How Many Dimensions are There?
Rowlands, Peter
Dimensionality has been a much discussed subject since Minkowski formalized special relativity by extending 3D space to 4D space-time. However, there has never been any consensus on the number of dimensions that nature requires and there has been no explanation of why dimensions are needed at all. It is proposed here that dimensions originate in the theory of numbers, that extending the number of dimensions beyond the 3 required by Euclidean space necessarily requires a fundamental change in the meaning of the concept, and that, although various algebraic techniques allow such extension of dimensionality, the structures required always ensure that the number of dimensions and their fundamental characteristics remain ambiguous, leaving the final question unanswerable.
Flatland a journey of many dimensions
2007-01-01
"Flatland" is based on Edwin A. Abbott's classic novel : Flatland : a romance of many dimensions. Flatland is a world that exists entirely on a two-dimensional plane. All different kinds of shapes live, work and play in this world. The story follows Arthur Square (Martin Sheen) and his curious granddaughter Hex (Kristen Bell). When a mysterious visitor (Michael York) arrives from Spaceland, Arthur and Hex must come to terms with the truth of the third dimension, risking dire consequences from the evil Circles that have ruled Flatland for thousands of years. "Flatland" is an animated story that includes action, drama, and geometry lessons. This heartfelt movie challenges audiences to grasp the limitations of our own assumptions about reality, and to think about the idea of higher dimensions.
Relativistic calculations for many electron atoms
Many improvements have now been introduced in ab-initio methods for relativistic atomic structure calculations. After a short description of the different methods, we review the various contributions to energy levels and compare the most recent theoretical and experimental results for few electron heavy ions
Parallel solutions of correlation dimension calculation
无
2005-01-01
The calculation of correlation dimension is a key problem of the fractals. The standard algorithm requires O(N2) computations. The previous improvement methods endeavor to sequentially reduce redundant computation on condition that there are many different dimensional phase spaces, whose application area and performance improvement degree are limited. This paper presents two fast parallel algorithms: O(N2/p + logp) time p processors PRAM algorithm and O(N2/p) time p processors LARPBS algorithm. Analysis and results of numeric computation indicate that the speedup of parallel algorithms relative to sequence algorithms is efficient. Compared with the PRAM algorithm, The LARPBS algorithm is practical, optimally scalable and cost optimal.
Exploring the many-body localization transition in two dimensions.
Choi, Jae-yoon; Hild, Sebastian; Zeiher, Johannes; Schauß, Peter; Rubio-Abadal, Antonio; Yefsah, Tarik; Khemani, Vedika; Huse, David A; Bloch, Immanuel; Gross, Christian
2016-06-24
A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site-resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers. PMID:27339981
From few to many. Ultracold atoms in reduced dimensions
This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of 87Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.
From few to many. Ultracold atoms in reduced dimensions
Wenz, Andre Niklas
2013-12-19
This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of {sup 87}Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.
Automatic Calculation of Dimension Chains in AutoCAD
无
2002-01-01
In the course of mechanical part designing, process p lanning and assembling designing, we often have to calculate and analyse a dimen sion chain. Traditionally, a dimension chain is established and calculated m anually. With wide computer application in the field of mechanical design and ma nufacture, people began to use a computer to acquire and calculate a dimension c hain automatically. In reported work, a dimension chain can be established and c alculated automatically. However, dimension text value...
Three dimensions transport calculations for PWR core
The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)
Cavity dimensions calculation of a medical linear electron accelerator
The main goal of this work is designing the cavity of an accelerator and performing its calculations. By choosing π/2 oscillation mode and using Super fish code, cavity dimensions for the desired parameters were calculated. The most important dimension for determining the resonance frequency is the radius of cylindrical cavity. The required precision for the cavity construction has been obtained by calculating the frequency variations versus the dimensions variation. Also, with the resulted electric field from Super fish code, its Fourier expansion, and considering the unidirectional components of the traveling waves, the major effect of one component in accelerating and its proper velocity have been demonstrated.
Geometric stability of the many-body localized phase in two and higher dimensions
Chandran, Anushya; Pal, Arijeet; Laumann, Chris; Scardicchio, Antonello
Isolated disordered quantum systems need not equilibrate and be described by statistical mechanics; this is the phenomenon of many-body localization (MBL). In higher dimensions, the existence of MBL is a delicate question due to the possibility of inclusions of lower dimensional ''thermal'' regions. In this talk, I will argue that MBL is stable in higher dimensions by analyzing the geometry of a MBL insulator coupled to a thermal edge and develop a phenomenology of such systems.
Many-particle Systems in One Dimension in the Harmonic Approximation
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.;
2012-01-01
We consider energetics and structural properties of a many particle system in one dimension with pairwise contact interactions confined in a parabolic external potential. To render the problem analytically solvable, we use the harmonic approximation scheme at the level of the Hamiltonian. We inve...
Black holes in many dimensions at the CERN large Hadron collider testing critical string theory
Hewett, J L; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.
2005-01-01
We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With ~20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, n. In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if n is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.
The many dimensions of child poverty: Evidence from the UK Millennium Cohort Study
Dickerson, A.P.; Popli, G.
2015-01-01
In this paper we use a multidimensional framework to characterise child poverty in the UK. We examine the interdependencies amongst the different dimensions of multidimensional poverty, and the relationship of multidimensional poverty with income poverty. We also explore the links between multidimensional poverty, income poverty, and children's cognitive and non-cognitive development. Our findings suggest that multidimensional poverty identifies many but not all of the same children classifie...
Determinants of individual academic achievement: Group selectivity effects have many dimensions
Zwick, Thomas
2012-01-01
This paper measures determinants of individual academic achievements. In addition to an extensive list of individual characteristics, skills obtained during study and socio-economic background factors, many dimensions of selectivity into academic study subjects are shown to drive individual academic achievement, such as differences between average student grades during tertiary education or cognitive skills. This paper is based on a large and representative graduate survey of graduates in the...
Determinants of Individual Academic Achievement â€“ Group Selectivity Effects Have Many Dimensions
Zwick Th.
2013-01-01
This paper measures determinants of individual academic achievements. In addition to an extensive list of individual characteristics, skills obtained during study and socio-economic background factors, many dimensions of selectivity into academic study subjects are shown to drive individual academic achievement, such as differences between average student grades during tertiary education or cognitive skills. This paper is based on a large and representative graduate survey of graduates in the...
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-01-01
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmeterized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applica...
Dynamic response of some atoms: Many-body calculations
Tančić Aleksandar R.
2005-01-01
Full Text Available The frequency-dependent polarizability in the Hartree-Fock (HF approximation has been corrected for true correlation effects by means of many-body theory. The polarizability has been computed in the Random Phase Approximation with Exchange (RPAE for He, Ar Xe, Kr, Li, Ca through the second (and some higher order in the correlation potential. With this polarizability as input we obtained the values of some atomic interaction constants.
The many-body problem an encyclopedia of exactly solved models in one dimension
1993-01-01
This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space - such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz - can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developmen
Qerushi, Artan; Rostoker, Norman
2002-07-01
In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He3, and p-B11. Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed.
Qerushi, Artan; Rostoker, Norman
2003-03-01
In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He3, and p-B11. Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed.
Time-dependent approach to many-particle tunneling in one-dimension
Maruyama, T; Hagino, K; Sagawa, H
2012-01-01
Employing the time-dependent approach, we investigate a quantum tunneling decay of many-particle systems. We apply it to a one-dimensional three-body problem with a heavy core nucleus and two valence protons. We calculate the decay width for two-proton emission from the survival probability, which well obeys the exponential decay-law after a sufficient time. The effect of the correlation between the two emitted protons is also studied by observing the time evolution of the two-particle density distribution. It is shown that the pairing correlation significantly enhances the probability for the simultaneous diproton decay.
Knoll, Martin; Zloczysti, Petra
2011-01-01
This paper assesses the validity of the perception-based governance indicators used by the US Millennium Challenge Account (MCA) for aid allocation decisions. By conducting Explanatory and Confirmatory Factor Analysis of data from 1996 to 2009, we find that although the MCA purports to measure seven distinct dimensions of governance, only two discrete underlying dimensions, the perceived 'participatory dimension of governance' and the perceived 'overall quality of governance,' can be identifi...
The anomalous dimension of spin-1/2 baryons in many flavors QCD
Vecchi, Luca
2016-01-01
We derive the anomalous dimension of spin-1/2 baryon operators in QCD at leading 1/Nf order. Within this approximation the complication resulting from the mixing with an infinite number of evanescent operators can be easily bypassed.
A Monte Carlo method for calculating strength functions in many-fermion systems
The calculation of moments is an essential first step in the calculation of strength functions for operators. A method for calculating approximate moments of a variety of operators in large vector spaces (dimension Nsub(e)) based on the use of sets of random multiparticle vectors (dimension Nsub(d) in two nuclear cases: 21Ne(n = 1 to 10) and 28Si(n = 1 to 3). The random vectors, which we call RRV's (random representative vectors), are constructed by statistically sampling a fraction f = Nsub(d)/Nsub(e) of the full space. Useful results are obtained with f -6 (case of 28Si, Nsub(e) = 5.5 x 107). For Nsub(d) = Nsub(e) (case of 21Ne, Nsub(e) = 1935) our results for the dispersions of the sets of the moments closely approximate the predictions of Porter. (orig.)
Analysis of the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction
Albertsson, Martin
2014-01-01
The repulsive delta-function interaction model in one dimension is reviewed for spinless particles and for spin-1/2 fermions. The problem of solving the differential equation related to the Schrödinger equation is reduced by the Bethe ansatz to a system of algebraic equations. The delta-function interaction is shown to have no effect on spinless fermions which therefore behave like free fermions, in agreement with Pauli's exclusion principle. The ground-state problem of spinless bosons is red...
Dynamic, scalable and flexible resource discovery for large-dimension many-core systems
Zarrin, Javad; Barraca, João Paulo; Aguiar, Rui L.
2015-01-01
Future large scale systems will execute novel operating systems running across many chips with many cores. In this highly distributed environment, resource discovery is an important building block. Resource discovery aims to match the application’s demands to the existing (distributed) resources, by discovering and finding resources at run-time, and then selecting the best resource that matches the application running requirements. The main contribution of this paper is the design and evoluti...
STUDIES REGARDING THE CALCULATION OF SLIDING FIT DIMENSION CHAIN
Constanța Rădulescu
2012-05-01
Full Text Available This paper presents a case study regarding the determination of a dimension chain consisting in the case of a sliding fit of a guide column and a bushing guide of a die. It also presents the distribution of the chain elements tolerances values, their standard deviation and output probabilities values for the studied values. Data processing was made with a PQRS statistic program
Understanding many-body physics in one dimension from the Lieb-Liniger model
Jiang, Yu-Zhu; Chen, Yang-Yang; Guan, Xi-Wen
2015-05-01
This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb-Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb-Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang-Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb-Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. Project supported by the National Basic Research Program of China (Grant No. 2012CB922101) and the National Natural Science Foundation of China (Grant Nos. 11374331 and 11304357).
Polarization measurement and inference in many dimensions when subgroups can not be identified
Anderson, Gordon
2011-01-01
The most popular general univariate polarization indexes for discrete and continuous variables are extended and combined to describe the extent of polarization between agents in a distribution defined over a collection of many discrete and continuous agent characteristics. A formula for the asymptotic variance of the index is also provided. The implementation of the index is illustrated with an application to Chinese urban household data drawn from six provinces in the years 1987 and 2001 (ye...
Novel integrals of motion for the nonlinear lattice with the potential αxsup(2)+βxsup(4) are exhibited as well as for some other related many-body problems, in one dimension and also in three dimensions
Exploring the few- to many-body crossover using cold atoms in one dimension
Zinner, Nikolaj Thomas
2016-03-01
Cold atomic gases have provided us with a great number of opportunities for studying various physical systems under controlled conditions that are seldom offered in other fields. We are thus at the point where one can truly do quantum simulation of models that are relevant for instance in condensed-matter or high-energy physics, i.e. we are on the verge of a 'cool' quantum simulator as envisioned by Feynman. One of the avenues under exploration is the physics of one-dimensional systems. Until recently this was mostly in the many-body limit but now experiments can be performed with controllable particle numbers all the way down to the few-body regime. After a brief introduction to some of the relevant experiments, I will review recent theoretical work on one-dimensional quantum systems containing bosons, fermions, or mixtures of the two, with a particular emphasis on the case where the particles are held by an external trap.
Exploring the few- to many-body crossover using cold atoms in one dimension
Zinner Nikolaj Thomas
2016-01-01
Full Text Available Cold atomic gases have provided us with a great number of opportunities for studying various physical systems under controlled conditions that are seldom offered in other fields. We are thus at the point where one can truly do quantum simulation of models that are relevant for instance in condensed-matter or high-energy physics, i.e. we are on the verge of a ’cool’ quantum simulator as envisioned by Feynman. One of the avenues under exploration is the physics of one-dimensional systems. Until recently this was mostly in the many-body limit but now experiments can be performed with controllable particle numbers all the way down to the few-body regime. After a brief introduction to some of the relevant experiments, I will review recent theoretical work on one-dimensional quantum systems containing bosons, fermions, or mixtures of the two, with a particular emphasis on the case where the particles are held by an external trap.
Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions
Vilkas, M J; Ishikawa, Y; Trabert, E
2006-03-31
Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.
Many-body theory calculations of positron binding to negative ions
Ludlow, J. A.; Gribakin, G. F.
2010-01-01
A many-body theory approach developed by the authors [Phys. Rev. A 70, 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and ...
Energy levels, line strengths, oscillator strengths, and transition rates are calculated for electric dipole nl1nl2[LSJ]-nl3nl4[L'S'J'] transition in Be- (n=2), Mg- (n=3), Zn- (n=4) and Sm- (n=5) like ions with nuclear charges ranging from Z=N to 100 where N is number of electron in system. (author)
CALCULATION OF MILL RIGIDITY BY THREE DIMENSION CONTACT BOUNDARY ELEMENT METHOD
无
2001-01-01
Vertical rigidity of the space self-adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three-dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact-type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..
Safronova, U.I.; Johnson, W.R. [Dept. of Physics, Univ. of Notre Dame, IN (United States)
2000-01-01
Energy levels, line strengths, oscillator strengths, and transition rates are calculated for electric dipole nl{sub 1}nl{sub 2}[LSJ]-nl{sub 3}nl{sub 4}[L'S'J'] transition in Be- (n=2), Mg- (n=3), Zn- (n=4) and Sm- (n=5) like ions with nuclear charges ranging from Z=N to 100 where N is number of electron in system. (author)
Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions
A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings
Ground-state-energy theorem and the virial theorem of a many-particle system in d dimensions
Iwamoto, N.
1984-01-01
The equivalence of Pauli's ground-state-energy theorem and the virial theorem is demonstrated for a many-particle system interacting with an interparticle potential in d dimensions at zero and finite temperatures. Pauli's theorem has an integral form in which the variable is the coupling constant e-squared, while the virial theorem has a differential form in which the variable has the number density n. The essence of the equivalence proof consists in changing the variable from n to e-squared by noting the dependence of the excess free energy on dimensionless quantities for zero-temperature and classical cases.
Iha, Hisashi; Makino, Hiroki; Suzuki, Hiroshi
2016-05-01
We study four-dimensional conformal field theories with an SU(N) global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin 0 operator φ _i^{bar {k}} which belongs to the adjoint representation of SU(N). For N=12 for example, we found that the theory contains a spin 0 SU(12)-breaking relevant operator when the scaling dimension of φ _i^{bar {k}}, Δ _{φ _i^{bar {k}}}, is smaller than 1.71. Considering the lattice simulation of many-flavor quantum chromodynamics with 12 flavors on the basis of the staggered fermion, the above SU(12)-breaking relevant operator, if it exists, would be induced by the flavor-breaking effect of the staggered fermion and prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above SU(12)-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point γ _m^*≤ 1.29 from the relation γ _m^*=3-Δ _{φ _i^{bar {k}}}. Our upper bound is not so strong practically but it is strict within the numerical accuracy. We also find a kink-like behavior in the boundary curve for the scaling dimension of another SU(12)-breaking operator.
Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects
Felfli, Z.; Msezane, A. Z.
2016-05-01
Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.
Non-relativistic many-body perturbation theory is discussed. Methods and results in the solution of inhomogeneous 1- and 2-particle equations are presented. B. Similar programs for the Dirac equation are considered. The 1-particle equation is equivalent to the relativistic random phase approximation (work by A.-M. Martensson-Pendrill), and the 2-particle equation is under study. C. Matrix diagonalization of the Dirac equation is being explored as a method of isolating positive energy solutions. For a weak external field, the upper components of the diagonal equation correspond to positive energy solutions
Iha, Hisashi; Suzuki, Hiroshi
2016-01-01
We study four-dimensional conformal field theories with an $SU(N)$ global symmetry by employing the numerical conformal bootstrap. We consider the crossing relation associated with a four-point function of a spin~$0$ operator~$\\phi_i^{\\Bar{k}}$ which belongs to the adjoint representation of~$SU(N)$. For~$N=12$ for example, we found that the theory contains a spin~$0$ $SU(12)$-breaking relevant operator if the scaling dimension of~$\\phi_i^{\\Bar{k}}$, $\\Delta_{\\phi_i^{\\Bar{k}}}$, is smaller than~$1.63$. Considering the lattice simulation of the many-flavor QCD with $12$~flavors on the basis of the staggered fermion, the above $SU(12)$-breaking relevant operator, if it exists, would be induced by the flavor breaking effect of the staggered fermion and would prevent an approach to an infrared fixed point. Actual lattice simulations do not show such signs. Thus, assuming the absence of the above $SU(12)$-breaking relevant operator, we have an upper bound on the mass anomalous dimension at the fixed point~$\\gamma_m...
Many-pole model of inelastic losses applied to calculations of XANES
Kas, J J; Vinson, J; Rehr, J J [University of Washington, Department of Physics, Box 351560, Seattle, WA 98195-1560 (United States); Trcera, N [Synchrotron Soleil, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 GIF-SUR-YVETTE Cedex (France); Cabaret, D [Institut de Mineralogie et Physique des Milieux Condenses, UMR 7590 CNRS, Universite Pierre et Marie Curie, Universite Paris Diderot, IPGP, IRD, 140 rue de Lourmel, 75015 Paris (France); Shirley, E L, E-mail: hebhop@u.washington.ed [NIST, Optical Technology Division, 100 Bureau Drive, Mail Stop 8441, Gaithersburg, MD 20899-8441 (United States)
2009-11-15
Conventional Kohn-Sham band-structure methods for calculating deep-core x-ray spectra typically neglect photoelectron self-energy effects, which give rise to an energy-dependent shift and broadening of the spectra. Here an a posteriori procedure is introduced to correct for these effects. The method is based on ab initio calculations of the GW self-energy using a many-pole model and a calculation of the dielectric function in the long wavelength limit using either the FEFF8 real-space Green's function code, or the AI2NBSE interface between the National Institute of Standards and Technology (NIST) Bethe-Salpeter equation solver (NBSE) and the ABINIT pseudopotential code. As an example the method is applied to core level x-ray spectra of LiF and MgAl{sub 2}O{sub 4} calculated using (respectively) OCEAN, an extension of the AI2NBSE code for core level excitations, and the PARATEC pseudopotential code with the core-hole treated using a super-cell. The method satisfactorily explains the discrepancy between experiment and calculations.
Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations
The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He2+-He, and Arq+-He (q=15-18)
Relativistic many-body calculations of energies for n=3 states in aluminiumlike ions
Energies of the 148 (3l3l'3l'') states for aluminiumlike ions with Z =14-100 are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb shift. A detailed discussion of the various contributions to the energy levels is given for aluminiumlike germanium (Z=32). Comparisons of the calculated energy levels with available experimental data are made for the entire sequence. (author)
Real-time calculations of many-body dynamics in quantum systems
Nakatsukasa, Takashi
2012-01-01
Real-time computation of time-dependent quantum mechanical problems are presented for nuclear many-body problems. Quantum tunneling in nuclear fusion at low energy is described using a time-dependent wave packet. A real-time method of calculating strength functions using the time-dependent Schroedinger equation is utilized to properly treat the continuum boundary condition. To go beyond the few-body models,we resort to the density-functional theory. The nuclear mean-field models are briefly r...
Relativistic many-body calculations of energies for n=3 states in aluminiumlike ions
Safronova, U.I.; Namba, C. [National Inst. for Fusion Science, Toki, Gifu (Japan); Johnson, W.R.; Safronova, M.S. [Department of Physics, Univ. of Notre Dame, Notre Dame, IN (United States)
2001-01-01
Energies of the 148 (3l3l'3l'') states for aluminiumlike ions with Z =14-100 are evaluated to second order in relativistic many-body perturbation theory. Second-order Coulomb and Breit-Coulomb interactions are included. Corrections are made to lowest order for the frequency-dependent Breit interaction and for the Lamb shift. A detailed discussion of the various contributions to the energy levels is given for aluminiumlike germanium (Z=32). Comparisons of the calculated energy levels with available experimental data are made for the entire sequence. (author)
Many-body theory calculations of positron binding to negative ions
Ludlow, J A
2010-01-01
A many-body theory approach developed by the authors [Phys. Rev. A 70, 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns$^{-1}$, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively.
Elward, Jennifer M; Chakraborty, Arindam
2012-01-01
The congruent transformation of the electronic Hamiltonian is developed to address the electron correlation problem in many-electron systems. The central strategy presented in this method is to perform transformation on the electronic Hamiltonian for approximate removal of the Coulomb singularity. The principle difference between the present method and the transcorrelated method of Handy and Boys is that the congruent transformation preserves the Hermitian property of the Hamiltonian. The congruent transformation is carried out using explicitly correlated functions and the optimum correlated transform Hamiltonian is obtained by performing a search over a set of transformation functions. The ansatz of the transformation functions are selected to facilitate analytical evaluation of all the resulting integrals. The ground state energy is obtained variationally by performing a full configuration interaction (FCI) calculation on the congruent transformed Hamiltonian. Computed results on well-studied benchmark syst...
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
Ab initio many-body calculations of nucleon scattering on ^16O
Navratil, Petr; Quaglioni, Sofia; Roth, Robert
2008-10-01
We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.
How Many Dimensions Does It Take To Measure Users' Perceptions of Libraries?: A LibQUAL+Study.
Thompson, Bruce; Cook, Colleen; Heath, Fred
2001-01-01
Explores the number of dimensions needed to measure users' perceptions of library service quality based on data from the ARL (Association of Research Libraries) LibQUAL+ project. Results were consistent with a view that a single set of scores is one reasonable way to characterize user perceptions of library service quality. (Author/LRW)
Budaev, Sergey V
1998-01-01
Factor analysis has commonly been used to infer the dimensions of animal temperament. However, the results were often complicated by large number of broad and situation-specific factors caused by low psychometric adequacy of the correlation matrices, undermining the assumptions of factor analysis. In this study I reanalyzed the data sets obtained by Royce, Poley & Yeudall (1973) and Gervai & Csányi (1985) including, however, only the variables with high correlations (multiple R2>0.3) and psyc...
Large-dimension configuration-interaction calculations of positron binding to the group-II atoms
The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e+Be, e+Mg, e+Ca, and e+Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l→∞ limit. The binding energies were 0.00317 hartree for e+Be, 0.0170 hartree for e+Mg, 0.0189 hartree for e+Ca, and 0.0131 hartree for e+Sr
The Kodaira Dimension of Lefschetz Fibrations
Dorfmeister, Josef G.; Zhang, Weiyi
2008-01-01
In this note, we verify that the complex Kodaira dimension $\\kappa^h$ equals the symplectic Kodaira dimension $\\kappa^s$ for smooth 4-manifolds with complex and symplectic structures. We also calculate the Kodaira dimension for many Lefschetz fibrations.
A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li2O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author)
Many-body electronic structure calculations of Eu-doped ZnO
Lorke, M.; Frauenheim, T.; da Rosa, A. L.
2016-03-01
The formation energies and electronic structure of europium-doped zinc oxide has been determined using DFT and many-body G W methods. In the absence of intrisic defects, we find that the europium-f states are located in the ZnO band gap with europium possessing a formal charge of 2+. On the other hand, the presence of intrinsic defects in ZnO allows intraband f -f transitions otherwise forbidden in atomic europium. This result corroborates with recently observed photoluminescence in the visible red region S. Geburt et al. [Nano Lett. 14, 4523 (2014), 10.1021/nl5015553].
Excitonic effects in GeC hybrid: Many-body Green's function calculations
Drissi, L. B.; Ramadan, F. Z.
2015-11-01
Many-body effects on the electronic and optical absorption properties of a GeC sheet are studied by means of first principle many-body Green's function and Bethe-Salpeter equation formalism. The absence of soft modes in the phonon-spectrum indicates the stability of the system. The inclusion of quasiparticle corrections increases significantly the band gap. The local field effects induce significant change in the absorption spectra for the out-plane polarization rendering the GeC monolayer transparent below 7 eV. The excitonic effects are significant on the optical absorption properties. A detailed analysis of the spectrum shows a strong binding energy of 1.82 eV assigned to the lowest-energy bound excitons that is characterized by an effective mass of 1.68m0 and a Bohr radius of 2 Å. The results of this study hold the promise for potential applications of the GeC hybrid in optoelectronics.
Density functional calculation of many-electron systems in cartesian coordinate grid
Roy, Amlan K
2011-01-01
A recently developed density functional method, within Hohenberg-Kohn-Sham framework, is used for faithful description of atoms, molecules in Cartesian coordinate grid, by using an LCAO-MO ansatz. Classical Coulomb potential is obtained by means of a Fourier convolution technique. All two-body potentials (including exchange-correlation (XC)) are constructed directly on real grid, while their corresponding matrix elements are computed from numerical integration. Detailed systematic investigation is made for a representative set of atoms/molecules through a number of properties like total energies, component energies, ionization energies, orbital energies, etc. Two nonlocal XC functionals (FT97 and PBE) are considered for pseudopotential calculation of 35 species while preliminary all-electron results are reported for 6 atoms using the LDA XC density functional. Comparison with literature results, wherever possible, exhibits near-complete agreement. This offers a simple efficient route towards accurate reliable...
The coupled-cluster approach to non-relativistic and relativistic many-body calculations
A review is given of the atomic many-body theory in the coupled-cluster approach or exponential-Ansatz formulation. Explicit equations and corresponding graphical representations are given in the pair-approximation, where the one- and two-body parts of the cluster (exponent) operator are considered. Also the effect of a small, additional perturbation is considered. The technique of evaluating diagrams by means of one- and two-particle functions, satisfying inhomogeneous differential equations, is reviewed. Illustrative numerical results are given for the electron correlation energy, electron binding energy, hyperfine separation and specific mass shift of simple atomic systems. The extension of the non-relativistic procedure to the relativistic regime is discussed by considering the effect of the exchange of one and two virtual, transverse photons between the electrons. In lowest order this leads to the ''no-virtual-pair approximation''. (orig.)
Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert
2013-01-01
We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He scattering using similarity-renormalization-group (SRG) evolved nucleon-nucleon plus three-nucleon potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2- and 1/2- resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. We ...
Ab initio many-body calculations of light nuclei neutron and proton scattering
Quaglioni, Sofia
2008-10-01
One of the greatest challenges of nuclear physics today is the development of a quantitative microscopic theory of low-energy reactions on light nuclei. At the same time, technical progress on the theoretical front is urgent to match the major experimental advances in the study of exotic nuclei at the radioactive beam facilities. We build a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, chapter 4., Plenum, New York, 1987. with the ab initio no-core shell model.ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000).. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. I will present results for neutron and proton scattering on light nuclei, including n- and p-^4He phase shifts, and low-lying states of one-neutron halo p-shell nuclei, obtained using realistic nucleon-nucleon potentials. In particular, I will address the parity inversion of the ^11Be ground state.
Propagation of chaos for many-boson systems in one dimension with a point pair-interaction
AMMARI, Zied; Breteaux, Sébastien
2012-01-01
35 pages International audience We consider the semiclassical limit of nonrelativistic quantum many-boson systems with delta potential in one dimensional space. We prove that time evolved coherent states behave semiclassically as squeezed states by a Bogoliubov time-dependent affine transformation. This allows us to obtain properties analogous to those proved by Hepp and Ginibre-Velo (\\cite{Hep}, \\cite{GiVe1,GiVe2}) and also to show propagation of chaos for Schrödinger dynamics in the m...
The many dimensions of interdisciplinarity
Jensen, Pablo; Paradzinets, Katsyarina
2013-01-01
Interdisciplinarity is as trendy as it is difficult to define. We propose three different operationalizations of a discipline and two levels (article or laboratory) of integration of these disciplines. This leads to six indicators of interdisciplinarity, achieving a rich characterization of laboratories publication practices. Thanks to a statistical analysis of these indicators on 600 CNRS laboratories, we suggest that, besides an average value of interdisciplinarity, different laboratories c...
Coccia, Emanuele; Guidoni, Leonardo
2014-01-01
In this letter we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) {\\AA}, larger than the values obtained by DFT (PBE, B3LYP and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.
沈晓华; 邹乐君; 李宏升; 沈忠悦; 杨树峰
2002-01-01
Fractal dimensions of a terrain quantitatively describe the self-organized structure of the terrain geometry. However, the local topographic variation cannot be illustrated by the conventional box-counting method. This paper proposes a successive shift box-counting method, in which the studied object is divided into small sub-objects that are composed of a series of grids according to its characteristic scaling. The terrain fractal dimensions in the grids are calculated with the successive shift box-counting method and the scattered points with values of fractal dimensions are obtained. The present research shows that the planar variation of fractal dimensions is well consistent with fault traces and geological boundaries.
A method was developed to calculate the second dimension retention index of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOF MS) data using n-alkanes as reference compounds. The retention times of the C7-C31 alkanes acquired during 24 isothermal experiments cover the 0-6 s retention time area in the second dimension retention time space, which makes it possible to calculate the retention indices of target compounds from the corresponding retention time values without the extension of the retention space of the reference compounds. An empirical function was proposed to show the relationship among the second dimension retention time. the temperature of the second dimension column, and the carbon number of the n-alkanes. The proposed function is able to extend the second dimension retention time beyond the reference n-alkanes by increasing the carbon number. The extension of carbon numbers in reference n-alkanes up to two more carbon atoms introduces less than 10 retention index units (iu) of deviation. The effectiveness of using the proposed method was demonstrated by analyzing a mixture of compound standards in temperature programmed experiments using 6 different initial column temperatures. The standard deviation of the calculated retention index values of the compound standards fluctuated from 1 to 12 iu with a mean standard deviation of 5 iu. (authors)
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Ab initio many-body calculation of the 7Be(p,gamma)8B radiative capture
Navratil, Petr; Quaglioni, Sofia
2011-01-01
We apply the ab initio no-core shell model/resonating group method (NCSM/RGM) approach to calculate the cross section of the 7Be(p,gamma)8B radiative capture. This reaction is important for understanding the solar neutrino flux. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed parameter-free many-body calculations that simultaneously predict both the normalization and the shape of the S-factor. We study the dependence on the number of 7Be eigenstates included in the coupled-channel equations and on the size of the harmonic oscillator basis used for the expansion of the eigenstates and of the localized parts of the integration kernels. Our S-factor result at zero energy is on the lower side of, but consistent with, the latest evaluation.
GAO Ning; LAI Wen-Sheng
2006-01-01
@@ The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals.No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.
$\\it{Ab}$ $\\it{initio}$ nuclear many-body perturbation calculations in the Hartree-Fock basis
Hu, Baishan; Sun, Zhonghao; Vary, James P; Li, Tong
2016-01-01
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available a...
