Mathematics for physics with calculus
Das, Biman
2005-01-01
Designed for students who plan to take or who are presently taking calculus-based physics courses. This book will develop necessary mathematical skills and help students gain the competence to use precalculus, calculus, vector algebra, vector calculus, and the statistical analysis of experimental data. Students taking intermediate physics, engineering, and other science courses will also find the book useful-and will be able to use the book as a mathematical resource for these intermediate level courses. The book emphasizes primarily the use of mathematical techniques and mathematical concepts in Physics and does not go into their rigorous developments.
Mathematical Features of the Calculus
Sauerheber, Richard D.
2010-01-01
The fundamental theorems of the calculus describe the relationships between derivatives and integrals of functions. The value of any function at a particular location is the definite derivative of its integral and the definite integral of its derivative. Thus, any value is the magnitude of the slope of the tangent of its integral at that position,…
Constructivized Calculus in College Mathematics
Lawrence, Barbara Ann
2012-01-01
The purpose of this study is to present some of the classical concepts, definitions, and theorems of calculus from the constructivists' point of view in the spirit of the philosophies of L.E.J. Brouwer and Errett Bishop. This presentation will compare the classical statements to the constructivized statements. The method focuses on giving…
Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Experimental Design: Utilizing Microsoft Mathematics in Teaching and Learning Calculus
Oktaviyanthi, Rina; Supriani, Yani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students' achievement and the effects of the use of Microsoft…
Utilizing Microsoft Mathematics In Teaching And Learning Calculus
Rina Oktaviyanthi; Yani Supriani
2015-01-01
The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students’ achievement and the effects of the use of Microsoft Mathematics on students’ attitudes in relation to such experience. Two classes of the students from the first year student in Universitas Serang Raya wer...
Non-mathematics Students’ Reasoning in Calculus Tasks
Matić, Ljerka Jukić
2014-01-01
This paper investigates the reasoning of first year non-mathematics students in non-routine calculus tasks. The students in this study were accustomed to imitative reasoning from their primary and secondary education. In order to move from imitative reasoning toward more creative reasoning, non-routine tasks were implemented as an explicit part of the students’ calculus course. We examined the reasoning of six students in the middle of the calculus course and at the end of the course. The ana...
Effects of Clicker Use on Calculus Students' Mathematics Anxiety
Batchelor, John
2015-01-01
This paper reports the results of a survey study of clicker use and mathematics anxiety among students enrolled in an undergraduate calculus course during the Fall 2013 semester. Students in two large lecture sections of calculus completed surveys at the beginning and end of the course. One class used clickers, whereas the other class was taught…
Utilizing Microsoft Mathematics In Teaching And Learning Calculus
Directory of Open Access Journals (Sweden)
Rina Oktaviyanthi
2015-10-01
Full Text Available The experimental design was conducted to investigate the use of Microsoft Mathematics, free software made by Microsoft Corporation, in teaching and learning Calculus. This paper reports results from experimental study details on implementation of Microsoft Mathematics in Calculus, students’ achievement and the effects of the use of Microsoft Mathematics on students’ attitudes in relation to such experience. Two classes of the students from the first year student in Universitas Serang Raya were participated in the study. This study found that students who taught by using Microsoft Mathematics had higher achievement and has a positive effect on students’ confidence of mathematics.
Spivak, Michael
2006-01-01
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Helping Mathematics Students Survive the Post-Calculus Transition
Cullinane, Michael J.
2011-01-01
Many mathematics students have difficulty making the transition from procedurally oriented courses such as calculus to the more conceptually oriented courses in which they subsequently enroll. What are some of the key "stumbling blocks" for students as they attempt to make this transition? How do differences in faculty expectations for students…
The primordial end calculus of prime numbers and mathematics
Vinoo Cameron
2013-01-01
This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Ann...
Laurent, Theresa A.
2009-01-01
The purpose of this study was to investigate higher education mathematics departments' credit granting policies for students with high school calculus experience. The number of students taking calculus in high school has more than doubled since 1982 (NCES, 2007) and it is estimated that approximately 530,000 students took a calculus course in high…
Jones, Patrick
2014-01-01
Practice makes perfect-and helps deepen your understanding of calculus 1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go. Gives you a chance to practice and reinforce the skills you learn in your calculus courseHelps you refine your understanding of calculusP
An Excel-Aided Method for Teaching Calculus-Based Business Mathematics
Liang, Jiajuan; Martin, Linda
2008-01-01
Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…
The primordial end calculus of prime numbers and mathematics
Directory of Open Access Journals (Sweden)
Vinoo Cameron
2013-08-01
Full Text Available This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at 1/6 and 5/6 ( and 1/3 and 2/3,and these prime sieves are reversible .Thus the relationship of the configuration of 1 is in two planes that expand in the frame of (5/6 and 1/6 and (1/3 and 2/3are represented by spiral configuration , expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords 1/3+2/3=1 5/6+1/6=1 1/3-1/6=1/6 5/6-2/3=1/6 1/3+1/6=0.5 5/6+2/3=1.5 1.5/0.5=3 Note: the above is also confirmed by Arabian numerical shown below. Primordial mathematics as created by the creator is absolute and precise whilst the mathematics invented by man is approximate .Current Mathematics of a thousand years has accomplished much by approximate theory, and it is very possible to land a man on the moon by approximate mathematics, but to precisely understand mass and energy, the nucleus of mass and the vastness of space, one must understand the precise nature and curvature of space
Mathematics in the Classroom: Conceptual Cartography of Differential Calculus
Directory of Open Access Journals (Sweden)
María de Lourdes RODRÍGUEZ PERALTA
2015-12-01
Full Text Available This paper presents the results of a documentary investigation with the intention of substantiate how and why, and the level and depth of the topics used by the teacher in the classroom for the development of the mathematical knowledge on the part of higher level engineering students. The analysis of the mathematical object was made through the construction of conceptual cartography, being the core of the derivative concept. To construct the axes, the socio-formative theory of Sergio Tobón was used, together with the semiotic representation register of Raychmond Duval and Tall's mathematical advanced thought in the engineering context. The topic is a part of the Unit of learning: Differential and Integral Calculus. This corresponds to the first semester. The course lasts for a semester and is intended for students aged between 18 and 20 years. The research shows that by constructing a conceptual cartography involving at least 8 axes of analysis that the socio-formation orientates, and taking mathematics in the context of careers offered by the educational institution, the teacher is allowed to place the thematic content in the appropriate level and depth, guiding in a possible treatment of knowledge to be brought into the classroom.
Grossman, Stanley I
1981-01-01
Calculus, Second Edition discusses the techniques and theorems of calculus. This edition introduces the sine and cosine functions, distributes ?-? material over several chapters, and includes a detailed account of analytic geometry and vector analysis.This book also discusses the equation of a straight line, trigonometric limit, derivative of a power function, mean value theorem, and fundamental theorems of calculus. The exponential and logarithmic functions, inverse trigonometric functions, linear and quadratic denominators, and centroid of a plane region are likewise elaborated. Other topics
Larson, Ron
2014-01-01
The Larson CALCULUS program has a long history of innovation in the calculus market. It has been widely praised by a generation of students and professors for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.
The Impact of Instructor Pedagogy on College Calculus Students' Attitude toward Mathematics
Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.
2015-01-01
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students'…
Science Modelling in Pre-Calculus: How to Make Mathematics Problems Contextually Meaningful
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-01-01
"Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum" [National Council of Teachers of Mathematics (NCTM), "Principles and Standards for School Mathematics", NCTM, Reston, VA, 2000]. Commonly used pre-calculus textbooks provide a…
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
Grossman, Stanley I
1984-01-01
Calculus, Third Edition emphasizes the techniques and theorems of calculus, including many applied examples and exercises in both drill and applied-type problems.This book discusses shifting the graphs of functions, derivative as a rate of change, derivative of a power function, and theory of maxima and minima. The area between two curves, differential equations of exponential growth and decay, inverse hyperbolic functions, and integration of rational functions are also elaborated. This text likewise covers the fluid pressure, ellipse and translation of axes, graphing in polar coordinates, pro
Directory of Open Access Journals (Sweden)
Olga V. Shipulina
2013-01-01
Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.
Discovering the Art of Mathematics: Using String Art to Investigate Calculus
von Renesse, Christine; Ecke, Volker
2016-01-01
One goal of our Discovering the Art of Mathematics project is to empower students in the liberal arts to become confident creators of art and imaginative creators of mathematics. In this paper, we describe our experience with using string art to guide liberal arts students in exploring ideas of calculus. We provide excerpts from our inquiry-based…
Teaching mathematics with a different philosophy. Part 2: Calculus without Limits
Raju, C. K.
2013-01-01
The example of the calculus is used to explain how simple, practical math was made enormously complex by imposing on it the Western religiously-colored notion of mathematics as "perfect". We describe a pedagogical experiment to make math easy by teaching "calculus without limits" using the new realistic philosophy of zeroism, different from Platonic idealism or formalist metaphysics. Despite its demonstrated advantages, it is being resisted because of the existing colonial hangover.
The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.
Dray, Tevian; Manogue, Corinne A.
1999-01-01
Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)
Friedman, Menahem
2011-01-01
Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in ""light"" calculus -- mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management infor
Zandy, Bernard V
2003-01-01
We take great notes-and make learning a snap When it comes to pinpointing the stuff you really need to know, nobody does it better than CliffsNotes. This fast, effective tutorial helps you master core Calculus concepts-from functions, limits, and derivatives to differentials, integration, and definite integrals- and get the best possible grade. At CliffsNotes, we're dedicated to helping you do your best, no matter how challenging the subject. Our authors are veteran teachers and talented writers who know how to cut to the chase- and zero in on the essential information you need to succeed.
Barnett, M.D.; Sonnert, G.; Sadler, P.M.
