WorldWideScience

Sample records for calla energy biomass

  1. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  2. Production of calla lily grown in an NFT system

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correa Landgraf

    2017-12-01

    Full Text Available The objective of this study was to evaluate the production of calla lily in an NFT system. The experiment was carried out in a greenhouse, using a 2 x 2 factorial scheme in a completely randomized design (CRD, with fifteen replications. The treatments were a combination of two hydroponic profiles (100 and 150 mm of height and two nutrient solutions. Calla lily plantlets obtained from rhizome buds in trays containing nutrient solution, were transferred to a laminar flow of nutrients, and the experiment lasted 12 months. The height of stems and inflorescences were evaluated, as well as the length and diameter of the inflorescence, the number of flowers per plant and number of flowers per m2 . Growing calla lily plants in an NFT system is feasible. The nutrient solution with the highest concentration of nutrients, particularly N and K, and the profile of 150 mm, are the most suitable for the production of calla lily as a cut flower in a laminar flow of nutrients.

  3. Pectobacterium carotovorum subsp. carotovorum – the Causal Agent of Calla Soft Rot in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Milan Ivanović

    2009-01-01

    Full Text Available Bacterial strains were isolated from above- and underground parts of diseased calla plants originating from different localities in Serbia and one locality in Montenegro. They were characterized by studying their pathogenic, cultural, biochemical and physiologicalcharacteristics. All investigated strains caused soft rot of calla leaf stalks, potato slices and aloe leaves, and induced hypersensitive reaction on tobacco. Bacteriological properties of the strains indicated that symptoms on calla plants were caused by Gram-negative, nonfluorescent, oxidase negative, catalase positive and facultatively anaerobic bacterium belonging to the genus Pectobacterium. The investigated strains grew at 37ºC and in 5% NaCl, utilised lactose and trechalose, and produced neither indol nor lecitinase. These results, as well as the characteristic growth on Logan’s differential medium indicated that soft rot of tuber and stem base of calla plants was caused by Pectobacterium carotovorum subsp. carotovorum. This is the first report of this pathogen affecting calla plants in Serbia.

  4. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein

    International Nuclear Information System (INIS)

    Shipp, M.A.; Richardson, N.E.; Sayre, P.H.; Brown, N.R.; Masteller, E.L.; Clayton, L.K.; Ritz, J.; Reinherz, E.L.

    1988-01-01

    Common acute lymphoblastic leukemia antigen (CALLA) is a 100-kDa cell-surface glycoprotein expressed on most acute lymphoblastic leukemias and certain other immature lymphoid malignancies and on normal lymphoid progenitors. The latter are either uncommitted to B- or T-cell lineage or committed to only the earliest stages of B- or T-lymphocyte maturation. To elucidate the primary structure of CALLA, the authors purified the protein to homogeneity, obtained the NH 2 -terminal sequence from both the intact protein and derived tryptic and V8 protease peptides and isolated CALLA cDNAs from a Nalm-6 cell line λgt10 library using redundant oligonucleotide probes. The CALLA cDNA sequence predicts a 750-amino acid integral membrane protein with a single 24-amino acid hydrophobic segment that could function as both a transmembrane region and a signal peptide. The COOH-terminal 700 amino acids, including six potential N-linked glycosylation sites compose the extracellular protein segment, whereas the 25 NM 2 -terminal amino acids remaining after cleavage of the initiation methionine form the cytoplasmic tail. CALLA + cells contain CALLA transcripts of 2.7 to 5.7 kilobases with the major 5.7- and 3.7-kilobase mRNAs being preferentially expressed in specific cell types

  5. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D

    1983-01-01

    lymphoblastic leukemia cell with respect to surface marker phenotype. A population of CALLA- cells devoid of mature erythroid and myeloid surface markers was found to contain higher numbers of TdT+ cells but lower numbers of cyto-mu, B1, and Ia+ cells than the CALLA+ subset. In vitro analysis of normal...

  6. Physiological and biochemical and resistance changes and issr polymorphic analysis exposed to 12C6+ heavy ion radiation on calla lily

    International Nuclear Information System (INIS)

    Chen Zhen; Xu Bingliang; Tian Gu; Pu Chongjian; Xu Qiong

    2013-01-01

    Physiological and biochemical changes and ISSR Polymorphic of calla lily caused by exposure to 12 C 6+ heavy-ion radiation were studied. The results showed that bulb germination rate and plant height had significant negative correlation with radiation dose, while MDA content had high significant positive correlation with radiation dose. With increasing radiation dose, the activities of CAT, POD and resistance showed a trend of decrease after an initial increasing. Optimum doses of irradiation were 10 ∼ 20 Gy. ISSR molecular marker of the control and variant plants induced by the 12 C 6+ heavy-ion radiation suggested that 121 bands were amplified with 22 ISSR primers among two calla lily varieties, 55 bands were polymorphic and the polymorphism rate reached to 45%, the 12 C 6+ heavy-ion radiation could cause mutation of genome DNA in calla lily. It is suggested that effect of irradiation on calla lily plant was damage and suppression. Optimum doses of irradiation of 12 C 6+ Heavy ion might be applied for breeding method on Calla lily. (authors)

  7. Water relations in calla lily flower stems harvested at different opening stages(

    Directory of Open Access Journals (Sweden)

    Thais Silva Sales

    2015-12-01

    Full Text Available Cut flowers are a well established product and require conservation techniques that help keep postharvest quality for marketing. In this context, the objective of this study was to evaluate different opening stages of calla lily (Zantedeschia aethiopica cut stems and their influence on posthaverst. Calla lily stems were harvested in the morning, according to the following opening stages: closed spathe, semi-closed spathe (1/3 open, semi-open spathe (2/3 open and fully open spathe. Once selected and standardized, stems were placed in a controlled room at 21 ± 2 °C and relative humidity of 75 ± 5%, for eight days. The evaluations were conducted daily, observing water pH, commercial quality analysis, width and length of the spathe, fresh weight of stem, water absorption and transpiration. The experimental design was completely randomized, with four treatments (opening stages, five replicates and two stems by plot. The model used was split plot in time, with harvest stages as plots, and evaluation days as subplots. Calla lily harvested at closed spathe and semi-closed spathe (1/3 open, showed spathe opening, although it did not achieve fully spathe expansion, had higher water uptake and hydration of flower stems, and increased water retention capacity by floral tissues until saturation, followed by a period of weight reduction caused by transpiration rates greater than absorption.

  8. María Callas: La Divina

    Directory of Open Access Journals (Sweden)

    Efraim Otero Ruiz

    2000-12-01

    Full Text Available

    Podría decirse ingenuamente que mis más de 40 años de amistad ininterrumpida con José Félix Patiño casi que comienzan y terminan con María Callas.

    Pero antes de causar alarma entre mis oyentes, quiero calificar mi afirmación diciendo que comienzan y terminan en un sentido más estrictamente histórico que afectivo. Veamos por qué.

    A finales de 1958 era yo apenas un residente de medicina interna y endocrinología en el Columbia- Presbyterian Medical Center de Nueva York y José Félix había ya completado su grado y su postgrado en la Universidad de Yale.Como lo relata en su libro, él ya había tenido la oportunidad de oír y admirar a María Callas desde los asientos de galería del viejo Metropolitan de la calle 38.

    En cambio yo, llegado a Nueva York desde Tennessee sólo a comienzos del año, y embebido 13 horas al día en mi trabajo de dosificación biológica de TSH, apenas si había tenido el tiempo y el dinero para visitar los museos, las galerías y tal cual concierto en Carnegie Hall compitiendo con los “musicals” de Broadway. Con una beca que apenas igualaba los menguados salarios de mis compañeros de residencia, debía contar y recontar los escasos dólares y -en compañía de amigas y amigos del laboratorio tratar de reservar y comprar la boletería con meses de anticipación para evitar los precios de estreno inmediato o de reventa que -aun para gallinero quedaban bien fuera de nuestro alcance.

    Callas había electrizado al público neoyorquino desde su llegada en Octubre del 56 a Idlewild (como se llamaba en esa época el hoy Aeropuerto Kennedy con toda la fanfarria musical y propagandística que la acompañaba y con su debut en Norma (con la fenomenal Casta Diva.

    Seguida luego por Tosca en Noviembre, destacando apartes de esta misma ópera en el show de Ed Sullivan en la televisión en blanco y negro y finalizando con las dos apoteósicas presentaciones de Lucia di Lammermoor en

  9. Characterization of calla Lily sot rot caused by Pectobacterium Carotovorum subsp. Carotovorum ZT0505 bacterial growth and pectate lyase activity under different conditions.

    NARCIS (Netherlands)

    Ni, L.; Guo, L.; Custers, J.B.M.; Zhang, L.

    2010-01-01

    Soft rot is a major disease of calla lily (Zantedeschia spp.) and other important crops worldwide. In this report, the bacterial isolate ZT0505 proved to be a soft rot pathogen of calla lily growing around Kunming (subtropical China) and was identified as Pectobacterium carotovorum subsp.

  10. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  11. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  12. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  13. Molecular characterization of a divergent strain of calla lily chlorotic spot virus infecting celtuce (Lactuca sativa var. augustana) in China.

    Science.gov (United States)

    Wu, Xiaodong; Wu, Xiaoyun; Li, Wenbin; Cheng, Xiaofei

    2018-05-01

    Through sequencing and assembly of small RNAs, an orthotospovirus was identified from a celtuce plant (Lactuca sativa var. augustana) showing vein clearing and chlorotic spots in the Zhejiang province of China. The S, M, and L RNAs of this orthotospovirus were determined to be 3146, 4734, and 8934 nt, respectively, and shared 30.4-72.5%, 43.4-80.8%, and 29.84-82.9% nucleotide sequence identities with that of known orthotospoviruses. The full length nucleoprotein (N) of this orthotospovirus shared highest amino acid sequence identity (90.25%) with that of calla lily chlorotic spot virus isolated from calla lily (CCSV-calla) [China: Taiwan: 2001] and tobacco (CCSV-LJ1) [China: Lijiang: 2014]. Phylogenetic analyses showed that this orthotospovirus is phylogenetically associated with CCSV isolates and clustered with CCSV, tomato zonate spot virus (TZSV), and tomato necrotic spot-associated virus (TNSaV) in a separate sub-branch. These results suggest that this orthotospovirus is a divergent isolate of CCSV and was thus named CCSV-Cel [China: Zhejiang: 2017].

  14. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Spaa, J H

    1990-11-01

    In view of the disadvantages of the use of fossil fuels in producing energy it is worth-while to reconsider the possibilities of biomass to produce energy. Therefore it is necessary to pay attention to production methods, production costs and the consequences of the use of biomass energy for the consumer. Also agreements have to be formulated by governments to control the production and the prices of biomass. Some possibilities to develop biomass production techniques in the Netherlands are mentioned. The results of these developments can be used by developing countries to produce energy from biomass in a more effective and cheaper way than is the case now. 16 refs., 2 ills.

  15. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  16. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  17. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  18. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  19. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  20. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  1. Biomass living energy

    International Nuclear Information System (INIS)

    2005-01-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  2. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  3. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  4. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  5. Energy from Dutch biomass. Energie uit Nederlandse biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J

    1993-12-01

    Attention is paid to the options and potential of using biomass wastes in the Netherlands for the production of energy. An overview of the flows of biomass residues is given, next to the biomass properties, and biomass conversion techniques. Data on the contribution of renewable energy sources (1990) and targets for the year 2010 are presented and briefly discussed. It is expected that the contribution of biomass will increase considerably in the next years in the form of cheap biomass residues. 1 fig., 4 tabs.

  6. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  7. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  8. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  9. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  10. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Rosillo-Calle, Frank; Hall, D.O.

    1992-01-01

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO 2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO 2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO 2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  11. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  12. Energy from biomass. Ethics and practice; Energie aus Biomasse. Ethik und Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Silke [ed.

    2013-06-01

    The implementation of the energy policy turnaround inevitably results in modifications of the land use and landscape. Besides the discussion about the environmental consequences, a debate about ethical issues increasingly arose. Under this aspect, the booklet under consideration contains the following contributions: (1) Renewable energy sources - the role of bioenergy (Bernard Widmann); (2) Energy from biomass - An ethic analysis (Stephan Schleissing); (3) Culture for our landscapes - combination of biomass and water protection (Frank Wagener); (4) Cultivation of energy crops - short rotation coppices (Frank Burger); (5) Bioenergy region Straubing-Bogen: Excellent in the matter of renewable energy sources (Josefine Eichwald); (6) Rural development - motor for the energy policy turnaround (Roland Spiller).

  13. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  14. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  15. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  16. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Biomass Energy Biomass Energy Biomass from local sources can be key to a campus climate action plan biomass may fit into your campus climate action plan. Campus Options Considerations Sample Project Related biomass fuels for energy does not add to the net amount of carbon in the atmosphere. This is because the

  17. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Damien, Alain

    2013-01-01

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO 2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  18. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  19. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  20. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  1. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  2. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  3. Energy from biomass: An overview. Energie uit biomassa: Een overzicht

    Energy Technology Data Exchange (ETDEWEB)

    Van der Toorn, L J; Elliott, T P [Non-Traditional Business Division, Shell International Petroleum Company, London (United Kingdom)

    1992-03-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs.

  4. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  5. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  6. Energy from biomass and waste

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides a review of the Commission of the European Communities (CEC) Energy Demonstration Programme in the sector of Energy from biomass and waste, and examines the current status of the energy technologies associated with the sector, in relation to projects supported under the Programme, those included under various national programmes and by reference to the published literature. Detailed overviews of five sub-categories represented in the Energy from biomass and waste sector are presented to illustrate their relative significance in terms of estimated energy potential, technological and economic status and the nature of future research, development and demonstration needs. Finally the potential role of the biomass and waste energy technologies in meeting the energy needs of the developing world is discussed. 33 refs; 2 figs; 11 tabs

  7. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  8. Sustainable Development Strategies of Biomass Energy in Beijing

    Science.gov (United States)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  9. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  10. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  11. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  12. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  13. Biomass energy utilisation - ecological and economic aspects

    International Nuclear Information System (INIS)

    Plamen Gramatikov

    2009-01-01

    Biomass is the world's fourth largest energy source today and it represents about 35% of the primary energy supply in developing countries. Biomass is a versatile source of energy in that it can produce electricity, heat, transport fuel and it can be stored. The problems (technical, economic, etc.) which have to be solved by treatment of biomass are discussed in this work. The average quantities of biomass resources of some European countries are presented and the structure, percentage of products and their calorific values are estimated. Keywords: Biomass Energy Potential, Ecological & Economic Aspects

  14. In vitro propagation of Calla lily: adenine sulphate and 6-benzilaminopurine

    Directory of Open Access Journals (Sweden)

    Márcia De Nazaré Oliveira Ribeiro

    2014-09-01

    Full Text Available Calla lily [Zantedeschia aethiopica (L. Spreng.] belonging to the Araceae family is appreciated as cut flower and in com­position of gardens. However, the conventional propagation of this plants shows a poor productive. Thus, tissue culture besides allowing fast clonal propagation also provides healthy and uniforms plants. The aim was study the influence of the differents concentrations of 6-benzilaminopurine (BAP and adenine sulphate (AS on in vitro multiplication of Calla lily. The explants were maintained in MS medium added with BAP (0.0, 8.9, 17.8 and 26.7 μM and adenine sulphate (0, 54, 108 and 162 μM. The plants were transferred to growth room and maintained at 25±1ºC and photoperiod of 16 hours for 60 days, under luminous intensity of 35 μmol m-2 s-1, for a period of 60 days. The experimental design was entirely randomized with four repetitions of three seedlings each, resulting in twelve plants per treatment, each tube with one plant. The statistics analysis showed interactive effects for quantify of BAP and AS for leaves number and fresh mass of the aerial parts. The highest number of leaves (4.8 and fresh mass of aerial parts (0.73 g was obtained with 26.7 μM of BAP combined with 108 μM of AS, highest number of shoots (2.6 was obtained with 22,19 μM of BAP and highest lengh of sprouts (5.0 cm was observed in the absence of BAP. The addition of BAP increased the number of shoots per explant. The use of adenine sulphate in combination with BAP had a positive effect for the accumulation of fresh weight and number of leaves in vitro culture.

  15. Guidelines for biomass energy policy implementation in Rwanda

    International Nuclear Information System (INIS)

    Hategeka, A.; Karenzi, P.C.

    1997-01-01

    This chapter reports on the energy scene in Rwanda, and discusses the evolution of the energy development concept in the framework of national development policy, biomass and other energy sources, biomass supply and demand, and commercialised wood and biomass consumption. Prospects to stabilise the biomass cycle are examined, and the implementation of biomass energy policy in Rwanda is considered. (UK)

  16. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  17. Biomassa e energia Biomass and energy

    Directory of Open Access Journals (Sweden)

    José Goldemberg

    2009-01-01

    Full Text Available Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.

  18. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  19. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  20. Outcome of UNIDO symposium on biomass energy

    International Nuclear Information System (INIS)

    Nazemi, A.H.

    1997-01-01

    The results of the UNIDO symposium are presented. The symposium covered a variety of subjects, beginning with a comparison of biomass energy production and potential uses in different regions, specific country case studies about the present situation and trends in biomass energy utilisation. Technological aspects discussed included the production of biomass resources, their conversion into energy carriers and technology transfer to developing countries. An analysis of financial resources available and mechanisms for funding biomass projects were given. Environmental effects and some relatively successful biomass projects under development were described. (K.A.)

  1. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  2. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  3. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  4. Development of biomass energy lacks a clear direction

    International Nuclear Information System (INIS)

    1998-01-01

    By the year 2020, 4.4% of total energy consumption in the Netherlands must be generated from biomass. That means that biomass will be the most important form of renewable energy for this country. But, with 20 years to go, there is still no generally accepted strategy for the technological and economical development of bio-energy. The most important questions are discussed: is biomass sustainable or not, is it better to burn biomass or to gasify, must one built large-scale or small-scale biomass conversion plants, should the Netherlands import or biomass or cultivate biomass themselves, should biomass wastes be incinerated or recycled, must the emission standard for SO2 be 40 or 200 mg, and, finally, is bio-energy economically feasible?

  5. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  6. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  7. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  8. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Edens, J.J.

    1994-01-01

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  9. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J [Business Unit ESC-Energy Studies, Netherlands Energy Research Foundation, Petten (Netherlands)

    1992-11-01

    A brief overview is given of the options to use biomass as an energy source. Attention is paid to processing techniques, energy yields from crops, production costs in comparison with other renewable sources and fossil fuels, and the Dutch energy policy for this matter. 1 fig., 1 ill., 2 tabs., 3 refs.

  10. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  11. Estimates of US biomass energy consumption 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large

  12. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  13. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  14. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  15. Energy from biomass and wastes 15

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    This proceedings is contains 63 papers on the utilization of biomass as an energy source and as a source for materials. The specific topics discussed include: environmental issues, biomass production, biomass pretreatment and processing, chemicals and other products from biomass, fuel ethanol, thermal liquefaction, thermal gasification, combustion and power generation, and national programs. Individual papers are indexed separately

  16. Monomia calla, a new species of swimming crab (Decapoda, Portunidae) from Madagascar and the Philippines.

    Science.gov (United States)

    Koch, Milan; Nguyen, Thanh Son; Ďuriš, Zdeněk

    2015-07-06

    A new species of portunid crab (Brachyura: Portunidae) from southern Madagascar and central Philippines is described. Monomia calla sp. nov. is most similar in morphology to M. lecromi (Moosa, 1996) from the Chesterfield Islands in the southwestern Pacific Ocean, and M. rubromarginata (Lanchester, 1900) from the South China Sea, Singapore, Malay Archipelago and the northern half of Australia. The new species can be easily distinguished from all congeners by the distinctive morphology of the male first gonopod. The number of species of the Indo-West Pacific genus Monomia now stands at 12.

  17. Hydropower and biomass as renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  18. Sustainable use of forest biomass for energy

    International Nuclear Information System (INIS)

    Stupak Moeller, Inge

    2005-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, and political action plans at European and national levels exist for an increased use. The use of forest biomass for energy can imply different economic and environmental advantages and disadvantages for the society, the energy sector and forestry. For the achievement of an increased and sustainable use of forest biomass for energy, the EU 5th Framework project WOOD-EN-MAN aimed at synthesising current knowledge and creating new knowledge within the field

  19. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  20. Biomass energy: status and future trends for Quebec

    International Nuclear Information System (INIS)

    Bissonnette, V.

    1996-01-01

    The current status of biomass energy in the Province of Quebec was reviewed. For electrical energy production uses, biomass combustibles include peat, forestry, agro-food and urban waste products. These materials are used directly as combustibles in the production of electricity, or are first processed through gasification, pyrolysis, anaerobic digestion or fermentation into combustible products. In Quebec, 176.2 MW of electricity is produced yearly from biomass materials, mostly waste products of the forestry industry. New biomass avenues are actively being explored, including bio- gases produced from municipal landfill sites, gasification of used automobile tires and combustion of demolition waste. Although their contribution is minimal, biomass materials can nevertheless contribute a few hundred megawatts of energy to the Province's overall energy budget. 2 figs

  1. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  2. Cognitive Academic Language Learning Approach (Project CALLA), Community School District 2 Special Alternative Instruction Program. Final Evaluation Report, 1992-93. OREA Report.

    Science.gov (United States)

    Lynch, Joanne

    Cognitive Academic Language Learning Approach (Project CALLA) was a federally funded program serving 960 limited-English-proficient students in 10 Manhattan (New York) elementary schools in 1992-93 its third year of operation. The project provided instruction in English as a Second Language (ESL), mathematics, science, and social studies in…

  3. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  4. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  5. Biomass energy resource enhancement: the move to modern secondary energy forms

    Energy Technology Data Exchange (ETDEWEB)

    Craig, K; Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-12-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  6. Biomass energy resource enhancement: the move to modern secondary energy forms

    International Nuclear Information System (INIS)

    Craig, K.; Overend, R.P.

    1995-01-01

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  7. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Daley, J

    1987-01-01

    We have cloned common acute lymphoblastic leukemia (CALLA)-positive cells from human fetal bone marrow containing less than 1 in 10,000 E-RFC in round-bottomed microtiter wells (one cell per well) using the autocloning unit of an EPICS-V cell sorter. Expansion of such cells (with IL-2 and heavily...... irradiated autologous thymocytes as feeder cells) resulted in growth in 6-14% of the wells (mean, 11%) with cells with mature T lymphocyte phenotype. Two-color fluorescence analysis of outgrowing cultures furthermore ascertained that these cells had differentiated through a phase of simultaneous expression...... of T4 and T8 antigens and at the same time expression of the thymocyte-associated T6 antigens. Thus, given the fact that 10-20% of T cell acute lymphoblastic leukemia (T-ALLs) are CALLA+, we have been able to identify a human prethymic T lymphocyte population that might be the normal counterpart...

  8. Role of biomass in global energy supply

    International Nuclear Information System (INIS)

    Best, G.; Christensen, R.; Christensen, J.

    2003-01-01

    Bioenergy is energy of biological and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture, forestry or fisheries. Biomass provides approximately 11-14% of the world's energy, but there are significant differences between industrialised and developing countries. In many developing countries biomass is the most important energy source. As a global average, biomass provides approximately 35% of developing countries' energy, but there are large regional differences. Many sub-Saharan African countries depend on biomass for up to 90% of their energy indicating that they have little in the way of industry or other modern activities. In the last decade interest in bioenergy has increased in industrialised countries partly due to growing concern about climate change, technological advances in biomass conversion, increasing focus on security of energy supply, and increasing interest in renewable energy generally. Two trends emerge: The developing countries will in general aim to reduce their dependence on traditional bioenergy. The relative share of bioenergy in the energy balance will therefore go down, though the number of people depending on traditional bioenergy probably will remain constant, with corresponding consequences for health and resources. Industrialised countries, plus a number of developing countries, will aim to increase their use of modern bioenergy technologies. With the traditional association of bioenergy as old fashioned and for the poor, the recent interest in biomass resources has invented a new term 'modern bioenergy' which covers a number of technological areas from combustion at domestic, industrial or power plant scale, gasification, hydrolysis, pyrolysis, extraction, digestion etc. There are some barriers to the increased use of bioenergy, but they can be overcome through dedicated interventions by public and private sector entities. (BA)

  9. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  10. Energy biomass and environment. The French programme

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The main themes of the french program for energy from biomass are presented: agriculture and forest products (short rotation plantations, waste products, etc.), enhancement of the biomass production, mobilization of biomass resources, biomass processing technics (biofuels, combustion processes, biotechnologies); vulgarization for diffusion of technics from laboratories to industry or domestic sectors.

  11. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    Gardette, Yves-Marie; Dieckhoff, Lea; Lorne, Daphne; Postec, Gwenael; Cherisey, Hugues de; RANTIEN, Caroline

    2014-11-01

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  12. Ecosystems and biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    Trossero, M A [Food and Agriculture Organization of the United Nations (FAO), Rome (Italy)

    1995-12-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world`s primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  13. Ecosystems and biomass energy

    International Nuclear Information System (INIS)

    Trossero, M.A.

    1995-01-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world's primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  14. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  15. A biomass energy flow chart for Kenya

    International Nuclear Information System (INIS)

    Senelwa, K.A.; Hall, D.O.

    1993-01-01

    Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)

  16. A biomass energy flow chart for Sierra Leone

    International Nuclear Information System (INIS)

    Amoo-Gottfried, K.; Hall, D.O.