Stoeckli, Fritz
2007-01-01
Two theoretical models are presented for the calculation of adsorption potentials in slot-like pores of molecular dimensions, with respect to the adsorption by a single flat surface. The cases of continuous and layer-like solids are considered, with interatomic pair-potentials of the 6:12 type, and for pore widths ranging from two to four times the equilibrium distance of adsorption. Both models give good results for the adsorption of simple molecules by microporous carbons and graphitized ca...
The one-dimension SN method code ANISN and specific cross section library ZPR-22 have been used to perform the design calculation of dose rate distribution along the radial and axial direction of HWZPR shielding. Through multi-case calculations and optimization analysis works, a double slab cover structure is adopted. It is combined with the feasibility of structure and the possibility of boron concentration to be merged in paraffin for design case. The calculation results of axial direction: the core lattice distance is 18 cm; core radius R = 113 cm; reflector saving of radial direction is 25 cm; transfer leakage Dy = Dz = 244.6 cm. The calculation results of radial direction; the core lattice distance is 18 cm; critical water level 138.5 cm; reflector saving of axial direction is 20 cm; transfer leakage correction parameter Dy = 160 cm
Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning
Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus
2010-09-15
In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation
Choi, Sunghwan; Kwon, Oh-Kyoung; Kim, Jaewook; Kim, Woo Youn
2016-09-15
We investigated the performance of heterogeneous computing with graphics processing units (GPUs) and many integrated core (MIC) with 20 CPU cores (20×CPU). As a practical example toward large scale electronic structure calculations using grid-based methods, we evaluated the Hartree potentials of silver nanoparticles with various sizes (3.1, 3.7, 4.9, 6.1, and 6.9 nm) via a direct integral method supported by the sinc basis set. The so-called work stealing scheduler was used for efficient heterogeneous computing via the balanced dynamic distribution of workloads between all processors on a given architecture without any prior information on their individual performances. 20×CPU + 1GPU was up to ∼1.5 and ∼3.1 times faster than 1GPU and 20×CPU, respectively. 20×CPU + 2GPU was ∼4.3 times faster than 20×CPU. The performance enhancement by CPU + MIC was considerably lower than expected because of the large initialization overhead of MIC, although its theoretical performance is similar with that of CPU + GPU. © 2016 Wiley Periodicals, Inc. PMID:27431905
Savukov, I. M.
2016-02-01
The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.
Orthogonal polynomial approach to calculate the two-nucleon transition operator in three dimensions
Topolnicki, Kacper; Golak, Jacek; Skibinski, Roman; Witala, Henryk [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland)
2016-02-15
We give a short report on the possibility to use orthogonal polynomials (OP) in calculations that involve the two-nucleon (2N) transition operator. The presented work adds another approach to the set of previously developed methods (described in Phys. Rev. C 81, 034006 (2010); Few-Body Syst. 53, 237 (2012); K. Topolnicki, PhD thesis, Jagiellonian University (2014)) and is applied to the transition operator calculated at laboratory kinetic energy 300MeV. The new results for neutron-neutron and neutron-proton scattering observables converge to the results presented in Few-Body Syst. 53, 237 (2012) and to results obtained using the Arnoldi algorithm (Y. Saad, Iterative methods for sparse linear systems (SIAM Philadelphia, PA, USA 2003)). The numerical cost of the calculations performed using the new scheme is large and the new method can serve only as a backup to cross-check the previously used calculation schemes. (orig.)
Orthogonal polynomial approach to calculate the two-nucleon transition operator in three dimensions
Topolnicki, Kacper; Golak, Jacek; Skibiński, Roman; Witała, Henryk
2016-02-01
We give a short report on the possibility to use orthogonal polynomials (OP) in calculations that involve the two-nucleon (2N) transition operator. The presented work adds another approach to the set of previously developed methods (described in Phys. Rev. C 81, 034006 (2010); Few-Body Syst. 53, 237 (2012); K. Topolnicki, PhD thesis, Jagiellonian University (2014)) and is applied to the transition operator calculated at laboratory kinetic energy 300MeV. The new results for neutron-neutron and neutron-proton scattering observables converge to the results presented in Few-Body Syst. 53, 237 (2012) and to results obtained using the Arnoldi algorithm (Y. Saad, Iterative methods for sparse linear systems (SIAM Philadelphia, PA, USA 2003)). The numerical cost of the calculations performed using the new scheme is large and the new method can serve only as a backup to cross-check the previously used calculation schemes.
Two-dimension calculation of proposed benchmark core analysis for the BN-600 hybrid reactor
This paper presents primary calculation results of the proposed benchmark for a hybrid UOX/MOX fuelled core of the BN-600 reactor. The analysis in this paper uses a R-Z homogeneous model of the BN-600 reactor. Calculation results include effective multiplication factors obtained by both diffusion and Monte Carlo methods; fuel Doppler constants; steel Doppler constants; sodium density coefficient; steel density coefficients; fuel density coefficient; absorber density coefficient; axial and radial expansion coefficients; dynamic parameters; power distribution
Three dimension calculation of proposed benchmark core analysis for the BN-600 hybrid reactor
This paper presents primary calculation results of the proposed benchmark for a hybrid UOX/MOX fuelled core of the BN-600 reactor. The analysis in this paper uses a HEX-Z homogeneous model of the BN-600 reactor. Calculation results include effective multiplication factors obtained by both diffusion and Monte Carlo methods; fuel Doppler constants; steel Doppler constants; sodium density coefficient; steel density coefficients; fuel density coefficient; absorber density coefficient; axial and radial expansion coefficients; dynamic parameters; power distribution
Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.
Many-hit model calculations for track etch rate in CR-39 SSNTD using confocal microscope data
Fromm, M.; Awad, E. M.; Ditlov, V.
2004-12-01
The present work studied an important part of ion tracks: the Bragg peak region. Information about the microscopic nature of ion-energy dissipation based on zero-approximation in frame of the many-hit model of the track structure theory was studied. The detector response, Vt, was calculated in terms of Poisson's distribution as a function of the ion's linear energy transfer (LET). This approach can be considered to be a zero-approximation since LET is a special case of restricted energy losses with a cut off energy wcutoff = ∞: LET = REL∞. Confocal microscopic data allows the visualising and analysing of the etched tracks one by one with high precision. A three-dimensional track image was observed and the track etch rate was measured. On the basis of χ2 analysis of the experimental track etch rate (square of the least deviation), with respect to that of the theoretical value, information about the energy transfer process can be obtained. Light ions of little MeV energy were slowed down in the CR-39 detector and the detectors responses close to the Bragg peak region were studied. It was shown that in the zero-approximation no one to one relation can be found between the primary linear energy transfer (LET) and the measured specific track etch rate. The statistical analysis can be split into two separate parts; before the Bragg peak (Bethe-Bloch) and after the Bragg peak (Thin Down). The two parts analysed reflect the separated domains where the etching rate increases or decreases, due to the different role of the delta-electrons in each of these domains. The main aim of this study is to develop a method for any ion describing Vt in this very sensitive Bragg region. This would allow ion identification at low velocities on the one hand, and on the other hand to have a better understanding of the physical processes involved during high velocity ion stopping.
Vilkas, M J; Ishikawa, Y; Trabert, E
2007-03-27
Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.
Liu, H; Glöckle, W; Elster, Ch.
2002-01-01
The Faddeev equations for the three-body bound state are solved directly as thre e-dimensional integral equations without employing partial wave decomposition. Two-body forces of the Malfliet-Tjon type and simple spin independent genuine three-body forces are considered for the calculation of the three-body binding energy.
Neuhauser, Daniel; Baer, Roi
2013-01-01
A fast method is developed for calculating the Random-Phase-Approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix and the trace is taken by a stochastic approach using random perturbation vectors. The method scales, at most, quadratically with the system size but in practice, due to self-averaging, requires less statistical sampling as the system grows and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. In contrast to 2nd order M{\\o}ller-Plesset correlation energies, we find that the RPA correlation energies per electron are largely independent on the nanocrystal size.
Calculation of the one-dimension two energy groups lambda modes, using the boundary functions method
Using parameters and cross sections of SIMULATE-III code, a method to obtain the lambda modes was developed. In order to validate the method, eigenvalues and eigenfunctions obtained with this method were compared with those obtained using SIMULATE III and VENTURE codes. For superior order modes, the results were compared with those calculated by General Electric, for the Cofrentes Nuclear Power Plant-Spain. (author)
Localization in quantum percolation: Transfer-matrix calculations in three dimensions
Soukoulis, C. M.; Economou, E. N.; Grest, Gary S.
1987-12-01
The quantum site percolation problem, which is defined by a disordered tight-binding Hamiltonian with a binary probability distribution, is studied using finite-size scaling methods. For the simple cubic lattice, the dependence of the mobility edge on the strength of the site energy is obtained. Exactly at the center of each subband the states appear to be always localized. The lowest value of the quantum site percolation threshold is pq=0.44+/-0.01 and occurs for an energy near the center of the subband. These numerical results are found to be in satisfactory agreement with the predictions of the potential-well analogy, based on a cluster coherent-potential approximation. The integrated density of states is also calculated numerically. A spike in the density of states exactly at the center of the subband and a gap around it are observed, in agreement with earlier work by Kirkpatrick and Eggarter.
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer
2014-01-01
We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...
FORTRAN programs for calculating nonlinear seismic ground response in two dimensions
Joyner, W.B.
1978-01-01
The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.
Cohen, Adam B.
2009-01-01
Psychologists interested in culture have focused primarily on East-West differences in individualism-collectivism, or independent-interdependent self-construal. As important as this dimension is, there are many other forms of culture with many dimensions of cultural variability. Selecting from among the many understudied cultures in psychology,…
Ahlstrom, D
2002-01-01
Prof Werner Nahm, of the School of Theoretical Physics, last night delivered talk at the Dublin Institute for Advanced Studies entitled, 'Hidden Dimensions'. It was one of a series offered by the Institute as part of Science Week Ireland (1 page).
Safronova, U I; Johnson, W R
2016-01-01
Energy levels of 30 low-lying states of Lu2+ and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates and lifetimes of the metastable 5d(3/2) and 5d(5/2) states are calculated. Recommended values are given for static polarizabilities of the 6s, 5d and 6p states and tensor polarizabilities of the 5d and 6p(3/2) states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6s(1/2)-5d(5/2) transition frequency of the Lu2+ ion is calculated with the aid of the recommended scalar polarizabilities of the 6s(1/2) and 5d(5/2) states. Finally, A and B hyperfine constants are determined f...
Li, Yanwei; Zhang, Ruiming; Du, Likai; Zhang, Qingzhu; Wang, Wenxing
2016-01-01
The quantum mechanics/molecular mechanics (QM/MM) method (e.g., density functional theory (DFT)/MM) is important in elucidating enzymatic mechanisms. It is indispensable to study "multiple" conformations of enzymes to get unbiased energetic and structural results. One challenging problem, however, is to determine the minimum number of conformations for DFT/MM calculations. Here, we propose two convergence criteria, namely the Boltzmann-weighted average barrier and the disproportionate effect, to tentatively address this issue. The criteria were tested by defluorination reaction catalyzed by fluoroacetate dehalogenase. The results suggest that at least 20 conformations of enzymatic residues are required for convergence using DFT/MM calculations. We also tested the correlation of energy barriers between small QM regions and big QM regions. A roughly positive correlation was found. This kind of correlation has not been reported in the literature. The correlation inspires us to propose a protocol for more efficient sampling. This saves 50% of the computational cost in our current case. PMID:27556449
Yanwei Li
2016-08-01
Full Text Available The quantum mechanics/molecular mechanics (QM/MM method (e.g., density functional theory (DFT/MM is important in elucidating enzymatic mechanisms. It is indispensable to study “multiple” conformations of enzymes to get unbiased energetic and structural results. One challenging problem, however, is to determine the minimum number of conformations for DFT/MM calculations. Here, we propose two convergence criteria, namely the Boltzmann-weighted average barrier and the disproportionate effect, to tentatively address this issue. The criteria were tested by defluorination reaction catalyzed by fluoroacetate dehalogenase. The results suggest that at least 20 conformations of enzymatic residues are required for convergence using DFT/MM calculations. We also tested the correlation of energy barriers between small QM regions and big QM regions. A roughly positive correlation was found. This kind of correlation has not been reported in the literature. The correlation inspires us to propose a protocol for more efficient sampling. This saves 50% of the computational cost in our current case.
Porter, Troy A
2013-01-01
Cosmic dust particles effectively attenuate starlight. Their absorption of starlight produces emission spectra from the near- to far-infrared, which depends on the sizes and properties of the dust grains, and spectrum of the heating radiation field. The near- to mid-infrared is dominated by the emissions by very small grains. Modeling the absorption of starlight by these particles is, however, computationally expensive and a significant bottleneck for self-consistent radiation transport codes treating the heating of dust by stars. In this paper, we summarize the formalism for computing the stochastic emissivity of cosmic dust, which was developed in earlier works, and present a new library HEATCODE implementing this formalism for the calculation for arbitrary grain properties and heating radiation fields. Our library is highly optimized for general-purpose processors with multiple cores and vector instructions, with hierarchical memory cache structure. The HEATCODE library also efficiently runs on co-processo...
Lamour, E.; Fainstein, P. D.; Galassi, M.; Prigent, C.; Ramirez, C. A.; Rivarola, R. D.; Rozet, J.-P.; Trassinelli, M.; Vernhet, D.
2015-10-01
Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet et al., Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996), 10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9 MeV u-1P b56 + ions, and laser-generated carbon ion beams of 0.045 to 0.5 MeV u-1 , passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.
The projection-operator formalism of Feshbach defines a separation of the T matrix into a smooth background term and a resonant T matrix which may vary rapidly with energy. The resonance is characterized by an unperturbed energy epsilon/sub d/, a width function GAMMA(E), and a level-shift function Δ(E). Such a separation of the fixed-nuclei electron-molecule scattering T matrix is of considerable practical relevance for the treatment of nuclear dynamics in resonant electron-molecule scattering. We present an explicit realization of the projection-operator formalism for electron-molecule scattering within the framework of the many-body optical-potential approach. In contrast to the approach of Hazi [J. Phys. B 11, L259 (1978)] which is based on the use of Stieltjes moment techniques to compute GAMMA(E), we obtain explicitly the background T matrix as well as the information on the angular distribution of the resonant scattering. The performance of the method is illustrated for the well-known 2.3-eV shape resonance in electron scattering from the nitrogen molecule. The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) is adopted for the optical potential and the Schwinger variational principle is used to solve the background scattering problem. The resulting resonance parameters epsilon/sub d/, GAMMA(E), Δ(E), and the resonant eigenphase sum are in excellent agreement with results obtained previously by Hazi using different computational methods
Batkovich, D. V.; Chetyrkin, K. G.; Kompaniets, M. V.
2016-05-01
We report on a completely analytical calculation of the field anomalous dimension γφ and the critical exponent η for the O (n)-symmetric φ4 model at the record six loop level. We successfully compare our result for γφ with n = 1 with the predictions based on the method of the Borel resummation combined with a conformal mapping (Kazakov et al., 1979 [40]). Predictions for seven loop contribution to the field anomalous dimensions are given.
Vilkas, M J; Ishikawa, Y; Trabert, E
2005-12-22
Many-Body Perturbation Theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. They discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, {Delta}n = 0 transitions of Na-, Mg-, Al-like, and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance.
Babadi, Mehrtash; Demler, Eugene; Knap, Michael
2015-10-01
We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].
Wadlinger, E.A.
1980-03-01
A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings.
Ab Initio Many-Body Calculations of n-3H, n-4He, p-{3,4}He, and n-10Be Scattering
Quaglioni, Sofia
2008-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We present phase shifts for neutron scattering on 3H, 4He and 10Be and proton scattering on {3,4}He, using realistic nucleon-nucleon potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is essential to explain the parity-inverted ground state in 11Be.