2014-01-01
Relativizing the popular belief that student effort is the key to success, this article finds that effort in the most advanced mathematics course in US high schools is not consistently associated with college calculus performance. We distinguish two types of student effort: productive and ineffective efforts. Whereas the former carries the…
University mathematics teachers' views on the required reasoning in calculus exams
Bergqvist, Ewa
2012-01-01
Students often use imitative reasoning, i.e. copy algorithms or recall facts, when solving mathematical tasks. Research show that this type of imitative reasoning might weaken the students' understanding of the underlying mathematical concepts. In a previous study, the author classified tasks from 16 final exams from introductory calculus courses at Swedish universities. The results showed that it was possible to pass 15 of the exams, and solve most of the tasks, using imitative reasoning. Th...
The impact of instructor pedagogy on college calculus students' attitude toward mathematics
Sonnert, Gerhard; Sadler, Philip M.; Sadler, Samuel M.; Bressoud, David M.
2015-04-01
College calculus teaches students important mathematical concepts and skills. The course also has a substantial impact on students' attitude toward mathematics, affecting their career aspirations and desires to take more mathematics. This national US study of 3103 students at 123 colleges and universities tracks changes in students' attitudes toward mathematics during a 'mainstream' calculus course while controlling for student backgrounds. The attitude measure combines students' self-ratings of their mathematics confidence, interest in, and enjoyment of mathematics. Three major kinds of instructor pedagogy, identified through the factor analysis of 61 student-reported variables, are investigated for impact on student attitude as follows: (1) instructors who employ generally accepted 'good teaching' practices (e.g. clarity in presentation and answering questions, useful homework, fair exams, help outside of class) are found to have the most positive impact, particularly with students who began with a weaker initial attitude. (2) Use of educational 'technology' (e.g. graphing calculators, for demonstrations, in homework), on average, is found to have no impact on attitudes, except when used by graduate student instructors, which negatively affects students' attitudes towards mathematics. (3) 'Ambitious teaching' (e.g. group work, word problems, 'flipped' reading, student explanations of thinking) has a small negative impact on student attitudes, while being a relatively more constructive influence only on students who already enjoyed a positive attitude toward mathematics and in classrooms with a large number of students. This study provides support for efforts to improve calculus teaching through the training of faculty and graduate students to use traditional 'good teaching' practices through professional development workshops and courses. As currently implemented, technology and ambitious pedagogical practices, while no doubt effective in certain classrooms, do
Towards a Logical Calculus for Fuzzy Mathematics I, II
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor; Cintula, Petr
Linz : Johannes Kepler Universität, 2005. s. 1-4. [FLLL/SCCH Master and PhD Seminar. 00.02.2005-00.02.2005, Hagenberg] Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy mathematics * fuzzy class theory * notation * proof Subject RIV: BA - General Mathematics
Mathematics for everyman from simple numbers to the calculus
Colerus, Egmont
2003-01-01
Many people suffer from an inferiority complex where mathematics is concerned, regarding figures and equations with a fear based on bewilderment and inexperience. This book dispels some of the subject's alarming aspects, starting at the very beginning and assuming no mathematical education.Written in a witty and engaging style, the text contains an illustrative example for every point, as well as absorbing glimpses into mathematical history and philosophy. Topics include the system of tens and other number systems; symbols and commands; first steps in algebra and algebraic notation; common fr
Introduction to Tensor Calculus
Sochi, Taha
2016-01-01
These are general notes on tensor calculus which can be used as a reference for an introductory course on tensor algebra and calculus. A basic knowledge of calculus and linear algebra with some commonly used mathematical terminology is presumed.
Ellis, Jessica; Fosdick, Bailey; Rasmussen, Chris
2015-01-01
The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either ...
Nickerson, HK; Steenrod, NE
2011-01-01
""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,
Vickers, Trevor
1992-01-01
On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.
Chase, Norma
2011-11-01
Data spanning fifteen semesters and including more than 1200 students showed far less than the anticipated difference in performance between students with quite diverse levels of physics preparation. Students ranged from those with no prior physics course work to those with two or more years of HS physics and prior courses in college physics. Less prior physics training frequently coincided with better performance in the first calculus-based course. Preparation in mathematics, on the other hand, appeared critically important; students at the extremes of the math preparation spectrum were concentrated at the corresponding extremes of the physics grade distribution.
Kalanov, Temur Z.
2014-03-01
A critical analysis of the foundations of standard vector calculus is proposed. The methodological basis of the analysis is the unity of formal logic and of rational dialectics. It is proved that the vector calculus is incorrect theory because: (a) it is not based on a correct methodological basis - the unity of formal logic and of rational dialectics; (b) it does not contain the correct definitions of ``movement,'' ``direction'' and ``vector'' (c) it does not take into consideration the dimensions of physical quantities (i.e., number names, denominate numbers, concrete numbers), characterizing the concept of ''physical vector,'' and, therefore, it has no natural-scientific meaning; (d) operations on ``physical vectors'' and the vector calculus propositions relating to the ''physical vectors'' are contrary to formal logic.
Reyes, G. Mitchell
2004-01-01
This essay investigates the rhetoric surrounding the appearance of the concept of the infinitesimal in the seventeenth-century Calculus of Sir Isaac Newton and Gottfried Wilhelm Leibniz. Although historians often have positioned rhetoric as a supplemental discipline, this essay shows that rhetoric is the "material" out of which a new and powerful…
Multivector Differential Calculus
Hitzer, Eckhard
2013-01-01
Universal geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. This paper treats the fundamentals of the multivector differential calculus part of geometric calculus. The multivector differential is introduced, followed by the multivector derivative and the adjoint of multivector functions. The basic rules of multivector differentiation are derived explicitly, as well as a variety of basic m...
International Nuclear Information System (INIS)
The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed
Muldowney, Patrick
2012-01-01
A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. I...
Advanced calculus a transition to analysis
Dence, Thomas P
2010-01-01
Designed for a one-semester advanced calculus course, Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http://www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructor
Directory of Open Access Journals (Sweden)
Donna Sundre
2012-01-01
Full Text Available This study from the Norwegian University of Science and Technology (NTNU examines students’ learning goals and attitudes toward mathematics in a first-year calculus course in undergraduate engineering education. Achievement motivation research using the Achievement Goal Questionnaire (AGQ is advanced from current literature with two additions: (1 a course specific context using introductory college calculus students, and (2 participation of Norwegian students.Pre- and posttest measures of attitudes indicate that students do change learning goals over time, unfortunately opposite to the instructors’ aspirations. A significant increase in “Mastery Avoidance” and “Work Avoidance” was accompanied with a drop in “Mastery Approach” and “Performance Approach”. Variables such as value, motivation and enjoyment decreased along with a significant drop in self-confidence.
The absolute differential calculus (calculus of tensors)
Levi-Civita, Tullio
2013-01-01
Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Soergel calculus and Schubert calculus
He, Xuhua; Williamson, Geordie
2015-01-01
We reduce some key calculations of compositions of morphisms between Soergel bimodules ("Soergel calculus") to calculations in the nil Hecke ring ("Schubert calculus"). This formula has several applications in modular representation theory.
Blanco, Mónica
2013-04-01
The aim of this paper is to provide a cross-national comparative analysis of the introduction of calculus in Spanish and French military educational institutions through the works of Pedro Padilla y Arcos (1724-1807?) and Étienne Bézout (1730-1783), respectively. Both authors developed their educational work in the context of military schools and academies. Padilla's Curso Militar de Mathematicas (1753-1756) was the first work published in Spain which introduced the teaching of calculus in formal education. Bézout's Cours de Mathématiques (1764-1769) was the first work on calculus explicitly addressed to French military students and can be considered a representative of the canonical knowledge on eighteenth-century mathematics, both in France and abroad. Eighteenth-century Spain has traditionally been regarded as a country in the periphery whose scientific culture and education were pervaded by French science and education. This centre-periphery framework is often represented by a static model of one-way transmission from the centre to the periphery. A crossnational comparative analysis can help revisit this monolithic centre-periphery framework. A recent historiographical stream places the emphasis on appropriation, hence moving away from the idea of passive reception. In my paper I focus on the reading and writing of educational books, as practices which contribute actively to the development and circulation of knowledge. To assist the analysis, I explore the differences in communication practices in each case, in contents and approaches, and in particular, I give special attention to their inspiration in mathematical streams other than the French standpoint.
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
Czech Academy of Sciences Publication Activity Database
Müller, Vladimír
Basel : Springer, 2015 - (Alpay, D.), s. 1181-1215 ISBN 978-3-0348-0666-4 Institutional support: RVO:67985840 Keywords : Taylor spectrum * Taylor functional calculus * split spectrum Subject RIV: BA - General Mathematics http://link.springer.com/referenceworkentry/10.1007/978-3-0348-0667-1_61
Palmaccio, Richard J.
1982-01-01
A method of using vector analysis is presented that is an application of calculus that helps to find the best angle for tacking a boat into the wind. While the discussion is theoretical, it is seen as a good illustration of mathematical investigation of a given situation. (MP)
The Impact of Taking a College Pre-Calculus Course on Students' College Calculus Performance
Sonnert, Gerhard; Sadler, Philip M.
2014-01-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and…
Bergstra, J. A.; Ponse, A.; van der Zwaag, M. B.
2008-01-01
We introduce a calculus for tuplices, which are expressions that generalize matrices and vectors. Tuplices have an underlying data type for quantities that are taken from a zero-totalized field. We start with the core tuplix calculus CTC for entries and tests, which are combined using conjunctive composition. We define a standard model and prove that CTC is relatively complete with respect to it. The core calculus is extended with operators for choice, information hiding, scalar multiplicatio...