    1999-01-01

    Terrestrial above-ground biomass production and utilisation in Sierra Leone was analysed for the years 1984/5 to 1990/1. The total production of biomass energy was estimated at an annual average of 131 PJ (39% from agriculture, 51% from forestry and 10% from livestock). Of the 117 PJ produced from agricultural and forestry operations, 37 PJ was harvested as firewood and burnt (10.9 GJ or 0.72 t wood per capita per year, supplying 80% of the country's energy), 12 PJ was harvested for food, 66 PJ was unutilised crop and forestry residues, 3 PJ was harvested crop residues for use directly as fuel, and 2 PJ was harvested and used for industrial purposes and not for fuel. Livestock produced wastes with an energy content of 13 PJ of which only 0.1 PJ was collected and used for fuel. Thus 54 PJ (41%) of the 131 PJ of biomass energy produced annually was actually utilised while 49 PJ remained as unused agricultural residues and dung, and a further 27 PJ was unused forestry residues. The total amount of biomass (fuelwood, residues and dung) used directly to provide energy, mostly in households, was estimated at 40 PJ (11.8 GJ per capita per year of 0.79 t fuelwood equivalent). Direct biomass energy utilisation in agroindustry (0.4 PJ) was negligible in comparison. Two assessments of Sierra Leone's biomass standing stock and MAI (mean annual increment) were examined in order to assess the sustainability of various biomass use scenarios. Large differences were found between the MAI of the two assessments, making it difficult to predict sustainability of biomass production and use. The estimation of total standing stock varied between 227 and 366 Mt and the estimation of MAI varied between 15 and 70 Mt. Analysis of the availability and use of the biomass resource is crucial if biomass energy is to be used on a sustainable basis. A software package has been developed and is available to draft biomass flow charts but further work is needed to incorporate social and economic

  17. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    Johansson, Bengt

    2001-01-01

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  18. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  19. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  20. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  1. Biomass as an energy source: an Asian-Pacific perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kyi, Lwin [Energy Resources Section, Environment and Natural Resources Management Division, Economic and Social Commission for Asia and the Pacific, United Nations Building, Bangkok (Thailand)

    1995-12-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region`s vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  2. Biomass as an energy source: an Asian-Pacific perspective

    International Nuclear Information System (INIS)

    Lwin Kyi

    1995-01-01

    Biomass is the most commonly used renewable source of energy in the region covered by the Economic and Social Commission for Asia and the Pacific, making up an average of 50% of energy supplies in the developing countries. However, experience over the past one and a half decades in rural energy supply in the ESCAP region suggests that biomass resources are unlikely to compete with conventional supplies in meeting expanded rural energy needs for fuel, electricity and fertilizers. Nevertheless, biomass, especially wood and agricultural residues, will remain the main energy source in most countries of the region for the next two decades. The development of biomass energy systems in the ESCAP region is at different stages for different types of biomass resources. Efforts have been concentrated in six areas: direct combustion, gasification, co-generation, anaerobic digestion, densification and dendrothermal processes. Among the biomass technologies presently being promoted in the region, biogas and cooking stove programmes are the largest in terms of scale, operations and coverage. Co-generation is promising as its economic advantages make it attractive to industrial consumers, particularly the booming food and fibre production and processing industries, which produce enough biomass feedstock to warrant installing co-generation facilities. Despite its potential, the production of liquid fuel from energy crops is presently taking place in only a few countries. The major constraints on extending the use of biomass include the difficulty of assessing resources, poor local acceptance of technology (mainly for social and economic reasons), lack of financial resources and manpower, environmental concerns, the absence of up-to-date local technology and the lack of after-sales services. Appropriate technologies to develop and harness the region's vast biomass resource base to augment energy supplies, particularly in rural areas, has been a major issue in the developing

  3. Biomass energy research program 2008 - 2011; Energieforschungsprogramm Biomasse fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, S.; Binggeli, D.; Guggisberg, B.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on energy from biomass for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper describes the concept for the biomass area. Research into modern technological concepts and ways of transforming biomass into energy are discussed and main areas of research to be addressed are discussed. Three main technological areas are defined: combustion, gasification and anaerobic fermentation. Important themes to be examined include system optimisation and integration, quality assurance and the promotion of new technologies. National and international networking between research and practice is commented on, as are the possibilities for the funding of the work.

  4. The biomass energy market in Finland

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001, it was estimated that the Finnish biomass market was in excess of 235 million dollars. The development of renewable energy, with special emphasis on biomass, was supported by the development of an energy strategy by the government of Finland. The installed capacity of biomass in Finland in 2002 was 1400 megawatt electrical (MWe). Extensive use of combined heat and power (CHP) is made in Finland, and district heating (DH) systems using biomass are gaining in popularity. Wood-based biomass technologies, retrofits to fluidized bed combustion, and wood procurement technologies were identified as the best opportunities for Canadian companies interested in operating in Finland. A country with high standards, Finland seems to look favorably on new innovative solutions. Joint ventures with Finnish companies might be an excellent way for Canadian companies to gain a foothold in Finland and expand into the European Union, the Nordic countries, the Baltic, Russia and the Central and Eastern European markets. It was further noted that Finland is one of the leading exporters of biomass technology in the world. The document provided quick facts, examined opportunities, and looked at key players. 19 refs., 4 tabs

  5. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  6. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  7. Biosaline Biomass. Energy for the Netherlands in 2040

    International Nuclear Information System (INIS)

    Hoek, J.

    2004-12-01

    European governments are aiming for a considerable contribution of biomass in their transition towards a sustainable energy society and the replacement of raw materials based on fossil fuels. For the Netherlands, the national goals are set such that the share of biomass should grow to 30% of total energy consumption by the year 2040. Biosaline biomass - produced in saline environments characterized by increased soil and water salinities up to half seawater level - may become an important source of secure and sustainable energy to cover part, or all, of the Dutch biomass energy target. This report assesses the viability of the import of biosaline forestry as a secure, cost-effective, environmentally and socially responsible source of renewable energy for the Netherlands until 2040. The report also defines steps to be taken and investments to be made to realize the biosaline transition path

  8. A Comparative Study on Energy Derived from Biomass

    Directory of Open Access Journals (Sweden)

    A.M. Algarny

    2017-03-01

    Full Text Available The paper promotes sustainable community through empowering the production and utilization of biomass renewable energy. The aim of this paper is to urge societies to adopt sustainable energy practices and resources; the objective is to appraise the possibilities of biomass energy produced through a neighborhood in Eastern Province, Saudi Arabia. The system incorporates an evaluation of the measure of biomass created, then utilizes two ascertaining techniques to gauge whether the measure of energy can be delivered. The computation strategies are hypothetical, with one drawn from past works and the other from a Biomass Calculation Template performed as part of the Evaluation of Biomass Resources for Municipalities study (EBIMUN by the Waterford County Council. The outcomes demonstrate that the aggregate potential biogas generation of the study area is around 43,200 m3 /year, the methane mass is around 18,000 m3 /year, and the energy production amount is around 250 MWh/year. Contrasting the capability of biogas creation from both techniques, the figure assessed by EBIMUN is around 7,000 m3 /year less than the hypothetically computed amount. The figures suggest that biogas is worthy of consideration as a renewable source of energy.

  9. Energy from biomass and waste

    NARCIS (Netherlands)

    Faaij, A.P.C.

    1997-01-01

    Biomass, a broad term for all organic matter of plants, trees and crops, is currently regarded as a renewable energy source which can contribute substantially to the world's energy supply in the future. Various scenarios for the development of energy supply and demand, such as compiled by the

  10. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1994-01-01

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  11. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  12. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  13. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  14. Biotrade1: international trade in renewable energy from biomass

    NARCIS (Netherlands)

    Agterberg, A.E.; Faaij, A.P.C.

    1998-01-01

    This paper discusses international trade in renewable energy from biomass. Main objective is to compare options for international trade in energy from biomass and to compare these options with non-trade options like domestic use of biomass and afforestation. Aspects that are taken into account are

  15. Biomass in the Dutch Energy Infrastructure in 2030

    International Nuclear Information System (INIS)

    Rabou, L.P.L.M.; Deurwaarder, E.P.; Elbersen, H.W.; Scott, E.L.

    2006-01-01

    The goal of this study is to evaluate the ambition of the Platform to replace 30% of the fossil energy carriers by biomass in the Netherlands in 2030. Starting points are the total annual consumption of primary energy carriers of 3000 PJ by 2030 and contributions of biomass of 60% in transportation, 25% in electricity production, 20% in raw materials for chemicals, materials and products and 17% in heat production. The study provides a review of the current Dutch energy balance, with the role of different energy carriers, based on data for the year 2000 and estimates for the year 2030. For the situation in 2030, an analysis is made of the possible role of biomass. The study also provides a review of the Dutch import, export and production of biomass in 2000 and an estimation of the developments until 2030.

  16. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  17. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  18. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  19. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  20. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  1. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Salahuddin, Ahmed

    1998-01-01

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  2. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  3. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  4. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  5. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  6. Marketing research for energy from biomass in Europe; Marktverkenning voor energie uit biomassa in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Rijpkema, B. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van den Berg, P.; Vanb Haren, P. [Biomass Technology Group BTG, Enschede (Netherlands)

    1997-07-01

    Insight is given into the European market for energy from biomass, including information on plant size, most promising technologies, etc. These potentials may offer opportunities for manufacturers of energy generating systems. A quick scan of 23 European countries has been carried out as phase 1 of this project, which resulted in data, presented in the following format: General introduction; Existing energy infrastructure and structure of the energy demand; Price of fossil fuels, electricity and heat; Available biomass quantities; Prices of biomass; Installed biomass plants; Policy and regulations. Based on that information an overall conclusion was drawn for each country`s biomass energy situation. In phase 2 a more detailed survey has been executed for Estonia, Germany, Poland and Spain. The results of both phases are presented in a separate English report. This report is the result of phase 3 in which the results of phase 1 and 2 are evaluated to assess the possibilities for Dutch manufacturers of biomass energy systems

  7. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  8. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  9. Energy from biomass and waste

    International Nuclear Information System (INIS)

    Faaij, A.P.C.

    1997-01-01

    Chapter 2 deals with the characteristics and current availability of biomass residues and waste streams in the Dutch context and evaluates to what extent they are suited for conversion to energy, in particular by means of gasification. In Chapter 3 the technical and economic aspects of gasification of both wastes and clean biomass for electricity production are investigated. The performance of the system is evaluated by means of ASPEN plus modelling. Performance is simulated for a wide range of potential biofuels to assess the sensitivity of the system to the fuel composition. An economic evaluation is made based on component data and on a chain analysis that includes the costs of the biofuels and logistics. Chapter 4 evaluates the final waste treatment system in the Netherlands. It investigates to what extent changes in waste production and the implementation of new waste treatment technologies can atfect the energy production and final waste treatment costs. Chapter 5 focuses on long-range developments with respect to land use in the Netherlands. Chapter 6 addresses costs and benefits of the biomass fuel cycle and focuses especially on the external costs of biomass-based electricity production. A comparison is made with coal-based electricity production. Various methods are used to quantify those costs. Both environmental externalities (such as emissions) and indirect socio-economic effects are analysed. Attention will be given to uncertainties in the outcomes and the implications of the results for the economic feasibility of the production of electricity trom biomass in the Dutch context. refs

  10. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  11. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  12. Biomass energy development and carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    Studies on climate change and energy production increasingly recognize the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. We conclude that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store. Using the biomass for production of modern energy carriers such as electricity, and liquid and gaseous fuels also has a wide range of other environmental, social and economic benefits. In order for biomass projects to succeed, it is necessary to ensure that these benefits are felt locally as well as nationally, furthermore, environmental sustainability of bioenergy projects is an essential requirement. The constraints to achieving environmentally-acceptable biomass production are not insurmountable. Rather they should be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term. (au) 76 refs

  13. Potential of Biomass for Energy. Market Survey Portugal

    International Nuclear Information System (INIS)

    2007-03-01

    The objective of this market survey is to provide information about the biomass sector in Portugal, relevant to mainly small and medium-sized enterprises (SME) in the Netherlands that are interested to strengthen their position in that sector. Much knowledge could be gathered from conversations with the partners of Sunergy, the company responsible for this survey. Sunergy is producing bio-diesel, and considering further investments in the solid biomass sector, and therefore well familiar with the developments. Other interviews were held with representatives of the Government (DGGE), association of forestry owners (AFLOPS), a biomass trading SME (Sobioen), the leading environmental NGO (Quercus), and an association representing the paper- and pulp industry (CELPA). Chapter 1 is a general introduction on biomass. Chapter 2 gives the background of the Portuguese energy sector and the relative importance of renewable and biomass energies within this market. Some prospects for future developments of the different renewable sources are given. Portugal's energy sector is dominated by a small number of players, which are introduced. Also the current policies and incentives (subsidies) are presented. In Chapter 3 the focus is on the Portuguese biomass sector, presenting the current use of biomass in each of the subsectors: transport, electricity and heat, and an overview of the policy framework specifically for biomass. Chapter 4 is a literature review of the market for existing and potential biomass resources, including demand, supply and other characteristics. Chapter 5 synthesizes the previous chapters. Also an overview of key drivers and key constraints for growth of this sector is given, leading to conclusions regarding the opportunities for Dutch companies. Finally, further information on how to proceed once the interest for Portugal's biomass sector is vested is listed at the end of Chapter 5

  14. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    Johansson, Bengt.

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO 2 emission reduction per unit arable and forest land used for biomass production (kg CO 2 /ha,year) and costs for CO 2 emission reduction (SEK/kg CO 2 ) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO 2 emission reduction. In a medium long perspective, the costs for CO 2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  15. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  16. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  17. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  18. Energy from biomass and wastes: 1979 update

    Energy Technology Data Exchange (ETDEWEB)

    Klass, D.L.

    1979-01-01

    The R and D activities in progress in the United States on the development of biomass and wastes as renewable energy sources have reached the point where all phases of the technology are under active investigation. Highlights of this effort are briefly reviewed from the standpoint of energy impact, funding, carbon dioxide build-up in the atmosphere, and biomass production and its conversion to energy and synthetic fuels. Special attention is given to alcohols because of the current interest in gasohol. Significant accomplishments were reported in 1979, and it is expected that commercial utilization of this information will begin to gather more momentum.

  19. Biomasse til energi og økologisk jordbrug

    DEFF Research Database (Denmark)

    Christensen, Bent T; Meyer, Niels I; Nielsen, Vilhjalmur

    created uncertainty concerning the realistic potential of biomass for energy. In order to analyse this question the Danish Energy Agency has funded a preliminary, interdiciplinary study concerning the relevance of the claims of the ecological farmers. The principles of ecological farming and the claims...... of ecological farmers on the use of biomass for energy are described, and empirical studies and models of the impact of soil carbon and nutrients on soil productivity are presented. The impact on the soil carbon balance of incorporating straw and manure to the field and the effects of land use changes...

  20. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1993-01-01

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  1. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy

  2. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical

  3. Biomass energy success stories: a portfolio illustrating current economic uses of renewable biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    This second edition of the Biomass Energy Success Stories covers a wide range of examples of organizations which have experienced economic benefits by substituting renewable biomass energy for non-renewable fossil fuels. In addition to the broader spectrum of industry seen to be pursuing this approach, the cases illustrate a move towards innovative and technologically more sophisticated approaches. For example, the Quebec Community's thermal accumulator acts as a buffer to accommodate the variable fuel value of boiler fuel consisting of unpredictable residues of variable moisture content. By this innovative approach, the quality of steam to its year-round customer can be held within the contractual limits. Another unique development appears in the use of the LAMB-CARGATE wet cell burner which is able to cope with wood residue fuels containing up to 70% moisture. Two of the more interesting and promising developments in the race to substitute renewable energy for fossil fuels are Fluidized Bed and Fuel-alcohol on-farm distilleries. For this reason appendices are included giving some useful insights concerning them.

  4. First biomass conference of the Americas: Energy, environment, agriculture, and industry

    International Nuclear Information System (INIS)

    1993-01-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  5. Economic approach to assess the forest carbon implications of biomass energy.

    Science.gov (United States)

    Daigneault, Adam; Sohngen, Brent; Sedjo, Roger

    2012-06-05

    There is widespread concern that biomass energy policy that promotes forests as a supply source will cause net carbon emissions. Most of the analyses that have been done to date, however, are biological, ignoring the effects of market adaptations through substitution, net imports, and timber investments. This paper uses a dynamic model of forest and land use management to estimate the impact of United States energy policies that emphasize the utilization of forest biomass on global timber production and carbon stocks over the next 50 years. We show that when market factors are included in the analysis, expanded demand for biomass energy increases timber prices and harvests, but reduces net global carbon emissions because higher wood prices lead to new investments in forest stocks. Estimates are sensitive to assumptions about whether harvest residues and new forestland can be used for biomass energy and the demand for biomass. Restricting biomass energy to being sourced only from roundwood on existing forestland can transform the policy from a net sink to a net source of emissions. These results illustrate the importance of capturing market adjustments and a large geographic scope when measuring the carbon implications of biomass energy policies.

  6. Assessing Reading Strategy Training based on CALLA model in EFL and ESL Context

    Directory of Open Access Journals (Sweden)

    Alireza Karbalaei

    2011-04-01

    Full Text Available Reading strategies instruction is currently gaining much attention as an effective means of enhancing reading comprehension. In this research, we examined the effect of Underlining Strategy Intervention, based on the CALLA model in EFL and ESL contexts. A group of 189 college students were randomly selected from different universities in Iran and India. Based on a proficiency test, students were grouped into high, moderate, and low level. Then, the underlining strategy was taught during the treatment sessions. The results suggest that intervention or explicit instruction was effective in increasing the reading comprehension of both Iranian and Indian students although Indian ESL students were able to perform better in comparison to their Iranian EFL counterparts. There was no significant difference between proficiency level and students' performance in reading comprehension in EFL and ESL contexts. In addition, there was no significant difference between males and females in both contexts.

  7. Biomass to energy : GHG reduction quantification protocols and case study

    Energy Technology Data Exchange (ETDEWEB)

    Reusing, G.; Taylor, C. [Conestoga - Rovers and Associates, Waterloo, ON (Canada); Nolan, W. [Liberty Energy, Hamilton, ON (Canada); Kerr, G. [Index Energy, Ajax, ON (Canada)

    2009-07-01

    With the growing concerns over greenhouses gases and their contribution to climate change, it is necessary to find ways of reducing environmental impacts by diversifying energy sources to include non-fossil fuel energy sources. Among the fastest growing green energy sources is energy from waste facilities that use biomass that would otherwise be landfilled or stockpiled. The quantification of greenhouse gas reductions through the use of biomass to energy systems can be calculated using various protocols and methodologies. This paper described each of these methodologies and presented a case study comparing some of these quantification methodologies. A summary and comparison of biomass to energy greenhouse gas reduction protocols in use or under development by the United Nations, the European Union, the Province of Alberta and Environment Canada was presented. It was concluded that regulatory, environmental pressures, and public policy will continue to impact the practices associated with biomass processing or landfill operations, such as composting, or in the case of landfills, gas collection systems, thus reducing the amount of potential credit available for biomass to energy facility offset projects. 10 refs., 2 tabs., 6 figs.

  8. Biomass to energy : GHG reduction quantification protocols and case study

    International Nuclear Information System (INIS)

    Reusing, G.; Taylor, C.; Nolan, W.; Kerr, G.

    2009-01-01

    With the growing concerns over greenhouses gases and their contribution to climate change, it is necessary to find ways of reducing environmental impacts by diversifying energy sources to include non-fossil fuel energy sources. Among the fastest growing green energy sources is energy from waste facilities that use biomass that would otherwise be landfilled or stockpiled. The quantification of greenhouse gas reductions through the use of biomass to energy systems can be calculated using various protocols and methodologies. This paper described each of these methodologies and presented a case study comparing some of these quantification methodologies. A summary and comparison of biomass to energy greenhouse gas reduction protocols in use or under development by the United Nations, the European Union, the Province of Alberta and Environment Canada was presented. It was concluded that regulatory, environmental pressures, and public policy will continue to impact the practices associated with biomass processing or landfill operations, such as composting, or in the case of landfills, gas collection systems, thus reducing the amount of potential credit available for biomass to energy facility offset projects. 10 refs., 2 tabs., 6 figs

  9. FY 1997 report on the research study for preparation of NEDO`s vision. Biomass energy; 1997 nendo chosa hokokusho (NEDO vision sakutei ni muketa chosa kenkyu). Biomass energy ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research study was made on the current usage, technological development and future subjects of biomass energy. The current use of biomass energy over the world estimated to be nearly a billion t/y oil equivalent. This value is estimated to be only a part of a pure primary biomass yield of 73 billion t/y oil equivalent showing a large supply potential. The evaluation result of a biomass energy potential in the world by GLUE (Global Land Use and Energy Model) considering worldwide biomass flow and competition of land use showed that no change of land use form in advanced areas is predicted, and no production of new biomass energy from forests in advancing areas is also expected. Production of biomass energy from farm products is promising in advanced areas, while the potential of biomass residue is high in advancing areas showing the possibility of energy development. Development of new biotechnologies such as molecular control of bio-production functions is expected to increase biomass resources. 76 refs., 26 figs., 30 tabs.

  10. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Al-Hamamre, Zayed; Al-Mater, Ali; Sweis, Fawaz; Rawajfeh, Khaled

    2014-01-01

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  11. Waste Biomass Based Energy Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Hatice Güneş Yıldız

    2018-06-01

    Full Text Available Reducing dependence on fossil fuels, alleviating environmental impacts and ensuring sustainable economic growth are among the most promising aspects of utilizing renewable energy resources. Biomass is a major renewable energy resource that has the potential for creating sustainable energy systems that are critical in terms of social welfare. Utilization of biomass for bioenergy production is an efficient alternative for meeting rising energy demands, reducing greenhouse gas emissions and thus alleviating climate change. A supply chain for such an energy source is crucial for assisting deliverance of a competitive end product to end-user markets. Considering the existing constraints, a mixed integer linear programming (MILP model for waste biomass based supply chain was proposed in this study for economic performance optimization. Performance of the proposed modelling approach was demonstrated with a real life application study realized in İstanbul. Moreover, sensitivity analyses were conducted which would serve as a foresight for efficient management of the supply chain as a whole

  12. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  13. Biomass supply management for advanced energy: applications in developing countries

    International Nuclear Information System (INIS)

    Ranney, J.W.; Perlack, R.D.

    1995-01-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  14. Biomass supply management for advanced energy: applications in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J W [Joint Institute for Energy and Environment, Knoxville, TN (United States); Perlack, R D [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1995-12-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  15. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  16. Rwanda after the war: supply and rational management of biomass energy

    International Nuclear Information System (INIS)

    Hategeka, A.

    1997-01-01

    This chapter discusses the effects of the war in Rwanda on biomass energy and biomass energy supply. Seven projects identified to be carried out immediately involve rationalisation of biomass energy use in urban and rural areas, supplying charcoal from forest thinnings, rehabilitation of damaged forests, examination of the feasibility of peat extraction, urban supply of peat, wood energy conservation, and pilot production of papyrus briquettes. (UK)

  17. Green energy. Biomass fuels and the environment

    International Nuclear Information System (INIS)

    1991-01-01

    The United Nations Environment Programme has been concerned with energy/environment issues since it was first set up after the United Nations Conference on the Human Environment held in Stockholm in 1972. In the late 1970s, UNEP compiled three comprehensive reports on the the environmental impacts of the production and use of fossil fuels, nuclear energy and renewable energy sources. In 1987 it was decided to update the volume on renewable energy since knowledge of biofuels and their effects on the environment had greatly improved. Among many innovations, Brazil's decision to embark on a major, and now successful, programme to produce ethanol from sugarcane as a substitute vehicle fuel is one of the most significant. At the same time, energy tree crops, agroforestry systems and the use of plantations for environmental improvement have become issues of key importance to sustainable development in developing countries. Biomass fuels, of course, have always been important in terms of the numbers of people who use them; the significant change during the 1980s was that the potential advantages of these fuels took on a new significance in the light of environmental degradation and related issues such as greenhouse warming. The biomass fuels began to be considered as attractive energy sources in their own right - not simply as 'last resort' fuels for developing countries with only limited energy options. While this development may solve some environmental problems, it certainly raises others - the improper utilization of biomass fuels in the past has been responsible for deforestation, desertification and the ill health of many millions of the women in developing countries who use biomass fuels in unventilated huts. These issues currently affect about half of the world population. The new UNEP study was intended to provide an up-to-date evaluation of the environmental issues raised by the use of biomass fuels, and hence to reduce or eliminate their adverse impacts while

  18. Evaluation of social and environment effect of using biomass energy

    International Nuclear Information System (INIS)

    Alighardashi, A.; Adl, M.; Karbasi, A.R.; Naeiji, K.

    2001-01-01

    Biomass is one of the most important sources for clean and renewable energy. International studies show that potential of power generation from biomass has been equal of amount of electricity generated from all centralized sources in the world at 1993. this paper considers social and environmental effects of biomass energy utilization instead of fossil fuels. This study is performed in several sections; destruction of natural resources, emission of pollutants, creation of new job opportunities and public welfare. In each section, some of world experiences and statistics are mentioned. Estimated and calculated results for Iran have been presented. In public welfare section, security cost in different Iranian energy consumption sections have been considered and resulted fuel savings due to biomass energy consumption, are mentioned in detail

  19. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  20. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  1. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  2. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  3. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  4. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Chiang, Kung-Yuh; Chien, Kuang-Li; Lu, Cheng-Han

    2012-01-01

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H 2 O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  5. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael R; Morrison, James A; Spomer, Eric; Thimot, Carol A

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heat and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.

  6. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  7. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  8. Waste biomass-to-energy supply chain management: a critical synthesis.

    Science.gov (United States)

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Importance of biomass energy as alternative to other sources in Turkey

    International Nuclear Information System (INIS)

    Gokcol, Cihan; Dursun, Bahtiyar; Alboyaci, Bora; Sunan, Erkan

    2009-01-01

    Energy plays a vital role in socio-economic development and raising standards of human beings. Turkey is a rapidly growing country; both its population and economy are expanding each year so its energy demand increases correspondingly and this increasing demand has to be met for keeping sustainable development in the economy and raising living conditions of mankind. Although Turkey has many energy sources, it is a big energy importer. Turkey has a lot of potential to supply its own energy, which could be put to use in order to avoid this energy dependence. Additionally, Turkey is a country that has an abundance of renewable energy sources and can essentially provide all energy requirements from indigenous energy sources. Biomass is one of the most promising energy sources considered to be alternative to conventional ones. This paper investigates the importance of biomass energy in Turkey. Additionally, the potential of biomass and its utilization in Turkey are presented in detail. Turkey has always been one of the major agricultural countries of the world. The importance of agriculture is increasing due to biomass energy being a major resource of Turkey. Like many developing countries, Turkey relies on biomass to satisfy much of its energy requirements

  10. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  11. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  12. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  13. Biomass energy policy in Africa: selected case studies

    International Nuclear Information System (INIS)

    Kgathi, D.L.; Hall, D.O.; Hategeka, A.; Sekhwela, M.B.M.

    1997-01-01

    The majority of the population in the continent of Africa depend on biomass as a source of energy. Woodfuel (charcoal and fuelwood), the most important source of energy, is a subject of major concern in developing countries mainly because of its increasing scarcity, and recently because of its importance to the debate on climate change as its use is associated with emission on the greenhouse gases (GHG's). The book discusses the biomass energy problem and the policy options for addressing it in Botswana and Rwanda. Though the studies mainly draw their material from the surveys undertaken in these countries, extensive use is made of the existing general literature on this subject. The two case studies on Botswana address the nature, extent, and policy implications of the fuelwood problem, including the extent to which it contributes to deforestation. The Rwanda case studies examine the seasonal and spatial variation of the consumption of biomass energy (woodfuel and residues) and the evolution of the energy policy process with particular reference to biomass energy. A number of policy recommendations are made which may not only be relevant to Botswana and Rwanda, but also to other developing countries in a similar situation. The book thus makes a valuable contribution to the scarce literature on energy and environment in Africa. The multi-disciplinarity of the book makes it more valuable to a large number of readers. It will be an important reference material for policy makers and researchers in Africa as well as other developing countries. AFREPREN The African Energy Policy Research Network (AFREPREN) promotes research on energy issues relevant to the formulation and implementation of policy by African governments. It also aims to build research capability as well as mobilize existing expertise to address both near- and long-term challenges faced by the energy sector in Africa. (UK)

  14. Biomass energy from wood chips: Diesel fuel dependence?

    International Nuclear Information System (INIS)

    Timmons, Dave; Mejia, Cesar Viteri

    2010-01-01

    Most renewable energy sources depend to some extent on use of other, non-renewable sources. In this study we explore use of diesel fuel in producing and transporting woody biomass in the state of New Hampshire, USA. We use two methods to estimate the diesel fuel used in woody biomass production: 1) a calculation based on case studies of diesel consumption in different parts of the wood chip supply chain, and 2) to support extrapolating those results to a regional system, an econometric study of the variation of wood-chip prices with respect to diesel fuel prices. The econometric study relies on an assumption of fixed demand, then assesses variables impacting supply, with a focus on how the price of diesel fuel affects price of biomass supplied. The two methods yield similar results. The econometric study, representing overall regional practices, suggests that a $1.00 per liter increase in diesel fuel price is associated with a $5.59 per Mg increase in the price of wood chips. On an energy basis, the diesel fuel used directly in wood chip production and transportation appears to account for less than 2% of the potential energy in the wood chips. Thus, the dependence of woody biomass energy production on diesel fuel does not appear to be extreme. (author)

  15. Sustainability of biomass import for the Dutch energy economy. Final report

    International Nuclear Information System (INIS)

    Rijssenbeek, W.; Van der Vleuten, F.; De Winter, J.; Corten, I.