Zapukhlyak, Myroslav
2008-12-05
The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation in the time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He{sup 2+}-He, and Ar{sup q+}-He (q=15-18). [German] Die vorliegende Arbeit leistet einen theoretischen Beitrag zum Verstaendnis der Vielteilchendynamik in inelastischen Ion-Atom-Stoessen. Vielelektronendynamik in Ion-Helium-Stoessen und Proton-Natrium-Stoessen wurde theoretisch untersucht. Die Beschreibung basiert auf der semiklassischen Naeherung mit der geraden Bahn fuer die Projektilbewegung. Das Ion-Atom- Stossproblem wird damit auf ein zeitabhaengiges Vielelektronenproblem reduziert und in der nichtrelativistischen Naeherung mit der zeitabhaengigen Schroedinger-Gleichung beschrieben. Die Loesung des Vielelektronenproblems erfolgt im
Wang, Bing; Shen, Hao; Fang, Aiqin; Huang, De-Shuang; Jiang, Changjun; Zhang, Jun; Chen, Peng
2016-06-17
Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) system has become a key analytical technology in high-throughput analysis. Retention index has been approved to be helpful for compound identification in one-dimensional gas chromatography, which is also true for two-dimensional gas chromatography. In this work, a novel regression model was proposed for calculating the second dimension retention index of target components where n-alkanes were used as reference compounds. This model was developed to depict the relationship among adjusted second dimension retention time, temperature of the second dimension column and carbon number of n-alkanes by an exponential nonlinear function with only five parameters. Three different criteria were introduced to find the optimal values of parameters. The performance of this model was evaluated using experimental data of n-alkanes (C7-C31) at 24 temperatures which can cover all 0-6s adjusted retention time area. The experimental results show that the mean relative error between predicted adjusted retention time and experimental data of n-alkanes was only 2%. Furthermore, our proposed model demonstrates a good extrapolation capability for predicting adjusted retention time of target compounds which located out of the range of the reference compounds in the second dimension adjusted retention time space. Our work shows the deviation was less than 9 retention index units (iu) while the number of alkanes were added up to 5. The performance of our proposed model has also been demonstrated by analyzing a mixture of compounds in temperature programmed experiments. PMID:27208985
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
and to provide a program which allows users to calculate as comprehensively as possible energies, wavelengths, and oscillator strengths of medium-Z atoms and ions up to Z=26 in neutron star magnetic field strengths. Obviously, the method for achieving this goal must be highly efficient since for the calculation of synthetic spectra data of many thousands or even millions of atomic transitions may be required. Solution method: As in previous work on the problem (cf. [3,7]) we exploit the fact that a strong magnetic field results in an approximate decoupling of the dynamics of the electrons parallel and perpendicular to the field. In this adiabatic approximation the single-particle wave functions take the form: ψ(ρ,φ,z)=ϕ(ρ,φ)ṡP(z), where ϕ(ρ,φ) are Landau wave functions, describing the (fast) motion perpendicular to the field, and the P(z) are the longitudinal wave functions, describing the (slow) bound motion along the direction of the field. The spins of the electrons are all aligned antiparallel to the magnetic field and need not be accounted for explicitly. The total N-electron wave function is constructed as a Slater determinant of the single-particle wave functions, and the unknown longitudinal wave functions are determined from the Hartree-Fock equations, which follow from inserting the total N-electron wave function into Schrödinger's variational principle for the total energy. The novel feature of our approach [8] is to use finite-element and B-spline techniques to solve the Hartree-Fock equations for atoms in strong magnetic fields. This is accomplished through the following steps: 1) decomposition of the z-axis into finite elements with quadratically widening element borders; 2) sixth-order B-spline expansion of the single-particle wave functions on the individual finite elements; 3) formulation of the variational principle equivalent to the Hartree-Fock equations in terms of the expansion coefficients. This leads to a simple system of linear
Koch, D; Paulus, B
2016-01-01
Low-dimensional beryllium systems constitute interesting case studies for the test of correlation methods because of the importance of both static and dynamical correlation in the formation of the bond. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. However, in order to do so an insight into the wave function was necessary. Therefore we started by focusing on the description of small Be chains via standard quantum chemical methods and gave a brief analysis of the main characteristics of their wave functions. We then applied the MoI to larger beryllium systems, starting from the Be6 ring. First, the complete active space formalism (CAS-MoI) was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Despite this approach is well established for the calculation of systems with limited multireference character, its application to the description of whol...
Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.; Alonso, J. A.
2010-01-01
The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number of...... layers, including infinite chains, are considered. The lowest excitation energy peaks in the spectra are characteristic of the robust bonding in these complexes. The excitation energies vary in a systematic way with the metal atoms and with the cluster size, and so these materials could be used to tune...
A new information dimension of complex networks
Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.
Saito, Kenichiro; Koizumi, Eiko; Koizumi, Hideya
2012-09-01
In our previous study, we introduced a new hybrid approach to effectively approximate the total force on each ion during a trajectory calculation in mass spectrometry device simulations, and the algorithm worked successfully with SIMION. We took one step further and applied the method in massively parallel general-purpose computing with GPU (GPGPU) to test its performance in simulations with thousands to over a million ions. We took extra care to minimize the barrier synchronization and data transfer between the host (CPU) and the device (GPU) memory, and took full advantage of the latency hiding. Parallel codes were written in CUDA C++ and implemented to SIMION via the user-defined Lua program. In this study, we tested the parallel hybrid algorithm with a couple of basic models and analyzed the performance by comparing it to that of the original, fully-explicit method written in serial code. The Coulomb explosion simulation with 128,000 ions was completed in 309 s, over 700 times faster than the 63 h taken by the original explicit method in which we evaluated two-body Coulomb interactions explicitly on one ion with each of all the other ions. The simulation of 1,024,000 ions was completed in 2650 s. In another example, we applied the hybrid method on a simulation of ions in a simple quadrupole ion storage model with 100,000 ions, and it only took less than 10 d. Based on our estimate, the same simulation is expected to take 5-7 y by the explicit method in serial code.
Dimension of chaotic attractors
Farmer, J.D.; Ott, E.; Yorke, J.A.
1982-09-01
Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.
Coarse geometry and asymptotic dimension
Grave, Bernd
2006-01-01
We consider asymptotic dimension of coarse spaces. We analyse coarse structures induced by metrisable compactifications. We calculate asymptotic dimension of coarse cell complexes. We calculate the asymptotic dimension of certain negatively curved spaces, e.g. for complete, simply connected manifolds with bounded, strictly negative sectional curvature.
Reduced matrix elements, oscillator strengths, and transition rates are calculated for all allowed and forbidden 2s-2p electric dipole transitions in berylliumlike ions with nuclear charges ranging from Z = 4 to 100. Many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start with a 1s2 Dirac-Fock potential and include all possible n = 2 configurations, leading to 4 odd-parity and 6 even-parity states. First-order perturbation theory is used to obtain intermediate coupling coefficients. Second-order MBPT is used to determine the matrix elements, which are evaluated for the 16 possible E1 transitions. The transition energies used in the calculation of oscillator strengths and transition rates are evaluated using second-order MBPT. The importance of virtual electron-positron pair (negative energy) contributions to the transition amplitudes is discussed. (orig.)
Wang, Kai; Si, Ran; Jönsson, Per; Ekman, Jörgen; Guo, Xue Lin; Li, Shuang; Long, Fei Yun; Dang, Wei; Zhao, Xiao Hui; Hutton, Roger; Chen, Chong Yang; Yan, Jan; Yang, Xu
2016-01-01
Level energies, wavelengths, electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transition rates, oscillator strengths, and line strengths from combined relativistic configuration interaction and many-body perturbation calculations are reported for the 201 fine-structure states of the $2s^2 2p^6$, $2s^2 2p^5 3l$, $2s 2p^6 3l$, $2s^2 2p^5 4l$, $2s 2p^6 4l$, $2s^2 2p^5 5l$, and $2s^2 2p^5 6l$ configurations in all Ne-like ions between Cr XV and Kr XXVII. Calculated level energies and transition data are compared with experiments from the NIST and CHIANTI databases, and other recent benchmark calculations. The mean energy difference with the NIST experiments is only 0.05%. The present calculations significantly increase the amount of accurate spectroscopic data for the $n >3$ states in a number of Ne-like ions of astrophysics interest. A complete dataset should be helpful in analyzing new observations from the solar and other astrophysical sources, and is also likely to be useful for ...
Constructing Mutually Unbiased Bases in Dimension Six
Brierley, Stephen; Weigert, Stefan
2009-01-01
The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex 6x6 Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computations performed by a computer program. We repeat this calculation many times, sampling all known complex H...
The Lyapunov dimension and its estimation via the Leonov method
Kuznetsov, N. V.
2016-06-01
Along with widely used numerical methods for estimating and computing the Lyapunov dimension there is an effective analytical approach, proposed by G.A. Leonov in 1991. The Leonov method is based on the direct Lyapunov method with special Lyapunov-like functions. The advantage of the method is that it allows one to estimate the Lyapunov dimension of invariant sets without localization of the set in the phase space and, in many cases, to get effectively an exact Lyapunov dimension formula. In this work the invariance of the Lyapunov dimension with respect to diffeomorphisms and its connection with the Leonov method are discussed. For discrete-time dynamical systems an analog of Leonov method is suggested. In a simple but rigorous way, here it is presented the connection between the Leonov method and the key related works: Kaplan and Yorke (the concept of the Lyapunov dimension, 1979), Douady and Oesterlé (upper bounds of the Hausdorff dimension via the Lyapunov dimension of maps, 1980), Constantin, Eden, Foiaş, and Temam (upper bounds of the Hausdorff dimension via the Lyapunov exponents and Lyapunov dimension of dynamical systems, 1985-90), and the numerical calculation of the Lyapunov exponents and dimension.
Safronova, U I; Safronova, A S; Beiersdorfer, P
2007-01-05
Transition rates, oscillator strengths, and line strengths are calculated for electric-dipole (E1) transitions between odd-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 2}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 1} states and even-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 1}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 2} (with 4{ell}{sub 1} = 4p; 4f and 4{ell}{sub 2} = 4s; 4d) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10} Dirac-Fock potential. First-order RMBPT is used to obtain intermediate coupling coefficients and second-order RMBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second-order E1 matrix elements to ensure the gauge independence of transition amplitudes. Transition energies used in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4d levels are given for Z = 34-100. Transition rates, line strengths, and oscillator strengths are compared with critically evaluated experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.
Calculation Method Analysis of Many Roulette Rotor System Critical Speed%多轮盘转子系统临界转速的计算方法分析
冀成; 杨兆建; 宋高峰; 庞新宇
2012-01-01
In order to ensure the stability of the many roulette rotor system,for the determination of the rotor system critical speed,DengKe lai method was adopted ,and using matrix method and the finite element method to calculate based on ANSYS respectively for the critical speed, and the results were compared and analyzed.The results show that the three methods are of different range,in which the limited element method based on ANSYS is in high accuracy,with simple calculation, providing for other engineering of the rotor system solution of the critical speed a reliable basis.%为了保障多轮盘转子系统的稳定性,针对多轮盘转子临界转速的确定问题,分别采用了邓柯莱法,传递矩阵法和基于ANSYS的有限元法进行求解,并对所得结果进行了分析和比较.结果表明三种方法的适用范围不同,其中基于ANSYS的限元法对转子系统的临界转速的求解准确度高,计算简便,为工程上其它转子系统的临界转速的求解提供了可靠的依据.
李益海
2013-01-01
At present,the newly built large mines and the most of reorganization and expansion mines use many airshaft unit ventilation.In many airshaft production mine,the number of working face in each mining area along with the change of yield continuously increase and decrease,correspondingly air volume of each mining area must rede-ploy,the working point of each airshaft main fan also must change.However,the main blades angle how adjustment can make the mining area reach scheduled air volume and resistance,it is a subject urgently to be solved in current. Through the example,using mathematical analytical method in a short period of time to calculate reasonably accurate results,so as to find out the exact main fan blade angle,reasonably allot the air volume of the mining area.Thus a-void using artificial test the fan blade angle or other method,cannot accurately calculate,caused air waste or insuffi-cient air flow phenomenon,make the mine ventilation achieve science and reasonable.% 目前，新建的大型矿井和改扩建矿井多数采用多风井分区通风。在多风井生产矿井中，各采区采掘工作面数量随着产量的变化不断增减，相应各采区的风量就必须重新进行调配，致使各风井主扇的工况点也必须改变。然而，各主扇叶角调转多少度数才能使各采区达到预定的风量和阻力，这是当前亟待解决的一个课题。通过实例，运用数学解析法可在短时间内计算得出准确合理的结果，从而找到准确的主扇风叶角度，做到各采区风量的合理分配。从而避免采取人工试调风机叶角或其它方法无法准确解算造成的风量浪费或风量不足的现象，使矿井通风科学合理。
The Hausdorff Dimension of Sections
Min NIU; Lifeng XI
2007-01-01
The notion of finite-type open set condition is defined to calculate the Hausdorff dimensions of the sections of some self-similar sets, such as the dimension of intersection of the Koch curve and the line x = a with a ∈(Q).
How Many Administrators Are Too Many?
Rogers, Jenny
2013-01-01
For years, faculty members have pointed to the sluggish growth in the number of tenured professors and complained that university payrolls are filled with too many administrators. This, they maintain, adds unnecessary costs and takes the focus away from teaching and learning. But whether such "administrative bloat" is really occurring and how much…
L Otero Pereiro
1998-01-01
.____________________________________________________________________AbstractThe Finite Elements Method (FEM developed until the present time is a powerful computerized calculation system applied inthe tensions and deformations analysis of solids and structures and much literature has been published on FEM as calculationmethod,The need of solving the problems of passengers transportation, mainly in Havana City, in the difficult conditions of Cubanspecial period, conducted to the development of a semi - trailer with the necessary characteristics to fulfil this function , whichby their attributes constitutes the only one in his gender for this purpose.It is, the first time that in our country is executed the calculation of a self - potable reticulated structure of similar magnitude,with satisfactory concrete results.It is approached the creation of a physic - mathematical model that simulates the real structure, conditioned to the limitations ofthe calculation program, offering a similar behavior in the efforts and deformations that are produced, with a study of thedifferent variants of results.In the work are obtained some results on the possible consequences the calculation of the complete structure or separating it bysections, being necessary the establishment of a methodical for the definition of those sections that they can be analyzedseparately, as well as the order of importance of this analysis.It was accomplished the experimental determination of the dynamic load coefficient, as well as the establishment of the physic- mathematical model adapted for the calculation of the structure of a semi - trailer for passengers transportation applying theFinite Elements Method.It was effected a test to statics load del frame to corroborate the validity of the physic - mathematical model of the structure.Additionally, It is proposed a technical solution within the technological possibilities of the constructing company to avoid thestructure breakage of the equipment.
Fractal Dimension for Fractal Structures
Fernández-Martínez, M.; Sánchez-Granero, M. A.
2010-01-01
The main goal of this paper has a double purpose. On the one hand, we propose a new definition in order to compute the fractal dimension of a subset respect to any fractal structure, which completes the theory of classical box-counting dimension. Indeed, if we select the so called natural fractal structure on each euclidean space, then we will get the box-counting dimension as a particular case. Recall that box-counting dimension could be calculated over any euclidean space, although it can b...
Fractal Dimension in Epileptic EEG Signal Analysis
Uthayakumar, R.
Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. We propose a new algorithm based on the size measure relationship (SMR) method, quantifying the dimensional behaviour of irregular rectifiable graphs with minimum time complexity. The evidence for the suitability (equality with the nature of dimension) of the algorithm is illustrated graphically.We would like to demonstrate the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. For that we design a new method of computing fractal dimension (FD) of biomedical waveforms. Compared to Higuchi's algorithm, advantages of this method include
刘燕德; 蒋育华; 欧阳爱国
2001-01-01
Space and place errors affecting assembling precision were discussed by calcutating the clearance of cylinder.This paper points out the calculating way of assembling dimension chain including space and space errors. The increasing clearance of hole and axis is also concluded.%通过计算光滑圆柱体的配合间隙,分析了形位公差对加工装配精度的影响,给出包括形位公差在内的有关装配尺寸链的解法,并得出考虑形位误差在内孔轴配合间隙变大的结论。
2013-01-01
A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time. TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...