Boehme, Thomas K
1987-01-01
Operational Calculus, Volume II is a methodical presentation of operational calculus. An outline of the general theory of linear differential equations with constant coefficients is presented. Integral operational calculus and advanced topics in operational calculus, including locally integrable functions and convergence in the space of operators, are also discussed. Formulas and tables are included.Comprised of four sections, this volume begins with a discussion on the general theory of linear differential equations with constant coefficients, focusing on such topics as homogeneous and non-ho
Klaf, A A
1956-01-01
This book is unique in English as a refresher for engineers, technicians, and students who either wish to brush up their calculus or find parts of calculus unclear. It is not an ordinary textbook. It is, instead, an examination of the most important aspects of integral and differential calculus in terms of the 756 questions most likely to occur to the technical reader. It provides a very easily followed presentation and may also be used as either an introductory or supplementary textbook. The first part of this book covers simple differential calculus, with constants, variables, functions, inc
Schaaf, William L
2011-01-01
Comprehensive but concise, this introduction to differential and integral calculus covers all the topics usually included in a first course. The straightforward development places less emphasis on mathematical rigor, and the informal manner of presentation sets students at ease. Many carefully worked-out examples illuminate the text, in addition to numerous diagrams, problems, and answers.Bearing the needs of beginners constantly in mind, the treatment covers all the basic concepts of calculus: functions, derivatives, differentiation of algebraic and transcendental functions, partial different
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Kinnari-Korpela, Hanna
2015-01-01
Mathematics' skills and knowledge lay the basis for engineering studies. However, the resources targeted to mathematics' teaching are in many cases very limited. During the past years in our university the reduction of mathematics' contact hours has been significant while at the same time the study groups have grown. However, the mathematical…
Reading the World with Calculus
Verzosa, Debbie
2015-01-01
It is now increasingly recognized that mathematics is not a neutral value-free subject. Rather, mathematics can challenge students' taken-for-granted realities and promote action. This article describes two issues, namely deforestation and income inequality. These were specifically chosen because they can be related to a range of calculus concepts…
The calculus a genetic approach
Toeplitz, Otto
2007-01-01
When first published posthumously in 1963, this book presented a radically different approach to the teaching of calculus. In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique a
Neutrosophic Precalculus and Neutrosophic Calculus
Florentin Smarandache
2015-01-01
Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples o...
Quaternion Derivatives: The GHR Calculus
Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.
2014-01-01
Quaternion derivatives in the mathematical literature are typically defined only for analytic (regular) functions. However, in engineering problems, functions of interest are often real-valued and thus not analytic, such as the standard cost function. The HR calculus is a convenient way to calculate formal derivatives of both analytic and non-analytic functions of quaternion variables, however, both the HR and other functional calculus in quaternion analysis have encountered an essential tech...
Directory of Open Access Journals (Sweden)
Bram Geron
2013-09-01
Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.
ESeal Calculus: A Secure Mobile Calculus
Institute of Scientific and Technical Information of China (English)
Peng Rong; Chen Xin-meng; Liu Ping
2003-01-01
The ESeal Calculus is a secure mobile calculus based on Seal Calculus. By using open-channels, ESeal Calculus makes it possible to communicate between any two arbitrary seals with some secure restrictions. It improves the expression ability and efficiency of Seal calculus without losing security.
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Domingues, João Caramalho
2008-01-01
Silvestre François Lacroix (Paris, 1765 - ibid., 1843) was a most influential mathematical book author. His most famous work is the three-volume Traité du calcul différentiel et du calcul intégral (1797-1800; 2nd ed. 1810-1819) – an encyclopedic appraisal of 18th-century calculus which remained the standard reference on the subject through much of the 19th century, in spite of Cauchy's reform of the subject in the 1820's. Lacroix and the Calculus is the first major study of Lacroix’s large Traité. It uses the unique and massive bibliography given by Lacroix to explore late 18th-century calculus, and the way it is reflected in Lacroix’s account. Several particular aspects are addressed in detail, including: the foundations of differential calculus, analytic and differential geometry, conceptions of the integral, and types of solutions of differential equations (singular/complete/general integrals, geometrical interpretations, and generality of arbitrary functions). Lacroix’s large Traité... was a...
Educating about Sustainability while Enhancing Calculus
Pfaff, Thomas J.
2011-01-01
We give an overview of why it is important to include sustainability in mathematics classes and provide specific examples of how to do this for a calculus class. We illustrate that when students use "Excel" to fit curves to real data, fundamentally important questions about sustainability become calculus questions about those curves. (Contains 5…
A Transition Course from Advanced Placement to College Calculus
Lucas, Timothy A.; Spivey, Joseph
2011-01-01
In the Spring of 2007, a group of highly motivated mathematics graduate students conducted a review of Duke's Calculus curriculum. They focused on two main problems. The first problem is the result of a very positive trend: a growing number of students are earning AP credit for Calculus I in high school. However, this results in Calculus II…
Improving Calculus II and III through the Redistribution of Topics
George, C. Yousuf; Koetz, Matt; Lewis, Heather A.
2016-01-01
Three years ago our mathematics department rearranged the topics in second and third semester calculus, moving multivariable calculus to the second semester and series to the third semester. This paper describes the new arrangement of topics, and how it could be adapted to calculus curricula at different schools. It also explains the benefits we…
Hill, Gregory
2013-01-01
Earn College Credit with REA's Test Prep for CLEP* Calculus Everything you need to pass the exam and get the college credit you deserve.Our test prep for CLEP* Calculus and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.Here's how it works:Diagnostic exam at the REA Study Center focuses your studyOur online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you
Advanced Calculus An Introduction to Linear Analysis
Richardson, Leonard F
2008-01-01
Features an introduction to advanced calculus and highlights its inherent concepts from linear algebra. Advanced Calculus reflects the unifying role of linear algebra in an effort to smooth readers' transition to advanced mathematics. The book fosters the development of complete theorem-proving skills through abundant exercises while also promoting a sound approach to the study. The traditional theorems of elementary differential and integral calculus are rigorously established, presenting the foundations of calculus in a way that reorients thinking toward modern analysis. Following an introdu
Nevison, Christopher H.
This unit considers the application of calculus in determining price discrimination and consumer surplus in a competitive market. Producer surplus and two-tier price discrimination are also developed in problems. It is noted that calculus cannot usually provide numerical answers for practical economic problems. The importance of calculus…
McGivney-Burelle, Jean; Xue, Fei
2013-01-01
In this paper we discuss flipping pedagogy and how it can transform the teaching and learning of calculus by applying pedagogical practices that are steeped in our understanding of how students learn most effectively. In particular, we describe the results of an exploratory study we conducted to examine the benefits and challenges of flipping a…
The Britannica Guide to Analysis and Calculus
2011-01-01
The dynamism of the natural world means that it is constantly changing, sometimes rapidly, sometimes gradually. By mathematically interpreting the continuous change that characterizes so many natural processes, analysis and calculus have become indispensable to bridging the divide between mathematics and the sciences. This comprehensive volume examines the key concepts of calculus, providing students with a robust understanding of integration and differentiation. Biographies of important figures will leave readers with an increased appreciation for the sometimes competing theories that informe
Toward New Vision in Teaching Calculus
Kadry, Seifedine; ElShalkamy, Maha
2012-01-01
Usually the first course in mathematics is calculus. Its a core course in the curriculum of the Business, Engineering and the Sciences. However many students face difficulties to learn calculus. These difficulties are often caused by the prior fear of mathematics. The students today cant live without using computer technology. The uses of computer for teaching and learning can transform the boring traditional methodology of teach to more active and attractive method. In this paper, we will sh...
Calculus Students' Understanding of Volume
Dorko, Allison; Speer, Natasha M.
2013-01-01
Researchers have documented difficulties that elementary school students have in understanding volume. Despite its importance in higher mathematics, we know little about college students' understanding of volume. This study investigated calculus students' understanding of volume. Clinical interview transcripts and written responses to volume…
Stochastic calculus with infinitesimals
Herzberg, Frederik
2013-01-01
Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.
Integrating computers into calculus instruction
Christensen, Jon L.; Pierson, Brian E.
1994-01-01
Visualization is key in helping a student understand the fundamentals of Calculus. The new generation of computer literate students, raised in a video-based environment, will expect more than the traditional chalkboard methods in assisting them in this visualization. By integrating computers into the classroom and developing software to assist in mathematics instruction, we can enhance student comprehension of, and ability to apply, mathematics in solving real world problems of interest to th...
Elementary calculus an infinitesimal approach
Keisler, H Jerome
2012-01-01
This first-year calculus book is centered around the use of infinitesimals, an approach largely neglected until recently for reasons of mathematical rigor. It exposes students to the intuition that originally led to the calculus, simplifying their grasp of the central concepts of derivatives and integrals. The author also teaches the traditional approach, giving students the benefits of both methods.Chapters 1 through 4 employ infinitesimals to quickly develop the basic concepts of derivatives, continuity, and integrals. Chapter 5 introduces the traditional limit concept, using approximation p
Cirstea, Horatiu; Kirchner, Claude
2000-01-01
The Rho-calculus is a new calculus that integrates in a uniform and simple setting first-order rewriting, lambda-calculus and non-deterministic computations. This paper describes the calculus from its syntax to its basic properties in the untyped case. We show how it embeds first-order conditional rewriting and lambda-calculus. Finally we use the Rho-calculus to give an operational semantics to the rewrite based language Elan.
The Calculus Concept Readiness (CCR) Instrument: Assessing Student Readiness for Calculus
Carlson, Marilyn; West, Richard
2010-01-01
The Calculus Concept Readiness (CCR) instrument is based on the broad body of mathematics education research that has revealed major understandings, representational abilities, and reasoning abilities students need to construct in precalculus level courses to be successful in calculus. The CCR is a 25-item multiple-choice instrument, and the CCR taxonomy articulates what the CCR assesses. The methodology used to develop and validate the CCR is described and illustrated. Results from administering the CCR as a readiness examination in calculus are provided along with data to guide others in using the CCR as a readiness examination for beginning calculus.
Visual Thinking and Gender Differences in High School Calculus
Haciomeroglu, Erhan Selcuk; Chicken, Eric
2012-01-01
This study sought to examine calculus students' mathematical performances and preferences for visual or analytic thinking regarding derivative and antiderivative tasks presented graphically. It extends previous studies by investigating factors mediating calculus students' mathematical performances and their preferred modes of thinking. Data were…
Ferguson, Leann J.