    1996-07-01

    The current study is conducted with the aim of developing a number of general (qualitative) criteria which can be used to judge, from the perspective of sustainable development, the various options of importing biomass for the Dutch energy economy. The methods used during implementation of the desk study include: literature reviews on sustainable development and biomass energy conversion techniques; concept development and elaboration; internal discussions of the project team; international discussions through electronic mail in order to obtain the opinions of people outside The Netherlands, in particular from the potentially biomass exporting countries; an interim discussion meeting with representatives of involved (Dutch) actors; a final discussion meeting with representatives of involved (Dutch) actors; and reporting. The results of the desk study are presented. The context of energy from biomass in The Netherlands, and the Dutch policy concerning renewable energies is described. A selection is given of international comments on the idea of importing biomass for the Dutch electricity sector, to underline that the sustainability of this activity is not obvious without more detailed consideration. An overview of biomass energy technologies is presented in order to illustrate the numerous options of importing biomass for energy purposes. A concrete example of wood import from Estonia and Uruguay shows how a biomass import chain could look like in practice. Attempts to put the concept into practice are discussed. General criteria and framework conditions, that can be used in assessing the sustainability of the various alternatives of biomass import are presented. A method for the full evaluation process is proposed. The most important ideas that have been received through E-mail and Internet news groups discussions are listed along with an overview of biomass chains

  16. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  17. Conservation, genetic characterization, phytochemical and biological investigation of black calla lily: A wild endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Mai Mohammed Farid

    2016-10-01

    Full Text Available Scientists continue to search for and conserve plants whose medicinal properties have become crucial in the fight against diseases. Moreover, lessons from folk medicine, indigenous knowledge and Chinese medicine on crude extracts points to possible findings of novel promising and strong pharmaceutically bioactive constituents. Arum palaestinum, commonly known as black calla lily, is one of the most important medicinal plants belonging to the family Araceae, which has not been well studied. Little is known about its pharmaceutically bioactive constituents and the effective conservation through the use of biotechnology. Thus, Arum Palaestinum is selected and reviewed for its phytochemical analysis and biological activities. Besides, the tissue culture and genetic characterization developed for effective conservation of the plant were also summarized.

  18. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  19. Energy of forest biomass in Croatia

    International Nuclear Information System (INIS)

    Cupin, N.; Krivak, B.; Dundovic, J.

    2005-01-01

    Forest biomass is organic substance raised in forest ecosystem, consisting of trees and bushes which are used for mechanical processing and thermal use. Croatia, with 44 percent of surface under forests, has the renewable energy potential in forest biomass that could cover as much as about 50 percent of the current heating consumption. The existence of an appropriate heating consume and district heating are a prerequisite for exploitation of the mentioned potential. At the same time, heating consumption enables the utilization of cogeneration plants and the paper gives examples of such possibilities in industry, community and special facilities (sport centres, hotels, hospitals etc.). Among them, the so called 'Croatian energy absurdum' is mentioned. The paper underlines the feasibility of exploitation of forest biomass at the national level and suggests that, in order to promote and accelerate the development of cogeneration plants, the HED expert group should be established. The task of the expert group would be to draft proposal for appropriate measures in this regard and submit it to the Government for consideration.(author)

  20. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  1. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  2. Biomass energy and the environmental impacts associated with its production and utilization

    International Nuclear Information System (INIS)

    Abbasi, Tasneem; Abbasi, S.A.

    2010-01-01

    Biomass is the first-ever fuel used by humankind and is also the fuel which was the mainstay of the global fuel economy till the middle of the 18th century. Then fossil fuels took over because fossil fuels were not only more abundant and denser in their energy content, but also generated less pollution when burnt, in comparison to biomass. In recent years there is a resurgence of interest in biomass energy because biomass is perceived as a carbon-neutral source of energy unlike net carbon-emitting fossil fuels of which copious use has led to global warming and ocean acidification. The paper takes stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy. It then examines the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation-utilization options. (author)

  3. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  4. Energy from Waste and Biomass - ALTENER Conference held in Estonia

    International Nuclear Information System (INIS)

    Roos, Inge

    1999-01-01

    On November 9-10, 1998 ALTENER Conference Energy from Waste and Biomass took place in the hotel Pirita, Tallinn, Estonia. The Conference was organized by the Swedish National Energy Administration in co-operation with the FEMOPET Estonia and the South Jutland University Centre, Biomass Institute (Denmark). The main topics of the Conference were: collecting biogas from landfall, biogas from municipal sewage treatment, biogas from animal manure, waste heat, biomass from the pulp industry and the sawmill, biomass from forestry, biomass for local and district heating. More than 200 delegates from 14 countries participated in this event. A poster exhibition and two study tours to Paeaeskuela Landfill Plant and Jueri Boiler House were organised too. (author)

  5. Methodology for estimating biomass energy potential and its application to Colombia

    International Nuclear Information System (INIS)

    Gonzalez-Salazar, Miguel Angel; Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Venturini, Mauro; Finkenrath, Matthias; Poganietz, Witold-Roger

    2014-01-01

    Highlights: • Methodology to estimate the biomass energy potential and its uncertainty at a country level. • Harmonization of approaches and assumptions in existing assessment studies. • The theoretical and technical biomass energy potential in Colombia are estimated in 2010. - Abstract: This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

  6. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  7. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  8. Conflicts between Ecological Farming and Energy Use of Biomass from Agriculture

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, B.T.

    1996-01-01

    Due to the fluctuating nature of several renewable energy sources such as solar, wind and waves, new methodologies are needed for planning of sustainable energy supply systems. As Denmark has no hydro power, biomass plays an important role in this connection. Especially surplus straw and animal...... manure (for biogas) from agriculture. In the official Danish energy plans biomass is supposed to cover more than 20% of the Danish energy demand by year 2030. However, the use of biomass for energy purposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers...

  9. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  10. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  11. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-01-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  12. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  13. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  14. Environmental and institutional considerations in the development and implementation of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, C.

    1979-09-01

    The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

  15. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  16. Potential of forestry biomass for energy in economies in transition

    International Nuclear Information System (INIS)

    Apalovic, R.

    1995-01-01

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  17. Energy from wastes and biomass. Energie uit afval en biomassa; Energiebesparing of -produktie bij verwerkingsprocessen van afval

    Energy Technology Data Exchange (ETDEWEB)

    Van Steeg, W [DHV Raadgevend Ingenieursbureau BV, Amersfoort (Netherlands)

    1990-02-01

    Possibilities are studied to arrive at energy profits by processing wastes and biomass. Energy conservation by prevention and reuse as well as energy production by combustion or fermentation of wastes and biomass are considered. Energy profits at this moment amount to 48 PJ, less than 2% of the Dutch energy requirements. Estimated is 91 PJ in the year 2000. Governmental policies to promote prevention and reuse as well as increased efficiency may lift this number to 169 PJ. Growing biomass for energy production can increase energy profits to 333 PJ. Estimated for 2010 is 676 PJ. 11 refs., 8 tabs., 4 ills.

  18. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  19. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  20. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  1. Potential and possibilities of supplying energy from biomass and biogas; Potentiale und Moeglichkeiten der Energiebereitstellung durch Biomasse und Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, H. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Betriebstechnik; Weiland, P.; Ahlgrimm, H.J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany). Inst. fuer Technologie

    1998-06-01

    Agriculture`s potential contribution to the energy supply of the ``town of the future`` through the conversion of biomass to energy, including biogas production, is a rather modest one. Supposing that the share of total renewable energy in Germany`s primary energy demand rises to approximately 4%, then the proportion of biomass from biotic raw materials especially produced for the purpose will at the most make up an eighth of this amount. Beyond this, biomass is burdened with other drawbacks such as low supply efficiency, limited availability, and weather-dependent reliability. On the other hand, biomass is well suited for conversion to solid, liquid, and gaseous fuels, including inexpensive ones with low energy density (solid fuels), mostly used for stationary heating applications, as well as more expensive ones such as liquid fuels with a high energy density for mobile applications in the automotive sector. Thanks to its capacity to regenerate, biomass is an inexhaustible resource. Moreover, its natural life cycle has a small impact on the environment. [Deutsch] Der Beitrag, den die Landwirtschaft durch energetische Nutzung von Biomasse, z.B. auch mit der Erzeugung von Biogas, zur Energieversorgung der `Stadt der Zukunft` leisten kann, nimmt sich bescheiden aus. Wird erwartet, dass innerhalb des naechsten Jahrzehnts der Anteil regenerativer Energien insgesamt auf etwa 4% des Primaerenergie-Verbrauchs Deutschlands ansteigen koennte, so duerfte Biomasse als speziell zur Energiegewinnung angebaute nachwachsende Rohstoffe mit bestensfalls 0,5 Prozentpunkten daran beteiligt sein. Es beduerfen darueber hinaus auch Nachteile, wie geringe Bereitstellungseffizienz, beschraenkte Verfuegbarkeit und witterungsabhaengige Zuverlaessigkeit, der Beachtung. Die Biomasse kann jedoch mit Erfolg in feste, fluessige und gasfoermige Energietraeger konvertiert werden, sowohl in preiswerte mit geringer Energiedichte (Festbrennstoffe) fuer bevorzugt stationaeren Heizungs-Einsatz als auch

  2. SOCIAL AND ETHICAL CHALLENGES OF USING BIOMASS - A RENEWABLE ENERGY SOURCE

    Directory of Open Access Journals (Sweden)

    Mihaela BOBOC

    2016-12-01

    Full Text Available Biomass, along with other renewable energy sources (solar, wind power, hydropower, etc. is the alternative energy to conventional energy sources. The need of alternative energy sources is given by the increase in energy demand associated with the reduction of conventional sources. They are supplemented by society efforts for reducing the global warming. Thus the biomass use is enthusiastically received and supported by numerous development policies. Nevertheless, the use of biomass to obtain energy involves negative effects on society and also on the environment, generating concerns about the ethics of human actions. All these concerns regarding the biomass use can be prevented and ameliorated by a legislative framework that integrates among the economic and environmental, social and ethical principles. Because without a set of ethical principles aimed at fairness between individuals, social responsibility and also intrinsic value of the biosphere, challenges and problems generated by the use of renewable resources will be intensified

  3. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H.

    2009-01-01

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  4. Biomass energy: Employment generation and its contribution to poverty alleviation

    International Nuclear Information System (INIS)

    Openshaw, Keith

    2010-01-01

    Studies were undertaken in Malawi from 1995 to 1997 and 2007 to 2008 to estimate the supply and demand of household energy. Because little is known about the supply chain for biomass, surveys were carried out for urban areas on its production, transport and trade as well as sustainable supply. Also, because biomass is used by all people for a multitude of purposes, a complete picture was made of regional and urban biomass supply and demand. The results indicated that biomass is not only the principal energy, accounting for 89 percent of demand, but also the main traded energy in the two time periods accounting for 56-59 percent of commercial demand. Petroleum products supplied 26-27 percent, electricity 8-12 percent and coal 6-10 percent. The market value of traded woodfuel was US$ 48.8 million and US$ 81.0 million in 1996 and 2008 respectively, about 3.5 percent of gross domestic product (GDP). The study found that in 1996 and 2008 respectively, the equivalent of 93,500 and 133,000 full-time people was employed in the biomass supply chain, approximately 2 percent of the potential workforce. In contrast, about 3400 and 4600 people were employed in the supply chain of other fuels in these years. If the Malawi findings are applied to the current estimated wood energy consumption in sub-Saharan Africa, then approximately 13 million people could be employed in commercial biomass energy; this highlights its importance as a means to assist with sustainable development and poverty alleviation. (author)

  5. Biomass as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, M.; Naveau, H.; Declerck, C.; Vanacker, L.; Mahy, D.; Schepens, G.

    The object of this paper is to evaluate the possible production and utilization of biomass as an energy source in Belgium. Four conversion methods are considered - methanation, fermentation, incineration and gasification - from a technological and economic viewpoint.

  6. Potential of forestry biomass for energy in economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Apalovic, R [State Forest Products Research Institute and Slovak Biomass Association, Bratislava (Slovakia)

    1995-12-01

    A rapid increase in the world`s population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author) 6 refs, 4 figs, 4 tabs

  7. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation...

  8. Promoting the energy structure optimization around Chinese Beijing-Tianjin area by developing biomass energy

    Science.gov (United States)

    Zhao, Li; Sun, Du; Wang, Shi-Yu; Zhao, Feng-Qing

    2017-06-01

    In recent years, remarkable achievements in the utilization of biomass energy have been made in China. However, there are still some problems, such as irrational industry layout, immature existing market survival mechanism and lack of core competitiveness. On the basis of investigation and research, some recommendations and strategies are proposed for the development of biomass energy around Chinese Beijing-Tianjin area: scientific planning and precise laying out of biomass industry; rationalizing the relationship between government and enterprises and promoting the establishment of a market-oriented survival mechanism; combining ‘supply side’ with ‘demand side’ to optimize product structure; extending industrial chain to promote industry upgrading and sustainable development; and comprehensive co-ordinating various types of biomass resources and extending product chain to achieve better economic benefits.

  9. Energy of the Earth. Geothermal and biomass energy sources for humanity

    International Nuclear Information System (INIS)

    2010-01-01

    The Earth feeds us but supplies its energy to us as well and in two ways: the heat coming from the Earth's core spreads through rocks and geologic fractures and heats the groundwater, in particular in volcanic and hydrothermal areas. This energy can be captured and directly used for district and space heating or converted into electricity. The Earth, thanks to photosynthesis, is also a formidable chemical factory. With the single energy coming from the sun, plants oxide water and convert the carbon from the air into sugars to make biomass. Cultures, agricultural and animal breeding wastes are as many resources for a renewable and greenhouse gas-free energy which can be converted into non-toxic chemical products, automotive fuels, heat and electricity. Both geothermal and biomass resources are far to have supplied their full potential. Production capacities are enormous and capable to answer the needs of a still growing up humanity. This book explains how we are going to exploit this energy wealth. (J.S.)

  10. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Bacareza-Pacudan, L.; Lacrosse, L.; Pennington, M.; Dale Gonzales, A.

    1999-01-01

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  11. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  12. Energy generation from biomass with the aid of fuel cells; Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    To provide an opportunity for information exchange at the interface between biomass use for energy generation and developers of fuel cells, the workshop 'Energy generation from biomass with the aid of fuel cells' was held by the Fachagentur Nachwachsende Rohstoffe on 9 and 10 December 1998. The lectures and discussions permit to assess better the opportunities and restraints resulting from the use of biogenous fuel gas in fuel cells. (orig.) [German] Um an der Schnittstelle zwischen der energetischen Nutzung von Biomasse und den Entwicklern von Brennstoffzellen einen Informationsaustausch zu ermoeglichen, wurde am 9. und 10. Dezember 1998 der Workshop 'Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren' von der FNR veranstaltet. Die Vortraege und die Diskussion erlauben eine bessere Einschaetzung der Moeglichkeiten und Restriktionen, die sich bei dem Einsatz von biogenen Brenngasen in Brennstoffzellen ergeben. (orig.)

  13. Potential for the energy-oriented use of biomass in Switzerland; Potentiale zur energetischen Nutzung von Biomasse in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B; Blum, M; Peter, M; Schwank, O [Infras, Zuerich (Switzerland); Bedniaguine, D; Dauriat, A; Gnansounou, G [Swiss Federal Institute of Technology (EPFL), Laboratory of Energy Systems (LASEN), Lausanne (Switzerland); Chetelat, J; Golay, G [Swiss Federal Office of Technology (EPFL), Laboratoire de systemes d' information geographique (LASIG), Lausanne (Switzerland); Hersener, J -L [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U [Meritec GmbH, Guntershausen (Switzerland); Schleiss, K [Umwelt- und Kompostberatung, Grenchen (Switzerland)

    2004-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the potential offered by the use of biomass in the energy area. In the first and main part of the report, the base data and the methodology used are discussed and the theoretical and realisable potentials are examined. Scenarios on reference-energy prices are discussed, whereby the price of oil is taken as primary reference. General estimates of the potential of biomass are presented for 2025 and 2040 and compared with figures for 2003. Conversion paths and various types of installations are discussed. Economic potential and future market-shares of biomass energy-use are discussed. Finally, the external costs of energy supply systems are examined and their influence on the economic potential of biomass technologies is discussed. The second part of the report takes a look at the use of geographic information systems (GIS) for data acquisition and the visualisation of energy-potentials. In the third part of the report, the optimal use of the potential offered by biomass is looked at and the most important results and recommendations of the study group are presented. The report is completed with a list of relevant literature and a comprehensive appendix.

  14. Development of renewable energies apart from biomass on farms

    International Nuclear Information System (INIS)

    Brule, K.; Pindard, A.; Jaujay, J.; Femenias, A.

    2009-01-01

    This paper proposes an overview and a prospective glance at the development of renewable energies in farms, apart those which are based on the production or use of biomass. Some indicators are defined (energy production and consumption). Stake holders are identified. Some retrospective major and emerging trends are discussed. The major trends are: growth and diversification of renewable energy production, calling to renewable energy production in farms. The emerging trends are: a recent increase of renewable energy production in farms apart from biomass, locally stressed land market, economic profitability of photovoltaic installations due to purchase tariffs. Some prospective issues are discussed: technical support, financial support, development of other energy sources, and tax policy on fossil energy used in agriculture. Three development hypotheses are discussed

  15. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than...

  16. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  17. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    Science.gov (United States)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  18. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    Pla Duporte, Manuel; Arango, Mirta; Guyat Dupuy, Maria Antonia

    2011-01-01

    The quick decrease of the fossil fuels has taken to the search of renewable sources of energy. Cuba has in the biomasses one of the biggest potentialities of sources renewable of energy, but even with a small exploitation. The purpose of increasing the employment of the sources renewable of energy, in particular the biomasses one requires evaluation of the capacities with which it counts our country. Presently work the results of an are presented The study carried out directed to the evaluation of these sources focused basically to the possibility of their employment in processes thermochemical. The evaluation of the is attacked availability of these energy resources, their main ones characteristic, the potentialities are also determined of use of the selected biomasses. Equally you it makes an estimate of the availability of the biomasses chosen in dependence of the behavior of its consumption, for finally to carry out an appreciation of the one potential of energy obtaining starting from her and its technician-economic feasibility. (author)

  19. A techno-economic evaluation of a biomass energy conversion park

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Witters, N. [Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Reumermann, P. [BTG Biomass Technology Group, Josink Esweg 34, 7545 PN Enschede (Netherlands); Marquez Luzardo, N. [School of Life Sciences and Environmental Technology, Avans Hogeschool, Hogeschoollaan 1, 4800 RA Breda (Netherlands); Broeze, J. [Agrotechnology and Food Sciences Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen (Netherlands)

    2013-04-15

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production.

  20. Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies

    International Nuclear Information System (INIS)

    Koenig, Andreas

    2011-01-01

    The possible uses of biomass for energy provision are manifold. Gaseous, liquid and solid bioenergy carriers can be alternatively converted into heat, power or transport fuel. The contribution of the different utilisation pathways to environmental political targets for greenhouse gas (GHG) emission reduction and energy political targets for the future share of renewable energy vary accordingly to their techno-economic characteristics. The aim of the presented study is to assess the different biomass options against the background of energy and environmental political targets based on a system analytical approach for the future German energy sector. The results show that heat generation and to a lower extent combined heat and power (CHP) production from solid biomass like wood and straw are the most cost effective ways to contribute to the emission reduction targets. The use of energy crops in fermentation biogas plants (maize) and for production of 1st generation transportation fuels, like biodiesel from rapeseed and ethanol from grain or sugar beet, are less favourable. Optimisation potentials lie in a switch to the production of 2nd generation biofuels and the enhanced use of either biomass residues or low production intensive energy crops. - Research Highlights: → Heat generation and CHP generation from biomass can contribute cost efficiently to emission reduction targets. → Biofuel production represenst the least cost efficient option for emission reduction when using biomass energetically. → The energetical use of biomass shows a high potential to contribute to energy and envirnoment political targets.

  1. Forest biomass as an energy source

    Science.gov (United States)

    P.E. Laks; R.W. Hemingway; A. Conner

    1979-01-01

    The Task Force on Forest Biomass as an Energy Source was chartered by the Society of American Foresters on September 26, 1977, and took its present form following an amendment to the charter on October 5, 1977. It built upon the findings of two previous task forces, the Task Force on Energy and Forest Resources and the Task Force for Evaluation of the CORRIM Report (...

  2. Biomass energy consumption in Nigeria: integrating demand and supply

    International Nuclear Information System (INIS)

    Momoh, S.; Soaga, J.

    1999-01-01

    The study examined the present and future consumption of biomass energy in Nigeria. Direct consumption of fire wood for domestic purposes is the predominant form of biomass energy consumption. Charcoal plays minot roles in biomass energy supply. The current and expected demand for fuelwood is projected to increase by 399% whereas supply is expected to decrease by 17.2% between 1995 and year 2010. Resource adequacy in terms of planned supply is on the decline. Forest estates which is the only planned strategy for fuelwood and wood production is projected to decline from 6.37 million ha. in 1990 to 2.4 million ha, in year 2010. The possibilities of meeting the fuelwood demand in the future is precarious. Policy measures aimed at increasing forest estates. reduction of loss of forest lands to other uses and encouragement of private forestry are recommended

  3. Biomass energy: progress in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [CPL Scientific Limited, Newbury (United Kingdom)

    1996-05-01

    A brief overview of the progress in the use of biomass energy in the European Union is presented. Wood fuel, support for renewable energy research, liquid biofuel, wastes and residues, and non-food use of crops such as the production of fuels from lignocellulosic materials are examined. (UK)

  4. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Sosa, Amanda; McDonnell, Kevin; Devlin, Ger

    2016-01-01

    The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions. - Highlights: • Life cycle assessment of biomass co-firing and CHP systems in Ireland is carried out. • GWP, acidification and eutrophication potentials, and energy demand are assessed. • Biomass supply is optimised based on minimising GHG emissions. • CHP systems cause lower environmental impacts than biomass co-firing with peat. • Displacing peat achieves higher GHG emission reductions than replacing fossil heat.

  5. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  6. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    Science.gov (United States)

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  7. Biomass based energy. A review on raw materials and processing methods; Energie aus Biomasse. Eine Uebersicht ueber Rohstoffe und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Woellauer, P

    2007-07-01

    The book reviews the variety of biogenic raw materials and the technologically important biomass conversion techniques. The chapter on the different kinds of biomass includes a) wood from forestry, landscape culturing and saw mills, bark and old wood; b) plants (corn, miscanthus, cannabis, wheat, rye, sugar beets, grass, rape, etc.), residuals and wastes (straw, liquid manure, slaughthouse wastes, kitchen wastes, sewage sludge, others). The chapter on biomass conversion processing discusses combustion, oxidation in spercritical water, gasification and reforming, fermentation, extrusion or extraction, and downstream processes. The chapter on biomass based electricity and mechanical energy includes refrigeration engineering, direct utilization: Otto engines, Diesel engines, microgas turbine fuel cells, and heat processing: Striling engine, vapour turbine, ORC turbine, externally fired gas turbine, and the Kalina process.

  8. Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel

    Science.gov (United States)

    Alamsyah, R.; Siregar, N. C.; Hasanah, F.

    2017-05-01

    Torrefaction is a pyrolysis process with low heating rate and temperature lower than 300°C in an inert condition which transforms biomass into a low emission solid fuel with relatively high energy. Through the torrefaction process biomass can be altered so that the end product is easy to grind and simple in the supply chain. The research was aimed at designing torrefaction reactor and upgrading energy content of some Indonesian biomass. The biomass used consist of empty fruit bunches of oil palm (EFB), cassava peel solid waste, and cocopeat (waste of coconut fiber). These biomass were formed into briquette and pellet form and were torrified with 300°C temperature during 1.5 hours without air. The results of terrified biomass and non-torrefied biomass were compared after burning on the stove in term of energy content and air emission quality. The result shows that energy content of biomass have increased by 1.1 up to 1.36 times. Meanwhile emission air resulted from its combustion was met with Indonesian emission regulation.