Changala, P. Bryan, E-mail: bryan.changala@colorado.edu; Baraban, Joshua H.; Field, Robert W. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Merer, Anthony J. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)
2014-01-14
Reduced dimension variational calculations have been performed for the rovibrational level structure of the S{sub 1} state of acetylene. The state exhibits an unusually complicated level structure, for various reasons. First, the potential energy surface has two accessible conformers, trans and cis. The cis conformer lies about 2700 cm{sup −1} above the trans, and the barrier to cis-trans isomerization lies about 5000 cm{sup −1} above the trans minimum. The trans vibrations ν{sub 4} (torsion) and ν{sub 6} (asym. bend) interact very strongly by Darling-Dennison and Coriolis resonances, such that their combination levels and overtones form polyads with unexpected structures. Both conformers exhibit very large x{sub 36} cross-anharmonicity since the pathway to isomerization is a combination of ν{sub 6} and ν{sub 3} (sym. bend). Near the isomerization barrier, the vibrational levels show an even-odd K-staggering of their rotational levels as a result of quantum mechanical tunneling through the barrier. The present calculations address all of these complications, and reproduce the observed K-structures of the bending and C–C stretching levels with good qualitative accuracy. It is expected that they will assist with the assignment of the irregular patterns near the isomerization barrier.
Aarts, JM
1993-01-01
Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...
Cohomological dimension of Markov compacta
Dranishnikov, Alexander
2006-01-01
We rephrase Gromov's definition of Markov compacta, introduce a subclass of Markov compacta defined by one building block and study cohomological dimensions of these compacta. We show that for a Markov compactum $X$, $\\dim_{\\Z_{(p)}}X=\\dim_{\\Q}X$ for all but finitely many primes $p$ where $\\Z_{(p)}$ is the localization of $\\Z$ at $p$. We construct Markov compacta of arbitrarily large dimension having $\\dim_{\\Q}X=1$ as well as Markov compacta of arbitrary large rational dimension with $\\dim_{\\...
Bolc, Leonard
1992-01-01
Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal w...
Finitistic dimension through infinite projective dimension
Huard, Francois; Lanzilotta, Marcelo; Mendoza, Octavio
2007-01-01
We show that an artin algebra having at most three radical layers of infinite projective dimension has finite finitistic dimension, generalizing the known result for algebras with vanishing radical cube.
The evolution of the discipline of many-body theory during the past 25 years is outlined and the developments originated in the Theoretical Physics Division, AERE, are discussed. Topics considered include; the connection between plasma oscillations and the dielectric properties of an electron gas, superconductivity, Fermi levels, ferromagnetism in metals, phase transformations, scaling laws, and quasi-one-dimensional solids. (UK)
Rip, Arie; Groen, Aard J.; Coombs, R.; Green, K.; Richards, A.; Walsh, V.
2001-01-01
Compared with the ‘careless technology’ of the 1960s (to quote the title of a book at the time (Farvar and Milton, 1972)), the present safety, reliability and environmental friendliness of many products and technologies, at least in the richer countries, is striking. Salmon are swimming in the Thame
Trimble, Virginia L.
2016-06-01
For most of our early ancestors, the earth was the universe, with a blue bowl over it, good things above and evil things below, and exoplanets would have been multiverses. The steps beyond that included (1) many planets orbiting the sun, (2) the stars are suns, (3) most probably with their own planets, (4) the solar system is not central to the Milky Way, (5) other galaxies exist, and (6) many groups, clusters and superclusters (on a cosmic web). Famous names associated with these steps include Copernicus, Digges, Galileo, Newton, Shapley, Hubble, Sandage, and Peebles (plus many other less famous contributors). At every stage there have been mavens who said “one” and supermavens who have said “many”. So far, the latter have always won. I see no reason why this should not continue to be the case onward to one or more of the concepts now subsumed under the name multiverse. If we cannot think of a way to falsify the concepts, does this mean that they are not science? Or does it just mean that we have not yet thought of the right observations, in the way the lagging 17th century geocentrists did not anticipate Bradley’s aberration of starlight and Kapteyn did not have the chance to incorporate Shapley’s globular clusters in his universe? Some of the images shown will be more realistic than others.
The Interpretation of Quantum Mechanics Many Worlds or Many Words?
Tegmark, M
1998-01-01
As cutting-edge experiments display ever more extreme forms of non-classical behavior, the prevailing view on the interpretation of quantum mechanics appears to be gradually changing. A (highly unscientific) poll taken at the 1997 UMBC quantum mechanics workshop gave the once all-dominant Copenhagen interpretation less than half of the votes. The Many Worlds interpretation (MWI) scored second, comfortably ahead of the Consistent Histories and Bohm interpretations. It is argued that since all the above-mentioned approaches to nonrelativistic quantum mechanics give identical cookbook prescriptions for how to calculate things in practice, practical-minded experimentalists, who have traditionally adopted the ``shut-up-and-calculate interpretation'', typically show little interest in whether cozy classical concepts are in fact real in some untestable metaphysical sense or merely the way we subjectively perceive a mathematically simpler world where the Schrodinger equation describes everything - and that they are t...
On the selection of dimension reduction techniques for scientific applications
Fan, Y J; Kamath, C
2012-02-17
Many dimension reduction methods have been proposed to discover the intrinsic, lower dimensional structure of a high-dimensional dataset. However, determining critical features in datasets that consist of a large number of features is still a challenge. In this paper, through a series of carefully designed experiments on real-world datasets, we investigate the performance of different dimension reduction techniques, ranging from feature subset selection to methods that transform the features into a lower dimensional space. We also discuss methods that calculate the intrinsic dimensionality of a dataset in order to understand the reduced dimension. Using several evaluation strategies, we show how these different methods can provide useful insights into the data. These comparisons enable us to provide guidance to a user on the selection of a technique for their dataset.
Buhl, Mie; Meyer, Bente Tobiesen
2014-01-01
Pad may expose the diversity of artifacts that are already present as actors in learning contexts. As one among many artefacts used in orchestrating learning, the iPad acts in shifting material cultures of schooling where for instance pens, paper, books or interactive whiteboards are used in combination...... affordances for learning and contributes to the transformation of e.g. textual and visual cultures in areas such as reading and science education. This indicates the need for discussing how curricula knowledge and skills can be understood in the socio-material contexts of learning where iPads are involved...
Knowledge dimensions in hypothesis test problems
Krishnan, Saras; Idris, Noraini
2012-05-01
The reformation in statistics education over the past two decades has predominantly shifted the focus of statistical teaching and learning from procedural understanding to conceptual understanding. The emphasis of procedural understanding is on the formulas and calculation procedures. Meanwhile, conceptual understanding emphasizes students knowing why they are using a particular formula or executing a specific procedure. In addition, the Revised Bloom's Taxonomy offers a twodimensional framework to describe learning objectives comprising of the six revised cognition levels of original Bloom's taxonomy and four knowledge dimensions. Depending on the level of complexities, the four knowledge dimensions essentially distinguish basic understanding from the more connected understanding. This study identifiesthe factual, procedural and conceptual knowledgedimensions in hypothesis test problems. Hypothesis test being an important tool in making inferences about a population from sample informationis taught in many introductory statistics courses. However, researchers find that students in these courses still have difficulty in understanding the underlying concepts of hypothesis test. Past studies also show that even though students can perform the hypothesis testing procedure, they may not understand the rationale of executing these steps or know how to apply them in novel contexts. Besides knowing the procedural steps in conducting a hypothesis test, students must have fundamental statistical knowledge and deep understanding of the underlying inferential concepts such as sampling distribution and central limit theorem. By identifying the knowledge dimensions of hypothesis test problems in this study, suitable instructional and assessment strategies can be developed in future to enhance students' learning of hypothesis test as a valuable inferential tool.
Milica Antić Gaber
2013-12-01
We believe that in the present thematic issue we have succeeded in capturing an important part of the modern European research dynamic in the field of migration. In addition to well-known scholars in this field several young authors at the beginning their research careers have been shortlisted for the publication. We are glad of their success as it bodes a vibrancy of this research area in the future. At the same time, we were pleased to receive responses to the invitation from representatives of so many disciplines, and that the number of papers received significantly exceeded the maximum volume of the journal. Recognising and understanding of the many faces of migration are important steps towards the comprehensive knowledge needed to successfully meet the challenges of migration issues today and even more so in the future. It is therefore of utmost importance that researchers find ways of transferring their academic knowledge into practice – to all levels of education, the media, the wider public and, of course, the decision makers in local, national and international institutions. The call also applies to all authors in this issue of the journal.
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Antonella Del Rosso
2013-01-01
How many Higgs bosons are out there? Several theoretical models foresee the existence of more than one such boson but the current data cannot confirm any of these scenarios. What should we expect from the future data and the results of the current analysis? Image: Xavier Cortada (with the participation of physicist Pete Markowitz), "In search of the Higgs boson: H -> ZZ", digital art, 2013. Please note that this image is a detail from Xavier Cortada's art work installed at LHC P5 CMS. According to some theories, the mechanism that requires the existence of the Higgs boson (known by physicists as “electroweak symmetry breaking”) could also imply the involvement of other spin-zero – “boson” – particles. How would these relate to the newly-discovered particle? “The properties that the other Higgs bosons would have vary a lot depending on the theoretical model you consider,” explain...
Application of General fractal Dimension to Coupling Fault Diagnosis
无
2002-01-01
This paper presents the coucept of general and sensitive dimension, and also proposes the calculation formula of the general dimension least squares method. By calculating and analyzing the power spectrum and general dimension from the fault sample, the relationship is achieved between sample status and the general dimension from vibration signals function of general dimension is proposed, and calculations are carried out for a monitor signal and samples signal. The diagnosis method based on fractal theory is effective through the concrete examples of the steam-electric generating set fault diagnosis, and the correlation coefficient of general dimension between a monitor signal and samples signal can improve the accuracy for fault diagnosis.
Unexpectedly many extinct hominins.
Bokma, Folmer; van den Brink, Valentijn; Stadler, Tanja
2012-09-01
Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens. PMID:22946817
Buhl, Mie; Meyer, Bente Tobiesen
are already present as actors in learning contexts. As one among many artifacts used in orchestrating learning, the iPad acts in shifting material cultures of schooling where for instance pens, paper, books or interactive whiteboards are used in combination with the tablet. At other times the i...... transformation of e.g. textual and visual cultures in areas such as reading and science education. This indicates the need for discussing how curricula knowledge and skills can be understood in the socio-material contexts of learning where iPads are involved. The paper builds on data from two research projects...... that investigated the iPad as a learning device in the context of primary and lower secondary schooling in Denmark. In these projects learning with the iPad focused on 1) the role of the iPad in inclusive learning environments 2) children’s visual cultures and the development of the iBook iTAVS. Based...
Many-body forces in nuclear shell-model
In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.)
Space: The Hunt for Hidden Dimensions
Extra dimensions of space may be present in our universe. Their discovery would dramatically change our view of the cosmos and would prompt many questions. How do they hide? What is their shape? How many are there? How big are they? Do particles and forces feel their presence? This lecture will explain the concept of dimensions and show that current theoretical models predict the existence of extra spatial dimensions which could be in the discovery reach of present and near-term experiments. The manner by which these additional dimensions reveal their existence will be described. Searches for modifications of the gravitational force, astrophysical effects, and collider signatures already constrain the size of extra dimensions and will be summarized. Once new dimensions are discovered, the technology by which the above questions can be answered will be discussed.
Wölfel, Christiane; Merritt, T.
2013-01-01
There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers....... The card-based tools are explained in terms of five design dimensions including the intended purpose and scope of use, duration of use, methodology, customization, and formal/material qualities. Our analysis suggests three design patterns or archetypes for existing card-based design method tools...... and highlights unexplored areas in the design space. The paper concludes with recommendations for the future development of card-based methods for the field of interaction design....
Many Fertility Apps, Websites Miss the Mark
... gov/medlineplus/news/fullstory_158827.html Many Fertility Apps, Websites Miss the Mark Study found only 4 ... FRIDAY, May 13, 2016 (HealthDay News) -- Websites and apps that promise to calculate a woman's most fertile ...
The implication of fractal dimension in hydrogeology and rock mechanics. Version 1.1
Since much of geology and hydrogeology is controlled by the geometry of geologic features such as faults, fractures and stratigraphy, many researchers have proposed the use of fractal dimension as an index for comparing hydrogeologic environments. This report describes an investigation carried out by Golder Associates Geosystem AB to evaluate the use of fractal measures within the SKB site selection, evaluation, and characterization process. This report defines fractal dimension and the methods available for calculating fractal dimension. The report then summarizes a literature survey carried out to identify and evaluate applications of fractal methods in hydrogeology. Preliminary hydrogeological fractal numerical simulations carried out with the FracMan package are then presented and discussed. These numerical simulations evaluate the application of fractal methods within the context of other geometric measures such as connectivity measures, percolation probability, and block size measures. Based upon the literature survey and numerical simulations, recommendations are presented regarding the potential usefulness of fractal approaches. Fractal dimension can be used to distinguish hydrogeologic environments, provided the limitations of the approach are explicitly recognized. Recommendations are made for fractal dimension calculation procedures, specification of fractal dimension, and the use of fractal dimension in conjunction with other measures of hydrogeologic structure and heterogeneity. (135 refs.) (au)
Fractal Dimension of Voice-Signal Waveforms
无
2002-01-01
The fractal dimension is one important parameter that characterizes waveforms. In this paper, we derive a new method to calculate fractal dimension of digital voice-signal waveforms. We show that fractal dimension is an efficient tool for speaker recognition or speech recognition. It can be used to identify different speakers or distinguish speech. We apply our results to Chinese speaker recognition and numerical experiment shows that fractal dimension is an efficient parameter to characterize individual Chinese speakers. We have developed a semiautomatic voiceprint analysis system based on the theory of this paper and former researches.
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Strongly Gorenstein Flat Dimensions
Chun Xia ZHANG; Li Min WANG
2011-01-01
This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and (almost)excellent extensions of rings.
Goparaju Purna SUDHAKAR
2013-01-01
Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...
Computability and Fractal Dimension
Reimann, Jan
2004-01-01
This thesis combines computability theory and various notions of fractal dimension, mainly Hausdorff dimension. An algorithmic approach to Hausdorff measures makes it possible to define the Hausdorff dimension of individual points instead of sets in a metric space. This idea was first realized by Lutz (2000). Working in the Cantor space of all infinite binary sequences, we study the theory of Hausdorff and other dimensions for individual sequences. After giving an overview over the classical...
On asymptotic extension dimension
Repovš, Dušan; Zarichnyi, Mykhailo
2011-01-01
The aim of this paper is to introduce an asymptotic counterpart of the extension dimension defined by Dranishnikov. The main result establishes a relation between the asymptotic extensional dimension of a proper metric space and extension dimension of its Higson corona.
Akama, Yohji; Irie, Kei
2011-01-01
We will establish that the VC dimension of the class of d-dimensional ellipsoids is (d^2+3d)/2, and that maximum likelihood estimate with N-component d-dimensional Gaussian mixture models induces a geometric class having VC dimension at least N(d^2+3d)/2. Keywords: VC dimension; finite dimensional ellipsoid; Gaussian mixture model
Spherical Harmonics in p Dimensions
Frye, Christopher; Efthimiou, Costas J.
2012-01-01
The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before beginning the main subject matter. The reader is assumed to have knowledge of multivariable calc...
Delimiting Maximal Kissing Configurations in Four Dimensions
Altschuler, Eric Lewin
2013-01-01
How many unit $n-$dimensional spheres can simultaneously touch or kiss a central $n-$dimensional unit sphere? Beyond mathematics this question has implications for fields such as cryptography and the structure of biologic and chemical macromolecules. The kissing number is only known for dimensions 1-4, 8 and 24 (2, 6, 12, 24, 240, 19650, respectively) and only particularly obvious for dimensions one and two. Indeed, in four dimensions it is not even known if Platonic polytope unique to that dimension known as the 24-cell is the unique kissing configuration. We have not been able to prove that the 24-cell is unique, but, using a physical approach utilizing the hopf map from four to three dimensions, we for the first time delimit the possible other configurations which could be kissing in four dimensions.