2012-01-01
Calculus is an important tool for building mathematical models of the world around us and is thus used in a variety of disciplines, such as physics and engineering. These disciplines rely on calculus courses to provide the mathematical foundation needed for success in their courses. Unfortunately, due to the basal conceptions of what it means to…
Ouellette,, Jennifer
2011-01-01
Jennifer Ouellette never took maths in the sixth form, mostly because she like most of us assumed she wouldn't need it much in real life. But then the English graduate, now an award-winning science-writer, had a change of heart and decided to revisit the equations and formulas that had haunted her youth. The Calculus Diaries is the fun and fascinating account of a year spent confronting her numbers-phobia head on. With wit and verve, Ouellette explains how she discovered that maths could apply to everything from petrol mileages to dieting, rollercoaster rides to winning in Las Vegas.
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Friedman, Avner
2007-01-01
This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several
Stochastic calculus and applications
Cohen, Samuel N
2015-01-01
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Pyrah, Leslie N
1979-01-01
Stone in the urinary tract has fascinated the medical profession from the earliest times and has played an important part in the development of surgery. The earliest major planned operations were for the removal of vesical calculus; renal and ureteric calculi provided the first stimulus for the radiological investigation of the viscera, and the biochemical investigation of the causes of calculus formation has been the training ground for surgeons interested in metabolic disorders. It is therefore no surprise that stone has been the subject of a number of monographs by eminent urologists, but the rapid development of knowledge has made it possible for each one of these authors to produce something new. There is still a technical challenge to the surgeon in the removal of renal calculi, and on this topic we are always glad to have the advice of a master craftsman; but inevitably much of the interest centres on the elucidation of the causes of stone formation and its prevention. Professor Pyrah has had a long an...
van Doorn, Floris
2015-01-01
I formalize important theorems about classical propositional logic in the proof assistant Coq. The main theorems I prove are (1) the soundness and completeness of natural deduction calculus, (2) the equivalence between natural deduction calculus, Hilbert systems and sequent calculus and (3) cut elimination for sequent calculus.
Reductionism and the Universal Calculus
Sarma, Gopal P
2016-01-01
In the seminal essay, "On the unreasonable effectiveness of mathematics in the physical sciences," physicist Eugene Wigner poses a fundamental philosophical question concerning the relationship between a physical system and our capacity to model its behavior with the symbolic language of mathematics. In this essay, I examine an ambitious 16th and 17th-century intellectual agenda from the perspective of Wigner's question, namely, what historian Paolo Rossi calls "the quest to create a universal language." While many elite thinkers pursued related ideas, the most inspiring and forceful was Gottfried Leibniz's effort to create a "universal calculus," a pictorial language which would transparently represent the entirety of human knowledge, as well as an associated symbolic calculus with which to model the behavior of physical systems and derive new truths. I suggest that a deeper understanding of why the efforts of Leibniz and others failed could shed light on Wigner's original question. I argue that the notion o...
Hall, Angela Renee
2011-01-01
This investigative research focuses on the level of readiness of Science, Technology, Engineering, and Mathematics (STEM) students entering Historically Black Colleges and Universities (HBCU) in the college Calculus sequence. Calculus is a fundamental course for STEM courses. The level of readiness of the students for Calculus can very well play a…
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153. ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 2014 http://epubs.siam.org/doi/10.1137/120895950
Mathematics for the nonmathematician
Kline, Morris
2013-01-01
Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.
How do research mathematicians teach Calculus?
Petropoulou, Georgia; Jaworski, Barbara; Potari, Despina; Zachariades, Theodossios
2015-01-01
We investigate Calculus teaching at university mathematics departments and in particular research math-ematicians' teaching practice in the context of lectures. We are interested in how lecturers draw mathematics students into mathematical culture. In this paper, we focus on the teaching of a lecturer of a large cohort of students that we analyse using grounded techniques and the Teaching Triad construct (Jaworski, 1994). In spite of the lecture format, the analysis suggests that this lecture...
Projects for calculus the language of change
Stroyan, Keith D
1999-01-01
Projects for Calculus is designed to add depth and meaning to any calculus course. The fifty-two projects presented in this text offer the opportunity to expand the use and understanding of mathematics. The wide range of topics will appeal to both instructors and students. Shorter, less demanding projects can be managed by the independent learner, while more involved, in-depth projects may be used for group learning. Each task draws on special mathematical topics and applications from subjects including medicine, engineering, economics, ecology, physics, and biology.Subjects including:* Medicine* Engineering* Economics* Ecology* Physics* Biology
Using the Finite Difference Calculus to Sum Powers of Integers.
Zia, Lee
1991-01-01
Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…
Coordinating Multiple Representations in a Reform Calculus Textbook
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2015-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
Transitioning from Introductory Calculus to Formal Limit Conceptions
Nagle, Courtney
2013-01-01
The limit concept is a fundamental mathematical notion both for its practical applications and its importance as a prerequisite for later calculus topics. Past research suggests that limit conceptualizations promoted in introductory calculus are far removed from the formal epsilon-delta definition of limit. In this article, I provide an overview…
Brownian motion, martingales, and stochastic calculus
Le Gall, Jean-François
2016-01-01
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...
Introductory analysis a deeper view of calculus
Bagby, Richard J
2000-01-01
Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students* A thorough concentration of basic topics of calculus* Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use* Covers natural logarithms and exponential functions* Provides the computational techniques often encountered in basic calculus
Grossman, Stanley I
1986-01-01
Calculus of One Variable, Second Edition presents the essential topics in the study of the techniques and theorems of calculus.The book provides a comprehensive introduction to calculus. It contains examples, exercises, the history and development of calculus, and various applications. Some of the topics discussed in the text include the concept of limits, one-variable theory, the derivatives of all six trigonometric functions, exponential and logarithmic functions, and infinite series.This textbook is intended for use by college students.
Kotkar, Kunal; Thakkar, Ravi; Songra, MC
2011-01-01
Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty.
The Calculus Concept Readiness (CCR) Instrument: Assessing Student Readiness for Calculus
Carlson, Marilyn; Madison, Bernard; West, Richard
2010-01-01
The Calculus Concept Readiness (CCR) instrument is based on the broad body of mathematics education research that has revealed major understandings, representational abilities, and reasoning abilities students need to construct in precalculus level courses to be successful in calculus. The CCR is a 25-item multiple-choice instrument, and the CCR taxonomy articulates what the CCR assesses. The methodology used to develop and validate the CCR is described and illustrated. Results from administe...
Morris, Carla C
2015-01-01
Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills. In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets. Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay. Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions
Enhancing Students’ Understanding in Calculus Trough Writing
Directory of Open Access Journals (Sweden)
Noraini Idris
2009-02-01
Full Text Available The purpose of this study was to investigate the effects of using writing activities on students’ understanding and achievement in Calculus. The design of this study was quasi-experimental. The subjects of this study consisted of two secondary schools in one of the states in Malaysia. Each school was assigned one intact class of Form Four to be the experimental group and another one intact class as the control. The experimental group learned mathematics by using the writing activities for five weeks, while the control group learned mathematics by using traditional whole-class instruction. A 20-item Calculus Achievement test was designed with reliability .87. The findings showed that the experimental group exhibited significantly greater improvement on calculus achievement. The students showed positive reaction towards the use of writing. Findings of this study provide information to schools to take advantage of writing activities to promote understanding.
Integral calculus problem solving: An fMRI investigation
Krueger, Frank; Spampinato, M. Vittoria; Pardini, Matteo; Pajevic, Sinisa; Wood, Jacqueline N.; Weiss, George H.; Landgraf, Steffen; Grafman, Jordan
2008-01-01
Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy subjects were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intrapariet...
Are Homeschoolers Prepared for College Calculus?
Wilkens, Christian P.; Wade, Carol H.; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
Homeschooling in the United States has grown considerably over the past several decades. This article presents findings from the Factors Influencing College Success in Mathematics (FICSMath) survey, a national study of 10,492 students enrolled in tertiary calculus, including 190 students who reported homeschooling for a majority of their high…
Full Lambek Calculus with Contraction is Undecidable
Czech Academy of Sciences Publication Activity Database
Chvalovský, Karel; Horčík, Rostislav
-, Published online: 10 May (2016). ISSN 0022-4812 R&D Projects: GA ČR GAP202/11/1632 Institutional support: RVO:67985807 Keywords : substructural logic * full Lambek calculus * contraction rule * square-increasing residuated lattice * equational theory * decidability Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014
Using Matlab in a Multivariable Calculus Course.
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
Blum, William
2009-01-01
Safety is a syntactic condition of higher-order grammars that constrains occurrences of variables in the production rules according to their type-theoretic order. In this paper, we introduce the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition to the setting of the simply-typed lambda calculus. In contrast to the original definition of safety, our calculus does not constrain types (to be homogeneous). We show that in the safe lambda calculus, there is no need to rename bound variables when performing substitution, as variable capture is guaranteed not to happen. We also propose an adequate notion of beta-reduction that preserves safety. In the same vein as Schwichtenberg's 1976 characterization of the simply-typed lambda calculus, we show that the numeric functions representable in the safe lambda calculus are exactly the multivariate polynomials; thus conditional is not definable. We also give a characterization of representable word functions. We then study the ...
Schubert calculus and singularity theory
Gorbounov, Vassily; Petrov, Victor
2012-02-01
Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces, it has to be redesigned when applied to other generalized cohomology theories such as the equivariant, the quantum cohomology, K-theory, and cobordism. All this cohomology theories are different deformations of the ordinary cohomology. In this note, we show that there is, in some sense, the universal deformation of Schubert calculus which produces the above mentioned by specialization of the appropriate parameters. We build on the work of Lerche Vafa and Warner. The main conjecture these authors made was that the classical cohomology of a Hermitian symmetric homogeneous manifold is a Jacobi ring of an appropriate potential. We extend this conjecture and provide a simple proof. Namely, we show that the cohomology of the Hermitian symmetric space is a Jacobi ring of a certain potential and the equivariant and the quantum cohomology and the K-theory is a Jacobi ring of a particular deformation of this potential. This suggests to study the most general deformations of the Frobenius algebra of cohomology of these manifolds by considering the versal deformation of the appropriate potential. The structure of the Jacobi ring of such potential is a subject of well developed singularity theory. This gives a potentially new way to look at the classical, the equivariant, the quantum and other flavors of Schubert calculus.