  9. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Energy Technology Data Exchange (ETDEWEB)

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  10. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  11. Challenges in meeting biomass energy needs in West Africa

    Energy Technology Data Exchange (ETDEWEB)

    Dianka, M. [GAA/RPTES, Dakar (Senegal)

    2001-07-01

    Biomass energy represents conciderable potential for West Africa. However, the traditional methods of tapping into this biomass have not only had grave consequences for the environment, but have only been able to partially resolve the crucial issue of how to sustainably supply households with domestic fuels. Nevertheless, recent progress made in the improvement of technologies enhancing biomass energy provides a glimpse at interesting perspectives fostering the modernisating and better assesment of the biocombustible and biofuel industries. Reflection conducted over these past years by a group of African experts, brought together around the ASG at the instigation of the RPTES Programme and founded on a new approach to forest resource management, illustrates the attention public powers are granting increasingly to biomass energy, which had been relegated to the back burner for so long, to the benefit of more 'conventional' energy sources. Considering the complexity of biomass energy issues, and their direct links to poverty, it is evident that isolated actions will never succeed in solving the problems currently faced. Thus it is essential to promote regional collaboration and partnerships for more effective actions and to capitalise on experiences, with the aim of ensuring sustainable development for the continent of Africa. Today, given the economic potential of more than US$6 billion generated by African forests, this implies the introduction of sustainable strategies which will result in increasing incomes and improving welfare in general. West Africa, masthead of the continent, will certainly not be an isolated case. Consequently, vigorous action supporting the sustainable management of natural resources as part of poverty alleviation programmes should be undertaken post-haste, in compliance with the Abuja Treaty establishing the African Economic Community. (au)

  12. Stakeholder perspectives on converting forest biomass to energy in Oregon, USA

    Energy Technology Data Exchange (ETDEWEB)

    Stidham, Melanie; Simon-Brown, Viviane [Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-01-15

    Within the state of Oregon, USA, there is considerable interest in the possibility of converting forest biomass to energy. A number of studies have assessed the technical feasibility of forest biomass energy, but few have focused on social aspects, an important consideration in projects involving public forests. This study explores the social context of converting forest biomass to energy, using qualitative research methods. Semi-structured interviews were conducted with forty individuals representing nine different stakeholder groups. Information gained through interviews was used to understand stakeholder views on forest biomass energy, including their perspectives on potential barriers and opportunities in Oregon. Findings indicate the most challenging barrier will be access to long-term, consistent supply. A related challenge is the long history of contention between parties over forest products coming from public lands. However, findings also show that there are many areas of common ground between these groups that have historically been at odds, such as agreement on the necessity of restoration treatments in certain forest types, the by-product of which could be used for biomass generation. Potential conflicts still exist, for instance over projects in mixed conifer forests. Development of policies and projects through inclusive, collaborative approaches could alleviate controversies, potentially allowing more activities to move forward. Information provided by this research creates a foundation for discussions as forest biomass energy becomes an increasingly prominent issue in Oregon, the western USA, and other regions of the world. (author)

  13. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  15. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  16. Process evaluation of the Regional Biomass Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  17. Report on a survey in fiscal 1999. Part 2. Survey on the biomass-derived energy conversion technology; 1999 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Biomass energy is positioned as a promising environment harmonizing energy in the 21st century because it does not break down the CO2 balance in the global scale. The present survey has investigated quantity of biomass resources utilizable as energy resources, investigated and analyzed the biomass-derived energy conversion technology, searched for a promising practically usable technology, and discussed the means to achieve the technological introduction. The foreword chapter describes that now is the good time to recognize importance of and introduce the biomass-derived technology. First and second chapters estimate energy potential and utilizable quantity of wastes-based biomass in Indonesia, Malaysia, the Philippines, and Brazil. Chapter 3 investigates feasibility of methane fermentation and ethanol fermentation as a promising bio-chemical conversion process. Chapter 4 has performed feasibility studies on biomass electric power generation, methanol synthesis by gasification, thermal decomposition and gasification as promising thermo-chemical conversion processes. Chapter 5 proposed a biomass electric power generation system, a biomass-gasified methanol synthesizing system, and a dimethyl ether production system. (NEDO)

  18. Research on biomass energy and environment from the past to the future: A bibliometric analysis.

    Science.gov (United States)

    Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei

    2018-09-01

    The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Study on the current status of biomass energy development; Bio mass energy no kaihatsu jokyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted on the present status of biomass energy in Japan and abroad and the developmental trend of the latest biomass energy technology. Brazil and the U.S. are most advancing in the biomass energy utilization. Brazil uses sugar cane which is plenty in supply as a raw material, and the U.S. does corn which is the surplus crop. Both countries use the conventional ethanol fermentation technology and produce the petroleum substitution liquid fuel which is in greatest need. As to the technology to convert biomass resource into energy, attention has so far been paid to the development of the production process of the liquid fuel. The latest technology for ethanol fermentation using saccharin and starch as raw materials has already been established in Japan, and the energy-saving type alcohol recovery technology has also reached the stage of practical application. Moreover, as to the ethanol conversion technology with cellulose substrate, the development of the saccharification process will be needed in future. 15 figs., 10 tabs.

  20. Role of forest biomass energy in developing countries

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1996-01-01

    Forest biomass holds a significant position for energy production in developing countries. Its importance is elucidated through various activities performed by the rural industries. The socio-economic and environmental aspects in utilizing this type of energy are also discussed. (Author)

  1. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  2. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  3. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  4. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  5. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Energy Requirements for Biomass Harvest and Densification

    Directory of Open Access Journals (Sweden)

    Kevin Shinners

    2018-03-01

    Full Text Available This research quantified the unit and bulk density of several biomass crops across a variety of harvest and processing methods, as well as the energy and fuel requirements for these operations. A load density of approximately 240 kg·m−3 is needed to reach the legal weight limit of most transporters. Of the three types of balers studied, only the high density (HD large square baler achieved this target density. However, the specific energy and fuel requirements increased exponentially with bale density, and at the maximum densities for corn stover and switchgrass, the dry basis energy and fuel requirements ranged from 4.0 to 5.0 kW·h·Mg−1 and 1.2 to 1.4 L·Mg−1, respectively. Throughputs of tub grinders when grinding bales was less than any other harvesting or processing methods investigated, so specific energy and fuel requirements were high and ranged from 13 to 32 kW·h·Mg−1 and 5.0 to 11.3 L·Mg−1, respectively. Gross size-reduction by pre-cutting at baling increased bale density by less than 6% and increased baling energy requirements by 11% to 22%, but pre-cut bales increased the tub grinder throughput by 25% to 45% and reduced specific fuel consumption for grinding by 20% to 53%. Given the improvement in tub grinder operation, pre-cutting bales should be considered as a means to increase grinder throughput. Additional research is needed to determine the energy required to grind high density pre-cut bales at high throughputs so that better estimates of total energy required for a high density bale system can be made. An alternative bulk feedstock system was investigated that involved chopping moist biomass crops with a precision-cut forage harvester, compacting the bulk material in a silo bag, and then segmenting the densified material into modules optimized for efficient transport. The specific fuel use for chopping and then compacting biomass crops in the silo bag ranged from 1.6 to 3.0 L·Mg−1 and 0.5 to 1.3 L·Mg−1

  7. Technical and economic analysis of using biomass energy

    Directory of Open Access Journals (Sweden)

    Piaskowska-Silarska Małgorzata

    2017-01-01

    Full Text Available In the first part of the article were presented the technical possibilities of obtaining solid biomass, biogas, landfill gas, a biogas from wastewater treatment plants, bioethanol and biodiesel. Then processes was described, allowing use of energy from biomass. As first was discussed the incineration which includes drying and degassing of the wood materials, wood gas burning at 1200°C, post-combustion gas and heat transfer in the heat exchanger. Then had been described gasification, or thermochemical conversion process, occurring at high temperature. It is two-stage process. In the first chamber at deficiency of air and at relatively low temperatures (450–800°C, the fuel is being degasified, resulting in creating combustible gas and a mineral residue (charcoal. In the second stage, secondary combustion chamber and at a temperature of about 1000–1200°C and in the presence of excess of oxygen resultant gas is burned. A further process is pyrolysis. It consists of the steps of drying fuel to a moisture level below 10%, milling the biomass into very small particles, the pyrolysis reaction, separation of solid products, cooling and collecting bio-oil. Then discusses co-generation, which is combined production of heat and electricity. In this situation where the biomass contains too much water it can be used for energy purposes through biochemical processes. The alcoholic fermentation results in decomposition of carbohydrates taking place under anaerobic conditions, and the product is bioethanol. Another biochemical process used for the production of liquid biofuels is esterification of vegetable oils. Methane fermentation in turn causes a decomposition of macromolecular organic substances with limited oxygen available. As a result, we obtain alcohols, lower organic acids, methane, carbon dioxide and water. There was analysis of economic increasing of solid biomass energy, biogas and liquid biofuels in the following article.

  8. Economic Potential of Biomass from Unused Agriculture Land for Energy Use

    DEFF Research Database (Denmark)

    Pfeifer, A.; Dominkovic, Dominik Franjo; Ćosić, B.

    2015-01-01

    In this paper the energy potential of biomass from growing short rotation coppice (SRC) on unused agricultural land in the Republic of Croatia was examined. At present, SRC is not completely recognized in Croatian legislative and considerations in energy strategy and action plans. The paper aspires...... to contribute to better understanding of the role SRC can take in national and local energy planning. The methodology is provided for regional analysis of biomass energy potential on unused agricultural land and for assessing the cost of the biomass at the power plant (PP) location considering transport...... plants and appropriate size of seasonal heat storage is discussed for each case study. Case studies have shown the potential for use of previously unused agricultural land to help achieve national targets for renewable energy sources as well as reducing carbon dioxide emissions, help diversify...

  9. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  10. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  11. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Teel, A.; Brown, S.S. [Iowa State Univ., Ames, IA (United States)

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  12. Torrefaction of waste biomass for application in energy production in South Africa

    Directory of Open Access Journals (Sweden)

    T.A. Mamvura

    2018-06-01

    Full Text Available Power producing plants are major emitters of greenhouse gases that lead to global warming and climate changes. In the past two to three decades, attention has been drawn to organizations such as these reduce their dependence on coal reserves which are depleting and focus on producing clean energy i.e. for every ton of fuel produced, 100 kg or more should be made from clean energy. This has made torrefaction to gain interest as it improves energy content of biomass, a renewable and clean energy source, to levels equal to and sometimes above that of coal. The benefit of this is that, torrefied biomass could be co-fired with coal thereby reducing greenhouse gases and global warming.In this study, the effect of different parameters were investigated on two abundant sources of biomass in South Africa. There parameters were temperature, oxygen content, heating rate and residence time. It was observed that a temperature range between 275 and 300 °C under inert conditions with a heating rate of 10 °C/min and residence time between 20 and 40 min were required to achieve the best biomass with properties comparable to those of coal. This made it possible to co-fire the biomass with coal for energy production at different proportions. Keywords: Torrefaction, Biomass, Coal, Higher heating value

  13. FY 2000 report on the results of the survey on the biomass-derived energy conversion technology. III; 2000 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation to the biomass-derived energy conversion technology which was regarded as promising from the results of the survey already made, the survey was made on the present situation and subjects of the technical development, social needs, energy efficiency, economical efficiency and the future. Studies were conducted on the development of technology for effective biomass utilization and the conceptual design and evaluation of a system for effective biomass utilization. As to the effective biomass utilization technology, the survey was made on the biomass combustion power generation technology/gasification power generation technology, gasification methanol synthesis of biomass, biomass gasification dimethyl ether synthesis, technology of ethanol production by alcohol fermentation via saccharification of biomass, methy-esterification of grease biomass, especially palm oil, and diesel oil production via reformation of by-product glycerin, and energy production from biomass using super- (sub- ) critical reaction. As to the system for effective biomass utilization, the survey was carried out of the regional outline, resource amount and sampling amount, selection of the conversion technology, and economical efficiency of Takatsuki city, Osaka, Shimokawa town, Hokkaido, Yufutsu/Hidaka region, Hokkaido, and Aogaki town, Hyogo. (NEDO)

  14. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions

    International Nuclear Information System (INIS)

    Mafakheri, Fereshteh; Nasiri, Fuzhan

    2014-01-01

    Reducing dependency on fossil fuels and mitigating their environmental impacts are among the most promising aspects of utilizing renewable energy sources. The availability of various biomass resources has made it an appealing source of renewable energy. Given the variability of supply and sources of biomass, supply chains play an important role in the efficient provisioning of biomass resources for energy production. This paper provides a comprehensive review and classification of the excising literature in modeling of biomass supply chain operations while linking them to the wider strategic challenges and issues with the design, planning and management of biomass supply chains. On that basis, we will present an analysis of the existing gaps and the potential future directions for research in modeling of biomass supply chain operations. - Highlights: • An extensive review of biomass supply chain operations management models presented in the literature is provided. • The models are classified in line with biomass supply chain activities from harvesting to conversion. • The issues surrounding biomass supply chains are investigated manifesting the need to novel modeling approaches. • Our gap analysis has identified a number of existing shortcomings and opportunities for future research

  15. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  16. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  17. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  18. Planning woody biomass logistics for energy production: A strategic decision model

    International Nuclear Information System (INIS)

    Frombo, F.; Robba, M.; Minciardi, R.; Sacile, R.; Rosso, F.

    2009-01-01

    One of the key factors on which the sustainable development of modern society should be based is the possibility to take advantage of renewable energies. Biomass resources are one of the most common and widespread resources in the world. Their use to produce energy has many advantages, such as the reduction of greenhouse emissions. This paper describes a GIS-based Environmental Decision Support System (EDSS) to define planning and management strategies for the optimal logistics for energy production from woody biomass, such as forest biomass, agricultural scraps and industrial and urban untreated wood residues. The EDSS is characterized by three main levels: the GIS, the database, and the optimization. The optimization module is divided in three sub-modules to face different kinds of decision problems: strategic planning, tactical planning, and operational management. The aim of this article is to describe the strategic planning level in detail. The decision variables are represented by plant capacity and harvested biomass in a specific forest parcel for each slope class, while the objective function is the sum of the costs related to plant installation and maintenance, biomass transportation and collection, minus the benefits coming from the energy sales at the current market price, including the renewable energy certificates. Moreover, the optimization problem is structured through a set of parameters and equations that are able to encompass different energy conversion technologies (pyrolysis, gasification or combustion) in the system. A case study on the Liguria Region (Savona Province) is presented and results are discussed. (author)

  19. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  20. Energy from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.J. (Tate and Lyle, Ltd., Reading, England); Vlitos, A.J.; Coombs, J.

    1983-09-01

    The most-abundant biomass is wood, of which cellulose is a major component. Burning releases directly as heat, solar energy which has been stored in the wood as a result of the process of photosynthesis. It is also possible to convert cellulose to simple sugars which may be fermented to ethanol, a more convenient source of energy as a fuel for internal combustion engines; alternatively, wood may be gasified at high temperature in the presence of steam. The resulting synthesis gas can be catalytically converted into methanol. Neither route to a liquid fuel from cellulosic residues has yet been proved economically feasible. However, alcoholic fermentation of sugar, or glucose obtained by the hydrolysis of starch may provide a commercially viable process for the production of fuel alcohol. Both sugar and starch are agricultural food products which are obtained from cane sugar, maize and cassava. Other sources of fermentable sugars and starch include pineapple, sweet sorghum, sago palm, yams and other root crops. The energy input required to grow and process agricultural products may be greater than the energy yield in the form of anhydrous fermentation alcohol. As a consequence, only sugar cane and possibly sweet sorghum can be regarded as giving a net positive energy yield. Maize and, on a more-limited scale, cassava, may provide a viable process, given an additional source of low-grade energy, as is evident from the successful exploitation of these crops for fuel-alcohol production in the US and Brazil. 31 references, 12 figures, 3 tables.

  1. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  2. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  3. WOOD BIOMASS FOR ENERGY IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gradimir Danon

    2010-01-01

    Full Text Available Wood biomass has got its place in the energy balance of Montenegro. A little more than 6% of the total energy consumption is obtained by burning wood. Along with the appropriate state measures, it is economically and environmentally justified to expect Montenegro to more than double the utilization of the existing renewable energy sources including wood biomass, in the near future. For the purpose of achieving this goal, ‘Commercial Utilisation of the Wood Residue as a Resource for Economic Development in the North of Montenegro' project was carried out in 2007. The results of this project were included in the plan of the necessary interventions of the Government and its Agencies, associations or clusters, non-government organisations and interested enterprises. The plan was made on the basis of the wood residue at disposal and the attitude of individual subjects to produce and/or use solid bio-fuels and consists of a proposal of collection and utilisation of the wood residue for each individual district in the north of Montenegro. The basic factors of sustainability of future commercialisation of the wood residue were: availability of the wood raw material, and thereby the wood residue; the development of wood-based fuel markets, and the size of the profit.

  4. Towards energy self sufficiency in the North: Energy conservation and forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A symposium was held to address the issues of controlling energy demand through conservation, and increasing the range of energy supply using forest products (biomass) as a renewable alternative to fossil fuels in Canada's northern climates. Sections on retrofitting of thermal insulation, production of wood fuels, and unconventional energy analyses of these technologies are included. Separate abstracts have been prepared for 23 papers.

  5. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, e...

  6. Biomass energy: State of the technology present obstacles and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  7. Energy from wood biomass: The experience of the Brazilian forest sector

    Energy Technology Data Exchange (ETDEWEB)

    Couto, L. [Universidade Federal de Vicosa (Brazil); Graca, L.R. [Centro Nacional de Pesquisa de Floresta, Colombo (Brazil); Betters, D.R. [Colorado State Univ., Fort Collins, CO (United States)

    1993-12-31

    Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being built in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.

  8. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  11. Production and trading of biomass for energy - An overview of the global status

    International Nuclear Information System (INIS)

    Heinimoe, J.; Junginger, M.

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr -1 ) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr -1 ), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  12. Assessment of industrial activity in the utilization of biomass for energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  13. Carbon dioxide from integrated biomass energy systems - examples from case studies in USA

    International Nuclear Information System (INIS)

    Boman, U.

    1996-04-01

    This report is a result of a work by Vattenfall and Electric Power Research Institute (EPRI) to study a number of integrated biomass energy systems. The emphasis of this paper will be on the energy systems of the projects in Minnesota and New York. By introducing the dedicated feedstock supply system (DFSS), the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from the DFSS. External energy is required for the production of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing fossil fuels as external input fuels for production of biomass, we would get about 10-15 times more electric energy per unit fossil fuel, than we would get if the fossil fuel was utilized in a power directly. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly. But the reduction rate is related to the process and the whole integrated system. The reduction could possibly be increased further, by introducing more efficient methods in farming, transportation, and handling, and by selecting the best methods or technologies for conversion of biomass fuel to electricity. 25 refs, 8 figs, 8 tabs

  14. Ecological effects of harvesting biomass for energy in the Spanish Mediterranean

    International Nuclear Information System (INIS)

    Zavala, Miguel A.; Marcos, Francisco

    1993-01-01

    Biomass utilization for energy has major consequences for Spanish Mediterranean landscapes. In this paper we present a synthesis of the ecological effects of harvesting biomass for energy. We compare these effects with other fuel reduction procedures such as prescribed burning. Throughout history we see that some Iberian ecosystems are stabilized by long human interference. One of the stabilizing factors is the utilization of wood as a source of energy. New energy sources and massive human movements towards urban areas have changed the ecosystem dynamics. Reforested areas in Spain during the period from 1940 to 1970 included silviculture treatments that in some cases never took place. This has led to a greater accumulation of biomass. The current perspective of the problem must be analyzed from an economic and political viewpoint. For instance, the Middle East crisis has direct consequences for the budget dedicated to forest energetics, and consequently for the landscape. This shows how ecological problems must be dealt with using a very broad perspective. In Spain current biomass usage should be considered primarily as a complementary silvicultural treatment rather than as a way of producing great biomass outputs. If we are going to manage our forest from an ecological perspective, we have to analyze the effects of these operations at the stand level. At the landscape level fuel management plans should be included in the Forest Management Prescriptions (ordenaciones) whether in terms of harvesting or in a prescribed burning plan

  15. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  16. Biomass-based energy carriers in the transportation sector; Biomassebaserade energibaerare foer transportsektorn

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO{sub 2} emission reduction per unit arable and forest land used for biomass production (kg CO{sub 2}/ha,year) and costs for CO{sub 2} emission reduction (SEK/kg CO{sub 2}) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO{sub 2} emission reduction. In a medium long perspective, the costs for CO{sub 2} emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  17. Small-scale automated biomass energy heating systems: a viable option for remote Canadian communities?

    Energy Technology Data Exchange (ETDEWEB)

    McCallum, B. [Canadian Forest Service, Ottawa, ON (Canada). Industry, Economics and Programs Branch

    1997-12-31

    The potential benefits of wood energy (forest biomass) for space heating in Canada`s remote communities was discussed. Diesel fuel and heating oil must be transported into these communities to produce electricity and to heat large public buildings. Below the treeline, roundwood is often used to heat private homes. The move toward environmentally sustainable development has focussed much attention on renewable energy technologies such as biomass energy, (i.e. any form of energy derived from plant or animal materials). Wood is the most readily available biomass fuel in remote communities. Woodchips and sawmill waste can be burned in automated biomass heating systems which provide a convenient way to use low-grade wood to heat large buildings or groups of buildings which would not be feasible to heat with roundwood. It was shown that one cord of spruce can produce 1.5 tonnes of woodchips to ultimately displace 300 litres of heating oil. A description of a small-commercial and small-industrial biomass system was presented. The benefits of biomass were described as: (1) direct savings compared to high-cost oil heat, (2) increased circulation of energy dollars inside the community, and (3) employment opportunities in harvesting, processing and operating biomass systems. A steady supply of good quality woodchips to the heating plant must be ensured. 1 ref., 3 figs.

  18. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  19. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    Directory of Open Access Journals (Sweden)

    Heidi Scott

    2016-06-01

    Full Text Available This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sources. To consider the comparative literatures of energy as they relate to transportation, we will begin with wind, then consider muscle-driven biomass giving way to coal locomotion, and conclude with the highest octane fuel, petroleum. The central interest is in how the fuel depicted in literature illuminates historical moments in which the interfaces between self, society, and nature are configured by specific energy regimes. By using literature as a source text, we may arrive at an emotionally and philosophically more robust synthesis of energy history than the social and natural sciences, relying upon objective accounts and statistics, are able to provide. By re-reading literature through the lens of the Anthropocene, we gain perspective on how earlier insights into the relationship between energy and experience can inform our explorations of today’s ontological reality. Energy literature instructs us out of the fossil fuel mindset of world domination and back to a physical realm in which we are small actors in a world guided by capricious forces. Such a reality requires hard muscular work and emotional immersion to restore an ethic of care and sustainability.

  20. Impact of future tax incentive legislation on the development of biomass energy

    International Nuclear Information System (INIS)

    Middleton, G.L. Jr.

    1991-01-01

    Historically, the use of biomass as an energy source has been subsidized by generous tax incentives. These tax incentives took the form of tax-exempt financing, the energy tax credit, the investment tax credit, and short depreciation lives. Common with tax incentives in other areas, the tax incentives for biomass projects have been curtailed in recent years. Given the appetite of Congress for revenue, it is not likely that the recent trend will reverse. If changes do occur, they are likely to involve liberalization of some oof the rules for tax-exempt debt. But even under current law, there are still tax advantages available for biomass energy projects, of which potential developers should be aware

  1. Environmental Multiobjective Optimization of the Use of Biomass Resources for Energy

    DEFF Research Database (Denmark)

    Vadenbo, Carl; Tonini, Davide; Astrup, Thomas Fruergaard

    2017-01-01

    of the optimization model is exemplified by a case aimed at determining the environmentally optimal use of biomass in the Danish energy system in 2025. A multiobjective formulation based on fuzzy intervals for six environmental impact categories resulted in impact reductions of 13-43% compared to the baseline...... environmental consequences. To circumvent the limitations of scenario-based life cycle assessment (LCA), we develop a multiobjective optimization model to systematically identify the environmentally optimal use of biomass for energy under given system constraints. Besides satisfying annual final energy demand...

  2. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  3. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  4. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  5. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  6. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  7. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...

  8. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  9. The French market of biomass. An analysis of barriers and levers of development of the wood-energy sector, main biomass resource

    International Nuclear Information System (INIS)

    2011-06-01

    This article presents the content of a market study which aimed at assessing the weight of wood-energy in the French energy mix when it represents 97 per cent of biomass consumed under the form of heat, at giving an overview of markets within which this energy is now valorised (housing heating, heat and cogeneration), at analysing the business model of biomass projects, at assessing mechanisms aimed at supporting this sector, and at assessing the potential of the French market as far as wood-energy is concerned. The report presents the operation principles and applications of biomass, analyses the share of wood-energy in the French energy mix and the objectives defined by the Grenelle de l'Environnement, presents the French forests as an abundant resource, comments wood-based heating of housing as an evolving market, presents and analyses the market of industrial and collective heat, and discusses the perspective of a multiplication by 4 by 2020 of cogeneration installed capacities

  10. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  11. Biomass of Microalgae as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Głowacka Natalia

    2017-05-01

    Full Text Available Algae represent a potential source of energy via anaerobic digestion. The aim of the study was to obtain the possible potential of green microalgae, which could replace the commonly used corn silage for the production of biogas in the future. The intensive construction of new biogas plants stations across Europe and the lack of arable land suitable for the cultivation of biomass for energy purposes are the fundamental reasons behind looking for the alternative raw materials for energy production as a substitute for commonly used input materials. When comparing green microalgae with conventional crops the high productivity potential (high oil content as well as the possibility of their production during the whole year can be noticed. It is necessary to find the effective way to produce biomass from green microalgae, proper for energy conversion, while ensuring the economic and environmental aspects. The interim research results mentioned in this article indicate that microalgae present appropriate alternative material for the process of anaerobic digestion.

  12. Overview on the development and utilization of biomass energy in Africa and Asia

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, S D [Biomass Energy Services and Technology Pty. Ltd., Saratoga, New South Wales (Australia)

    1995-12-01

    In developing countries, biomass is the main source of energy for rural communities and industries and is often a source even for urban households. A pressing concern is the rapid rate of deforestation, brought about by two factors: land clearing for agricultural production and for dwellings and the growing demand for biomass as an energy source. The production of agricultural and forest residues has also been increasing. Much of this residue is disposed of by burning it on the fields or is used in highly polluting stoves and furnaces for cooking or other food processing or industrial activities. Air pollution from inefficient combustion of biomass residues is severe in a number of places, leading to increases in eye and lung diseases and in greenhouse gas emissions. In this overview paper, the following information will be provided: Summary of the available data on biomass resources from Africa and Asia and indication of its reliability; Description of the current technologies used to convert biomass to energy; Discussion of the current research and development (R and D) on the efficiency of these technologies; Examination of the barriers impeding the adoption of new, more efficient technologies; Identification and evaluation of the policies and strategies being used to improve the efficiency of biomass as an energy source and to increase resource availability. Biomass will continue to be the main fuel for most households and many rural industries in Asia and Africa for the next 10 years. In many countries, the biomass, especially wood, is being used on an unsustainable basis. A wide range of more efficient and less expensive conversion and production technologies have now been developed and are in use in Africa and Asia. The rates of adoption of these technologies have varied considerably, however, between and within countries of the region. For effective dissemination, governments, non-governmental organizations (NGOs), commercial organizations and end

  13. Overview on the development and utilization of biomass energy in Africa and Asia

    International Nuclear Information System (INIS)

    Joseph, S.D.

    1995-01-01

    In developing countries, biomass is the main source of energy for rural communities and industries and is often a source even for urban households. A pressing concern is the rapid rate of deforestation, brought about by two factors: land clearing for agricultural production and for dwellings and the growing demand for biomass as an energy source. The production of agricultural and forest residues has also been increasing. Much of this residue is disposed of by burning it on the fields or is used in highly polluting stoves and furnaces for cooking or other food processing or industrial activities. Air pollution from inefficient combustion of biomass residues is severe in a number of places, leading to increases in eye and lung diseases and in greenhouse gas emissions. In this overview paper, the following information will be provided: Summary of the available data on biomass resources from Africa and Asia and indication of its reliability; Description of the current technologies used to convert biomass to energy; Discussion of the current research and development (R and D) on the efficiency of these technologies; Examination of the barriers impeding the adoption of new, more efficient technologies; Identification and evaluation of the policies and strategies being used to improve the efficiency of biomass as an energy source and to increase resource availability. Biomass will continue to be the main fuel for most households and many rural industries in Asia and Africa for the next 10 years. In many countries, the biomass, especially wood, is being used on an unsustainable basis. A wide range of more efficient and less expensive conversion and production technologies have now been developed and are in use in Africa and Asia. The rates of adoption of these technologies have varied considerably, however, between and within countries of the region. For effective dissemination, governments, non-governmental organizations (NGOs), commercial organizations and end

  14. Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2016-09-01

    Full Text Available This work presents some energy considerations concerning a biorefinery case study that has been carried out by the CRB/CIRIAF of the University of Perugia. The biorefinery is the case study of the BIT3G project, a national funded research project, and it uses the lignocellulosic biomass that is available in the territory as input materials for biochemical purposes, such as cardoon and carthamus. The whole plant is composed of several sections: the cardoon and carthamus seed milling, the oil refinement facilities, and the production section of some high quality biochemicals, i.e., bio-oils and fatty acids. The main goal of the research is to demonstrate energy autonomy of the latter section of the biorefinery, while only recovering energy from the residues resulting from the collection of the biomass. To this aim, this work presents the quantification of the energy requirements to be supplied to the considered biorefinery section, the mass flow, and the energy and chemical characterization of the biomass. Afterwards, some sustainability strategies have been qualitatively investigated in order to identify the best one to be used in this case study; the combined heat and power (CHP technology. Two scenarios have been defined and presented: the first with 6 MWt thermal input and 1.2 MWe electrical power as an output and the second with 9 MWt thermal input and 1.8 MWe electrical power as an output. The first scenario showed that 11,000 tons of residual biomass could ensure the annual production of about 34,000 MWht, equal to about the 72% of the requirements, and about 9600 MWhe, equal to approximately 60% of the electricity demand. The second scenario showed that 18,000 tons of the residual biomass could ensure the total annual production of about 56,000 MWht, corresponding to more than 100% of the requirements, and about 14,400 MWhe, equal to approximately 90% of the electricity demand. In addition, the CO2 emissions from the energy valorization

  15. Import of renewable energy from biomass from Sweden by The Netherlands. Costs and macro-economic effects

    International Nuclear Information System (INIS)

    Agterberg, A.E.