Quantum Gravity in More than Four Dimensions.
Vaz, Cenalo
Ever since its inception, Einstein's general relativity has been considered a most remarkable theory. It is generally believed today, that the classical theory is well understood. Nevertheless, in the pursuit of a deeper understanding of physics in terms of a 'grand' unification of forces, one would like to quantize the theory, thus bringing it under the known forces of nature. We will address the possibility that space-time is of dimension greater that four. In the pursuit of Einstein's dream of a unification of physical interactions, many interesting ideas have been developed. Beginning with Weyl and Kaluza, we have progressed to strings and superstrings. The thing that is common to all these theories is the requirement of a space-time of more than four dimensions. To explain the apparent dimensionality of space-time, the extra dimensions are thought to form some compact manifold of extremely small characteristic size. While Kaluza's theory implicitly assumes that Einstein's gravity is classically correct in any number of dimensions, superstring phenomenology may suggest otherwise. Generalizations to Einstein's gravity are indicated, and the gravitational Casimir energy is explicitly approximated on a background configuration M^4 times S^6, on a ten dimensional space-time. Weyl invariance is particularly interesting to the quantum gravitationalist. One finds that energy momentum tensor of the Weyl invariant quantum field picks up an anomalous trace, which is related to particle production by the curved background. We therefore compute the conformal anomaly for a conformally coupled scalar field and consider some of its consequences. We then suggest that the conformal anomaly, when combined with the perfect fluid hypothesis, can be used to determine the complete energy momentum tensor of the quantum field in certain backgrounds. Christensen has suggested that by imposing some 'natural' conditions to be obeyed by the renormalized stress tensor, one could avoid most
Identification of Sustainable Architecture Dimensions
Leila Etminan; Siavash Rashidi Sharif Abad; Mansour Nikpor
2014-01-01
The main purpose in this research is identification of sustainable architecture dimensions. Nowadays, one of the most necessary complicated and main specifications of architecture with which architects are face is the issue of sustainability in various types of its interpretations. The issue of sustainability is interpretable and general according to many aspects. Therefore, it is necessary to identify this concept (architecture and its related categories). At the beginning of this discussion...
无
2005-01-01
In this paper, we are interested in the following general question: Given a module Mwhich has finite hollow dimension and which has a finite collection of submodules Ki (1≤i≤n) such that M=K1+... +Kn, can we find an expression for the hollow dimension of Min terms of hollow dimensions of modules built up in some way from K1 Kn? We prove the following theorem:Let Mbe an amply supplemented module having finite hollow dimension and let Ki (1≤i≤n) be a finite collection of submodules of Msuch that M=K1+...+Kn. Then the hollow dimension h(M) of Mis the sum of the hollow dimensions of Ki (1≤i≤n) ifand only if Ki is a supplement of K1+...+Ki-1+Ki+1+...+Kn in Mfor each 1≤i≤n.
Lykke, Marianne; Jantzen, Christian
2016-01-01
The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the...... observation that experiences apparently have become especially valuable phenomena in Western societies. The 10 dimensions are tried out in a field study at the Center for Art and Media (ZKM) in Germany with the purpose to study their applicability in the evaluation of interactive sound archives. 29 walk......-alongs were carried out with 58 museums visitors. Our analysis showed that it was possible to identify the 10 experience dimensions in the study material. Some dimensions were expressed more frequently than others. The distribution of expressed dimensions and the content of the user comments provided a clear...
Scientific Research: How Many Paradigms?
Strawn, George O.
2012-01-01
As Yogi Berra said, "Predictions are hard, especially about the future." In this article, the author offers a few forward-looking observations about the emerging impact of information technology on scientific research. Scientific research refers to a particular method for acquiring knowledge about natural phenomena. This method has two dimensions:…
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Three-dimension reconstruction based on spatial light modulator
Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
Quznetsov G.
2014-10-01
Full Text Available Each vector of state has its own corresponing element of the CayleyDickson algebra. Properties of a state vector require that this algebra was a normalized division algebra. By the Hurwitz and Frobenius theorems maximal dimension of s uch algebra is 8. Con- sequently, a dimension of corresponding complex state vectors is 4, and a dimension of the Clifford set elements is 4 × 4. Such set contains 5 matrices — among them — 3-diagonal. Hence, a dimension of the dot events space is equal to 3 + 1.
Renormalization of dimension 6 gluon operators
HyungJoo Kim
2015-09-01
Full Text Available We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.
Renormalization of dimension 6 gluon operators
Kim, HyungJoo, E-mail: hugokm0322@gmail.com; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr
2015-09-02
We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.
Necessity of Exact Calculation for Transition Probability
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
THE DISTRIBUTIONAL DIMENSION OF FRACTALS
无
2007-01-01
In the book [1] H.Triebel introduces the distributional dimension of fractals in and distributional dimension, respectively. Thus we might say that the distributional dimension is an analytical definition for Hausdorff dimension. Therefore we can study Hausdorff dimension through the distributional dimension analytically.By discussing the distributional dimension, this paper intends to set up a criterion for estimating the upper and lower bounds of Hausdorff dimension analytically. Examples illustrating the criterion are included in the end.
Many-body localization as percolation in d >1
Chandran, Anushya; Laumann, Chris; Gottesman, Daniel
2015-03-01
Statistical mechanics is the framework that connects thermodynamics to the microscopic world. It hinges on the assumption of equilibration. Isolated quantum systems need not equilibrate; this is the phenomenon of many-body localization (MBL). While a detailed understanding of MBL and the associated delocalization transition is beginning to emerge in one dimension, relatively little is known about higher dimensions. In this work, we present a minimal tractable model for MBL in all spatial dimensions. Specifically, we analyze a disordered Floquet circuit composed of Clifford gates. In one dimension, the system is always localized, while in higher dimensions, it exhibits both delocalized and localized phases. The localized phase consists of well-defined metallic puddles embedded in an insulating matrix. When the puddles percolate, the system delocalizes; this maps the dynamical transition to critical percolation. We also comment on the stability of the phases to generic perturbations away from the Clifford class.
Classical equation of motion and Anomalous dimensions at leading order
Nii, Keita
2016-01-01
Motivated by a recent paper by Rychkov-Tan \\cite{Rychkov:2015naa}, we calculate the anomalous dimensions of the composite operators at the leading order in various models including a $\\phi^3$-theory in $(6-\\epsilon)$ dimensions. The method presented here relies only on the classical equation of motion and the conformal symmetry. In case that only the leading expressions of the critical exponents are of interest, it is sufficient to reduce the multiplet recombination discussed in \\cite{Rychkov:2015naa} to the classical equation of motion. We claim that in many cases the use of the classical equations of motion and the CFT constraint on two- and three-point functions completely determine the leading behavior of the anomalous dimensions at the Wilson-Fisher fixed point without any input of the Feynman diagrammatic calculation. The method developed here is closely related to the one presented in \\cite{Rychkov:2015naa} but based on a more perturbative point of view.
Dimensions of Creative Evaluation
Christensen, Bo; Ball, Linden J.
2016-01-01
We examined evaluative reasoning taking place during expert ‘design critiques’. We focused on key dimensions of creative evaluation (originality, functionality and aesthetics) and ways in which these dimensions impact reasoning strategies and suggestions offered by experts for how the student could...
Entropies and fractal dimensions
Sparavigna, Amelia Carolina
2016-01-01
In this paper, we discuss the relation between entropy and the fractal dimension, a statistical index which is measuring the complexity of a given pattern, embedded in given spatial dimensions. We will consider the Shannon entropy and the generalized entropies of Tsallis and Kaniadakis
Socio-cultural dimensions to sharpen designer's cultural eyeglasses
Van Boeijen, A.G.C.
2013-01-01
This paper answers the question, how the dimensions that have been developed by anthropologists to typify cultures, can support designers in user-centred design processes. An analysis and evaluation of the use of cultural dimensions in design projects was performed. Although many of the dimensions f
The Cultural Dimensions of Language Teaching and Learning
Risager, Karen
2011-01-01
Language teaching and learning has many different cultural dimensions, and over the years more and more of these have been the subject of research. The first dimension to be explored was that of content: the images of target language countries and the world that were offered in textbooks and presented in class. The next dimension was that of the…
Sign (di)Lemma for Dimension Shifting
Nitin Nitsure
2009-04-01
There is a surprising occurrence of some minus signs in the isomorphisms produced in the well-known technique of dimension shifting in calculating derived functors in homological algebra. We explicitly determine these signs. Getting these signs right is important in order to avoid basic contradictions. We illustrate the result – which we call as the sign lemma for dimension shifting – by some de Rham cohomology and Chern class considerations for compact Riemann surfaces.
Castro, Carlos; Granik, Alex; Naschie, M. S. El
2000-01-01
A Cantorian fractal spacetime, a family member of von Neumann's noncommutative geometry is introduced as a geometry underlying a new relativity theory which is similar to the relation between general relativity and Riemannian geometry. Based on this model and the new relativity theory an ensemble distribution of all the dimensions of quantum spacetime is derived with the help of Fermat grand theorem. The calculated average dimension is very close to the value of $4+\\phi^3 $ (where $\\phi$ is t...
Epistemic Sensibility: Third Dimension of Virtue Epistemology
Belbase, Shashidhar
2012-01-01
The author tries to argue how epistemic sensibility as virtue sensibility can complement virtue epistemology. Many philosophers interrelated virtue reliabilism (e.g., Brogaard, 2006) and virtue responsibilism (e.g., Code, 1987) to virtue epistemology as two dimensions with many diverging and a few converging characters. The possible new dimension…
van Houselt, A.; Schäfer, J.; Zandvliet, H. J. W.; Claessen, R.
2013-01-01
and should be replaced by the Luttinger liquid theory [2, 3]. In 1D electron systems electron-electron interactions play a very prominent role, and one of the most exciting predictions is that the electron loses its identity and separates into two collective excitations of the quantum mechanical many body system: a spinon that carries spin without charge, and a holon that carries the positive charge of a hole without its spin. In this special section, we have attempted to collect a series of papers that gives an impression of the current status of this rapidly evolving field. The first article is a comprehensive review by Kurt Schönhammer that provides the reader with an introduction into the exciting theory of the 1D electron system as well as its mathematical formalism. Acknowledgments We would like to thank the editorial staff of Journal of Physics: Condensed Matter for their help in producing this special section. We hope that it conveys some of the excitement and significance of this rapidly emerging field. References [1]Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [2]Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585 [3]Voit J 1995 Rep. Prog. Phys. 58 977 Physics in one dimension contents Physics in one dimensionA van Houselt, J Schäfer, H J W Zandvliet and R Claessen Physics in one dimension: theoretical concepts for quantum many-body systemsK Schönhammer Local density of states of the one-dimensional spinless fermion modelE Jeckelmann Local spectral properties of Luttinger liquids: scaling versus nonuniversal energy scalesD Schuricht, S Andergassen and V Meden Spin ladders and quantum simulators for Tomonaga-Luttinger liquidsS Ward, P Bouillot, H Ryll, K Kiefer, K W Krämer, Ch Rüegg, C Kollath and T Giamarchi Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein modelM Hohenadler and F F Assaad Pressure-dependent structural and electronic properties of quasi-one-dimensional (TMTTF)2PF6E Rose, C Loose, J Kortus, A
Extra dimensions round the corner?
How many dimensions are we living in? This question is fundamental and yet, astonishingly, it remains unresolved. Of course, on the everyday level it appears that we are living in four dimensions three space plus one time dimension. But in recent months theoretical physicists have discovered that collisions between high-energy particles at accelerators may reveal the presence of extra space-time dimensions. On scales where we can measure the acceleration of falling objects due to gravity or study the orbital motion of planets or satellites, the gravitational force seems to be described by a 1/r2 law. The most sensitive direct tests of the gravitational law are based on torsion-balance experiments that were first performed by Henry Cavendish in 1798. However, the smallest scales on which this type of experiment can be performed are roughly 1 mm (see J C Long, H W Chan and J C Price 1999 Nucl. Phys. B 539 23). At smaller distances, objects could be gravitating in five or more dimensions that are rolled up or ''compactified'' - an idea that is bread-and-butter to string theorists. Most string theorists however believe that the gravitational effects of compact extra dimensions are too small to be observed. Now Nima Arkani-Hamed from the Stanford Linear Accelerator Center (SLAC) in the US, Savas Dimopoulos at Stanford University and Gia Dvali, who is now at New York University, suggest differently (Phys. Lett. B 1998 429 263). They advanced earlier ideas from string theory in which the strong, weak and electromagnetic forces are confined to membranes, like dirt particles trapped in soap bubbles, while the gravitational force operates in the entire higher-dimensional volume. In their theory extra dimensions should have observable effects inside particle colliders such as the Tevatron accelerator at Fermilab in the US or at the future Large Hadron Collider at CERN. The effect will show up as an excess of events in which a single jet of particles is produced with no
Stable simulations of many fermion systems
As the inverse temperature β becomes large, the diverse numerical scales present in exp(-βH) plague simulations of many-fermion systems on finite-precision computers. Representation of matrices in factorized form stabilizes these calculations, allowing efficient, low-temperature studies of condensed-matter models
Gorenstein homological dimensions
Holm, Henrik Granau
2004-01-01
In basic homological algebra, the projective, injective and 2at dimensions of modules play an important and fundamental role. In this paper, the closely related Gorenstein projective, Gorenstein injective and Gorenstein 2at dimensions are studied. There is a variety of nice results about Gorenstein...... dimensions over special commutative noetherian rings; very often local Cohen–Macaulay rings with a dualizing module. These results are done by Avramov, Christensen, Enochs, Foxby, Jenda, Martsinkovsky and Xu among others. The aim of this paper is to generalize these results, and to give homological...
Goparaju Purna SUDHAKAR
2014-01-01
Full Text Available Popularity ofteams is growing in 21st Century. Organizations are getting theirwork done through different types of teams. Teams have proved that thecollective performance is more than the sum of the individual performances.Thus, the teams have got different dimensions such as quantitative dimensionsand qualitative dimensions. The Quantitative dimensions of teams such as teamperformance, team productivity, team innovation, team effectiveness, teamefficiency, team decision making and team conflicts and Qualitative dimensionsof teams such as team communication, team coordination, team cooperation, teamcohesion, team climate, team creativity, team leadership and team conflictshave been discussed in this article.
Rucker, Rudy
2014-01-01
""This is an invigorating book, a short but spirited slalom for the mind."" - Timothy Ferris, The New York Times Book Review ""Highly readable. One is reminded of the breadth and depth of Hofstadter's Gödel, Escher, Bach."" - Science""Anyone with even a minimal interest in mathematics and fantasy will find The Fourth Dimension informative and mind-dazzling... [Rucker] plunges into spaces above three with a zest and energy that is breathtaking."" - Martin Gardner ""Those who think the fourth dimension is nothing but time should be encouraged to read The Fourth Dimension, along with anyone else
Numerical identification of bacteria with a hand-held calculator as an alternative to code books.
Schindler, J; Schindler, Z
1982-01-01
The Hewlett-Packard HP 41C hand-held calculator can be used for the numerical identification of bacteria. The dimensions of the identification matrix are limited to about 30 by 22; however, many groups of clinically important bacteria can be numerically identified by this method. Hand-held calculators can be used as an alternative to code books. At present, these calculators and additional tests can help solve identification problems in profiles not contained in code books.