Borden, Robert S
1997-01-01
This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as lim
Menger, Karl
2007-01-01
One of the twentieth century's most original mathematicians and thinkers, Karl Menger taught students of many backgrounds. In this, his radical revision of the traditional calculus text, he presents pure and applied calculus in a unified conceptual frame, offering a thorough understanding of theory as well as of the methodology underlying the use of calculus as a tool.The most outstanding feature of this text is the care with which it explains basic ideas, a feature that makes it equally suitable for beginners and experienced readers. The text begins with a ""mini-calculus"" which brings out t
Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen
2015-01-01
Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…
Electronic Algebra and Calculus Tutor
Directory of Open Access Journals (Sweden)
Larissa Fradkin
2012-06-01
Full Text Available Modern undergraduates join science and engineering courses with poorer mathematical background than most contemporaries of the current faculty had when they were freshers. The problem is very acute in the United Kingdom but more and more countries adopt less resource intensive models of teaching and the problem spreads. University tutors and lecturers spend more and more time covering the basics. However, most of them still rely on traditional methods of delivery which presuppose that learners have a good memory and considerable time to practice, so that they can memorize disjointed facts and discover for themselves various connections between the underlying concepts. These suppositions are particularly unrealistic when dealing with a large number of undergraduates who are ordinary learners with limited mathematics background. The first author has developed a teaching system that allows such adult learners achieve relatively deep learning of mathematics – and remarkably quickly – through a teacher-guided (often called Socratic dialog, which aims at the frequent reinforcement of basic mathematical abstractions through Eulerian sequencing. These ideas have been applied to create a prototype of a Cognitive Mathematics Tutoring System aimed at teaching basic mathematics to University freshers., an electronic Personal Algebra and Calculus Tutor (e- PACT.
Semiclassical dynamics and magnetic Weyl calculus
International Nuclear Information System (INIS)
Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)
Semiclassical dynamics and magnetic Weyl calculus
Energy Technology Data Exchange (ETDEWEB)
Lein, Maximilian Stefan
2011-01-19
Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)
Getut Pramesti; Dwi Maryono
2013-01-01
Calculus is a finite mathematics concepts to solve infinite mathematics problems. The subject which is given to students grade 1 and 2 semester, is a basic science to understanding the other subject on education mathematic program, Mathematics and science department, teacher training and education faculty, Sebelas Maret University. Learning of Interactive Multimedia (MMI) is one ofÂ learning model based IT which can be used in Calculus I learning. This learning model have aim to enhance conc...
A MATLAB companion for multivariable calculus
Cooper, Jeffery
2001-01-01
Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton''s method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html.* Computer-oriented material that complements the essential topics in multivariable calculus* Main ideas presented with examples of computations and graphics displays using MATLAB * Numerous examples of short code in the text, which can be modified for use with the exercises* MATLAB files are used to implem...
Fractional Calculus in Wave Propagation Problems
Mainardi, Francesco
2012-01-01
Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention to wave propagation problems in linear viscoelastic media. Our purpose is to outline the role of fractional calculus in providing simplest evolution processes which are intermediate between diffusion and wave propagation. The present treatment mainly reflects the research activity and style of the author in the related scientific areas during the last decades.
What Does It Mean for a Student to Understand the First-Year Calculus? Perspectives of 24 Experts
Sofronas, Kimberly S.; DeFranco, Thomas C.; Vinsonhaler, Charles; Gorgievski, Nicholas; Schroeder, Larissa; Hamelin, Chris
2011-01-01
This article presents the views of 24 nationally recognized authorities in the field of mathematics, and in particular the calculus, on student understanding of the first-year calculus. A framework emerged that includes four overarching end goals for understanding of the first-year calculus: (a) mastery of the fundamental concepts and-or skills of…
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated with...
The stochastic quality calculus
DEFF Research Database (Denmark)
Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis
2014-01-01
We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...
Essential calculus with applications
Silverman, Richard A
1989-01-01
Rigorous but accessible text introduces undergraduate-level students to necessary background math, then clear coverage of differential calculus, differentiation as a tool, integral calculus, integration as a tool, and functions of several variables. Numerous problems and a supplementary section of ""Hints and Answers."" 1977 edition.
Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas
2013-07-01
Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453
Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas
2013-01-01
Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved.
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming; Vigo, Roberto
2013-01-01
A main challenge of programming component-based software is to ensure that the components continue to behave in a reasonable manner even when communication becomes unreliable. We propose a process calculus, the Quality Calculus, for programming software components where it becomes natural to plan...
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Calculus Demonstrations Using MATLAB
Dunn, Peter K.; Harman, Chris
2002-01-01
The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions. PMID:19583533
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Mathematical methods for physical and analytical chemistry
Goodson, David Z
2011-01-01
Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical
Hadlock, Charles R
2013-01-01
The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…
An Evaluative Calculus Project: Applying Bloom's Taxonomy to the Calculus Classroom
Karaali, Gizem
2011-01-01
In education theory, Bloom's taxonomy is a well-known paradigm to describe domains of learning and levels of competency. In this article I propose a calculus capstone project that is meant to utilize the sixth and arguably the highest level in the cognitive domain, according to Bloom et al.: evaluation. Although one may assume that mathematics is…
Improving Student Success in Calculus I Using a Co-Requisite Calculus I Lab
Vestal, Sharon Schaffer; Brandenburger, Thomas; Furth, Alfred
2015-01-01
This paper describes how one university mathematics department was able to improve student success in Calculus I by requiring a co-requisite lab for certain groups of students. The groups of students required to take the co-requisite lab were identified by analyzing student data, including Math ACT scores, ACT Compass Trigonometry scores, and…
Introduction to the calculus of variations
Dacorogna, Bernard
2004-01-01
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology. This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subjects most important problems, results and techniques. Despite the aim of addressing non-spe
Baxter Algebras and Umbral Calculus
Guo, Li
2004-01-01
We apply recent constructions of free Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of $\\lambda$-umbral calculi parameterized by $\\lambda$ in the base ring.
Calculus of variations and optimal control theory a concise introduction
Liberzon, Daniel
2011-01-01
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory
Introduction to the Rewriting Calculus
Cirstea, Horatiu; Kirchner, Claude
1999-01-01
The $\\rho$-calculus is a new calculus that integrates in a uniform and simple setting first-order rewriting, $\\lambda$-calculus and non-deterministic computations. This paper describes the calculus from its syntax to its basic properties in the untyped case. We show how it embeds first-order conditional rewriting and $\\lambda$-calculus. Finally we use the $\\rho$-calcul- us to give an operational semantics to the rewrite based language ELAN.
Ryan, Mark
2014-01-01
Slay the calculus monster with this user-friendly guide Calculus For Dummies, 2nd Edition makes calculus manageable-even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the ""how"" and ""why"" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll s
Elsgolc, L E; Stark, M
1961-01-01
Calculus of Variations aims to provide an understanding of the basic notions and standard methods of the calculus of variations, including the direct methods of solution of the variational problems. The wide variety of applications of variational methods to different fields of mechanics and technology has made it essential for engineers to learn the fundamentals of the calculus of variations. The book begins with a discussion of the method of variation in problems with fixed boundaries. Subsequent chapters cover variational problems with movable boundaries and some other problems; sufficiency
A Tasty Combination: Multivariable Calculus and Differential Forms
Goins, Edray Herber
2009-01-01
Differential Calculus is a staple of the college mathematics major's diet. Eventually one becomes tired of the same routine, and wishes for a more diverse meal. The college math major may seek to generalize applications of the derivative that involve functions of more than one variable, and thus enjoy a course on Multivariate Calculus. We serve this article as a culinary guide to differentiating and integrating functions of more than one variable -- using differential forms which are the basis for de Rham Cohomology.
Hermeneutics of differential calculus in eighteenth-century northern Germany.
Blanco, Mónica
2008-01-01
This paper applies comparative textbook analysis to studying the mathematical development of differential calculus in northern German states during the eighteenth century. It begins with describing how the four textbooks analyzed presented the foundations of calculus and continues with assessing the influence each of these foundational approaches exerted on the resolution of problems, such as the determination of tangents and extreme values, and even on the choice of coordinates for both algebraic and transcendental curves. PMID:19244874
Calculus in physics classes at UFRGS: an exploratory study
Maria Cecilia Pereira Santarosa; Marco Antonio Moreira
2011-01-01
This study is part f a larger one whose general objective is to investigate and to develop a new strategy for teaching Differential and Integral Calculus I, specifically for physics majors, through a possible integration with the teaching of General and Experimental Physics I. With the specific objective of identifying physics problem-situations that may help in making sense of the mathematical concepts used in Calculus I, and languages and notations that might be used in the teaching of Calc...
A "Mathematics Background Check"
Hubisz, John
2009-01-01
Early in my career someone else reported that the best indicator of success in calculus-based physics (CBP) at our school was whether students had taken mathematics in a certain region of New Brunswick. I sat down with a very longtime mathematics teacher and asked him what he thought students should know in mathematics after high school to succeed…
Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.
Christensen, Mark J
1981-01-01
Computing for Calculus focuses on BASIC as the computer language used for solving calculus problems.This book discusses the input statement for numeric variables, advanced intrinsic functions, numerical estimation of limits, and linear approximations and tangents. The elementary estimation of areas, numerical and string arrays, line drawing algorithms, and bisection and secant method are also elaborated. This text likewise covers the implicit functions and differentiation, upper and lower rectangular estimates, Simpson's rule and parabolic approximation, and interpolating polynomials. Other to
Complex Multiplicative Calculus
Bashirov, Agamirza; Riza, Mustafa
2011-01-01
In the present paper we extend the concepts of multiplicative de- rivative and integral to complex-valued functions of complex variable. Some drawbacks, arising with these concepts in the real case, are explained satis- factorily. Properties of complex multiplicative derivatives and integrals are studied. In particular, the fundamental theorem of complex multiplicative calculus, relating these concepts, is proved. It is shown that complex multi- plicative calculus is not just another realizat...
Desbrun, Mathieu; Hirani, Anil N.; Leok, Melvin; Marsden, Jerrold E.