    1997-12-01

    Import of renewable energy from biomass by the Netherlands is expected to be necessary to meet the objective for renewable energy set by the Dutch government. However, this import does not take place yet and there are many possibilities for import because several countries may serve as a supplier of biomass, there are several types of biomass available in these countries and this biomass can be transported to the Netherlands in many ways. Analysis is necessary to find out what are the best possibilities for import of renewable energy from biomass by the Netherlands. In this study the import of energy, produced in Sweden from biomass, by the Netherlands is analyzed. Sweden is selected as the biomass supplying country because it is expected to have a large potential of biomass. The aspects studied are costs and macro-economic effects (increase in employment and value added caused by the import operation). The objectives are: (1) Selection of likely export chains based on the different sources of biomass for energy in Sweden and the different energy carriers that can be exported; (1) Calculation of the costs for the delivery of 1 kWh of electricity to the main grid in the Netherlands for each chain, for the present and for the year 2010; (3) Calculation of macro-economic effects (changes in employment and value added) in Sweden and the Netherlands for the import of 10 PJ of energy from biomass per year for each chain; (4) Comparison of the chains based on both costs and macro-economic effects; and (5) Discussion of the method and recommendations for simplifications for application in situations with a lower data quality. 45 refs

  16. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  17. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    International Nuclear Information System (INIS)

    1995-12-01

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  18. Biomass for Energy and the Impacts on Food Security

    NARCIS (Netherlands)

    Nonhebel, Sanderine; Barbir, F; Ulgiati, S

    2010-01-01

    In climate policies in the developed world the use of biomass as an energy source plays an important role Indications exist that these policies are affecting global food security In this chapter we compare the global demands for food, feed and energy in the near future We distinguish between

  19. Forestry biomass for energy use

    International Nuclear Information System (INIS)

    Pettenella, D.; Ciccarese, L.

    1992-01-01

    This paper first analyses the current and potential market in Italy for wood chips and firewood and assesses the potential economic and environmental benefits of the use of forestry biomass. Here, the paper cites the favourable opportunities offered by Italian forestry policies and legislative initiatives for energy saving. The survey of the principal consumers of forestry biomass leads to the identification of three distinct user categories - families living in rural are as requiring wood fuels for space heating, small industrial firms requiring process heat and urban (elite) users with homes furnished with fireplaces in addition to conventional space heating systems. Tabled consumption data going back to the year 1955 and estimated per capita consumption in industrialized countries are used to make comparative market trend analyses. The paper then reviews the current state-of-the-art in wood furnace design by noting the innovative design, performance, operation and maintenance characteristics of key residential and industrial furnace components (feeding systems, combustion chambers, heating boxes, heat exchangers, control systems, deashing systems, etc.). A list of the main Italian wood furnace manufacturers is also included

  20. Enhanced the energy outcomes from microalgal biomass by the novel biopretreatment

    International Nuclear Information System (INIS)

    He, Shuai; Fan, Xiaolei; Luo, Shengjun; Katukuri, Naveen Reddy; Guo, Rongbo

    2017-01-01

    Highlights: • The micro-aerobic pretreatment was used to improve energy yield of Chlorella sp. • The Bacillus licheniformis was confirmed to damage the cell wall of microalgae. • Obtained energy from Chlorella sp. was improved by 12.3%. • Pretreatment time was decreased from 60 h to 24 h. • The VS degradation efficiency was increased from 75.7% to 82.1%. - Abstract: Microalgae have been considered as one of the most promising biomass for the generation of biofuels. The anaerobic digestion (AD) has been proved to be a promising technique to transfer the microalgal biomass into biofuels. Previous study demonstrated that anaerobic pretreatment of microalgae biomass by Bacillus licheniformis could improve methane production. In this study micro-aerobic bio-pretreatment of microalgal biomass by the facultative anaerobic bacteria Bacillus licheniformis was invested with different loads of oxygen supplied. The bio-hydrogen and biomethane productions were tested to calculate total energy outcomes. The transmission electron microscope (TEM) photographs suggested that the novel micro-aerobic bio-pretreatment (MBP) could effectively damage the firm cell wall of algal cells. The processing time of the novel method (24 h) was less than the previous anaerobic pretreatment (60 h). Results showed that the group with 5 mL oxygen/g VS fed had the highest total energy outcomes, which was 17.6% higher than that of the anaerobic pretreatment.

  1. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  2. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues Refs, figs, tabs

  3. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Scacchia, Federica

    2005-01-01

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  4. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  5. The exploitation of biomass for building space heating in Greece: Energy, environmental and economic considerations

    International Nuclear Information System (INIS)

    Michopoulos, A.; Skoulou, V.; Voulgari, V.; Tsikaloudaki, A.; Kyriakis, N.A.

    2014-01-01

    Highlights: • The oil substitution with biomass residues for heating buildings is examined. • Primary energy consumption from biomass results increased by 3–4% as compared to diesel oil. • CO 2 and SO 2 emissions are significantly higher with biomass than with diesel oil. • The examined substitution is economically attractive for the final consumers. - Abstract: The exploitation of forest and agricultural biomass residues for energy production may offer significant advantages to the energy policy of the relevant country, but it strongly depends on a number of financial, technological and political factors. The work in hand focuses on the investigation of the energy, environmental and financial benefits, resulting from the exploitation of forest and agricultural biomass residues, fully substituting the conventional fuel (diesel oil) for building space heating in Greece. For this investigation, the energy needs of a representative building are determined using the EnergyPlus software, assuming that the building is located across the various climate zones of Greece. Based on the resulting thermal energy needs, the primary energy consumption and the corresponding emissions are determined, while an elementary fiscal analysis is also performed. The results show that significant financial benefits for the end-user are associated with the substitution examined, even though increased emissions and primary energy consumption have been derived

  6. Biomass for energy or materials? A Western European MARKAL MATTER 1.0 model characterization

    International Nuclear Information System (INIS)

    Gielen, D.J.; Gerlagh, T.; Bos, A.J.M.

    1998-12-01

    The structure and input data for the biomass module of the MATTER 1.0 model, a MARKAL energy and materials systems engineering model for Western Europe, is discussed. This model is used for development of energy and materials strategies for greenhouse gas emission reduction. Preliminary biomass results are presented in order to identify key processes and key parameters that deserve further analysis. The results show that the production of biomaterials is an attractive option for the reduction of greenhouse gas emissions. Biomaterials can substitute materials which require a lot of energy for production or they can substitute fossil fuel feedstocks. Increased biomaterials production will result in increasing amounts of waste biomass which can be used for energy production. An increase of the use of biomass for the production of materials needs more attention in the forthcoming BRED analysis. 93 refs

  7. Valorization of jatropha fruit biomass for energy applications

    NARCIS (Netherlands)

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for

    energy applications

    Ahmad Marasabessy

    Thesis Abstract

    Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha

  8. Energy values and estimation of power generation potentials of some non-woody biomass species

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Patel, S K [National Institute of Technology, Rourkela (India)

    2008-07-01

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

  9. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  10. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  11. The use of biomass in Denmark. Goal and means in ``Energy 21``; Biomasseanvendelse i Danmark. Maal og virkemidler i ``Energi 21``

    Energy Technology Data Exchange (ETDEWEB)

    Odgaard, O.

    1997-12-31

    This conference paper discusses the role of biomass in Denmark up to 2005. The energy action plan ``Energy 21``, which was adopted in 1996, conforms to the goal of reducing the CO{sub 2} emission by 20% by 2005 compared to the 1988 level and by 50% by 2030. In 2030, 20% of the net energy consumption will come from biomass. The instruments for achieving this ambitious goal take the form of agreements with the electricity utilities, taxes and charges, and selective subsidies to the use of biomass technologies, to electricity produced from biomass, and to research and development. Revisions of the Biomass Agreement may contribute to achieving the goals. The market conditions for the electricity utilities for buying straw and wood chips have been made more flexible and biogas may now be used for decentralized combined heat and power in natural gas regions. The development and demonstration projects have paid off by having brought the development to a level where a forced biomass utilization is possible. The development of biomass is undergoing a comprehensive readjustment. 1 figure, 5 tabs.

  12. Wood, straw, energetic crops... Biomass energy. A sustainable alternative for your projects

    International Nuclear Information System (INIS)

    2007-01-01

    After having briefly recalled the French and European legal context promoting the use of renewable energies, this document highlights the challenges associated with such a development. They concern the environment, the energetic independence, the cost of energy, and the local and rural development. It evokes the actions and labels which favour the improvement and the renewal of domestic heating equipment, the large number of installations using biomass for collective heating or for industrial heating. It indicates the objectives of the biomass energy programme for 2007-2010, and describes the French energy conservation agency (ADEME) role and missions within this programme

  13. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  14. Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Monika Yadav

    2018-06-01

    Full Text Available Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications.

  15. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  16. Analysis of potency and development of renewable energy based on agricultural biomass waste in Jambi province

    Science.gov (United States)

    Devita, W. H.; Fauzi, A. M.; Purwanto, Y. A.

    2018-05-01

    Indonesia has the big potency of biomass. The source of biomass energy is scattered all over the country. The big potential in concentrated scale is on the island of Sumatera. Jambi province which is located in Sumatra Island has the potency of biomass energy due to a huge area for estate crop and agriculture. The Indonesian government had issued several policies which put a higher priority on the utilization of renewable energy. This study aimed to identify the conditions and distribution of biomass waste potential in Jambi province. The potential biomass waste in Jambi province was 27,407,183 tons per year which dominated of oil palm residue (46.16%), rice husk and straw (3.52%), replanting rubberwood (50.32%). The total power generated from biomass waste was 129 GWhth per year which is consisted of palm oil residue (56 GWhth per year), rice husk and straw (3.22 GWhth per year), rubberwood (70.56 GWhth per year). Based on the potential of biomass waste, then the province of Jambi could obtain supplies of renewable energy from waste biomass with electricity generated amount to 32.34 GWhe per year.

  17. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  18. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    Negro, S.O.

    2007-01-01

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  19. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  20. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    2012-01-01

    on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer–Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions per PJ energy...... supplied could be significantly reduced (from 68 to 17 Gg CO2-eq/PJ) by increased use of wind and residual biomass resources as well as by electrifying the transport sector. Energy crops for production of biofuels and the use of these biofuels for heavy terrestrial transportation were responsible for most...... environmental impacts in the 2050 scenarios, in particular upstream impacts from land use changes (LUCs), fertilizer use and NOx emissions from the transport sector were critical. Land occupation (including LUC effects) caused by energy crop production increased to a range of 600–2100 × 106 m2/PJ depending...

  1. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland has been

  2. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  3. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  4. Conflict over biomass energy development in the United Kingdom: some observations and lessons from England and Wales

    International Nuclear Information System (INIS)

    Upreti, B.R.

    2004-01-01

    The aim of this paper is to examine the causes of conflict over biomass energy development in the United Kingdom. This paper discusses social dimensions of development of biomass power plants. Based on the four case studies from England and Wales this paper examines impacts of public oppositions on planning permission. This paper revels that public opposition is one of the major obstacles to promote biomass energy. Though local communities value environmental benefits of biomass energy, they concern more on the immediate negative local effects of power plants to their areas. Main sources of public conflict over biomass energy development were related to location of the plant, perceived risks, and negative effects to ecology and landscape compared to few economic benefits to local people. Other factors contributing to the conflict were feeling of injustice, weak public relation strategy of the developers and low level of awareness. The paper concludes that biomass energy can be promoted only if all actors: the central government, developers, local councils, environmental concern groups and local communities make collective efforts. Such collaborative efforts need drastic shift in the current approach of biomass energy development

  5. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  6. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  7. Energy study of the energy supply systems for isolated communities in Cuba from the use of biomass gasifiers downdraft

    International Nuclear Information System (INIS)

    Pla Duparté, Manuel

    2015-01-01

    At work a comprehensive energy analysis of plants generating electricity from the gasification of various biomass that currently conceived by the management of the Electric Union for the electrification of isolated communities in the fields of Cuba is made. For this, based on the properties of the main biomass available, the calculations needed are performed to evaluate the efficiency of the gasifier and other components of energy transformation system. The power generation are taken into consideration and an assessment of the needs of biomass in each case is made. (full text)

  8. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  9. A Spatial Model of the Biomass to Energy Cycle

    DEFF Research Database (Denmark)

    Möller, Bernd

    2003-01-01

    by location. This paper aims to contribute to the development of a biomass to energy evaluation and mapping system, using geographical information systems (GIS). A GIS-based in-forest residue model considers forest growth and choice of harvest method. Data from a sawmill survey is used to assess sawmill resi...... and the costs of accumulated amounts of wood residues can now be calculated almost instantly for each location in the country. It is assumed that this approach will facilitate the assessment of future biomass markets....

  10. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    International Nuclear Information System (INIS)

    Rentizelas, A.; Tolis, A.; Tatsiopoulos, I.

    2009-01-01

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases

  11. BioOil presents: Free-flowing alternative to traditional biomass energy generation

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, S.

    2003-12-01

    A new technology, called fast pyrolysis, is described. Fast pyrolysis is a process for converting biomass collected from agricultural and forest residues into an organic liquid fuel, called BioOil, that's easily transported, stored and handled. BioOil's principal virtue is that it can be used to generate carbon-neutral, cost-effective process heat and electricity; it also disposes of organic waste, and creates new jobs and industries. As an indication of interest in BioOil, two recent developments are cited as worthy of note: an award of $23 million for biomass research jointly by the USDA and the USDOE and a commitment of $30 million by the Government of Canada to support the development and demonstration of bio-based systems and technologies. (The Canadian investment is part of the $1 billion commitment toward implementation of the Climate Change Program for Canada). The fast pyrolysis process is carbon dioxide neutral, i.e. when biomass is converted into thermal energy, the carbon dioxide that is released is equal to the amount of carbon dioxide that went into growing the biomass. The process is particularly appealing to energy companies in areas with large forestry or agricultural potential. In Canada, DynaMotive Energy Systems Corporation is the most advanced in developing and commercializing environmentally friendly fuels produced from biomass; the company is also a world leader in fast pyrolysis technology. Ontario Power Generation is cooperating with DynaMotive on a project to produce BioOil from residue supplied by Erie Flooring and Wood Products. The 2.5 megawatt gas turbine that will combust the bio-oil and generate electricity will be supplied by the Magellan Aerospace Corporation. Beyond meeting the energy requirements of Erie Flooring and Wood Products, the project will also contribute about 1.5 megawatts of power to OPG's green energy portfolio in 2004. It is expected that the example of a commercial project of this scale, will serve

  12. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  13. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  14. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  15. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  16. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  17. Biomass availability, energy consumption and biochar production in rural households of Western Kenya

    International Nuclear Information System (INIS)

    Torres-Rojas, Dorisel; Lehmann, Johannes; Hobbs, Peter; Joseph, Stephen; Neufeldt, Henry

    2011-01-01

    Pyrolytic cook stoves in smallholder farms may require different biomass supply than traditional bioenergy approaches. Therefore, we carried out an on-farm assessment of the energy consumption for food preparation, the biomass availability relevant to conventional and pyrolytic cook stoves, and the potential biochar generation in rural households of western Kenya. Biomass availability for pyrolysis varied widely from 0.7 to 12.4 Mg ha -1 y -1 with an average of 4.3 Mg ha -1 y -1 , across all 50 studied farms. Farms with high soil fertility that were recently converted to agriculture from forest had the highest variability (CV = 83%), which was a result of the wide range of farm sizes and feedstock types in the farms. Biomass variability was two times lower for farms with low than high soil fertility (CV = 37%). The reduction in variability is a direct consequence of the soil quality, coupled with farm size and feedstock type. The total wood energy available in the farms (5.3 GJ capita -1 y -1 ) was not sufficient to meet the current cooking energy needs using conventional combustion stoves, but may be sufficient for improved combustion stoves depending on their energy efficiency. However, the biomass that is usable in pyrolytic cook stoves including crop residues, shrub and tree litter can provide 17.2 GJ capita -1 y -1 of energy for cooking, which is well above the current average cooking energy consumption of 10.5 GJ capita -1 y -1 . The introduction of a first-generation pyrolytic cook stove reduced wood energy consumption by 27% while producing an average of 0.46 Mg ha -1 y -1 of biochar. -- Highlights: → Total energy from wood fuel available on smallholder farms in Western Kenya was not sufficient to meet current cooking energy needs using conventional combustion stoves, but may be sufficient for improved combustion stoves. → Feedstock options acceptable to pyrolysis cook stoves which includes crop residues, exceeded the energy needs required for daily

  18. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.

  19. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics

  20. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  1. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  2. Production of renewable energy from biomass and waste materials using fluidized bed technologies

    International Nuclear Information System (INIS)

    Rozainee, M.; Rashid, M.; Looi, S.

    2000-01-01

    Malaysian industries generate substantial amount of biomass and waste materials such as wastes from agricultural and wood based industries, sludge waste from waste-water treatment plants and solid waste from municipals. Incinerating these waste materials not only produces renewable energy, but also solving their disposal problems. Fluidized bed combustors are widely used for incinerating these biomass materials. The significant advantages of fluidized bed incineration include simple design, efficient, and ability to reduce air pollution emissions. This paper discusses the opportunities and challenges of producing the green energy from biomass materials using the fluidized bed technologies. (Author)

  3. Doses de boro no desenvolvimento de copo-de-leite em solução nutritiva Boron doses in the development of calla lily in nutrient solution

    Directory of Open Access Journals (Sweden)

    Roseane Rodrigues de Souza

    2010-12-01

    Full Text Available O boro desempenha funções importantes em processos biológicos das plantas, como a síntese e estruturação da parede celular, lignificação, metabolismo e transporte de carboidratos, além de participar da divisão e diferenciação celular em tecidos meristemáticos. No entanto, as necessidades nutricionais para o cultivo de copo-de-leite, especialmente de boro, ainda são pouco conhecidas. Assim, objetivou-se avaliar os efeitos de diferentes doses de boro no crescimento e desenvolvimento, teor e acúmulo desse nutriente em plantas de copo-de-leite cultivadas em solução nutritiva. Mudas micropropagadas foram submetidas aos tratamentos com as doses de 0,05; 0,25; 0,50; 0,75; 1,00 e 2,00 mg L-1 de boro em solução nutritiva de Hoagland & Arnon diluída a 30% de sua força iônica. O delineamento experimental foi o inteiramente casualizado, com dez repetições. As plantas não manifestaram sintomas visuais de deficiência ou de toxidez de boro, no entanto, o sistema radicular das plantas cultivadas na dose de 0,05 mg L-1 de boro apresentou-se com o crescimento reduzido. A melhor dose para o desenvolvimento adequado de plantas de copo-de-leite em solução nutritiva é de 1,20 mg L-1 de boro.Boron has essential functions in plant biological processes such as cell wall synthesis and structuralization, lignification, carbohydrates metabolism and transport. This element also acts in cell division and differentiation in meristematic tissues. However, the nutritional needs for calla lily cultivation, and especially boron needs, are still poorly known. Thus, the objective of this work was to evaluate the effects of different boron doses on growth and development, content and accumulation of boron in calla lily plants grown in a nutrient solution. Micropropagated seedlings were submitted to treatments with the doses 0.05; 0.25; 0.50; 0.75; 1.00 and 2.00 mg L-1 boron in Hoagland & Arnon nutrient solution diluted to 30% of its ionic force. The

  4. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Biomass gasification: a strategy for energy recovery and disposal of industrial and municipal wastes. Anurag Pandey, Anupam Shukla. Abstract. Energy from biological organic waste as an aspect of sustainable waste management is probably the most contentious. Solid and liquid wastes are a rapidly growing problem ...

  5. The biomass energy industry of northern New England: Lessons for America

    Energy Technology Data Exchange (ETDEWEB)

    Connors, J.F. [Maine State Planning Office, Augusta, ME (United States); Keeney, N.H. III [New Hampshire Governor`s Office of Energy and Community Services, Concord, NH (United States)

    1993-12-31

    The successful development of biomass energy for electricity generation in northern New England (Maine, New Hampshire) was launched by new innovative public policies and the relative competitive advantages of ample supplies of wood residues and forest biomass. Since 1980 over 600 megawatts of wood-fired capacity has been developed, and generates nearly 20% of the two state electricity supply. What are the factors that account for this dramatic development, and what are the lessons for the rest of the America`s? This paper summarizes the influences of public policies, the importance of extensive resources, the power needs of the utilities, the business/investment opportunities for IPP`s, and native strengths in fuel procurement and wood combustion experience. Conclusions are drawn in the form of lessons for other regions, and jurisdictions concerned with attaining the benefits of biomass energy development.

  6. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  7. The use of agricultural biomass for energy purposes: EU and national policy

    OpenAIRE

    Sabrina Giuca

    2008-01-01

    The implementation in 2020 of binding national targets for reducing greenhouse gas emissions and use of renewable energy has increased the interest in biomass as a viable alternative to fossil fuels. Thus agriculture acquires a primary role for the reduction of CO2 but raises many issues: CBA, food vs fuel, subsidies, tax measures and investments. After outlining the framework for the exploitation of biomass energy, the analysis carried out on the prospects of development of agroenergy chains...

  8. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    International Nuclear Information System (INIS)

    1995-12-01

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  9. Field biomass as energy resource for the future; Peltobiomassat tulevaisuuden energiaresurssina

    Energy Technology Data Exchange (ETDEWEB)

    Pahkala, K.; Loetjoenen, T. (eds.)

    2012-11-01

    Bioenergy can be derived from biomasses especially produced for bioenergy or from by-products, side streams and waste from wood processing industry, agriculture and forestry, or e.g. municipal waste. In the Nordic countries and Russia forests are a natural source of bioenergy. In many other European countries forests may be too scarce for bioenergy use. Therefore field biomasses form an interesting potential source for bioenergy. Production of field biomasses for non-food purposes has been criticized, especially as there is not enough food for everyone even at present, and in the future more food has to be produced as the world population increases. We studied the field biomass potential in different European countries with different scenarios for development. 'Good development' scenario includes improvements in plant breeding and food production and processing technologies, with increasing yields and decreasing waste of food products and raw materials. 'Bad development' scenario assumes stagnating yields and little improvement in technologies in the OECD countries, and only small improvements in former Soviet Union countries. The foci of the present research were the effects of development of food production, population growth and climate change on regional potential of field biomasses for bioenergy and sustainable use of crop residues and grasses for bioenergy. The field area that could be allocated to energy crops after growing enough food for the citizens of each country depends mostly on the diet. Growing food for vegetarian diet would occupy so little field area that every country under study could set aside at least half of their field area for bioenergy purposes already at present, if the 'good development' scenario was applied. With 'bad development' scenario some of the countries would be unable to set aside fields for bioenergy production even with vegetarian diet. With affluent diet there would be little field

  10. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    Ellenbroek, R.; Ballard-Tremeer, G.; Koeks, R.; Venendaal, R.

    2000-08-01

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  11. Fiscal 1999 survey report. Survey of leading countries' approaches to biomass energy development; 1999 nendo shuyokoku ni okeru biomass energy kaihatsu eno torikumi ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey aims to help Japan deliberate its future biomass energy development strategy including the course Japan is to follow in its research and development of biomass energy by clarifying leading countries' approaches to the subject matter and trends of their research and development efforts in this connection. The states of biomass energy development in the U.S. and Europe are reported. In the U.S., President Clinton issued Executive Order 13134 on August 12, 1999, regarding bio-based products and bioenergy development. In this country, bioenergy and bio-based production technologies have developed to reach a stage where business pays, and commercial plants are in service. The U.S. Administration mentions as a strategy the efficient development of the bioenergy industry. In Europe, where resources are versatile and local, it is difficult to assess the economy of scale, and small-scale development efforts are being accumulated. Practical technologies under development mostly involve direct combustion. European measures are similar to U.S. measures in that such political goals as local development and employment promotion are firmly woven into them. (NEDO)

  12. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  13. Biomass in the Dutch energy infrastructure in 2030

    NARCIS (Netherlands)

    Rabou, L.P.L.M.; Deurwaarder, E.P.; Elbersen, H.W.; Scott, E.L.

    2006-01-01

    This study has been executed on the instruction of the “Platform Biobased Raw Materials” (Platform Groene Grondstoffen, PGG). The goal of this study is to evaluate the ambition of the Platform to replace 30% of the fossil energy carriers by biomass in the Netherlands in 2030. Starting points are the

  14. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues Refs, figs, tabs

  15. Biomass. A promising option for renewable energy in the built environment

    International Nuclear Information System (INIS)

    Koppejan, J.

    1999-01-01

    A brief overview is given of activities of local governments (municipalities and provinces) in the Netherlands with respect to the use of biomass for the production of energy in urban areas. Special attention is paid to a project in Apeldoorn, Netherlands, where biomass gasification at a waste recycling plant ('Veluwse Afvalrecycling' or VAR) is used for district heating purposes. 1 ref

  16. An overview of biomass energy utilization in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS); Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Golusin, Mirjana T. [Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS)

    2010-01-15

    The Autonomous Province of Vojvodina is an autonomous province in Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. Energy plays a pivotal role in socio-economic development by raising the standard of living. Biomass has been used by mankind as an energy source for thousands of years. Traditional fuels like firewood, dung and crop residues currently contribute a major share in meeting the everyday energy requirements of rural and low-income urban households in Vojvodina. Contribution of the renewable energy sources in the total consumption of energy in Vojvidina is less than 1%, i.e. it amounts to 280 KWh/year. Production of biodiesel in the year 2008 was 0.07 million tons, what is for 133% higher with respect to the production in the year 2007 (0.03 million tons). In Vojvodina, as the raw materials for bioethanol production are seen primarily sugar beet, corn, wheat surpluses, potato surpluses and waste potato, as well as the raw materials intended for these purposes grown on the uncultivated soils, such as hybrid broomcorn, Jerusalem artichoke and triticale. With introduction of new technologies for cultivation and collecting of biomass production of the electrical energy could be raised to 6.4 GWh/m{sup 2} year, what, with retention of the contemporary consumption, would represent the significant 9% of the total consumption in the province. According to programme of realisation of energy strategy of Vojvodina/Serbia in the field of the renewable energy sources for to period till the year 2010 and its completion, till the year 2015, in Vojvodina could be created conditions for the employment of about 24,000 workers, i.e. 4000 employed for maintenance of the newly constructed plants, 17,000 employed on designing and manufacturing of plants and 3000 employed in auxiliary activities. (author)

  17. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  18. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  19. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  20. Energy from Biomass: technology assessment of small-medium scale biomass conversion systems

    OpenAIRE

    Cutz Ijchajchal, Luis Leonardo

    2016-01-01

    Mención Internacional en el título de doctor Bioenergy is a key resource to addressing challenges such as climate change (anthropogenic CO₂ emissions), pollution (suspended particles), energy security and human well-being. Currently, most of the biomass produced worldwide is consumed for cooking and space heating which has raised concerns among governments and policy-makers, especially due to threats to human health. The present thesis focuses on studying the technical and economic feasibi...