Loos, Pierre-François; Ball, Caleb J; Gill, Peter M W
2015-02-01
We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator |x|(-1). Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order Møller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other physical properties of the many-electron 1D atoms and, using these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation curves of several 1D diatomics and study the chemical bond in H2(+), HeH(2+), He2(3+), H2, HeH(+) and He2(2+). We find that, unlike their 3D counterparts, 1D molecules are primarily bound by one-electron bonds. Finally, we study the chemistry of H3(+) and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms. PMID:25518906
Loos, Pierre-François; Gill, Peter M W
2014-01-01
We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator $|x|^{-1}$. Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order M{\\o}ller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other interesting properties of the many-electron 1D atoms and, based on these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation curves of various 1D diatomics and study the chemical bond in H$_2^+$, HeH$^{2+}$, He$_2^{3+}...
Cultural dimensions and innovation
Anna Strychalska-Rudzewicz
2015-01-01
This paper examines the effect of culture’s dimensions on national innovation index. The results of Pearson correlation coefficient between culture dimensions and the Global Innovation Index (GII) are very similar to the results obtained in the case of Summary Innovation Index (SII) in European countries. The strong negative correlation was observed in the case of power distance and uncertainty avoidance whereas individualism has a positive effect on innovation index. The results suggest that...
Due, Jesper Jørgen; Madsen, Jørgen Steen; Jensen, Carsten Strøby
En analyse af EU's institutioner og udviklingen af den sociale dimension i forbindelse med etbaleringen af det indre marked med særlig henblik på effekterne på det danske aftalesystem.......En analyse af EU's institutioner og udviklingen af den sociale dimension i forbindelse med etbaleringen af det indre marked med særlig henblik på effekterne på det danske aftalesystem....
Barvinsky, A O; Solodukhin, Sergey N.
2003-01-01
We study the propagating gravitational waves as a tool to probe the extra dimensions. In the set-up with one compact extra dimension and non-gravitational physics resigning on the 4-dimensional subspace (brane) of 5-dimensional spacetime we find the Green's function describing the propagation of 5-dimensional signal along the brane. The Green's function has a form of the sum of contributions from large number of images due to the compactness of the fifth dimension. Additionally, a peculiar feature of the causal wave propagation in five dimensions (making a five-dimensional spacetime very much different from the familiar four-dimensional case) is that the entire region inside the past light-cone contributes to the signal at the observation point. The 4-dimensional propagation law is nevertheless reproduced at large (compared to the size of extra dimension) intervals from the source as a superposition of signals from large number of images. The fifth dimension however shows up in the form of corrections to the ...
Stable many-to-many matchings with contracts
Klaus, B.E.; Walzl, M.
2006-01-01
We consider several notions of setwise stability for many-to-many matching markets with contracts and provide an analysis of the relations between the resulting stable sets and pairwise stable sets for general, substitutable, and strongly substitutable preferences. Apart from obtaining “set inclusion results'''' on all three domains, we prove that for substitutable preferences the set of pairwise stable matchings is nonempty and coincides with the set of weakly setwise stable matchings. For s...
A variational principle for the Hausdorff dimension of fractal sets
Olsen, Lars; Cutler, Colleen D.
1994-01-01
Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...
If so many are "few", how few are "many"?
Stefan eHeim
2015-04-01
Full Text Available The scope of reference of a word’s meaning can be highly variable. We present a novel paradigm to investigate the flexible interpretation of word meaning. We focus on quantifiers such as „many or „few, a class of words that depends on number knowledge but can be interpreted in a flexible manner. Healthy young adults performed a truth value judgment task on pictorial arrays of varying amounts of blue and yellow circles, deciding whether the sentence Many/few of the circles are yellow was an adequate description of the stimulus. The study consisted of two experiments, one focusing on „many, one on „few. Each experiment had three blocks. In a first baseline block, each individual’s criterion for „many and „few was assessed. In a second adaptation block, subjects received feedback about their decisions that was different from their initial judgments in an effort to evaluate the flexibility of a subject’s interpretation. A third test block assessed whether adaptation of quantifier meaning induced in block 2 then was generalized to alter a subject’s baseline meaning for „many and „few. In Experiment 1, a proportion of yellow circles as small as 40% was reinforced as „many; in Experiment 2, a proportion of yellow circles as large as 60% was reinforced as „few. Subjects learned the new criterion for „many in Experiment 1, which also affected their criterion for „few although it had never been mentioned. Likewise, in Experiment 2, subjects changed their criterion for „few, with a comparable effect on the criterion for „many which was not mentioned. Thus, the meaning of relational quantifiers like many and „few is flexible and can be adapted. Most importantly, adapting the criterion for one quantifier (e.g. „many also appeared to affect the reciprocal quantifier (in this case, „few. Implications of this result for psychological interventions and for investigations of the neurobiology of the language
Dynamics of Particles Near Black Hole with Higher Dimensions
Sharif, M
2016-01-01
This paper explores the dynamics of particles in higher dimensions. For this purpose, we discuss some interesting features related to the motion of particles near Myers-Perry black hole with arbitrary extra dimensions as well as single non-zero spin parameter. Assuming it as a supermassive black hole at the center of galaxy, we calculate red-blue shifts in the equatorial plane for the far away observer as well as corresponding black hole parameters of the photons. Next, we study the Penrose process and find that the energy gain of particle depends on the variation of black hole dimensions. Finally, we discuss the center of mass energy for eleven dimensions which indicates similar behavior as that of four dimensions but it is higher in four dimensions than five or more dimensions. We conclude that higher dimensions have a great impact on the particle dynamics.
A KAM Theorem for Reversible Systems of Infinite Dimension
Shun Qing CHEN; Xiao Ping YUAN
2007-01-01
For reversible systems of infinite dimension we prove an infinitely dimensional KAM theoremwith an application to the network of weakly coupled oscillators of friction. The KAM theorem showsthat there are many invariant tori of infinite dimension, and thus many almost periodic solutions, forthe reversible systems.
Karsai, Szilvia; Forgács-Dajka, Emese; Pósfay, Péter
2016-01-01
We present the correspondence between non-interacting multi-hadron fermion star equation of state in the many-flavor limit and the degrees of freedom of a Kaluza\\,--\\,Klein compact star. Many flavors can be interpreted in this framework as one extra compacti\\-fied spatial dimension with various, more-and-more massive hadron state excitations. The effect of increasing the degrees of freedom was investigated on the equation of state and in connection with the mass-radius relation, $M(R)$. The maximum mass of the star, $M_{\\mathrm{max}}$ were also calculated as a function of the maximum number of excited states, $n$ and the size of the compactified extra dimension, $R_{\\mathrm{c}}$.
Numerical study of unitary fermions in one spatial dimension
Endres, Michael G
2013-01-01
I perform lattice Monte Carlo studies of universal four-component fermion systems in one spatial dimension. Continuum few-body observables (i.e., ground state energies and integrated contact densities) are determined for both unpolarized and polarized systems of up to eight fermions confined to a harmonic trap. Estimates of the continuum energies for four and five trapped fermions show agreement with exact analytic calculations to within approximately one percent statistical uncertainties. Continuum many-body observables are determined for unpolarized systems of up to 88 fermions confined to a finite box, and 56 fermions confined to a harmonic trap. Results are reported for universal quantities such as the Bertsch parameter, defined as the energy of the untrapped many-body system in units of the corresponding free-gas energy, and its subleading correction at large but finite scattering length. Two independent estimates of these quantities are obtained from thermodynamic limit extrapolations of continuum extra...
Depression Plagues Many with COPD
... nlm.nih.gov/medlineplus/news/fullstory_159436.html Depression Plagues Many With COPD Studies found 1 in ... pulmonary disorder (COPD) may raise the risk of depression among patients with the incurable respiratory illness, two ...
Depression Plagues Many with COPD
... page: https://medlineplus.gov/news/fullstory_159436.html Depression Plagues Many With COPD Studies found 1 in ... pulmonary disorder (COPD) may raise the risk of depression among patients with the incurable respiratory illness, two ...
Symmetry of many-electron systems
Kaplan, I G
2013-01-01
Symmetry of Many-Electron Systems discusses the group-theoretical methods applied to physical and chemical problems. Group theory allows an individual to analyze qualitatively the elements of a certain system in scope. The text evaluates the characteristics of the Schrodinger equations. It is proved that some groups of continuous transformation from the Lie groups are useful in identifying conditions and in developing wavefunctions. A section of the book is devoted to the utilization of group-theoretical methods in quantal calculations on many-electron systems. The focus is on the use of group
We show that realistic interactions derived from Brueckner calculations based on the N-N potentials, give excellent spectroscopy provided their monopole behaviour is corrected. The latter is related to saturation properties of nuclei and demands the introduction of a non analytic dependence of the effective interaction on the particle number. This mechanism is certainly related to a density dependence and no need is felt empirically of forces of rank higher than two-some new results concern the theory of spectral distributions: the parametrization of the monopole feld and calculations of traces of H and H2 at fixed n,t,v (number, isospin, seniority). This results are useful in the context of quasiconfiguration theory to establish the foundations of Shell Model calculations in the ZBM spaces
Control of safety factor profile in infinite dimension tokamak plasmas
The increasing energy needs of the world population require the development, the control and the supply of new forms of energy. In this context, nuclear fusion is a track of extremely promising research. World project ITER is intended to prove the scientific and technical feasibility of nuclear fusion. One of the many key-goal is the control of the current profile spatial distribution in plasmas of tokamak, which is one of the main parameter for the stability and the performance of the experiments. The spatio-temporal evolution of this current is described by a set of nonlinear partial differential equations. In this document stabilization is proposed considering robust control of current profile spatial distribution in infinite dimension. Two approaches are proposed: the first one is based on sliding mode approach and the second one (of type proportional and proportional integral) is based on the Lyapunov functions in infinite dimension. The design of the control law is based on the 1D equation resistive diffusion of the magnetic flux. The control laws are calculated in infinite dimension without space discretization. (author)
Minimum Fault-Tolerant, local and strong metric dimension of graphs
Salman, Muhammad; Javaid, Imran; Chaudhry, Muhammad Anwar
2014-01-01
In this paper, we consider three similar optimization problems: the fault-tolerant metric dimension problem, the local metric dimension problem and the strong metric dimension problem. These problems have applications in many diverse areas, including network discovery and verification, robot navigation and chemistry, etc. We give integer linear programming formulations of the fault-tolerant metric dimension problem and the local metric dimension problem. Also, we study local metric dimension ...
Cultural dimensions and innovation
Anna Strychalska-Rudzewicz
2015-11-01
Full Text Available This paper examines the effect of culture’s dimensions on national innovation index. The results of Pearson correlation coefficient between culture dimensions and the Global Innovation Index (GII are very similar to the results obtained in the case of Summary Innovation Index (SII in European countries. The strong negative correlation was observed in the case of power distance and uncertainty avoidance whereas individualism has a positive effect on innovation index. The results suggest that low power distance and uncertainty-accepting countries may be more innovative than high power distance and uncertainty-avoiding societies.
Dimension decreasing of featurespace
Klimešová, Dana; Ocelíková, E.; Zolotová, I.
Košice: TU Košice, 2008 - (Vokorokos,, L.), s. 49-53 ISBN 978-80-553-0066-5. [International Conference on Applied Electrical Engineering and Informatics 2008. Athens (GR), 08.09.2008-11.09.2008] Institutional research plan: CEZ:AV0Z10750506 Keywords : decision * feature space * dimension reduction * Karhunen - Loeve transformation * principal component method Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2008/ZOI/klimesova-dimension decreasing of featurespace.pdf
Leifsson, Patrik
2006-01-01
Fractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics. In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done ...
Inflation from extra dimensions
Levin, J
1994-01-01
A gravity-driven inflation is shown to arise from a simple higher dimensional universe. In vacuum, the shear of n>1 contracting dimensions is able to inflate the remaining three spatial dimensions. Said another way, the expansion of the 3-volume is accelerated by the contraction of the n-volume. Upon dimensional reduction, the theory is equivalent to a four dimensional cosmology with a dynamical Planck mass. A connection can therefore be made to recent examples of inflation powered by a dilaton kinetic energy. Unfortunately, the graceful exit problem encountered in dilaton cosmologies will haunt this cosmology as well.
Selective Attention to Perceptual Dimensions and Switching between Dimensions
Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi
2013-01-01
In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…
Many-Body Basis Set Superposition Effect.
Ouyang, John F; Bettens, Ryan P A
2015-11-10
The basis set superposition effect (BSSE) arises in electronic structure calculations of molecular clusters when questions relating to interactions between monomers within the larger cluster are asked. The binding energy, or total energy, of the cluster may be broken down into many smaller subcluster calculations and the energies of these subsystems linearly combined to, hopefully, produce the desired quantity of interest. Unfortunately, BSSE can plague these smaller fragment calculations. In this work, we carefully examine the major sources of error associated with reproducing the binding energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body expansion (MBE), where a "body" here refers to the monomers that make up the cluster. In our analysis, we found it necessary to introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably, the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-pVDZ level for the respective subclusters embedded within a larger cluster. PMID:26574311
Care for bees: for many reasons and in many ways
Blacquiere, T.
2010-01-01
Pollinating insects are in decline, probably worldwide. This may imply a pollination crisis, for (food) crops as well as wild plants. Eventually this decline might result in great economic losses, a human food crisis and loss of natural biodiversity. Although the world population of honeybee colonies still increases (despite decreases in many countries) it is urgently needed to take care for bees and other pollinators. Possible drivers for the decline of insect pollinators in general are (1) ...
Analysis on structure of igneous formation with fractal dimension of logs
无
2007-01-01
Reflecting the structure of igneous formation by calculating fractal dimension of logs, the fractal dimension of pyroclastic is larger than lava. Structure of pyroclastic is more complicated than that of lava, so reflecting the structure of igneous formation's complexity with fractal dimension is feasible. It is feasible to refleet the structure of igneous formation's complexity with fractal dimension.
Gold, Paul E.
2006-01-01
Results from studies of retrograde amnesia provide much of the evidence for theories of memory consolidation. Retrograde amnesia gradients are often interpreted as revealing the time needed for the formation of long-term memories. The rapid forgetting observed after many amnestic treatments, including protein synthesis inhibitors, and the parallel…
A Many Particle Adiabatic Invariant
Hjorth, Poul G.
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...
The Mercedes Benz 2528 is a versatile vehicle with a V8 diesel, 280 DIN PS/206 kW engine and a total laden weight of 25 tonnes. One such lorry has been used for earth removal, crane mounting, radioactive waste transport and snow clearance, among many other applications at the Leibstadt nuclear power plant. (G.F.F.)
Earthquakes Threaten Many American Schools
Bailey, Nancy E.
2010-01-01
Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…
Licht, Rasmus Wentzer; Straszek, Sune Puggaard Vogt
2014-01-01
of recurrence. Many well-documented antimanic drugs are at hand, and the database has been carefully outlined in recent guidelines, also addressing factors of importance in choosing among the options. The real challenge is dealing with non-response, where the database is extremely poor....
Bertel, Erminald
2013-01-01
Due to progress in nanotechnology high-quality quantum wires can nowadays be fabricated. The behavior of particles in one dimension differs significantly from that in three-dimensional (3D) systems, yet the physics of such low-dimensional systems is generally not very well represented in standard undergraduate or graduate curricula. For instance,…
Stephenson, Paul
2012-01-01
The first word of this item is "imagine". This instruction has the potential to signal a journey through a world of geometry that might leave you spellbound. On the other hand, it could be the start of a roller-coaster ride through three dimensions that will tax both your imagination, and your powers of visualisation. It is likely that you will…
Eskjær, Mikkel Fugl
2013-01-01
largely dependent on regional media systems, yet the role this regional dimension plays has been largely overlooked. This article presents a comparative study of climate-change coverage in three geo-cultural regions, The Middle East, Scandinavia, and North America, and explores the link between global...
Nef dimension of minimal models
Ambro, Florin
2003-01-01
We reduce the Abundance Conjecture in dimension 4 to the following numerical statement: if the canonical divisor K is nef and has maximal nef dimension, then K is big. From this point of view, we ``classify'' in dimension 2 nef divisors which have maximal nef dimension, but which are not big.
The Rotavirus Interferon Antagonist NSP1: Many Targets, Many Questions.