2005-01-01
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (such as Lie derivatives) which are important in applications. Previous attempts at discrete exterior ca...
Cui, Helen; Thomas, Johanna; Kumar, Sunil
2013-01-01
We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging.
Introduction to the calculus of variations
Sagan, Hans
1992-01-01
Excellent text provides basis for thorough understanding of the problems, methods and techniques of the calculus of variations and prepares readers for the study of modern optimal control theory. Treatment limited to extensive coverage of single integral problems in one and more unknown functions. Carefully chosen variational problems and over 400 exercises. ""Should find wide acceptance as a text and reference.""-American Mathematical Monthly. 1969 edition. Bibliography.
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing ca...
Bigeometric Calculus and Runge Kutta Method
Riza, Mustafa; Eminağa, Buğçe
2014-01-01
The properties of the Bigeometric or proportional derivative are presented and discussed explicitly. Based on this derivative, the Bigeometric Taylor theorem is worked out. As an application of this calculus, the Bigeometric Runge-Kutta method is derived and is applied to academic examples, with known closed form solutions, and a sample problem from mathematical modelling in biology. The comparison of the results of the Bigeometric Runge-Kutta method with the ordinary Runge-Kutta method shows...
Stein, Sherman K
2010-01-01
Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
An alternative presentation of the π－calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π－calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.
Fractional calculus in bioengineering, part 3.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub
Introduction to tensor calculus, relativity and cosmology
Lawden, Derek F
2002-01-01
This elementary introduction pays special attention to aspects of tensor calculus and relativity that students tend to find most difficult. Its use of relatively unsophisticated mathematics in the early chapters allows readers to develop their confidence within the framework of Cartesian coordinates before undertaking the theory of tensors in curved spaces and its application to general relativity theory. Additional topics include black holes, gravitational waves, and a sound background in applying the principles of general relativity to cosmology. Numerous exercises advance the theoretical developments of the main text, thus enhancing this volume's appeal to students of applied mathematics and physics at both undergraduate and postgraduate levels.
Steele, Diana F.; Levin, Amy K.; Blecksmith, Richard; Shahverdian, Jill
2005-10-01
The purpose of this study was to investigate the ways in which a multi-layered women's calculus course influenced the participants' learning of mathematics. This study, conducted in a state university in the Midwestern region of the United States, revealed not only that women in this particular section of calculus were likely to select careers that involved mathematics, but that the focus on peer support, psychosocial issues such as self-confidence, and pedagogy helped the young women overcome gender barriers, as well as barriers of class, poverty, and race. In this article we provide some of the relevant quantitative statistics and relate the stories of two particular women through excerpts from interviews, student artefacts, and participant observation data. We selected these young women because they faced multiple barriers to success in Calculus I and might not have completed the course or taken additional mathematics courses without the support structures that were fundamental to the course.
Proof nets for the Displacement calculus
Moot, Richard
2016-01-01
We present a proof net calculus for the Displacement calculus and show its correctness. This is the first proof net calculus which models the Displacement calculus directly and not by some sort of translation into another formalism. The proof net calculus opens up new possibilities for parsing and proof search with the Displacement calculus.
Putting Differentials Back into Calculus
Dray, Tevian; Manogue, Corrine A.
2010-01-01
We argue that the use of differentials in introductory calculus courses is useful and provides a unifying theme, leading to a coherent view of the calculus. Along the way, we meet several interpretations of differentials, some better than others.
Analysis of Errors and Misconceptions in the Learning of Calculus by Undergraduate Students
Muzangwa, Jonatan; Chifamba, Peter
2012-01-01
This paper is going to analyse errors and misconceptions in an undergraduate course in Calculus. The study will be based on a group of 10 BEd. Mathematics students at Great Zimbabwe University. Data is gathered through use of two exercises on Calculus 1&2.The analysis of the results from the tests showed that a majority of the errors were due…
Investigations on the dual calculus
Tzevelekos, Nikos
2006-01-01
The Dual Calculus, proposed recently by Wadler, is the outcome of two distinct lines of research in theoretical computer science: (A) Efforts to extend the Curry–Howard isomorphism, established between the simply-typed lambda calculus and intuitionistic logic, to classical logic. (B) Efforts to establish the tacit conjecture that call-by-value (CBV) reduction in lambda calculus is dual to call-by-name (CBN) reduction. This paper initially investigates relations of the Dual Calculus t...
A development calculus for specifications
Institute of Scientific and Technical Information of China (English)
李未
2003-01-01
A first order inference system, named R-calculus, is defined to develop the specifications.This system intends to eliminate the laws which are not consistent with users' requirements. TheR-calculus consists of the structural rules, an axiom, a cut rule, and the rules for logical connectives.Some examples are given to demonstrate the usage of the R-calculus. Furthermore, the propertiesregarding reachability and completeness of the R-calculus are formally defined and proved.
Japaridze, Giorgi
2007-01-01
Cirquent calculus is a new proof-theoretic framework, originally motivited by the needs of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html ). Its main distinguishing feature is sharing: unlike the more traditional frameworks that manipulate tree- or forest-like objects such as formulas, sequents or hypersequents, cirquent calculus deals with circuit-style structures called cirquents. The present article elaborates a deep-inference cirquent calculus system CL8 for classical propositional logic and the corresponding fragment of the resource-conscious computability logic. It also shows the existence of polynomial-size analytic CL8-proofs of the pigeonhole principle -- the family of tautologies known to have no such proofs in traditional systems.
Malinowska, Agnieszka B
2014-01-01
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations fo...
Gelfand, I M
2000-01-01
Based on a series of lectures given by I. M. Gelfand at Moscow State University, this book actually goes considerably beyond the material presented in the lectures. The aim is to give a treatment of the elements of the calculus of variations in a form both easily understandable and sufficiently modern. Considerable attention is devoted to physical applications of variational methods, e.g., canonical equations, variational principles of mechanics, and conservation laws.The reader who merely wishes to become familiar with the most basic concepts and methods of the calculus of variations need on
Šobich, Adam
2011-01-01
Bachelor’s thesis is focused on system design of eliminator of dental calculus operating at a frequency of 27 kHz and reaching the intensity of ultrasound on the applicator tip to 5 W/cm2. The work analyzes problems of dental calculus, principle of ultrasonic waves and the physical phenomena occurring in the environment, which it passes. Another part of the work describes the creation of waves using ultrasonic transducer and the amplification of ultrasound in the waveguide. Practical part of ...
Pedersen, Steen
2015-01-01
This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section
Ayres, Frank
1999-01-01
Students can gain a thorough understanding of differential and integral calculus with this powerful study tool. They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research. PMID:20615808
International Nuclear Information System (INIS)
The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed
Logic in elementary mathematics
Exner, Robert M
2011-01-01
This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-12-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
Students' difficulties with vector calculus in electrodynamics
Bollen, Laurens; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is a prerequisite to study the electrodynamic phenomena that are discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
The simply typed rewriting calculus
Cirstea, Horatiu; Kirchner, Claude
2000-01-01
The rewriting calculus is a rule construction and application framework. As such it embeds in a uniform way term rewriting and lambda-calculus. Since rule application is an explicit object of the calculus, it allows us also to handle the set of results explicitly. We present a simply typed version of the rewriting calculus. With a good choice of the type system, we show that the calculus is type preserving and terminating, i.e. verifies the subject reduction and strong normalization properties.
Kohatsu, Arturo; Miquel, Montero
2003-01-01
This article is an introduction to Malliavin Calculus for practitioners. We treat one specific application to the calculation of greeks in Finance. We consider also the kernel density method to compute greeks and an extension of the Vega index called the local vega index.
On Multiplicative Fractional Calculus
Abdeljawad, Thabet
2015-01-01
We set the main concepts for multiplicative fractional calculus. We define Caputo, Riemann and Letnikov multiplicative fractional derivatives and multiplicative fractional integrals and study some of their properties. Finally, the multiplicative analogue of the local conformable fractional derivative and integral is studied.
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...
DEFF Research Database (Denmark)
Ernst, Erik; Ostermann, Klaus; Cook, William Randall
2006-01-01
, statically typed model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static...
Jiang, Yuming
2009-01-01
Network calculus, a theory dealing with queuing systems found in computer networks, focuses on performance guarantees. This title presents a comprehensive treatment for the stochastic service-guarantee analysis research and provides basic introductory material on the subject, as well as discusses the various researches in the area.
Generalized calculus with applications to matter and forces
Campos, L M B C
2014-01-01
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: •Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of ...
Methods of applied mathematics
Hildebrand, Francis B
1992-01-01
This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.
Relational Mathematics Continued
Schmidt, Gunther; Winter, Michael
2014-01-01
This is in some sense an addendum to the book Relational Mathematics by the first-named author. It originated from work on diverse other topics during which a lot of purely relational results with broad applicability have been produced. These include results on domain construction with novel formulae for existential and inverse image, a relational calculus for binary mappings, and the development of a formally derived relational calculus of Kronecker-, strict fork-, and strict join-operators....
Teaching Mathematics to Civil Engineers
Sharp, J. J.; Moore, E.
1977-01-01
This paper outlines a technique for teaching a rigorous course in calculus and differential equations which stresses applicability of the mathematics to problems in civil engineering. The method involves integration of subject matter and team teaching. (SD)
Mathematics and the physical world
Kline, Morris
2012-01-01
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.
Making Implicit Multivariable Calculus Representations Explicit: A Clinical Study
McGee, Daniel; Moore-Russo, Deborah; Martinez-Planell, Rafael
2015-01-01
Reviewing numerous textbooks, we found that in both differential and integral calculus textbooks the authors commonly assume that: (i) students can generalize associations between representations in two dimensions to associations between representations of the same mathematical concept in three dimensions on their own; and (ii) explicit…
Contrasting Cases of Calculus Students' Understanding of Derivative Graphs
Haciomeroglu, Erhan Selcuk; Aspinwall, Leslie; Presmeg, Norma C.