  1. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey

    International Nuclear Information System (INIS)

    Cicia, Gianni; Cembalo, Luigi; Del Giudice, Teresa; Palladino, Andrea

    2012-01-01

    In Italy there has been considerable political debate around the new energy policy, which is specifically designed to contribute to climate change mitigation. While there is renewed interest in nuclear energy generation, there has been heated debate concerning wind farms that have rapidly expanded and are dramatically changing the landscape in many rural areas. Finally, interest has also increased in biomass as an energy source. However, in this case, a significant part of the population is worried about landscape change and primary crop reduction. In this study we report the results from a nation-wide survey (=504 households) in Italy undertaken during summer 2009. A Latent Class Choice Experiment was used to quantify household preferences over different energy sources. Our results show that Italian households can be split into three segments with homogeneous preferences. The first segment (35% of the population) shows strong preference for wind and solar energy and dislikes both biomass and nuclear. The second (33% of the population) shows moderate preference for solar and wind energy and, as with the first segment, dislikes both nuclear and biomass. The third (32% of the population) shows a strong preference for green energy (solar, wind and biomass) and is very much against nuclear energy. The three segments were also characterized in terms of household socio-economic characteristics. - Highlights: ► We quantify Italian household preferences over different energy sources. ► Results come from a nation-wide survey undertaken during summer 2009. ► Energy sources tested: fossil fuel, nuclear, wind, solar and agricultural biomass. ► A latent class choice experiment was used. ► Italians can be split into three segments with different energy source preferences.

  2. The use of isotopes in the production and transformation of biomass for energy purposes

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.

    1984-01-01

    Biomass possibilities as an energy source and ''agroenergetica'' concept are described. Then, the possibilities of radiotracers in research on agroenergy, mainly photosynthesis, plant metabolism and soil-plant relations are analyzed. Finally the use of radioactive sources for the treatment of lignocellulosic biomass and the conservation of amylaceus biomass are considered. (author)

  3. Back to nature: Power from biomass; Zurueck zur Natur: Energie aus Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Beerbaum, S. [Hohenheim Univ. (Germany). Inst. fuer Agrarpolitik und landwirtschaftliche Marktlehre; Kappelmann, K.H. [Fachhochschule Nuertingen (Germany); Haerdtlein, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung; Kaltschmitt, M. [Technische Univ. Muenchen-Weihenstephan (Germany); Ising, M. [Fraunhofer Inst. fuer Umwelt-, Sicherheits-, und Energietechnik, Oberhausen (Germany); Meier, D.; Faix, O. [Institut fuer Holzchemie und chemische Technologie des Holzes, Hamburg (Germany); Gerdes, C. [Hamburg Univ. (Germany). Inst. fuer Makromolekulare und Technische Chemie

    2000-05-01

    Excepting nuclear power, there are just two strategies to reduce global warming, i.e. either by saving energy or by using renewables, supported by public funding and guaranteed rates. The options of solar, wind, and hydroelectric power are limited in our climate and their potential is nearly completely exploited in some regions already. Biomass is an interesting option. Its introduction should be speeded up as it takes about 50 - 60 years for a new technology to be fully accepted. [German] Soll der Treibhauseffekt eingedaemmt werden, ohne in grossem Umfang auf Kernenergie zurueckzugreifen, bleiben nur zwei Moeglichkeiten: Energiesparen und verstaerkter Einsatz regenerativer Energiequellen. Finanzielle Foerderung aus oeffentlichen Mitteln und Garantiepreise bei der Stromerzeugung sollen den Weg gangbar machen. Sonne, Wind und Wasser eignen sich leider hierzulande nur begrenzt, teilweise ist ihr Potenzial schon weitgehend ausgeschoepft. Eine wichtige Ergaenzung des Angebots duerfte deshalb die Biomasse sein. Letztlich ist sie eine Speicherform von Sonnenenergie: Durch Photosynthese erzeugen Pflanzen aus Kohlendioxid und Wasser ihre eigenen Energietraeger, die Kohlenhydrate. Weil beim Verbrennen nur das aufgenommene Kohlendioxid wieder frei wird, zeigt die energetische Nutzung von Biomasse eine weitgehend ausgeglichene Klimabilanz. Doch Eile ist geboten. Die Nutzung von Kohle und Erdoel benoetigte 50 bis 60 Jahre, um sich zu etablieren; Experten halten das fuer einen typischen Zeitraum (den auch die Kernenergie noch nicht durchschritten hat). Sich erneuernde Energiequellen stehen noch am Anfang dieser Einfuehrungsphase. (orig.)

  4. Availability of biomass for energy: Report of the contractors meeting, held at November 3, 1994, in Utrecht, Netherlands

    International Nuclear Information System (INIS)

    De Jager, D.

    1994-11-01

    Results of a few studies on the title subject, carried out within the framework of the NOVEM programme EWAB, were presented at a contractors meeting. The overall conclusion of the presentation was that energy from biomass has a large potential. However, the cost effectiveness of the different options has to be improved. In particular, international research on the subject is necessary. Also more demonstration projects have to be set up in order to gain insight in the exact costs and benefits, the options to improve the cost-effectiveness, and to fill in the knowledge gaps. In the presentations of the meeting attention is paid to avoided CO 2 emissions as a result of energy crops, the spatial aspects of biomass cultivation, model calculations of the economics of biomass techniques in comparison with other techniques, conversion techniques for biomass, biomass harvesting systems, logistic aspects regarding energy production from biomass, experiences with the cultivation of willows and miscanthus, the cost effectiveness of biomass cultivation, and the state-of-the-art in national and international research on energy from biomass

  5. Accelerating the commercialization of biomass energy generation within New York State

    Energy Technology Data Exchange (ETDEWEB)

    Proakis, G.J. [New York State Technology Enterprise Corp., Rome, NY (United States); Vasselli, J.J. [Syracuse Research Corp., North Syracuse, NY (United States); Neuhauser, E. [Niagara Mohawk Power Corp., Syracuse, NY (United States); Volk, T.A. [State University of New York, Syracuse, NY (United States)

    1999-07-01

    A significant obstacle to establishing a commercially viable, self-sustaining willow biomass industry is the initial capital investment required to establish the crop. One approach to overcoming this challenge is an incentive program to reduce the initial capital investment costs for landowners. This study quantifies the start-up investment costs, economic development impact, and environmental pollution reduction benefits associated with the creation of a biomass energy industry in New York State. The study recommends the creation of a state-sponsored revolving loan fund that would be used by landowners to finance the cost of establishing willow biomass crops. (author)

  6. Pyramiding genes and alleles for improving energy cane biomass yield

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Ray [University of Illinois at Urbana-Champaign; Nagai, Chifumi [Hawaii Agriculture Research Center; Yu, Qingyi [Texas A & M AgriLife Research

    2018-03-23

    The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from S. officinarum LA Purple and S. robustum MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from S. officinarum LA Purple and S. spontaneum US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes from leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were identified, which

  7. Private capital requirements for international biomass energy projects

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [University of Sao Paulo, Sao Paulo (Brazil)

    1995-12-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author) 9 refs, 4 figs, 3 tabs

  8. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  9. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  10. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  11. Enhancing biomass energy use in Kenya

    International Nuclear Information System (INIS)

    Banwell, P.S.; Harriss, R.C.

    1992-01-01

    This paper argues that in Kenya, environmental and economic factors will favour the continued use of biomass as a primary fuel for household an institutional cooking for the next decade or longer. The paper describes several successful projects which have improved the efficiency of urban charcoal use and of rural woodfuel use. The Kenya Ceramic Jiko, a more efficient version of the traditional charcoal stove, is a model programme sustained by free market competition, artisans participation, and widespread public acceptance. The Maendeleo stove is the best example of a successful rural woodstove project. The performance attributes of the stove, and its promotion through Kenya's largest women's organization, have resulted int he distribution of an estimated 26,000 Maendeleo stoves. Rural stove efficiency will become important as the cash-based economy expands in those areas. Agroforestry will also be critical to an enhanced use of biomass energy in Kenya. Experience to date shows that successful agroforestry programmes will have to be appropriate to local conditions and crops. (author). 25 refs, 2 figs, 3 tabs

  12. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Fiscal 1999 survey report. Survey of leading countries' approaches to biomass energy development; 1999 nendo shuyokoku ni okeru biomass energy kaihatsu eno torikumi ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey aims to help Japan deliberate its future biomass energy development strategy including the course Japan is to follow in its research and development of biomass energy by clarifying leading countries' approaches to the subject matter and trends of their research and development efforts in this connection. The states of biomass energy development in the U.S. and Europe are reported. In the U.S., President Clinton issued Executive Order 13134 on August 12, 1999, regarding bio-based products and bioenergy development. In this country, bioenergy and bio-based production technologies have developed to reach a stage where business pays, and commercial plants are in service. The U.S. Administration mentions as a strategy the efficient development of the bioenergy industry. In Europe, where resources are versatile and local, it is difficult to assess the economy of scale, and small-scale development efforts are being accumulated. Practical technologies under development mostly involve direct combustion. European measures are similar to U.S. measures in that such political goals as local development and employment promotion are firmly woven into them. (NEDO)

  14. Biomass - Energy - Climate - From photosynthesis to bio-economy. V. 1: 'the energy from the fields'; V. 2: 'the energy from the woods'

    International Nuclear Information System (INIS)

    Brulhet, Jacques; Figuet, Raymond; Bardon, Eric; Bour-Poitrinal, Emmanuelle; Dereix, Charles; Leblanc-Cuvillier, Anick

    2011-10-01

    A fist volume presents, outlines and comments the possibilities of energy generation from the biomass produced in fields, the development potential of biomass production and of food industry, the challenge of bio-wastes and soil structure, the relationship between renewable energies and new crops, the development of agriculture to supply bio-refineries, produce biofuels and develop vegetal chemistry. Examples of biomass valorisation in la Reunion are presented. The second volume addresses the possibilities related to wood exploitation. It outlines ways to mobilise this resource, discusses the issue of forest exploitation in Guyana, gives an overview of wood applications, describes how to valorise forest carbon storage, gives an overview of innovation, governance and information for this specific sector, and evokes the place of bio-economy on markets

  15. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry; Proceedings, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this first volume deal with Resource Base and Power Production. The particular subjects within the Resource Base area are Biomass, Wastes and Residues, Feedstock Research, and Commercial Systems. The emphasized subjects within the Power Production area are Combustion, Thermal and Biological Gasification, Waste Generation and Waste Disposal and Waste Emissions, and Heat, Steam, and Fuels-Commercial Systems. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Biomass energy, air pollution and health

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-06-01

    This article reports the negative effects on human health due to the use of biomass for energy. In addition to the emission of nitrogen oxides and of metals, these effects result largely from an incomplete combustion, generating various air pollutants: fine particles, carbon monoxide, volatile organic compounds and aromatic polycyclic hydrocarbons. Four situations are discussed: indoor air pollution due to cooking in developing countries, residential wood combustion for heating, the use of biofuels, and waste incineration. In all cases, negative health effects have been demonstrated, but they can be prevented by appropriate strategies. (author)

  17. Investigation study for technological application of alternative methods for the energy exploitation of biomass/agricultural residues in Northern Greece

    Directory of Open Access Journals (Sweden)

    Zabaniotou Anastasia A.

    2007-01-01

    Full Text Available Biomass energy potential is addressed to be the most promising among the renewable energy sources, due to its spread and availability worldwide. Apart form that, biomass has the unique advantage among the rest of renewable energy sources, to be able to provide solid, liquid, and gaseous fuels that can be stored, transported, and utilized, far away from the point of origin. For the northern region of Macedonia in Greece, biomass utilization is considered to be a major issue, due to the considerably intensive regional agricultural activities. Wood by-products, fruit cores, rice husk and cotton gin waste provide a promising energy source for the region. The energy potential of the available agricultural biomass produced in the region is much enough to cover the 10% of the annual oil consumption utilized for thermal applications. However, the cost of energy utilization of biomass is considerably high due to the high cost of the logistics concerning the collection, transport, and storage of biomass. The available utilization technologies developed, to handle efficiently all different species of biomass, cover a wide technological range. One of the most promising technologies involving thermal treatment of biomass and the production of a gaseous fuel (biogas for industrial heat applications and electricity production, is the thermo chemical conversion. In the present work, an investigation concerning biomass potential for energy production in the region of central Macedonia in Greece, utilizing several locally produced biomass species, is conducted. Emphasis is put on the energy utilization of agricultural by-products and residues. Agricultural sector is of great importance due to the considerably intensive agricultural activities in the region of Central Macedonia. .

  18. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  19. Technical and economic data biomass-based energy conversion systems for the production of gaseous and/or liquid energy carriers

    International Nuclear Information System (INIS)

    2000-02-01

    The objectives of this study are: (1) to give an indication of the expected development of the currently mainly fossil fuel based Dutch energy supply system to a future CO 2 -emission 'free' energy supply system, and (2) to present main technological, economic, and environmental characteristics of three promising renewable energy based technologies for the production of gaseous and/or liquid secondary energy carriers and/or electricity and/or heat, viz.: (a) biomass hydrogasification for SNG (synthetic natural gas) production; (b) trigeneration of methanol and CHP (combined heat and power) from biomass by integrating a 'once-through' LPMEOH (liquid phase methanol) process into a 'conventional BIG/CC (Biomass-Integrated-Gasifier/Combined Cycle) system; and (c) trigeneration of Fischer-Tropsch derived transportation fuels and CHP from biomass by integrating a 'once-through' FT-process (Fischer-Tropsch) into a 'conventional' BIG/CC-system. Biomass conversion systems, for the production of CHP, transportation fuels, and as biofeedstock for the petrochemical industry, will play a substantial role in meeting the future Dutch renewable energy policy goals. In case fossil fuel prices remain low, additional policies are needed to reach these goals. Biomass will also play a significant role in reaching significant CO 2 emission reduction in Western Europe. In which sector the limited amount of biomass available/contractable can be applied best is still unclear, and therefore needs further research. By biomass hydrogasification it is possible to produce SNG with more or less the same composition as Groningen natural gas. In case relatively cheap hydrogen-rich waste gas streams are used in the short-term, the SNG production costs will he in the same order of magnitude as the market price for Dutch natural gas for small consumers (fl 0.6/Nm 3 ). The calculated minimum production costs for the 'green' fuels (methanol: 15 Euroct/l or 9 Euro/GJ, and FT-fuels: 27 Euroct/l or 9 Euro

  20. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2012-01-01

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m 3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  1. Characteristics of Ampel bamboo as a biomass energy source potential in Bali

    Science.gov (United States)

    Sucipta, M.; Putra Negara, D. N. K.; Tirta Nindhia, T. G.; Surata, I. W.

    2017-05-01

    Currently, non-renewable fossil energy dominates utilization of the world energy need for many applications. Efforts has been developed to find alternative renewable energy sources, due to fossil energy availability is diminishing. And one of renewable energy source is from biomass. The aim of this research is to determine characteristics of the Ampel bamboo (Bambusa vulgaris) as an energy potential of biomass. The Ampel bamboo’s characteristics possessed are evaluated based on its chemical composition; moisture, volatile, ash, and fixed carbon through proximate analysis; and also carbon, hydrogen and nitrogen content through ultimate analysis. From the Thermo-gravimetric analysis (TGA) indicates that Ampel bamboo contains of about 18.10% hemicelluloses, 47.75% cellulose and 18.86% lignin. While from the ultimate analysis results in the content of carbon, hydrogen, and Nitrogen of Ampel bamboo are 39.75%, 5.75% and 0% respectively. With such characteristics, it indicates that Ampel bamboo has an attractive potential as a renewable energy source.

  2. Embodied energy and environmental impacts of a biomass boiler: a life cycle approach

    Directory of Open Access Journals (Sweden)

    Sonia Longo

    2015-05-01

    Full Text Available The 2030 policy framework for climate and energy, proposed by the European Commission, aims towards the reduction of European greenhouse gas emissions by 40% in comparison to the 1990 level and to increase the share of renewable energy of at least the 27% of the European's energy consumption of 2030. The use of biomass as sustainable and renewable energy source may be a viable tool for achieving the above goals. However, renewable energy technologies are not totally clean because they cause energy and environmental impacts during their life cycle, and in particular they are responsible of air pollutant emissions. In this context, the paper assesses the energy and environmental impacts of a 46 kW biomass boiler by applying the Life Cycle Assessment methodology, as regulated by the international standards of series ISO 14040, ISO 21930 and EN 15804. The following life-cycle steps are included in the analysis: raw materials and energy supply, manufacturing, installation, operation, transport, and end-of-life. The results of the analysis, showing a life-cycle primary energy consumption of about 2,622 GJ and emissions of about 21,664 kg CO2eq, can be used as a basis for assessing the real advantages due to the use of biomass boilers for heating and hot water production.

  3. National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant

    International Nuclear Information System (INIS)

    Upreti, B.R.; Horst, Dan van der

    2004-01-01

    Biomass energy developments in the UK are supported by central government but face considerable opposition from the public. The purpose of this study is to explore the causes and consequences of public opposition to biomass energy development in North Wiltshire where Ambient Energy Ltd. proposed the development of a 5 MWe wood gasification plant near the town of Cricklade. The case study was conducted through in-depth interviews, content analysis, person to person questionnaire survey, focus group discussion and participatory appraisal methods. Though biomass energy plants in general have fewer environmental impacts than plants which use fossil fuel, there could still be local impacts which give rise to concerns and local opposition to the development. The opposition could be partially explained by the fact that the general public is relatively unfamiliar with biomass energy. Public acceptance or rejection was mainly based on the public trust or mistrust. The case study demonstrates two distinctly rigid characteristics among the key stakeholders of biomass energy development. These are the 'not-in-my-back-yard' attitude from the public and the 'there-is-no-alternative' attitude of the developers. These rigid stances were widely contributing to the failure of the project to gain planning permission. The environmental justification of biomass energy at the national level is not always sufficient to convince the local residents. Winning public support to promote biomass energy requires an alternative approach of planning and action through interactive communication, public participation and collective learning among all the stakeholders

  4. Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions

    Science.gov (United States)

    Bruce Springsteen; Thomas Christofk; Robert A. York; Tad Mason; Stephen Baker; Emily Lincoln; Bruce Hartsough; Takuyuki Yoshioka

    2015-01-01

    As an alternative to open pile burning, use of forest wastes from fuel hazard reduction projects at Blodgett Forest Research Station for electricity production was shown to produce energy and emission benefits: energy (diesel fuel) expended for processing and transport was 2.5% of the biomass fuel (energy equivalent); based on measurements from a large pile...

  5. Lorraine - The beautiful biomass energy

    International Nuclear Information System (INIS)

    Braun, Pascale

    2013-01-01

    This article evokes various projects of biomass energy production which have been recently developed and built in north-eastern France, notably for industrial and heating applications. It also outlines that the largest industrial projects have been given up: because of the relative steadiness of gas and coal prices, and of the possible opportunity given by shale gas exploitation, industries have been reluctant in investing installations which take longer time to be written off. The quantities of yearly available wood have been reduced for different reasons: resource accessibility, landscape preservation, vicinity of water harnessing points. These restrictions entailed the definition of threshold for the public support of new projects, a decision with which industrials disagree

  6. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  7. Biomass and Biogas for Sustainable Energy Generation: Recent Development and Perspectives

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. (author)

  8. Issues surrounding biomass energy use in non-OECD countries

    International Nuclear Information System (INIS)

    Diouf, M. Mines and Industry.

    1997-01-01

    The problem of energy-supply of Senegal is described by the Minister of Energy of Senegal. The destruction and degradation of forests in Senegal is a major risk because of the high demographic growth, the extensive agriculture and poverty. New policies are required that guarantee a sustainable energy supply to populations, and conserve the fragile environment. The biomass issue is to be incorporated into an overall development policy that effectively combines strategies relating to forestry, agriculture, rearing and resource management but also to population, poverty elimination, urban development and decentralization. (K.A.)

  9. Availability of Biomass for Energy Purposes in Nordic and Baltic Countries

    DEFF Research Database (Denmark)

    Rytter, Lars; Andreassen, Kjell; Bergh, Jonas

    2015-01-01

    in a European perspective where 38 % of the land area is forest (EU-27). Although some forest areas are protected, 75–92 % of the area can still be used for wood production. Further, substantial agriculture land areas may also be available for production of biomass for energy. Coniferous species dominate......, leading to the conclusion that some of the difference may be used for energy purposes in the near future. The current potential for forest fuel resources was estimated to 230–410 TWh yr-1 (830–1,480 PJ yr-1) for the countries included and forest fuels will thus be of utmost importance for the future...... for specific regions. Wood is extensively used for energy purposes and the forests hold a large potential for increasing the production of renewable energy. The potential may be further increased in the future with increased fertilization, extended breeding for enhanced biomass production, larger cultivation...

  10. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  11. A review of biomass energy potential

    International Nuclear Information System (INIS)

    Hoi Why Kong.

    1995-01-01

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  12. Biomass as a Source of Renewable Energy in Spain: A Case Study in Regulating Renewable Energy

    OpenAIRE

    Sánchez Sáez, Antonio José

    2006-01-01

    This paper examines how, in Andalusia, the installation of plants producing biomass or processing electricity from renewable energies could conform to the public interest actions in Article 42 of the Andalusian Town Planning Act; and how the Andalusian Draft of Renewable Energies and Saving and Energy Efficiency proposes working out territorial plans for renewable energies for specific areas, where those zones enjoying the best conditions for the usage of these energies will be...

  13. Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments

    Science.gov (United States)

    Lauren A. Sherman; Deborah S. Page-Dumroese; Mark D. Coleman

    2018-01-01

    Utilization of woody biomass for biofuel can help meet the need for renewable energy production. However, there is a concern biomass removal will deplete soil nutrients, having short- and long-term effects on tree growth. This study aimed to develop short-term indicators to assess the impacts of the first three years after small-diameter woody biomass removal on forest...

  14. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Camarillo, Mary Kay; Stringfellow, William T.; Jue, Michael B.; Hanlon, Jeremy S.

    2012-01-01

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NO x ) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  17. New bern biomass to energy project Phase I: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Parson, F.; Bain, R.

    1995-10-01

    Weyerhaeuser, together with Amoco and Carolina Power & Light, performed a detailed evaluation of biomass gasification and enzymatic processing of biomass to ethanol. This evaluation assesses the potential of these technologies for commercial application to determine which technology offers the best opportunity at this time to increase economic productivity of forest resources in an environmentally sustainable manner. The work performed included preparation of site-specific plant designs that integrate with the Weyerhaeuser New Bern, North Carolina pulp mill to meet overall plant energy requirements, cost estimates, resource and product market assessments, and technology evaluations. The Weyerhaeuser team was assisted by Stone & Webster Engineering Corporation and technology vendors in developing the necessary data, designs, and cost information used in this comparative study. Based on the information developed in this study and parallel evaluations performed by Weyerhaeuser and others, biomass gasification for use in power production appears to be technically and economically viable. Options exist at the New Bern mill which would allow commercial scale demonstration of the technology in a manner that would serve the practical energy requirements of the mill. A staged project development plan has been prepared for review. The plan would provide for a low-risk and cost demonstration of a biomass gasifier as an element of a boiler modification program and then allow for timely expansion of power production by the addition of a combined cycle cogeneration plant. Although ethanol technology is at an earlier stage of development, there appears to be a set of realizable site and market conditions which could provide for an economically attractive woody-biomass-based ethanol facility. The market price of ethanol and the cost of both feedstock and enzyme have a dramatic impact on the projected profitability of such a plant.

  18. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy niche in Malaysia 1990–2011

    International Nuclear Information System (INIS)

    Hansen, Ulrich Elmer; Nygaard, Ivan

    2014-01-01

    The economic development in emerging economies in Southeast Asia has significantly increased the use of fossil fuel based energy. This has severe implications for global climate change, and against this background, scholars within the sustainable transition tradition have taken an interest in addressing how transitions towards more sustainable development pathways in this region may be achieved. This paper contributes to the abovementioned literature by examining the conducive and limiting factors for development and proliferation of a palm oil biomass waste-to-energy niche in Malaysia during the period 1990–2011. Rising oil prices, strong pressure on the palm oil industry from environmental groups, and a persisting palm oil biomass waste disposal problem in Malaysia appear to have been conducive to niche proliferation, and on top of this national renewable energy policies and large-scale donor programmes have specifically supported the utilisation of palm oil biomass waste for energy. However, in spite of this, the niche development process has only made slow progress. The paper identifies reluctant implementation of energy policy, rise in biomass resource prices, limited network formation and negative results at the niche level, as the main factors hindering niche development. - Highlights: • We examine crucial factors for developing a biomass-to-energy niche in Malaysia. • In spite of interventions for policy support the niche has only made slow progress. • Oil prices, NGO pressure, waste problems and policy support were the enabling factors. • First, reluctant implementation of energy policy was hindering niche development. • Later, low performance level of implemented plants was hindering niche development

  19. Household biomass energy choice and its policy implications on improving rural livelihoods in Sichuan, China

    International Nuclear Information System (INIS)

    Chen, Qiu; Yang, Haoran; Liu, Tianbiao; Zhang, Lin

    2016-01-01

    It is widely known that a switch from traditional biomass energy to modern clean, safe and efficient energy could improve local rural livelihoods by enhancing the access to ‘high quality’ energy and reducing the negative impacts of traditional biomass energy on health, environment and living standards. Hence, in this paper, we used alternative-specific conditional logit model (ASCLM) to examine the rural household energy choice behaviors in Sichuan Province of China from the perspective of revealed and stated preferences. The results show that the fuel switching in our study region is not a simple unidirectional process from traditional biomass energy to modern fuels as incomes improve. Household energy choice behaviors could be not only affected by energy-specific characteristics such as fuel price, smoky level and safety risk, but also influenced by household-specific factors such as income level, age and educational level of the decision maker, household demographic structure, number of people frequently eating at home, distance to the nearest biomass collecting spot and household location, suggesting that government should attach more importance to simultaneously improve energy quality, control energy price and enhance household socio-economic status. - Highlights: •McFadden's choice model was applied to analyze household energy choice in Sichuan. •We examined household revealed and stated preferences for different fuels. •Household fuel switching is not a simple or unidirectional process. •Households prefer to use fuel with lower cost, higher safety and lower indoor pollution. •Household fuel choice is affected by interactions among multiple factors.