Arnold, Michelle M
2016-06-01
Rotavirus is a leading cause of death due to diarrhea among young children across the globe. Despite the limited coding capacity that is characteristic of RNA viruses, rotavirus dedicates substantial resources to avoiding the host innate immune response. Among these strategies is use of the interferon antagonist protein NSP1, which targets cellular proteins required for interferon production to be degraded by the proteasome. Although numerous cellular targets have been described, there remain many questions about the mechanism of NSP1 activity and its role in promoting replication in specific host species. PMID:27009959
New Dimensions for the Multicultural Education Course
Gay, Richard
2011-01-01
For the past sixteen years, the Five Dimensions of Multicultural Education, as proposed by James A. Banks (1995), have been accepted in many circles as the primary conceptual framework used in teaching multicultural education courses: content integration, the knowledge construction process, prejudice reduction, an equity pedagogy and an empowering…
Conscious observers clarify many worlds
Simon, Christoph
2009-01-01
In this brief note I argue that putting conscious observers at the center of the considerations clarifies and strengthens the many-worlds interpretation. The basic assumption, which seems extremely plausible based on our current understanding of the brain and of decoherence, is that quantum states corresponding to distinct conscious experiences have to be orthogonal. I show that, once this is accepted, probabilistic measurement outcomes corresponding to basis elements and following Born's rule emerge naturally from global unitary dynamics.
CAVEAT calculations of shock interactions
CAVEAT is a computer code for calculating the time-varying fluid dynamics of several adjacent materials in two or three space dimensions. Using an extended Godunov technique and adaptive meshing, the code allows for large slippage at material interfaces. To exhibit the capability for calculating strong distortions we have performed a variety of calculations describing the interaction of shocks with rigid wedges, cylinders, and spheres and deformable cylindrical, spherical, and conical shells in two space dimensions. Comparison of the results with experimental data and analytical solutions demonstrates the considerable accuracy that can be expected from calculations with this code
Identification of Sustainable Architecture Dimensions
Leila Etminan
2014-02-01
Full Text Available The main purpose in this research is identification of sustainable architecture dimensions. Nowadays, one of the most necessary complicated and main specifications of architecture with which architects are face is the issue of sustainability in various types of its interpretations. The issue of sustainability is interpretable and general according to many aspects. Therefore, it is necessary to identify this concept (architecture and its related categories. At the beginning of this discussion, we were faced with titles such as Green architecture2, Sustainable development3, etc. However, the purpose of this study is to study of nature and identify the circumstances and essence of sustainability in all fields in which the architecture is involved. The innovation of this study is to identify and feel the fact of sustainability dimensions that is studied in procedure of library research, a case sample and proposal of common but insufficient ideas related to this discussion. This study studies 3 approaches including main environmental, cultural (value and technical views and it tries to take the proposed topics under the subjection of this 3 factors respectively (presenting a modern model; furthermore, the minor factors are studied under the subjection of these 3 main factors.
Warped Universal Extra Dimensions
Medina, Anibal D
2010-01-01
We consider a 5D warped scenario with a KK-parity symmetry, where the non-trivial warping arises from the dynamics that stabilizes the size of the extra dimension. Generically, the lightest Kaluza-Klein (KK) particle is the first excitation of the radion field, while the next-to-lightest Kaluza-Klein particle is either the first excitation of the (RH) top quark or the first KK-parity odd Higgs. All these masses are expected to be of order the electroweak scale. We present simple analytical expressions for the masses and wavefunctions of the lowest lying KK modes, and derive the Feynman rules necessary for phenomenological applications. The framework allows to interpolate between a strongly warped scenario a la Randall-Sundrum (RS), and a weakly warped scenario that shares properties of both RS and Universal Extra Dimensions models.
Dimensions of African inequality
Bigsten, Arne
2014-01-01
This paper discusses dimensions of inequality in sub-Saharan Africa and their causes. It starts with a review of the empirical evidence about inequality during the colonial period as well as the post-independence era. Then it discusses the forces that determine inequality change, focusing on factor accumulation and structural change. Next it considers the relationship between inequality and growth, the role of agriculture in the development process, the relationships between ethnicity and soc...
Constantin BRATIANU; Violeta Mihaela DINCA
2010-01-01
The purpose of this paper is to present an analysis of the emergent knowledge economy and its dimensions. The knowledge economy is based primarily on the development of intangibles, and knowledge processing. The knowledge revolution is changing the way we think and work, and the knowledge worker reflects the nature of the new economic driving forces. The knowledge economy opens new directions, and offers unprecedented opportunities to produce and sell on a mass scale, reduce costs, and custom...
Introduction to Extra Dimensions
Rizzo, Thomas G.; /SLAC
2010-04-29
Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.
Bar dimensions and bar shapes in estuaries
Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten
2016-04-01
Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.
L q dimensions and projections of random measures
Galicer, Daniel; Saglietti, Santiago; Shmerkin, Pablo; Yavicoli, Alexia
2016-09-01
We prove preservation of L q dimensions (for 1) under all orthogonal projections for a class of random measures on the plane, which includes (deterministic) homogeneous self-similar measures and a well-known family of measures supported on 1-variable fractals as special cases. We prove a similar result for certain convolutions, extending a result of Nazarov, Peres and Shmerkin. Recently many related results have been obtained for Hausdorff dimension, but much less is known for L q dimensions.
Universality and Specificity of Fractal Dimension of Fractured Surfaces in Materials
无
2000-01-01
After calculation on the fracture angles under various conditions of specific surface energies with different symmetry operations of rotation, the complicated behavior of dependence of fractal dimension on the structure of crystal is shown. It is found that the crack propagates along the weakest crystal plane no matter what the direction of the maximum stress is if the anisotropy is sufficiently strong; and then, the fractal dimension of the fractured surfaces might be determined by the approximate fractal structure already existed in the material. Specificity of the fractal dimension of fractured surfaces would be easy to appear in this case. Reversely, the crack propagates along the direction of the maximum stress no matter what direction of the weakest crystal plane is if the anisotropy is sufficiently weak. Universality of the fractal dimension of fractured surfaces would be possible to appear in this case. In many real materials, universality and specificity of the materials are associated. The fractal dimension measured may more or less be influenced by the structure of materials and it shows its universality through the specificity of materials.
PI spaces with analytic dimension 1 and arbitrary topological dimension
Kleiner, Bruce; Schioppa, Andrea
2015-01-01
For every n, we construct a metric measure space that is doubling, satisfies a Poincare inequality in the sense of Heinonen-Koskela, has topological dimension n, and has a measurable tangent bundle of dimension 1.
nuclear reactor design calculations
In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations
The many colours of chromodomains.
Brehm, Alexander; Tufteland, Katharina R; Aasland, Rein; Becker, Peter B
2004-02-01
Local differences in chromatin organisation may profoundly affect the activity of eukaryotic genomes. Regulation at the level of DNA packaging requires the targeting of structural proteins and histone-modifying enzymes to specific sites and their stable or dynamic interaction with the nucleosomal fiber. The "chromodomain", a domain shared by many regulators of chromatin structure, has long been suspected to serve as a module mediating chromatin interactions in a variety of different protein contexts. However, recent functional analyses of a number of different chromodomains revealed an unexpected diversity of interaction targets, including histones, DNA and even RNA. The chromodomains of today seem to have evolved from a common ancestral fold to fulfill various functions in different molecular contexts. Combining information gained from recent functional and structural studies of chromodomains with a bioinformatic classification of their structure could lead to the definition of sequence motifs with predictive quality for chromodomain function. PMID:14745831
Jin, Shi; Roche, Kenneth; Wlazłowski, Gabriel
2016-01-01
Self-consistent approaches to superfluid many-fermion systems in 3-dimensions (and subsequent time-dependent approaches) require a large number of diagonalizations of very large dimension hermitian matrices, which results in enormous computational costs. We present an approach based on the shifted conjugate-orthogonal conjugate-gradient (COCG) method for the evaluation of the Green's function, from which we subsequently extract various densities (particle number, spin, current, kinetic energy, etc.) of a nuclear system needed in self-consistent approaches. The approach eschews the construction of the quasiparticle wavefunctions and their corresponding quasiparticle energies, which are never explicitly needed in any density functional approaches. As benchmarks we present calculations for nuclei with axial symmetry, including the ground state of spherical (magic or semi-magic) and axially deformed nuclei, the saddle-point in the $^{240}$Pu constrained fission path, and a vortex in the neutron star crust.
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
Aspects of grand unification in higher dimensions
We consider various aspects of string phenomenology in the context of heterotic orbifold constructions, where special emphasis is laid on the connection between GUT models in extra dimensions and their relation to string theory. We investigate orbifold models with more general structure than the Z3 orbifold, on which most of the past research had focused. The picture of the heterotic brane world which naturally emerges allows us to make contact to field theoretic orbifold constructions in five and six dimensions, which have recently attracted much attention. We present a classification scheme for inequivalent orbifold models and apply the results to the case of Z6-II point group. We develop the mathematical background for a stringy Higgs mechanism which allows us to lower the rank of the gauge group in the higher dimensions, which cannot be achieved by contemporary orbifold constructions. We provide all the calculational methods needed to unambiguously identify the gauge symmetry and to construct the matter representations. For specific model constructions, we focus on two promising gauge groups, namely on SO(10) and E6. In the latter case, we derive a GUT model in six dimensions which has a standard model like gauge symmetry SU(3) x SU (2) x U(1) x U(1)' in four dimensions, and discuss its embedding into string theory. (orig.)
Aspects of grand unification in higher dimensions
Wingerter, A.
2005-07-01
We consider various aspects of string phenomenology in the context of heterotic orbifold constructions, where special emphasis is laid on the connection between GUT models in extra dimensions and their relation to string theory. We investigate orbifold models with more general structure than the Z{sub 3} orbifold, on which most of the past research had focused. The picture of the heterotic brane world which naturally emerges allows us to make contact to field theoretic orbifold constructions in five and six dimensions, which have recently attracted much attention. We present a classification scheme for inequivalent orbifold models and apply the results to the case of Z{sub 6}-II point group. We develop the mathematical background for a stringy Higgs mechanism which allows us to lower the rank of the gauge group in the higher dimensions, which cannot be achieved by contemporary orbifold constructions. We provide all the calculational methods needed to unambiguously identify the gauge symmetry and to construct the matter representations. For specific model constructions, we focus on two promising gauge groups, namely on SO(10) and E{sub 6}. In the latter case, we derive a GUT model in six dimensions which has a standard model like gauge symmetry SU(3) x SU (2) x U(1) x U(1)' in four dimensions, and discuss its embedding into string theory. (orig.)
Higher Dimensional Wormhole Geometries with Compact Dimensions
De Benedictis, A
2003-01-01
This paper studies wormhole solutions to Einstein gravity with an arbitrary number of time dependent compact dimensions and a matter-vacuum boundary. A new gauge is utilized which is particularly suited for studies of the wormhole throat. The solutions possess arbitrary functions which allow for the description of infinitely many wormhole systems of this type and, at the stellar boundary, the matter field is smoothly joined to vacuum. It turns out that the classical vacuum structure differs considerably from the four dimensional theory and is therefore studied in detail. The presence of the vacuum-matter boundary and extra dimensions places interesting restrictions on the wormhole. For example, in the static case, the size of a weak energy condition (WEC) respecting throat is restricted by the extra dimensions. In the time dependent case, one cannot respect the WEC at the throat as the time dependence actually tends to solution towards WEC violation. This differs considerably from the static case and the four...
Supersymmetry breaking and composite extra dimensions
We study supergravity models in four dimensions where the hidden sector is superconformal and strongly coupled over several decades of energy below the Planck scale, before undergoing spontaneous breakdown of scale invariance and supersymmetry. We show that large anomalous dimensions can suppress Kaehler contact terms between the hidden and visible sectors, leading to models in which the hidden sector is 'sequestered' and anomaly-mediated supersymmetry breaking can naturally dominate, thus solving the supersymmetric flavor problem. We construct simple, explicit models of the hidden sector based on supersymmetric QCD in the conformal window. The present approach can be usefully interpreted as having an extra dimension responsible for sequestering replaced by the many states of a (spontaneously broken) strongly coupled superconformal hidden sector, as dictated by the anti-de Sitter conformal field theory correspondence
Gravitational Law in Extra Dimensions
Bühlmann, Michael
2013-01-01
Some recent theories which try to amend shortcomings of current models in physics suggest the existence of additional dimensions. Such extra dimensions would modify the inverse square law of gravity. A short overview over gravitational theory is presented and some of the extensions to general relativity and models which use extra dimensions, so-called Kaluza–Klein theories are discussed. A derivation of the correction to Newton’s gravitational law due to extra dimensions is performed and yiel...
Chaitanya S. Mudgal
2014-03-01
greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.
Quantum Physics in One Dimension
To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted peculiarities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic - spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assuming little theoretical background on the part of the reader (well just a little), Giamarchi writes in a
The many faces of testosterone
Jerald Bain
2007-01-01
Full Text Available Jerald BainDepartment of Medicine, Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Mount Sinai Hospital, Toronto, Ontario, CanadaAbstract: Testosterone is more than a “male sex hormone”. It is an important contributor to the robust metabolic functioning of multiple bodily systems. The abuse of anabolic steroids by athletes over the years has been one of the major detractors from the investigation and treatment of clinical states that could be caused by or related to male hypogonadism. The unwarranted fear that testosterone therapy would induce prostate cancer has also deterred physicians form pursuing more aggressively the possibility of hypogonadism in symptomatic male patients. In addition to these two mythologies, many physicians believe that testosterone is bad for the male heart. The classical anabolic agents, 17-alkylated steroids, are, indeed, potentially harmful to the liver, to insulin action to lipid metabolism. These substances, however, are not testosterone, which has none of these adverse effects. The current evidence, in fact, strongly suggests that testosterone may be cardioprotective. There is virtually no evidence to implicate testosterone as a cause of prostate cancer. It may exacerbate an existing prostate cancer, although the evidence is flimsy, but it does not likely cause the cancer in the first place. Testosterone has stimulatory effects on bones, muscles, erythropoietin, libido, mood and cognition centres in the brain, penile erection. It is reduced in metabolic syndrome and diabetes and therapy with testosterone in these conditions may provide amelioration by lowering LDL cholesterol, blood sugar, glycated hemoglobin and insulin resistance. The best measure is bio-available testosterone which is the fraction of testosterone not bound to sex hormone binding globulin. Several forms of testosterone administration are available making compliance
Adjoint Functors and Representation Dimensions
Chang Chang XI
2006-01-01
We study the global dimensions of the coherent functors over two categories that are linked by a pair of adjoint functors. This idea is then exploited to compare the representation dimensions of two algebras. In particular, we show that if an Artin algebra is switched from the other, then they have the same representation dimension.
Complete intersection dimension for complexes
Sather-Wagstaff, Sean
2003-01-01
We extend the notions of complete intersection dimension and lower complete intersection dimension to the category of complexes with finite homology and verify basic properties analogous to those holding for modules. We also discuss the question of the behavior of complete intersection dimension with respect to short exact sequences.
Extra Dimensions and ``Branes''
Sundrum, Raman
2011-04-01
We do not yet know the nature of fundamental physics above the weak scale, but we are about to probe it this decade. It may come in the form of a few new weakly-coupled particles, captured by ordinary Feynman diagrams in standard spacetime, or alternatively in the form of large ``towers'' of new elementary or composite states, requiring a different set of concepts and analytic tools. Extra spatial dimensions provide the simplest, but very rich, class of such possibilities. I will explain how extra-dimensions can provide an elegant and intuitive geometrization of subtle physics, in particular flowing from the powerful AdS/CFT correspondence. This geometrization allows one to ``view'' central issues ranging from electroweak, grand unified, strongly-coupled, flavor, supersymmetry, or collider physics, in terms of the overlap of extra-dimensional wavefunctions, the curvature (``warping'') of the higher dimensional spacetime, and ``branes'' (3-dimensional defects). I will illustrate the kind of physics and experimental signals that flow from the most plausible extra-dimensional scenarios.