGFB-inducible early growth response protein 2) (TIEG-2) (Krueppel-like factor 11) KLF11_HUMAN 3e-19 ...

  1. SwissProt search result: AK110095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110095 002-160-H02 (O14901) Transforming growth factor-beta-inducible early growth... response protein 2 (TGFB-inducible early growth response protein 2) (TIEG-2) (Krueppel-like factor 11) KLF11_HUMAN 3e-11 ...

  2. SwissProt search result: AK110082 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110082 002-160-G01 (Q13118) Transforming growth factor-beta-inducible early growth... response protein 1 (TGFB-inducible early growth response protein 1) (TIEG-1) (Krueppel-like factor 10) (EGRalpha) KLF10_HUMAN 8e-15 ...

  3. SwissProt search result: AK099777 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099777 J013095F19 (Q05688) Insulin-like growth factor 1 receptor precursor (EC 2....7.1.112) (Insulin-like growth factor I receptor) [Contains: Insulin-like growth factor 1 receptor alpha chain; Insulin-like growth

  4. SwissProt search result: AK099528 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099528 J013031H23 (Q13118) Transforming growth factor-beta-inducible early growth... response protein 1 (TGFB-inducible early growth response protein 1) (TIEG-1) (Krueppel-like factor 10) (EGRalpha) KLF10_HUMAN 1e-11 ...

  5. SwissProt search result: AK103444 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103444 J033129E14 (Q13118) Transforming growth factor-beta-inducible early growth... response protein 1 (TGFB-inducible early growth response protein 1) (TIEG-1) (Krueppel-like factor 10) (EGRalpha) KLF10_HUMAN 7e-13 ...

  6. The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington’s Disease Mouse Models

    Directory of Open Access Journals (Sweden)

    Vanita Chopra

    2012-12-01

    Full Text Available Inhibition of sirtuin 2 (SIRT2 deacetylase mediates protective effects in cell and invertebrate models of Parkinson’s disease and Huntington’s disease (HD. Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.

  7. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  8. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  9. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 3e-44 ... ...AK241288 J065137F18 At2g28210.1 68415.m03425 carbonic anhydrase family protein simi

  10. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 2e-44 ... ...AK241288 J065137F18 At4g20990.1 68417.m03038 carbonic anhydrase family protein simi

  11. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 5e-38 ... ...AK241288 J065137F18 At4g21000.1 68417.m03039 carbonic anhydrase family protein simi

  12. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 2e-45 ... ...AK241288 J065137F18 At1g08065.1 68414.m00882 carbonic anhydrase family protein simi

  13. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 1e-54 ... ...AK241288 J065137F18 At1g08080.1 68414.m00884 carbonic anhydrase family protein simi

  14. Arabidopsis CDS blastp result: AK241288 [KOME

    Lifescience Database Archive (English)

    Full Text Available lar to storage protein (dioscorin) [Dioscorea cayenensis] GI:433463; contains Pfam profile PF00194: Eukaryotic-type carbonic anhydrase 6e-45 ... ...AK241288 J065137F18 At5g04180.1 68418.m00406 carbonic anhydrase family protein simi

  15. Arabidopsis CDS blastp result: AK061722 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061722 001-038-A03 At2g27450.1 carbon-nitrogen hydrolase family protein low simil...arity to beta-alanine synthase [Drosophila melanogaster] GI:14334063; contains Pfam profile PF00795: hydrolase, carbon-nitrogen family 1e-137 ...

  16. Arabidopsis CDS blastp result: AK106147 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106147 001-207-H04 At2g27450.1 carbon-nitrogen hydrolase family protein low simil...arity to beta-alanine synthase [Drosophila melanogaster] GI:14334063; contains Pfam profile PF00795: hydrolase, carbon-nitrogen family 1e-137 ...

  17. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  18. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  19. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  20. SwissProt search result: AK072224 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072224 J013165F10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-40 ...

  1. SwissProt search result: AK107270 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107270 002-125-H11 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-102 ...

  2. SwissProt search result: AK106800 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106800 002-116-B10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 3e-78 ...

  3. SwissProt search result: AK066640 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066640 J013073A13 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-17 ...

  4. SwissProt search result: AK104807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104807 001-040-E08 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-27 ...

  5. SwissProt search result: AK066902 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066902 J013092B20 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-26 ...

  6. SwissProt search result: AK105523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105523 001-127-F12 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 5e-55 ...

  7. SwissProt search result: AK073508 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073508 J033044O22 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-15 ...

  8. SwissProt search result: AK071869 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071869 J023118K14 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-75 ...

  9. SwissProt search result: AK066477 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066477 J013070H07 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 5e-24 ...

  10. SwissProt search result: AK107401 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107401 002-127-D10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 3e-14 ...

  11. SwissProt search result: AK106123 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106123 001-207-F01 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-23 ...

  12. SwissProt search result: AK059293 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059293 001-025-E07 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 7e-50 ...

  13. SwissProt search result: AK064874 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064874 J013000J10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-38 ...

  14. SwissProt search result: AK064747 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064747 002-120-E08 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-55 ...

  15. SwissProt search result: AK104329 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104329 001-031-E12 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-75 ...

  16. SwissProt search result: AK067912 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067912 J013128F10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 3e-12 ...

  17. SwissProt search result: AK119979 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119979 002-184-F05 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 3e-21 ...

  18. SwissProt search result: AK062632 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062632 001-105-C10 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-17 ...

  19. SwissProt search result: AK073320 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073320 J033029C16 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-98 ...

  20. SwissProt search result: AK111439 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111439 002-183-A05 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 9e-15 ...

  1. SwissProt search result: AK101382 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101382 J033036E19 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-69 ...

  2. SwissProt search result: AK067493 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067493 J013111L08 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-73 ...

  3. SwissProt search result: AK072954 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072954 J023149K09 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-27 ...

  4. SwissProt search result: AK067247 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067247 J013098N22 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-81 ...

  5. SwissProt search result: AK066243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066243 J013050J23 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-81 ...

  6. SwissProt search result: AK070195 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070195 J023043E04 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-44 ...

  7. SwissProt search result: AK064671 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064671 002-115-E03 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 5e-86 ...

  8. SwissProt search result: AK120117 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120117 J013025N03 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-13 ...

  9. SwissProt search result: AK061078 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061078 006-206-E09 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-15 ...

  10. SwissProt search result: AK073936 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073936 J033077J01 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 5e-38 ...

  11. SwissProt search result: AK242427 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242427 J080088O13 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-35 ...

  12. SwissProt search result: AK099397 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099397 J013000M18 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 3e-37 ...

  13. SwissProt search result: AK061997 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061997 001-043-C12 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-73 ...

  14. SwissProt search result: AK111818 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111818 J023009B06 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 7e-82 ...

  15. SwissProt search result: AK071183 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071183 J023086P08 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-101 ...

  16. SwissProt search result: AK105830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105830 001-203-E06 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-64 ...

  17. SwissProt search result: AK069959 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069959 J023038G19 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 2e-75 ...

  18. SwissProt search result: AK066671 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066671 J013072A16 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 4e-62 ...

  19. SwissProt search result: AK106111 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106111 001-207-D11 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-75 ...

  20. SwissProt search result: AK103461 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103461 J033129M07 (P52708) P-(S)-hydroxymandelonitrile lyase precursor (EC 4.1.2.11) (Hydroxynitrile... lyase) (HNL) [Contains: P-(S)-hydroxymandelonitrile lyase chain A; P-(S)-hydroxymandelonitrile lyase chain B] (Fragment) HNLS_SORBI 1e-48 ...