  20. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  1. Energy from biomass and biofuels. Current market initiatives. Altener seminar, Amsterdam, Netherlands, 26 May 1997

    International Nuclear Information System (INIS)

    1997-01-01

    Biomass, organic wastes, hydroelectric power, wind power and solar energy contribute to approximately 6% of the current energy demand in the European Union (EU). Goals are set by the EU to double this share in the energy production in the next decade. The EU Altener Programme aims to increase the use of renewables as source of energy, the trade in renewable energy products and related equipment and services, supporting a wide variety of projects, sector and market studies, events and technical standards. The Agricultural and Forestrial Biomass Network (AFB-Nett) promotes and stimulates, as part of the Altener Programme, the implementation and commercial exploitation of energy from biomass by the initiation of among other things business opportunities and information exchange. The AFB-Nett National Coordinator for the Netherlands, Novem, organised in this respect the title seminar. 85 participants from several European countries attended presentations covering the whole bio-energy chain: from information on biomass supply, through trade, logistics and pretreatment issues up to discussion on conversion technologies. It became clear to the audience that it is a necessary condition to take into account the total chain when developing projects in a specific field of this chain. However, non-technical aspects must be considered as well. Therefore, in developing business opportunities the challenge remains to connect all good project initiatives covering parts of the chain into a few 'whole-chain'-projects

  2. Use of material flow accounting for assessment of energy savings: A case of biomass in Slovakia and the Czech Republic

    International Nuclear Information System (INIS)

    Kanianska, Radoslava; Gustafikova, Tatiana; Kizekova, Miriam; Kovanda, Jan

    2011-01-01

    Anthropogenic material and energy flows are considered to be the major cause of many environmental problems humans face today. In order to measure material and energy flows, and to mitigate related problems, the technique of material flow and energy flow analysis has been conceived. The aim of this article is to use material and energy flow accounting approaches to quantify the amount of biomass that is available, but that so far has not been used for energy purposes in Slovakia and the Czech Republic and to calculate how much consumed fossil fuels and corresponding CO 2 emissions can be saved by utilising this biomass. Based on the findings presented, 3544 kt/yr of the total unused biomass in Slovakia could replace 53 PJ/yr of energy from fossil fuels and 6294 kt/yr of the total unused biomass in the Czech Republic could replace 91 PJ/yr of energy. Such replacement could contribute to a decrease in total CO 2 emissions by 9.2% in Slovakia and by 5.4% in the Czech Republic and thus contribute to an environmental improvement with respect to climate change. - Research highlights: → The material and energy flow accounting approaches for biomass were applied. → In Slovakia, 3544 kt/yr of the total unused biomass is available. → In the Czech Republic, 6294 kt/yr of the total unused biomass is available. → Such biomass could be used for energy production and thus reduce CO 2 emissions.

  3. Evaluating biomass energy strategies for a UK eco-town with an MILP optimization model

    International Nuclear Information System (INIS)

    Keirstead, James; Samsatli, Nouri; Pantaleo, A. Marco; Shah, Nilay

    2012-01-01

    Recent years have shown a marked interest in the construction of eco-towns, showcase developments intended to demonstrate the best in ecologically-sensitive and energy-efficient construction. This paper examines one such development in the UK and considers the role of biomass energy systems. We present an integrated resource modelling framework that identifies an optimized low-cost energy supply system including the choice of conversion technologies, fuel sources, and distribution networks. Our analysis shows that strategies based on imported wood chips, rather than locally converted forestry residues, burned in a mix of ICE and ORC combined heat and power facilities offer the most promise. While there are uncertainties surrounding the precise environmental impacts of these solutions, it is clear that such biomass systems can help eco-towns to meet their target of an 80% reduction in greenhouse gas emissions. -- Highlights: ► An optimization model for urban biomass energy system design is presented. ► Tool selects technologies, operating rates, supply infrastructures. ► Five technology scenarios evaluated for a UK eco-town proposal. ► Results show ICE and ORC CHP units, fed by wood chips, promising. ► Results show biomass can help eco-towns achieve 80% GHG emission reductions.

  4. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  5. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  6. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  7. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Cardona Alzate, C.A.; Sanchez Toro, O.J.

    2006-01-01

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  8. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cardona Alzate, C.A. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia)]. E-mail: ccardonaal@unal.edu.co; Sanchez Toro, O.J. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia); Department of Engineering, University of Caldas, Calle 65 No. 26-10, Manizales (Colombia)

    2006-10-15

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.

  9. BUBE. Better Use of Biomass for Energy. Background Report to the Position Paper of IEA RETD and IEA Bioenergy

    International Nuclear Information System (INIS)

    Fritsche, U.R.; Henneberg, K.; Huenecke, K.; Kampman, B.; Bergsma, G.; Schepers, B.; Croezen, H.; Molenaar, J.W.; Kessler, J.J.; Slingerland, S.; Van der Linde, C.

    2010-07-01

    This report aims to provide a document that gives guidance on the issue of biomass energy policies in OECD countries. The main conclusions and messages from this project were published in a joint IEA RETD and IEA Bioenergy Position Paper and presented at the COP15 in December 2009. As the main contributor to renewable energy around the world (about 10% of total energy consumption), the term 'biomass for energy' covers a broad range of products, including traditional use of wood for cooking and heating, industrial process heat, co-firing of biomass in coal-based power plants, biogas and biofuels. In many OECD countries, bioenergy is deployed to reduce fossil fuel use and improve security of supply, reduce greenhouse gas emissions and/or create new employment. Modern biomass can be more expensive than its fossil competitors, however, and there is evidence that biomass, unless produced sustainable, could have significant negative environmental and socio-economic impacts. This report elaborates on how to improve the use of biomass for energy. It assesses and provides guidelines on how to make better use of sustainable biomass potential and how to increase the positive and reduce the negative impacts.

  10. BUBE. Better Use of Biomass for Energy. Background Report to the Position Paper of IEA RETD and IEA Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, U.R.; Henneberg, K.; Huenecke, K. [Oeko-Institut, Freiburg (Germany); Kampman, B.; Bergsma, G.; Schepers, B.; Croezen, H. [CE Delft, Delft (Netherlands); Molenaar, J.W.; Kessler, J.J. [AidEnvironment, Amsterdam (Netherlands); Slingerland, S.; Van der Linde, C. [Clingendael International Energy Programme CIEP, Den Haag (Netherlands)

    2010-07-15

    This report aims to provide a document that gives guidance on the issue of biomass energy policies in OECD countries. The main conclusions and messages from this project were published in a joint IEA RETD and IEA Bioenergy Position Paper and presented at the COP15 in December 2009. As the main contributor to renewable energy around the world (about 10% of total energy consumption), the term 'biomass for energy' covers a broad range of products, including traditional use of wood for cooking and heating, industrial process heat, co-firing of biomass in coal-based power plants, biogas and biofuels. In many OECD countries, bioenergy is deployed to reduce fossil fuel use and improve security of supply, reduce greenhouse gas emissions and/or create new employment. Modern biomass can be more expensive than its fossil competitors, however, and there is evidence that biomass, unless produced sustainable, could have significant negative environmental and socio-economic impacts. This report elaborates on how to improve the use of biomass for energy. It assesses and provides guidelines on how to make better use of sustainable biomass potential and how to increase the positive and reduce the negative impacts.

  11. Results of a Global Survey on International Biomass Trade for Energy: Opportunities, Risks and Policy Options

    OpenAIRE

    Pelkmans, L.; Van Dael, Miet; Del Campo, I.; Sanchez, D.; Rutz, D.; Janssen, R.; Junginger, M.; Mai-Moulin, T.; Iriarte, L.; Diaz-Chavez, R.; Elbersen, B.; Nabuurs, G.J.; Elbersen, W.

    2016-01-01

    European targets set by 2020 in the Climate and Energy package and the Renewable Energy Directive (2009/28/EC) will require a serious increase in biomass demand for energy purposes. The analysis of the data reported by the Member States in their National Renewable Energy Action Plans (NREAP) shows that biomass is expected to contribute more than half of the 20% renewable objective of the gross final energy consumption. However the data provided and trade statistics have revealed that the quan...

  12. Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model

    International Nuclear Information System (INIS)

    Kumar, Amit; Bhattacharya, S.C.; Pham, H.L.

    2003-01-01

    The greenhouse gas (GHG) mitigation potentials of number of selected Biomass Energy Technologies (BETs) have been assessed in Vietnam. These include Biomass Integrated Gasification Combined Cycle (BIGCC) based on wood and bagasse, direct combustion plants based on wood, co-firing power plants and Stirling engine based on wood and cooking stoves. Using the Long-range Energy Alternative Planning (LEAP) model, different scenarios were considered, namely the base case with no mitigation options, replacement of kerosene and liquefied petroleum gas (LPG) by biogas stove, substitution of gasoline by ethanol in transport sector, replacement of coal by wood as fuel in industrial boilers, electricity generation with biomass energy technologies and an integrated scenario including all the options together. Substitution of coal stoves by biogas stove has positive abatement cost, as the cost of wood in Vietnam is higher than coal. Replacement of kerosene and LPG cookstoves by biomass stove also has a positive abatement cost. Replacement of gasoline by ethanol can be realized after a few years, as at present the cost of ethanol is more than the cost of gasoline. The replacement of coal by biomass in industrial boiler is also not an attractive option as wood is more expensive than coal in Vietnam. The substitution of fossil fuel fired plants by packages of BETs has a negative abatement cost. This option, if implemented, would result in mitigation of 10.83 million tonnes (Mt) of CO 2 in 2010

  13. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  14. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Lorne, D.

    2010-01-01

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  15. Catalysis for renewable energy and chemicals, the thermal conversion of biomass

    NARCIS (Netherlands)

    Janssen, F.J.J.G.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The production of energy from fossil fuels gives rise to the emission of CO2, NO, and SO2. The amounts of these compounds formed during the production of energy from renewables such as wind, sun and biomass are less than those in case of fossil fuels. Therefore, research and development is carried

  16. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  17. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    Science.gov (United States)

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  18. The impact of biomass energy consumption on pollution: evidence from 80 developed and developing countries.

    Science.gov (United States)

    Solarin, Sakiru Adebola; Al-Mulali, Usama; Gan, Gerald Goh Guan; Shahbaz, Muhammad

    2018-05-30

    The aim of this research is to explore the effect of biomass energy consumption on CO 2 emissions in 80 developed and developing countries. To achieve robustness, the system generalised method of moment was used and several control variables were incorporated into the model including real GDP, fossil fuel consumption, hydroelectricity production, urbanisation, population, foreign direct investment, financial development, institutional quality and the Kyoto protocol. Relying on the classification of the World Bank, the countries were categorised to developed and developing countries. We also used a dynamic common correlated effects estimator. The results consistently show that biomass energy as well as fossil fuel consumption generate more CO 2 emissions. A closer look at the results show that a 100% increase in biomass consumption (tonnes per capita) will increase CO 2 emissions (metric tons per capita) within the range of 2 to 47%. An increase of biomass energy intensity (biomass consumption in tonnes divided by real gross domestic product) of 100% will increase CO 2 emissions (metric tons per capita) within the range of 4 to 47%. An increase of fossil fuel consumption (tonnes of oil equivalent per capita) by 100% will increase CO 2 emissions (metric tons per capita) within the range of 35 to 55%. The results further show that real GDP urbanisation and population increase CO 2 emissions. However, hydroelectricity and institutional quality decrease CO 2 emissions. It is further observed that financial development, foreign direct investment and openness decrease CO 2 emissions in the developed countries, but the opposite results are found for the developing nations. The results also show that the Kyoto Protocol reduces emission and that Environmental Kuznets Curve exists. Among the policy implications of the foregoing results is the necessity of substituting fossil fuels with other types of renewable energy (such as hydropower) rather than biomass energy for

  19. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  20. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  1. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  2. Exploiting the Medium Term Biomass Energy Potentials in Austria. A Comparison of Costs and Macroeconomic Impact

    International Nuclear Information System (INIS)

    Steininger, K.W.; Voraberger, H.

    2003-01-01

    The transition to an implicitly solar-based energy system can make use of various specific biomass energy systems. This paper provides economic and environmental indicators for evaluating alternative options. The paper proceeds in three empirical steps. First, an expert survey supplies the primary biomass potentials available for non-food use in Austria and their respective costs. Second, an inquiry into investment, operating and financing costs of 30 different biomass energy use systems allows a standardized comparison among them and their relationship to fossil reference technologies. Third, a computable general equilibrium model of the Austrian economy is employed to quantify the impacts of fostering the use of distinct biomass energy technologies. The results allow us to distinguish between those technologies that tend to lead to an increase in both GDP and employment (e.g., combined heat and power production from sewage sludge biogas), to an increase only in employment, while GDP tends to diminish (e.g., district heating based on agricultural pellets) or to a decline in both (e.g., co-firing based on wood-chips, bark or industrial pellets). Individual technologies could account for up to one third of Austria's Kyoto obligation, while combinations of technologies, triggered by a combined CO2 tax and biomass energy subsidy for example, could almost fully lead to Austrian Kyoto-compliance

  3. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  4. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  5. Waste biomass and energy transition. Proven practices, new developments and visions; Abfall-Biomasse und Energiewende. Bewaehrtes, Neues und Visionen

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Klaus [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Technische Univ. Braunschweig (Germany). Lehrstuhl Abfall- und Ressourcenwirtschaft; Kammann, Claudia [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Wallmann, Rainer (ed.) [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Werra-Meissner Kreis, Eschwege (Germany)

    2014-07-01

    This book contains 17 papers that were presented at the 75th meeting of the ANS. The following main topics are covered: waste management in the context of climate protection and the energy turnaround; optimised materials management; carbon: climate killer or indispensable raw material?; climate protection in Germany - why and how?; treatment techniques for waste biomass; the amended Renewable Energy Law - sensible adaptation or impediment to the energy turnaround?; putting ideas into practice: examples and opportunities. Four of the contributions have been abstracted individually for this database. [German] Dieses Buch enthaelt 17 Beitraege, die auf dem 75. Symposium des ANS vorgetragen wurden. Die Themenschwerpunkte waren: Abfallwirtschaft im Kontext des Klimaschutzes und der Energiewende; Optimiertes Stoffmanagement; Kohlenstoff: Klimakiller oder unverzichtbare Rohstoff?; Klimaschutz in Deutschland - Warum und wie?; Behandlungstechniken von Abfall-Biomasse; Novellierung des EEG - Sinnvolle Anpassung oder Breme der Energiewende; Der Weg in die Praxis: Beispiele und Chancen. Vier der Beitraege wurden separarat fuer diese Datenbank aufgenommen.

  6. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  7. A decision support system for planning biomass-based energy production

    Energy Technology Data Exchange (ETDEWEB)

    Frombo, Francesco; Robba, Michela [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy); Renewable Energy Laboratory, Modelling and Optimization, Via A. Magliotto 2, 17100 Savona (Italy); Minciardi, Riccardo; Sacile, Roberto [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy)

    2009-03-15

    Environmental decision support systems (EDSS) are recognized as valuable tools for environmental planning and management. In this paper, a geographic information system (GIS)-based EDSS for the optimal planning of forest biomass use for energy production is presented. A user-friendly interface allows the creation of Scenarios and the running of the developed decision and environmental models. In particular, the optimization model regards decisions over a long-term period (e.g. years) and includes decision variables related to plant locations, conversion processes (pyrolisis, gasification, combustion), harvested biomass. Moreover, different energy products and different definitions of the harvesting and pre-treatment operations are taken into account. The correct management of the forest is considered through specific constraints, security factors, and procedures for parcel selection. The EDSS features and capabilities are described in detail, with specific reference to a case study. Discussion and further research are reported. (author)

  8. Use of light agricultural waste as biomass for energy

    International Nuclear Information System (INIS)

    Kulkarni, P.K.

    1996-01-01

    Along with solar energy light agricultural wastes form an important source of renewable energy. Sugar cane field trash (PACHAT) forms a large source of energy, totally wasted even today. This article covers the thinking on biomass as energy source in India from 1985 till today and describes the important developments. Agricultural waste is a widely distributed source and costly to collect and transport. Hence its mode of use, equipment required became site specific. Equipment for carbonization and gasification of pachat developed by the author are described. Utilisation of agricultural waste is still an open field and challenge to develop and perfect small and large devices directly for thermal use or power generation. (author). 3 refs., 2 figs., 3 tabs

  9. Biomass based energy combines with motor fuel production; Biobraenslebaserade energikombinat med tillverkning av drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2005-01-01

    In the report the state of development of production processes for various motor fuels, such as FT diesel, methanol , DME and ethanol, from biomass is reviewed. Biomass and black liquor gasification processes as well as processes for ethanol production from lignocellulosic biomass are discussed. The processes are complicated and still not very well tried in their whole context. The gas cleaning steps, which are necessary to reach acceptable catalyst lifetimes in the motor fuel production processes based on gasification, have been tested in the oil industry and to some extent in coal gasification plants, but not with syngas from biomass or black liquor gasification. For black liquor gasification particularly, also material selection and material lifetime issues remain to be solved. For ethanol production from lignocellulosic biomass process development is needed, to increase the yield in the pre-treatment, hydrolysis and fermentation steps. The energy yields of the processes are dependent on the degree of complexity of the processes, as well as on the integration and balancing of energy demanding steps and steps with energy surplus. This is especially valid for the processes based on gasification, due to high temperatures in the gasifier and some of the catalytic steps, but also for the ethanol process, which benefit from optimal steam integration in the evaporation and distillation steps. Also steam integration with cogeneration plants, or for black liquor gasification with pulp mills, improves the overall energy balance. In addition, the energy yield when motor fuels are produced by gasification is dependent on the usage of the off-gas. The efficiency is improved when the off-gas is burned in a boiler or gas turbine, than when it is flared. In the report examples are given of processes with and without integration.

  10. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  11. Some ecological and socio-economic considerations for biomass energy crop production

    International Nuclear Information System (INIS)

    Paine, L.K.; Undersander, D.J.; Temple, S.A.; Klemme, R.M.; Peterson, T.L.; Bartelt, G.A.; Sample, D.W.; Rineer, K.C.

    1996-01-01

    The purpose of this paper is to suggest a regional approach to ensure that energy crop production will proceed in an ecologically and economically sustainable way. At this juncture, we have the opportunity to build into the system some ecological and socio-economic values which have not traditionally been considered. If crop species are chosen and sited properly, incorporation of energy crops into our agricultural system could provide extensive wildlife habitat and address soil and water quality concerns, in addition to generating renewable power. We recommend that three types of agricultural land be targeted for perennial biomass energy crops: (1) highly erodible land; (2) wetlands presently converted to agricultural uses; and (3) marginal agricultural land in selected regions. Fitting appropriate species to these lands, biomass crops can be successfully grown on lands not ecologically suited for conventional farming practices, thus providing an environmental benefit in addition to producing an economic return to the land owner. (author)

  12. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2009-01-01

    This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends

  13. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  14. Economic viability of utilizing biomass energy from young stands - The case of Finland

    International Nuclear Information System (INIS)

    Ahtikoski, Anssi; Alenius, Virpi; Heikkilae, Jani; Siren, Matti

    2008-01-01

    The European Commission's White Paper has set clear targets with respect to supplying biomass for power generation. However, at present generating energy from biomass seems to be more expensive than producing energy via e.g. mineral oil fuels. In Finland, energy wood thinning in young stands has been subsidized by the government since the late 1990s. This paper focuses on analyzing the economics of the procurement of biomass energy from young stands in Finland. We apply a feasibility approach that determines an overall financial attractiveness of the procurement process. Technically, feasibility is calculated by applying a costing model, which allows a detailed accounting from the stand all the way to the power plant. Analyses are based on experimental data from 20 young stands, and alternative thinning methods as well as sensitivity analyses on tree characteristics, energy prices, government subsidy level and production costs are addressed. The results indicated that energy wood thinning would be financially viable if thinning removal is at least 42 m 3 ha -1 , average stem volume is larger than 15 l and energy price (at power plant) corresponds to at least EUR12 MWh -1 . However, without government subsidy, the bioenergy procurement from young stands turned out to be unprofitable, regardless of thinning removal and average stem volume. Production cost changes (range: -15% to +15%) and energy price changes (from EUR10 to EUR14 MWh -1 ) had a significant effect on financial performance, implying that careful planning on target selection is needed. (author)

  15. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials.

  16. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    Dornburg, V.; Faaij, A.; Verweij, P.; Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F.; Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R.; Aiking, H.; Londo, M.; Mozaffarian, H.; Smekens, K.; Lysen, E.

    2008-01-01

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  17. Energy consumption of biomass in the residential sector of Italy in 1999

    International Nuclear Information System (INIS)

    Gerardi, V.; Perrella, G.

    2001-01-01

    The report aims at showing the situation in Italian residential sector in the year 1999 about the consumption of biomass like energy source. Data presented are the result of a statistical survey on the Italian family. Taking into account the year 1999, the survey allowed to estimate a national consumption of vegetal fuels equal to about 14 Mt, with an average value by family of 3 t. The following aspects have been put in evidence: the consumption of biomass in Italy is characterised mainly bu the use of wood, 98.5% out of the total vegetal fuel consumption. Olive pits, charcoal and nutshells can be considered as marginal. Biomass supplying system by the families is related to the single biomass typology; in the case of wood there is a substantial equilibrium between the purchase (42.5%) and the self production/supplies (47%). In the case of olive pits the supplying system is mostly the purchase, on the contrary for the nutshells is the self production/supplies; Biomass are mostly used in the principal house (84.8% of the families using biomass); the families expressed satisfaction; the energetic systems that use vegetal fuels have a complementary character in relation to the systems not fuelled with biomass [it

  18. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biomass as feedstock for chemicals and energy on the threshold of the 21st. century

    International Nuclear Information System (INIS)

    Cunningham, R.E.

    1993-01-01

    A historical background is first given in which the role of biomass is described in relation to its competition with fossil biomass for the production of chemicals and energy. Occurrences of reserves from both sources are then compared. Petrochemical and biomass routes are then analyzed in terms of their relative competitive advantages. The oleochemical and biotechnology cases are analyzed in more detail as examples of biomass utilization. Latin American examples of industrial manufacturing of biomass derived chemicals are then provided. Alcochemicals are analyzed in detail as well as essential oils and other chemicals. Finally, references are made to regional Latin American initiatives regarding biomass and the objectives, organization and nature of the initiative are presented

  20. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  1. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)

  2. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta [University of Pisa, Dipartimento di Agronomia e Gestione dell' Agroecosistema, Via S. Michele degli Scalzi, 2, 56100 Pisa (Italy); Bonari, Enrico [Scuola Sant' Anna, Piazza Martiri della Liberta, 33, 56100 Pisa (Italy)

    2009-05-15

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha{sup -1} for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg{sup -1}) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha{sup -1} year{sup -1}), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources. (author)

  3. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use

    International Nuclear Information System (INIS)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta; Bonari, Enrico

    2009-01-01

    Cardoon (Cynara cardunculus L.) is an herbaceous species indicated as one of the most suitable energy crop for southern European countries. The aim of this work was to outline the productivity of two cardoon cultivars, Bianco Avorio (BA) and Gigante di Romagna (GR), over 11 years of cultivation in rain fed field conditions in the temperate climate of Central Italy. The quantitative and qualitative aspects of its biomass (calorific value, ultimate and proximate analyses, ash composition) as well as its energy balance (energy efficiency, net energy yield) have been determined. Crop dry yield was not different between the two cultivars and it was rather stable with a mean value (averaged from year 3 to 11) of 14 and 13 t ha -1 for GR and BA respectively. Furthermore the biomass dry matter content was higher in BA than GR (51% vs 42%). The chemical analysis of cardoon biomass showed a similar composition in both cultivars with good calorific value (15 MJ kg -1 ) but with an ash content (13.9% d.w.) higher than other herbaceous energy crops. The total energy input was higher in the establishing than in the following years, however from the planting year onward, both cardoon crops were characterised by a positive energy balance. Even if its mean net energy is lower than other perennial energy crops (182 GJ ha -1 year -1 ), cardoon can be easily propagated by seed with important advantages for crop management and production costs. The results confirmed cardoon's good biomass yield and favourable energy balance even in cultivation systems characterised by limited water input. Moreover future works are necessary in order to improve cardoon biomass quality and to evaluate the possibility of using it in blends with other biomass sources.

  4. Conflicts on Use of Agricultural Biomass for Energy

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, Bent T.

    1997-01-01

    The use of biomass for energy puposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers claim that crop residues and animal manure should all be returned to the fields with as small a loss in carbon and nutrients content as possible. If a large part...... of Danish agriculture is tranformed into ecological farming, some complicated ecological, technical and systems problems will have to be solved....

  5. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  6. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining

    Science.gov (United States)

    J.Y. Zhu; X.S. Zhuang

    2012-01-01

    There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process...

  7. Long distance bioenergy logistics. An assessment of costs and energy consumption for various biomass energy transport chains

    International Nuclear Information System (INIS)

    Suurs, R.

    2002-01-01

    In order to create the possibility of obtaining an insight in the key factors of the title system, a model has been developed, taking into account different production systems, pretreatment operations and transport options. Various transport chains were constructed, which were subjected to a sensitivity analysis with respect to factors like transport distance, fuel prices and equipment operation times. Scenarios are analysed for Latin-America and Europe for which the distinguishing parameters were assumed to be the transport distances and biomass prices. For both regions the analysis concerns a situation where ship transports are applied for a coastal and for an inland biomass supply. For European biomass a train transport was considered as well. In order to explore possibilities for improvement, the effects of these variables on costs and energy consumption within a chain, were assessed. Delivered biomass can be converted to power or methanol. Model results are as follows: Total costs for European bioenergy range from 11.2-21.2 euro/GJ MeOH for methanol and 17.4-28.0 euro/GJ e for electricity. For Latin-America, costs ranges are 11.3-21.8 euro/GJ MeOH for methanol and 17.4-28.7 euro/GJ e for electricity. The lower end of these ranges is represented by transport chains that are characterised by the use of high density energy carriers such as logs, pellets or liquid fuels (these are the most attractive for all scenarios considered). The transport of chips should be avoided categorically due to their low density and high production costs. Transport chains based on the early production of liquid energy carriers such as methanol or pyrolysis oil seem to be promising alternatives as well. With respect to energy consumption, the transport of chips is highly unfavourable for the same reasons as stated above. The use of pelletizing operations implies a high energy input, however due to energy savings as a result of more efficient transport operations, this energy loss is

  8. Integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Tsoumas, Chris

    2011-01-01

    This paper investigates the integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S. The analysis is performed for the 1989-2009 period and covers all sectors which use these types of energy, i.e., transportation, residence, industrial, electric power and commercial. The results suggest that there are differences in the order of integration depending on both the type of energy and the sector involved. Moreover, the inclusion of structural breaks traced from the regulatory changes for these energy types seem to affect the order of integration for each series. - Highlights: → Increasing importance of renewable energy sources. → Integration properties of solar, geothermal and biomass energy consumption in the U.S. → The results show differences in the order of integration depending on the type of energy. → Structural breaks traced for these energy types affect the order of integration. → The order of integration is less than 1, so energy conservation policies are transitory.