2010-01-01
This study adds momentum to the ongoing discussion clarifying the merits of visualization and analysis in mathematical thinking. Our goal was to gain understanding of three calculus students' mental processes and images used to create meaning for derivative graphs. We contrast the thinking processes of these three students as they attempted to…
On Flipping First-Semester Calculus: A Case Study
Petrillo, Joseph
2016-01-01
High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are "flipping" (or inverting) their classrooms. By flipping, we…
Geometric calculus according to the Ausdehnungslehre of H. Grassmann
Peano, Giuseppe
2000-01-01
Calcolo Geometrico, G. Peano's first publication in mathematical logic, is a model of expository writing, with a significant impact on 20th century mathematics. Kannenberg's lucid and crisp translation, Geometric Calculus, will appeal to historians of mathematics, researchers, graduate students, and general readers interested in the foundations of mathematics and the development of a formal logical language. In Chapter IX, with the innocent-sounding title "Transformations of a linear system," one finds the crown jewel of the book: Peano's axiom system for a vector space, the first-ever presentation of a set of such axioms. The very wording of the axioms (which Peano calls "definitions") has a remarkably modern ring, almost like a modern introduction to linear algebra. Peano also presents the basic calculus of set operation, introducing the notation for 'intersection,' 'union,' and 'element of,' many years before it was accepted. Despite its uniqueness, Calcolo Geometrico has been strangely neglected by histor...
ESeal Calculus： A Secure Mobile Calculus
Institute of Scientific and Technical Information of China (English)
PengRong; UuPing
2003-01-01
The ESeal Calculus is a secure mobile calculus based on Seal Calculus. By using open-channels,ESeal Calculus makes it possible to communicate between any two arbitrary seals with some secure restrictions. It improves the expression ability and efficiency of Seal calculus without losing security.
Bunny hops: using multiplicities of zeroes in calculus for graphing
Miller, David; Deshler, Jessica M.; Hansen, Ryan
2016-07-01
Students learn a lot of material in each mathematics course they take. However, they are not always able to make meaningful connections between content in successive mathematics courses. This paper reports on a technique to address a common topic in calculus I courses (intervals of increase/decrease and concave up/down) while also making use of students' pre-existing knowledge about the behaviour of functions around zeroes based on multiplicities.
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus I covers functions, limits, basic derivatives, and integrals.
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...... case studies and it has been extended in several directions. The aim of this paper is to provide a thorough presentation of the logic....
Feinsilver, Philip; Schott, René
2007-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin, and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, incl...
On paragrassmann differential calculus
International Nuclear Information System (INIS)
The paper significantly extends and generalizes our previous paper. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of (p+1)x(p+1) complex matrices. For many variables we give a general construction of the differentiation algebras. Some particular examples are related to the multiparametric quantum deformations of the harmonic oscillators. 18 refs
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
Woodward, Ernest
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Pre-Calculus reviews sets, numbers, operations and properties, coordinate geometry, fundamental algebraic topics, solving equations and inequalities, functions, trigonometry, exponents
Bell, Denis R
2006-01-01
This introduction to Malliavin's stochastic calculus of variations is suitable for graduate students and professional mathematicians. Author Denis R. Bell particularly emphasizes the problem that motivated the subject's development, with detailed accounts of the different forms of the theory developed by Stroock and Bismut, discussions of the relationship between these two approaches, and descriptions of a variety of applications.The first chapter covers enough technical background to make the subsequent material accessible to readers without specialized knowledge of stochastic analysis. Succe
Treiman, Jay S
2014-01-01
Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM. fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. All three-dimensional graphs have rotatable versions included as extra source materials and may be freely downloaded and manipulated with Maple Player; a free Maple Player App is available for the iPad on iTunes. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits, and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additio...
Introduction to the operational calculus
Berg, Lothar
2013-01-01
Introduction to the Operational Calculus is a translation of ""Einfuhrung in die Operatorenrechnung, Second Edition."" This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work ""Operational Calculus."" Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant
Lambda-mu-calculus and Bohm's theorem
David, René; Py, Walter
2001-01-01
The lambda mu-calculus is an extension of the lambda-calculus that has been introduced by M. Parigot to give an algorithmic content to classical proofs. We show that Bohm's theorem fails in this calculus.
An operator calculus for surface and volume modeling
Gordon, W. J.
1984-01-01
The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.
The history of the calculus and its conceptual development
Boyer, Carl B
1959-01-01
This book, for the first time, provides laymen and mathematicians alike with a detailed picture of the historical development of one of the most momentous achievements of the human intellect ― the calculus. It describes with accuracy and perspective the long development of both the integral and the differential calculus from their early beginnings in antiquity to their final emancipation in the 19th century from both physical and metaphysical ideas alike and their final elaboration as mathematical abstractions, as we know them today, defined in terms of formal logic by means of the idea of a
Early Vector Calculus: A Path through Multivariable Calculus
Robertson, Robert L.
2013-01-01
The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)
The early period of the calculus of variations
Freguglia, Paolo
2016-01-01
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli’s work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange’s δ-calculus, including: • The isoperimetrical problems • Shortest lines and geodesics • Euler’s Methodus Inveniendi and the two Addi...
Scherger, Nicole
2012-01-01
Of the most universal applications in integral calculus are those involved with finding volumes of solids of revolution. These profound problems are typically taught with traditional approaches of the disk and shell methods, after which most calculus curriculums will additionally cover arc length and surfaces of revolution. Even in these visibly…
Fluorescence spectroscopy of dental calculus
International Nuclear Information System (INIS)
The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined
The Basic Principle of Calculus?
Hardy, Michael
2011-01-01
A simple partial version of the Fundamental Theorem of Calculus can be presented on the first day of the first-year calculus course, and then relied upon repeatedly in assigned problems throughout the course. With that experience behind them, students can use the partial version to understand the full-fledged Fundamental Theorem, with further…
Calculus in the Middle School?
Barger, Rita H.; McCoy, Ann C.
2010-01-01
This article presents an example of how middle school teachers can lay a foundation for calculus. Although many middle school activities connect directly to calculus concepts, the authors have decided to look in depth at only one: the concept of change. They will show how teachers can lead their students to see and appreciate the calculus…
A Formal Calculus for Categories
DEFF Research Database (Denmark)
Cáccamo, Mario José
This dissertation studies the logic underlying category theory. In particular we present a formal calculus for reasoning about universal properties. The aim is to systematise judgements about functoriality and naturality central to categorical reasoning. The calculus is based on a language which...
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for
Calculus problems and solutions
Ginzburg, A
2011-01-01
Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif
Barnes, David
2015-01-01
We show that one can use model categories to construct rational orthogonal calculus. That is, given a continuous functor from vector spaces to based spaces one can construct a tower of approximations to this functor depending only on the rational homology type of the input functor, whose layers are given by rational spectra with an action of $O(n)$. By work of Greenlees and Shipley, we see that these layers are classified by torsion $H^*(B SO(n))[O(n)/SO(n)]$-modules.
Advanced calculus problem solver
REA, Editors of
2012-01-01
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of advanced calculus currently av
Provability Calculus of Constructions
DEFF Research Database (Denmark)
Nyblad, Kasten
This thesis presents a type system, Provability Calculus of Constructions (PCoC) that can be used for the formalization of logic. In a theorem prover based on the system, the user can extend the prover with new inference rules in a logically consistent manner. This is done by representing PCoC as...... values and data types within PCoC. The new feature of PCoC is that results of the representation of PCoC can be lifted to PCoC itself. The lifting is fully formalized in PCoC, and the logic therefore supports reflection....
Improving Student Success in Calculus: A Comparison of Four College Calculus Classes
Bagley, Spencer Franklin
The quality of education in science, technology, engineering, and mathematics (STEM) fields is an issue of particular educational and economic importance, and Calculus I is a linchpin course in STEM major tracks. A national study is currently being conducted examining the characteristics of successful programs in college calculus (CSPCC, 2012). In work related to the CSPCC program, this study examines the effects on student outcomes of four different teaching strategies used at a single institution. The four classes were a traditional lecture, a lecture with discussion, a lecture incorporating both discussion and technology, and an inverted model. This dissertation was guided by three questions: (1) What impact do these four instructional approaches have on students' persistence, beliefs about mathematics, and conceptual and procedural achievement in calculus? (2) How do students at the local institution compare to students in the national database? And (3) How do the similarities and differences in opportunities for learning presented in the four classes contribute to the similarities and differences in student outcomes? Quantitative analysis of surveys and exams revealed few statistically significant differences in outcomes, and students in the inverted classroom often had poorer outcomes than those in other classes. Students in the technology-enhanced class scored higher on conceptual items on the final exam than those in other classes. Comparing to the national database, local students had similar switching rates but less expert-like attitudes and beliefs about mathematics than the national average. Qualitative analysis of focus group interviews, classroom observations, and student course evaluations showed that several implementation issues, some the result of pragmatic constraints, others the result of design choice, weakened affordances provided by innovative features and shrunk the differences between classes. There were substantial differences between the
On flipping first-semester calculus: a case study
Petrillo, Joseph
2016-05-01
High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are 'flipping' (or inverting) their classrooms. By flipping, we mean administering course content outside of the classroom and replacing the traditional in-class lectures with discussion, practice, group work, and other elements of active learning. This paper presents the major results from a three-year study of a flipped, first-semester calculus course at a small, comprehensive, American university with a well-known engineering programme. The data we have collected help quantify the positive and substantial effects of our flipped calculus course on failure rates, scores on the common final exam, student opinion of calculus, teacher impact on measurable outcomes, and success in second-semester calculus. While flipping may not be suitable for every teacher, every student, and in every situation, this report provides some evidence that it may be a viable option for those seeking an alternative to the traditional lecture model.
Open Calculus: A Free Online Learning Environment
Korey, Jane; Rheinlander, Kim; Wallace, Dorothy
2007-01-01
Dartmouth College mathematicians have developed a free online calculus course called "Open Calculus." Open Calculus is an exportable distance-learning/self-study environment for learning calculus including written text, nearly 4000 online homework problems and instructional videos. The paper recounts the evaluation of course elements since 2000 in…
A Simple Acronym for Doing Calculus: CAL
Hathaway, Richard J.