  9. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  10. Renewable energy policies and competition for biomass: Implications for land use, food prices, and processing industry

    International Nuclear Information System (INIS)

    Chen, Xiaoguang; Önal, Hayri

    2016-01-01

    We use a mathematical programming model to examine the impacts of simultaneous implementation of two US biofuel and bioenergy policies on commodity markets and spatial distribution of future cellulosic biorefineries. The key findings based on our numerical simulation are: (1) the number and average annual production capacity of cellulosic biofuel refineries depend on the total renewable fuels mandate; (2) the mix of cellulosic biomass feedstock depends on the assumptions about the production costs of energy crops and the amount of cropland that can be used for energy crops, but regardless of the assumptions crop residues are the primary biomass source to meet the demand for biomass for biofuel production and electricity generation; and (3) the biomass production areas would surround either future cellulosic biorefineries or the existing coal-based power plants to reduce the costs of biomass transportation. These findings have important implications for biorefinery investors and provide valuable policy insights for the selection of Biomass Crop Assistance Program project areas. - Highlights: •Impacts of US biofuel and bioenergy policies are analyzed. •The number and production capacity of biorefineries depend on the biofuel policies. •Crop residues are the primary biomass source for bioenergy production. •Biomass production areas will surround cellulosic biorefineries or power plants.

  11. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Devlin, Ger; McDonnell, Kevin

    2014-01-01

    Highlights: • Wood energy supply chains are analysed for energy requirements and GHG emissions. • Use of residues and stumps for energy is evaluated for Irish conditions. • Results highlight transportation as the most energy and GHG emission intensive step. • Wood energy compares favourably with other biomass sources and fossil fuels. - Abstract: The demand for wood for energy production in Ireland is predicted to double from 1.5 million m 3 over bark (OB) in 2011 to 3 million m 3 OB by 2020. There is a large potential for additional biomass recovery for energetic purposes from both thinning forest stands and by harvesting of tops and branches, and stumps. This study builds on research within the wood-for-energy concept in Ireland by analysing the energy requirements and greenhouse gas emissions associated with thinning, residue bundling and stump removal for energy purposes. To date there have been no studies on harvesting of residues and stumps in terms of energy balances and greenhouse gas emissions across the life cycle in Ireland. The results of the analysis on wood energy supply chains highlights transport as the most energy and greenhouse gas emissions intensive step in the life cycle. This finding illustrates importance of localised production and use of forest biomass. Production of wood chip, and shredded bundles and stumps, compares favourably with both other sources of biomass in Ireland and fossil fuels

  12. Energy use of biomass composed by agroforestry and organic matter from the urban solid waste and applicable techniques for better performance

    International Nuclear Information System (INIS)

    Rodriguez Frutos, Jose Luis; Iza Lopez, Jon Mario; Orella Saenz, Josu

    2009-01-01

    The energy crises, increase of the price of petroleum, fear to the shortage of supplies, shift towards more sustainable energy policies, make return the view towards renewable production systems of energy. A common error is to use the term 'biomass' like synonymous of energy, without considering that the relation between useful energy and biomass is as variable as variable they are the elements that can conform the biomass. The useful energy can be extracted of the biomass by two conduits: either by direct combustion, or by products obtained from the transformations of physical-chemistry-biological processes. The present work to try to analyze the power advantage of the biomass as mixture of residues of the wood, agricultural residues and the MO contained in the urban solid residues, as well as the main usable systems for its advantage. (author)

  13. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha -1 . Growth was forecast at 16 Mg(OD) ha -1 yr -1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  14. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  15. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  16. Retrofit options to enable biomass firing at Irish peat plants: Background report 4.2 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Blaney, G.

    1995-05-01

    An overview is given of the most promising options for retrofitting existing Irish peat plants to accept biomass fuel. It is expected that with low investment costs the existing peat stations can be adapted to enable them to fire biomass. It will also be possible to co-fire peat and biomass, this option will become a way of using biomass in power generation with relatively low risk, both on the field of initial investments and supply security. The objectives of this report are: assessing the different technical options for retrofitting the plants to enable biomass firing; provide investment costs, efficiencies, emissions and expected lifetimes for the different retrofit options. The results from this study are used in the final integration phase of the EU-Joule project 'Energy from biomass'. Chapter 2 deals with methodological considerations which have been made in estimation of the investment costs. In chapter 3 the present situation is described. Both peat harvesting and power plant operation of both sod and milled peat plants are explained. Also some past experiences with wood chips firing in Irish peat stations are discussed. Chapter 4 gives a general view on retrofitting peat plants to enable biomass firing. Some starting points like biomass fuel feeding and emission standards that have to be met are highlighted. The rationale behind four main choices are given. Finally, a technical description is presented of the two boiler adaptations that will be considered among the different retrofit options, namely conversion of milled peat units into bubbling fluidized bed and into a whole tree energy unit. Six retrofit options are described in more detail in chapter 5. Information is given on the present status of the plants, the technical considerations of the retrofit, expected performance and an estimation of a range in which the investment costs can be expected. 4 figs., 10 tabs., 5 appendices

  17. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  18. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  19. Biomass energy use at the household level in two villages of Bangladesh: assessment of field methods

    International Nuclear Information System (INIS)

    Bari, M.N.; Bangladesh Agricultural University; Hall, D.O.; Lucas, N.J.D.; Hossain, S.M.A.

    1998-01-01

    A study was conducted to assess biomass energy supply and use in two villages in different agro-ecological regions of Bangladesh using three different techniques: broad questionnaire survey, sample questionnaire survey, and physical monitoring in order to see which methodology was more appropriate for the accurate assessment of biomass cooking energy supply and demand. The study included four broad socio-economic groups, i.e. large, medium, small and landless households. It was found that, per capita cooking energy demand varied significantly between the villages, socio-economic groups, and the first two methods of survey. Energy used was found to be strongly correlated with family size and energy use decreased according to landholding size. The broad questionnaire survey showed an average cooking energy use of 11.8 and 10.1 GJ per capita/year, for Kazirshimla and Noagaon village, respectively, while the sample questionnaire survey estimated energy use at 9.2 an 8.5 GJ per capita/year. With physical monitoring, however, the respective figures were found as 9.0 and 8.2 GJ per capita/year. It was also found that energy use was at the subsistence level in both villages. In Kazirishimla village biomass supply was found to be marginally surplus to use, while Noagaon had a supply deficit. The study showed that a broad questionnaire survey gives a fairly general picture of both biomass supply and use, but to assess cooking energy use more accurately successive sample questionnaire surveys followed by physical monitoring are more effective. (author)

  20. The use of biomass for energy in Sweden. Critical factors and lessons learned

    International Nuclear Information System (INIS)

    Johansson, Bengt; Boerjesson, Paal; Ericsson, Karin; Nilsson, Lars J.; Svenningsson, Per

    2002-08-01

    In this report the development of Swedish biomass use during recent decades is discussed. The relations between biomass supply, biomass demand and various policy initiatives are explored. The objectives are to discuss the most important factors affecting the biomass development and to establish which factors are specific for Swedish conditions and also to identify general factors that are relevant in assessing the possibility of expanding biomass use in different contexts. The focus is on the use of biomass for heat and electricity production. Biomass contributed 14% to the Swedish energy supply in 1999. The major fraction of Swedish biomass is used within the forest industry (63%) and in district heating systems (23%). The remaining fraction is used in small-scale boilers in one- and two family dwellings. Between 1990 and 1999 Swedish bioenergy use (including waste and peat) increased by 44%. During the same period there has been a fourfold increase in the district heating systems. By-products from forestry and the Swedish forest industry dominate the supply of biomass in Sweden, but the importation of biomass increased significantly during the 1990s. A number of factors of various kinds have interacted to bring about the increased use of biomass in Sweden during the past twenty years. These factors can be divided into three categories: structure, policies and actors. The existence of a major forest industry and well-developed district heating systems has enabled a rapid response to strong and standing policy commitments to biomass. The reformation of the taxation system, with the introduction of a high carbon tax on fossil fuels, has led to significantly improved competitiveness for biomass when used for heating purposes.

  1. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  2. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  3. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  4. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  5. Analysis of the availability of biomass in Cuba with energy ends

    International Nuclear Information System (INIS)

    Padron Perez, Rolando; Paredes Morejon, Lizeyda; Leyva Canavaciolo, Rafael

    2011-01-01

    The sugar Power stations commonly are endowed with an area water heater energetics with I upset generators to burn biomass and to generate electricity, alone that make it in the period of harvest, the trash that generate in its industrial process for electricity to be self-sufficient in burning. For to continue generating the whole year is necessary the supply of other solid fuels (biomasses not sugar). In this case the supply of marabou biomass with more caloric power and smaller content of humidity that the trash, converts it in a more efficient fuel in this industry. This project opens a road for the use of more than 900.000 hectares today infested by marabou, some will be been able to use again, after more than disabled 25 years, for the agricultural production and others will be able to be reforested with energy forests that allow the sustainable of the project. These studies are guided to contribute to the increment and sustainable of the security electro-energetics in Cuba, facilitating the environmental recovery and the agricultural use of the floors, facilitating the adoption of systems that achieve an in agreement generation with the strategy approved in the principles of the Energy Revolution and proposal in the limits of the 6. Congress of Party. (author)

  6. Spatial Distribution of Biomass and Woody Litter for Bio-Energy in Biscay (Spain

    Directory of Open Access Journals (Sweden)

    Esperanza Mateos

    2018-05-01

    Full Text Available Forest management has been considered a subject of interest, because they act as carbon (C sinks to mitigate CO 2 emissions and also as producers of woody litter (WL for bio-energy. Overall, a sustainably managed system of forests and forest products contributes to carbon mitigation in a positive, stable way. With increasing demand for sustainable production, the need to effectively utilise site-based resources increases. The utilization of WL for bio-energy can help meet the need for renewable energy production. The objective of the present study was to investigate biomass production (including C sequestration from the most representative forestry species (Pinus radiata D. Don and Ecualyptus globulus Labill of Biscay (Spain. Data from the third and fourth Spanish Forest Inventories (NFI3-2005 and NFI4-2011 were used. We also estimated the potential WL produced in the forest activities. Our findings were as follows: Forests of Biscay stored 12.084 Tg of biomass (dry basis, with a mean of 147.34 Mg ha - 1 in 2005 and 14.509 Tg of biomass (dry basis, with a mean of 179.82 Mg ha - 1 in 2011. The total equivalent CO 2 in Biscay’s forests increased by 1.629 Tg year - 1 between 2005 and 2011. The study shows that the energy potential of carbon accumulated in the WL amounted to 1283.2 million MJ year - 1 . These results suggest a considerable potential for energy production.

  7. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Dominković, D.F.; Ćosić, B.; Bačelić Medić, Z.; Duić, N.

    2015-01-01

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  8. Coal/Biomass-to-Liquids Demonstration Testing for DLA Energy: Report on Project Tests, Evaluations, and Recommendations

    Science.gov (United States)

    2015-08-20

    Report January 2010-August 2015 Coal/ Biomass -to-Liquids Demonstration Testing for DLA Energy Report on Project Tests, Evaluations, and...produced commercially from coal and biomass mixtures while meeting the requirements of Section 526, which requires that GHG emissions from...gasification equipment, coals, and biomass used, and reports and analyzes the test results. Additionally, the team worked with DOE NETL to conduct

  9. Solar Pond devices: free energy or bioreactors for Artemia biomass production?

    Science.gov (United States)

    Gouveia, Luisa; Sousa, João; Marques, Ana; Tavares, Célia; Giestas, Margarida

    2009-08-01

    The recent exponential growth in industrial aquaculture has led to a huge increase in Artemia biomass production in order to meet increased fish production needs. The present study explores the potential use of salt gradient solar ponds (SGSPs) for production of Artemia nauplii. An SGSP is a basin of water where solar energy is trapped and collected via an artificially imposed gradient. Three zones can be identified in an SGSP: upper and lower zones, which are both convective, and a middle zone, which is intended to be non-convective. The latter acts as a transparent insulation layer and allows for storage of solar energy at the bottom, where it is available for use. The combination of salt, temperature and high transparency could make SGSPs promising bioreactors for the production of Artemia nauplii. Using particle image velocymetry (PIV) and Shadowgraph visualisation techniques, the behaviour of Artemia nauplii under critical cultivation parameters (namely, salinity, temperature and light) was monitored to determine movement velocity, and how movement of Artemia affects the salt gradient. It was observed that Artemia nauplii constantly follow light, irrespective of adverse salinity and/or temperature conditions. However, despite the substantial displacement of Artemia following the light source, the salt gradient is not disrupted. The suitability of SGSPs as bioreactors for Artemia biomass production was then tested. The results were disappointing, probably due to the lack of sufficient O(2) for Artemia survival and growth. Follow-up trials were conducted aimed at using the SGSP as a green and economically attractive energy source to induce faster hatching of cysts and improved Artemia nauplii growth. The results of these trials, and a case study of Artemia nauplii production using an SGSP, are presented. The authors constructed a Solar Pond device, which they suggest as a novel way of supplying thermal energy for Artemia biomass production in an aquaculture

  10. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  11. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  12. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  13. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  14. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  15. Energy from biomass — Some basic physical and related considerations

    Science.gov (United States)

    Gloyne, R. W.

    1983-09-01

    The production of vegetable matter (biomass) by photosynthesis is determined by species and by meteorological factors (especially, but not exclusively, solar radiation). Annual net primary production of land-based biomass corresponds to only about 1/1000 of the intercepted irradiation at ground level, but even so, is 10 times the world's estimated energy needs. The exploitation of this energy potential at any one place is critically influenced by the economic, political and social factors, amongst which are the competition from agriculture (especially food crops), forestry, industrial and urban (including leisure) needs for land and resources. Social factors (e.g. population and population density) also constitute prime influences. Strategies for utilisation range from the cultivation of special energy crops (readily conceivable on the American/ Australasian continents); to the more efficient manipulation of current land-use patterns (including “opportunity” cropping); to the more effective exploitation of biologi cal wastes (e.g. methane from sewage), probably the only immediately practical possibility in any densely populated and highly industrialised country. The spatial pattern of solar irradiation at ground level is complex. In the summer, total daily irradiation in continental high latitudes can exceed that in maritime temperate regions; and this combined with species differences and the almost infinite variety of shape and orientation of plant parts, result in a photosynthetic production of biomass which does not conform completely to a zonal pattern, but in broad terms annual dry matter production varies from a few kg/ha in Arctic Tundra to tens of tonnes in temperate latitudes rising to nearly 100 t/ha for perennial tropical crops. If a species could be developed to grow throughout the year at the current seasonal rate, a yield of 150 t/yr, ha) seems possible.

  16. Energy conservation options for cooking with biomass in Ghana

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Næraa, Rikke; Karlsson, Kenneth

    1996-01-01

    Cooking is the main energy consuming activity in Ghana. This is mainly due to a generally low material standard of living, but also because the cooking process itself is energy inefficient. The fuel for cooking in Ghana is mainly biomass either in the form of wood, agricultural residues or charcoal....... An energy chain for the cooking process is established and the possible conservation options are surveyed in kitchen performance tests in Abodom in the tropical zone of Ghana. The energy consumption for the food preparation has been measured and energy saving options have been determined for some parts...... point has been reached. Most cooks tend to continue using a high heat supply even though it is not necessary. This process is often carried out without lid on the pot even though the use of lid will reduce the energy loss considerably. It is also concluded that the average fuelwood consumption in Abodom...

  17. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  18. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  19. Multilanguage Web application to assess biomass energy production: economic and energetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berruto, Remigio; Busato, Patrizia; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: remigio.berruto@unito.it

    2008-07-01

    One of the main difficulties in the development of biomass supply chains is the lack of reliable and complete information, which is needed to carry out a correct feasibility study. The aim of the research is contributing to knowledge which can be exploited in designing and evaluating biomass supply chains, within a standardized system approach. For this purpose has been implemented by DEIAFA a Web application - www.energyfarm.unito.it - to investigate the biomass supply chains under the technical, economic and energetic aspects. The first set of procedures allow the evaluation of field and logistic operations related to biomass cultivation, harvest and transport to the point of use. Another set of procedures refers to the feasibility study of biomass power plant. All procedures share a common database, ensuring their proper integration. EnergyFarm{sup R} represents a step toward the standardization of data and calculation procedures. In the future, it will be possible to foresee also in the same application the computing of the results with different standards (ASAE, EU, etc.). The interface to the application is provided in English and Italian languages. (author)

  20. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    Mitchell, C.P.; Watters, M.P.

    1995-01-01

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  1. Report of the excursion Energy from Biomass to Germany, 26-28 November 1997

    International Nuclear Information System (INIS)

    Gigler, J.K.

    1997-12-01

    The aim of the title excursion was to provide participants with up-to-date information of different aspects with respect to the production of energy from biomass. Visits were paid to the main office and the research centre of 'Lurgi Umwelt' in Frankfurt am Main, the cogeneration installation 'Pflanzenoel-Blockheizkraftwerk' in Greussenheim, a local government organization, involved in the management of biomass projects, CARMEN ('Centrales Agrar Rohstoff Marketing und Entwicklungs-Netzwerk' or Central Agricultural Raw Material Marketing and Development Network) in Wuerzburg, the 22 MW biomass heating power plant 'Biomasse-Heizkraftwerk Sulzbach-Rosenberg' in Sulzbach-Rosenberg, and the research institute (in particular with respect to miscanthus) 'Bayerische Landesanstalt fuer Weinbau und Gartenbau' in Wuerzburg. Next to an evaluation of the excursion and an overview of the experiences of the participants background information from the visited sites is presented

  2. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    Van Ree, R.; Dinkelbach, L.; Van Doorn, J.; Hemmes, K.; Gerlagh, T.; Groenendaal, B.

    2000-06-01

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  3. Social and ecological effects of biomass utilization and the willingness to use clean energy in the eastern Qinghai–Tibet plateau

    International Nuclear Information System (INIS)

    Ping, Xiaoge; Jiang, Zhigang; Li, Chunwang

    2012-01-01

    We conducted surveys in 19 villages on the Qinghai–Tibet plateau to explore the social and ecological effects of household biomass utilization and local people's willingness to use clean energy. Results showed that biomass was commonly used on this plateau. Dung combustion generated heavy indoor smoke in pastoral regions. Women were main dung collectors, who spent 1.8 h per day on dung collection. Crop residues and firewood were mainly collected by adults. Most respondents would like to rest while few chose to entertain or study when the time for biomass collection was saved. Tree numbers decreased in agricultural regions and grasslands deteriorated in pastoral regions recently according to most respondents. There were significant differences in the willingness to use modern energy, but no significant difference in the willingness to use clean energy among households from regions with different livelihoods. Almost all the respondents would like to use clean energy when there was no economic constraint but paid no attention to the environmental impact of fuel choice. Livelihood and region were main determinants in modern energy utilization, and energy price was the main determinant of fuel choice. Future energy development should focus on finding new ways to utilize biomass and exploring renewable energy. - Highlight: ► Rural household survey is done in 19 villages on the Qinghai–Tibet plateau. ► Biomass collection and utilization cost time and are bad for health and ecosystem. ► Price is the main determinant of fuel choice. ► Most households are willing to use clean energy but pay no attention to the environment. ► Future development should focus on finding new ways to utilize biomass and exploring renewable energy.

  4. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds

    International Nuclear Information System (INIS)

    Zhang, Xiaofeng; Li, Hongqiang; Liu, Lifang; Zeng, Rong; Zhang, Guoqiang

    2016-01-01

    Highlights: • A feasible trigeneration system is proposed to generate power, heating and cooling. • The steam for biomass gasification process is provided by solar energy. • The thermodynamic properties of the proposed system are investigated. • Effects of ER and SBR on gasification process is presented. • The sensitivity of the economic performance of trigeneration system is evaluated. - Abstract: The trigeneration systems are widely used owing to high efficiency, low greenhouse gas emission and high reliability. Especially, those trigeneration systems taking renewable energy as primary input are paid more and more attention. This paper presents a feasible trigeneration system, which realizes biomass and solar energy integrating effective utilization according to energy cascade utilization and energy level upgrading of chemical reaction principle. In the proposed system, the solar energy with mid-and-low temperature converted to the chemical energy of bio-gas through gasification process, then the bio-gas will be taken as the fuel for internal combustion engine (ICE) to generate electricity. The jacket water as a byproduct generated from ICE is utilized in a liquid desiccant unit for providing desiccant capacity. The flue gas is transported into an absorption chiller and heat exchanger consequently, supplying chilled water and domestic hot water. The thermodynamic performance of the trigeneration system was investigated by the help of Aspen plus. The results indicate that the overall energy efficiency and the electrical efficiency of the proposed system in case study are 77.4% and 17.8%, respectively. The introduction of solar energy decreases the consumption of biomass, and the solar thermal energy input fraction is 8.6%. In addition, the primary energy saving ratio and annual total cost saving ratio compared with the separated generation system are 16.7% and 25.9%, respectively.

  5. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    Science.gov (United States)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  6. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  7. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  8. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system

    International Nuclear Information System (INIS)

    Wang, Chengshan; Liu, Yixin; Li, Xialin; Guo, Li; Qiao, Lei; Lu, Hai

    2016-01-01

    An energy management system for stand-alone microgrid composed of diesel generators, wind turbine generator, biomass generator and an ESS (energy storage system) is proposed in this paper. Different operation objectives are achieved by a hierarchical control structure with different time scales. Firstly, the optimal schedules of the diesel generators, wind turbine generator, biomass generator and ESS are determined fifteen minutes ahead according to the super short-term forecast of load and wind speed in the optimal scheduling layer. Comprehensive analysis which takes the uncertainty of load and wind speed into account is conducted in this layer to minimize the operation cost of the system and ensure a desirable range of the state of charge of the ESS. Secondly, the operation points of each unit are regulated dynamically to guarantee real-time power balance and safety range of diesel generation in the real-time control layer, based on which the response capability when suffering significant forecast deviation and other emergency issues, e.g. sudden load-up can be improved. Finally, the effectiveness of the proposed energy management strategy is verified on an RT-Lab based real-time simulation platform, and the economic performances with different types of ESS are analyzed as well. - Highlights: • A hierarchical control strategy is proposed for a stand-alone microgrid. • The uncertainties of load and wind speed have been considered. • Better economic performance and high reliability of the system can be achieved. • The influences of different energy storage systems have been analyzed.

  10. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Rodriguez, Luis C.; May, Barrie; Herr, Alexander; O'Connell, Deborah

    2011-01-01

    Coal fired electricity is a major factor in Australia's greenhouse gas emissions (GHG) emissions. The country has adopted a mandatory renewable energy target (MRET) to ensure that 20% of electricity comes from renewable sources by 2020. In order to support the MRET, a market scheme of tradable Renewable Energy Certificates (RECs) has been implemented since 2001. Generators using biomass from eligible sources are able to contribute to GHG emission reduction through the substitution of coal for electricity production and are eligible to create and trade RECs. This paper quantifies the potential biomass resources available for energy generation from forestry and agriculture in the Green Triangle, one of the most promising Australian Regions for biomass production. We analyse the cost of electricity generation using direct firing of biomass, and estimate the required REC prices to make it competitive with coal fired electricity generation. Major findings suggest that more than 2.6 million tonnes of biomass are produced every year within 200 km of the regional hub of Mount Gambier and biomass fired electricity is viable using feedstock with a plant gate cost of 46 Australian Dollars (AUD) per tonne under the current REC price of 34 AUD per MWh. These findings are then discussed in the context of regional energy security and existing targets and incentives for renewable energies. -- Highlights: → We assessed the biomass production in the Green Triangle. → 2.6 million tonnes of biomass per year are produced within 200 km from Mt Gambier. → Renewable Energy Certificates makes bioenergy competitive with coal electricity. → At a REC price of 34 AUD, biomass of up to 46 AUD/tonne might be used for bionergy

  11. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  12. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  13. Potential of Spectral Reflectance as Postharvest Classification Tool for Flower Development of Calla Lily (Zantedeschia aethiopica (L. Spreng. Potencial de la Reflectancia Espectral como Herramienta para la Clasificación Poscosecha del Desarrollo Floral en Cala (Zantedeschia aethiopica (L. Spreng.

    Directory of Open Access Journals (Sweden)

    Antonio J . Steidle Neto

    2009-12-01

    Full Text Available Unsuitable postharvest management is one of the most serious problems that floriculture has to face. An option for reducing postharvest losses is to use automatic systems for flower sorting and classification, which yield consistent results, reduce costs and speed up these tasks. The objective of this work was show the potential of spectral reflectance to distinguish different postharvest development stages of calla lily flowers, Zantedeschia aethiopica (L. Spreng., aiming the use of this technology within automatic systems for flower classification. The measuring equipment was a spectrometer connected to a portable computer and configured for reflectance data acquisition in the 400 to 1000 nm range. Based on the results, it was verified a differentiation between the spectral reflectance curves of calla lily flowers, with gradual decreases on the measured values according to the increase of the senescence stages. Thus, the spectral reflectance has potential to be used in the development of automatic systems for postharvest classification of calla lily flowers.El manejo poscosecha inadecuado es uno de los problemas más serios que la floricultura tiene que enfrentar. Una opción para reducir las pérdidas poscosecha es emplear sistemas automáticos para ordenar y clasificar las flores, los cuales permiten resultados consistentes, reducen gastos y aceleran estas tareas. El objetivo de este trabajo fue demostrar el potencial de la reflectancia espectral para discriminar las diferentes fases de desarrollo poscosecha de flores de cala (Zantedeschia aethiopica [L.] Spreng., visando el uso de esta tecnología en sistemas automáticos para la clasificación de flores. El equipo de medición fue un espectrómetro conectado a un computador portátil y configurado para la adquisición de datos de reflectancia comprendidos en la región espectral de 400 a 1000 nm. Con base en los resultados, se constató una diferencia entre las curvas de reflectancia

  14. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  15. Bearings for the biomass boom

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2011-03-15

    Biomass energy is booming –– more than two billion people depend on biomass for their energy and the International Energy Agency predicts that biomass' share of the global energy supply will treble by 2050. But in many developing countries it is still regarded as a traditional and dirty solution that is often criminalised, unsustainable and poorly paid. A more sophisticated approach that legalises and secures sustainable production by and for local people could help improve energy security, cut carbon emissions, protect forests and reduce poverty.

  16. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  17. The effects of location, feedstock availability, and supply-chain logistics on the greenhouse gas emissions of forest-biomass energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jappinen, E,

    2013-11-01

    Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass's availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues

  18. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    International Nuclear Information System (INIS)

    Ren, Hongbo; Zhou, Weisheng; Nakagami, Ken'ichi; Gao, Weijun

    2010-01-01

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  19. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  20. A decision model for cost effective design of biomass based green energy supply chains.

    Science.gov (United States)

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.