2008-01-01
An acronym is presented that provides students a potentially useful, unifying view of the major topics covered in an elementary calculus sequence. The acronym (CAL) is based on viewing the calculus procedure for solving a calculus problem P* in three steps: (1) recognizing that the problem cannot be solved using simple (non-calculus) techniques;…
6th Conference on Non-integer Order Calculus and Its Applications
Łukaniszyn, Marian; Stanisławski, Rafał
2015-01-01
This volume presents selected aspects of non-integer, or fractional order systems, whose analysis, synthesis and applications have increasingly become a real challenge for various research communities, ranging from science to engineering. The spectrum of applications of the fractional order calculus has incredibly expanded, in fact it would be hard to find a science/engineering-related subject area where the fractional calculus had not been incorporated. The content of the fractional calculus is ranged from pure mathematics to engineering implementations and so is the content of this volume. The volume is subdivided into six parts, reflecting particular aspects of the fractional order calculus. The first part contains a single invited paper on a new formulation of fractional-order descriptor observers for fractional-order descriptor continous LTI systems. The second part provides new elements to the mathematical theory of fractional-order systems. In the third part of this volume, a bunch of new results in ap...
A generalized nonlocal vector calculus
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Do Left or Right Brain Training Exercises Have the Greater Effect upon College Calculus Achievement?
Miller, Cynthia A.
Research supports the premise that various mathematical topics can be categorized as being performed better by the left or right brain hemisphere. This study examined the effect of left and right brain hemispheric lateralization exercises upon course grades in two sections of Analysis I (beginning calculus for mathematics/science majors) at a…
Redesigning the Calculus Sequence at a Research University: Issues, Implementation, and Objectives.
Keynes, Harvey B.; Olson, Andrea M.
2000-01-01
Discusses the progress and challenges of a new reformed calculus sequence for science, engineering, and mathematics students developed by the Institute of Technology Centre for Educational Programs and School of Mathematics at the University of Minnesota. Compares achievement and retention of Initiative students with a control group from a…
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
Gupta, CB; Kumar, V
2009-01-01
About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top
Kuang, Yang
2012-01-01
The fun and easy way to learn pre-calculus Getting ready for calculus but still feel a bit confused? Have no fear. Pre-Calculus For Dummies is an un-intimidating, hands-on guide that walks you through all the essential topics, from absolute value and quadratic equations to logarithms and exponential functions to trig identities and matrix operations. With this guide's help you'll quickly and painlessly get a handle on all of the concepts - not just the number crunching - and understand how to perform all pre-calc tasks, from graphing to tackling proofs. You'll also get a new appreciation for
Stochastic Calculus of Wrapped Compartments
Coppo, Mario; Drocco, Maurizio; Grassi, Elena; Troina, Angelo; 10.4204/EPTCS.28.6
2010-01-01
The Calculus of Wrapped Compartments (CWC) is a variant of the Calculus of Looping Sequences (CLS). While keeping the same expressiveness, CWC strongly simplifies the development of automatic tools for the analysis of biological systems. The main simplification consists in the removal of the sequencing operator, thus lightening the formal treatment of the patterns to be matched in a term (whose complexity in CLS is strongly affected by the variables matching in the sequences). We define a stochastic semantics for this new calculus. As an application we model the interaction between macrophages and apoptotic neutrophils and a mechanism of gene regulation in E.Coli.
Foundations of mathematical logic
Curry, Haskell B
2010-01-01
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.
Mathematics for quantum chemistry
Anderson, Jay Martin
2005-01-01
This concise volume offers undergraduates an introduction to mathematical formalism in problems of molecular structure and motion. The main topics cover the calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics and applications to molecular motion. Answers to problems. 1966 edition.
Directory of Open Access Journals (Sweden)
Getut Pramesti
2013-07-01
Full Text Available Calculus is a finite mathematics concepts to solve infinite mathematics problems. The subject which is given to students grade 1 and 2 semester, is a basic science to understanding the other subject on education mathematic program, Mathematics and science department, teacher training and education faculty, Sebelas Maret University. Learning of Interactive Multimedia (MMI is one ofÂ learning model based IT which can be used in Calculus I learning. This learning model have aim to enhance concept mastery and to improve the learning attitude of students a multimedia interactive based tutorial model of Calculus I is applied. This research is quasi experimental with subject on SBI class from the faculty of teacher training and education Sebelas Maret University with mathematical education as a experiment class and physic education as a control class. Research data were collected by using a concept mastery pretest, posttest and a questionnaire. Data analysis was conducted by using t â€“test. The result of this research show that the MMI learning have significance on improve Calculus learning quality and also improve the learning attitude of students. Â Keywords: Calculus; Interactive multimedia; learning attitude
The M-calculus: a Higher-Order Distributed Process Calculus
Schmitt, Alan; Stefani, Jean-Bernard
2002-01-01
This report presents a new distributed process calculus, called the -calculus. Key insights for the calculus are similar to those laid out by L. Cardelli for its calculus of ambients. Mobile Ambients and other recent distributed process calculi such as the Join calculus or the D-calculus introduce notions of distributed locations or localities, corresponding to a spatial partitioning of computations and embodying different features of distributed computations (e.g. failures, access control, p...
Mathematical statistics with applications
Ramachandran, KM
2009-01-01
Mathematical Statistics with Applications provides a calculus-based theoretical introduction to mathematical statistics while emphasizing interdisciplinary applications as well as exposure to modern statistical computational and simulation concepts that are not covered in other textbooks. Includes the Jackknife, Bootstrap methods, the EM algorithms and Markov chain Monte Carlo methods. Prior probability or statistics knowledge is not required.* Step-by-step procedure to solve real problems, making the topic more accessible* Exercises blend theory and modern applications*
Dynamic Visualizations of Calculus Ideas.
Embse, Charles Vonder
2001-01-01
Presents three fundamental ideas of calculus and explains using the coordinate plane geometrically. Uses Cabri Geometry II to show how computer geometry systems can facilitate student understanding of general conic objects and its dynamic algebraic equations. (KHR)
Testicular calculus: A rare case
Directory of Open Access Journals (Sweden)
Volkan Sen
2015-06-01
Full Text Available ABSTRACTBackground:Testicular calculus is an extremely rare case with unknown etiology and pathogenesis. To our knowledge, here we report the third case of testicular calculus. A 31-year-old man was admitted to our clinic with painful solid mass in left testis. After diagnostic work-up for a possible testicular tumour, he underwent inguinal orchiectomy and histopathologic examination showed a testicular calculus.Case hypothesis:Solid testicular lesions in young adults generally correspond to testicular cancer. Differential diagnosis should be done carefully.Future implications:In young adults with painful and solid testicular mass with hyperechogenic appearance on scrotal ultrasonography, testicular calculus must be kept in mind in differential diagnosis. Further reports on this topic may let us do more clear recommendations about the etiology and treatment of this rare disease.
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
Kuipers, L
1969-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Decidability of Mean Value Calculus
Institute of Scientific and Technical Information of China (English)
LI Xiaoshan
1999-01-01
Mean Value Calculus (MVC)[1] is a real-time logicwhich can be used to specify and verify real-time systems[2]. As aconservative extension of Duration Calculus (DC)[3], MVC increasesthe expressive power but keeps the properties of DC. In this paper wepresent decidability results of MVC. An interesting result is that propositional MVC with chop star operator is still decidable, which develops the results of[4]and[5].
Foliated stochastic calculus: Harmonic measures
Catuogno, Pedro J.; Ledesma, Diego S.; Ruffino, Paulo R
2010-01-01
In this article we present an intrinsec construction of foliated Brownian motion via stochastic calculus adapted to foliation. The stochastic approach together with a proposed foliated vector calculus provide a natural method to work on harmonic measures. Other results include a decomposition of the Laplacian in terms of the foliated and basic Laplacians, a characterization of totally invariant measures and a differential equation for the density of harmonic measures.
Professor Rudolf Gorenflo and his Contribution to Fractional Calculus
Luchko, Yury; Mainardi, Francesco; Rogosin, Sergei
2011-01-01
MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary This paper presents a brief overview of the life story and professional career of Prof. R. Gorenflo - a well-known mathematician, an expert in the field of Differential and Integral Equations, Numerical Mathematics, Fractional Calculus and Applied Analysis, an interesting conversational partner, an experienced colleague, and a real friend. Especially his role in the modern Fraction...
The Initial Conditions of Fractional Calculus
International Nuclear Information System (INIS)
During the past fifty years , Fractional Calculus has become an original and renowned mathematical tool for the modelling of diffusion Partial Differential Equations and the design of robust control algorithms. However, in spite of these celebrated results, some theoretical problems have not yet received a satisfying solution. The mastery of initial conditions, either for Fractional Differential Equations (FDEs) or for the Caputo and Riemann-Liouville fractional derivatives, remains an open research domain. The solution of this fundamental problem, also related to the long range memory property, is certainly the necessary prerequisite for a satisfying approach to modelling and control applications. The fractional integrator and its continuously frequency distributed differential model is a valuable tool for the simulation of fractional systems and the solution of initial condition problems. Indeed, the infinite dimensional state vector of fractional integrators allows the direct generalization to fractional calculus of the theoretical results of integer order systems. After a reminder of definitions and properties related to fractional derivatives and systems, this presentation is intended to show, based on the results of two recent publications [1,2], how the fractional integrator provides the solution of the initial condition problem of FDEs and of Caputo and Riemann-Liouville fractional derivatives. Numerical simulation examples illustrate and validate these new theoretical concepts.
Ganesh, A
2009-01-01
About the Book: This book Engineering Mathematics-II is designed as a self-contained, comprehensive classroom text for the second semester B.E. Classes of Visveswaraiah Technological University as per the Revised new Syllabus. The topics included are Differential Calculus, Integral Calculus and Vector Integration, Differential Equations and Laplace Transforms. The book is written in a simple way and is accompanied with explanatory figures. All this make the students enjoy the subject while they learn. Inclusion of selected exercises and problems make the book educational in nature. It shou
Stone, Michael; Goldbart, Paul
2009-07-01
Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.
Driessche, Pauline; Wu, Jianhong
2008-01-01
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...