WorldWideScience

Sample records for calculations many dimensions

  1. Flatland a journey of many dimensions

    CERN Document Server

    2007-01-01

    "Flatland" is based on Edwin A. Abbott's classic novel : Flatland : a romance of many dimensions. Flatland is a world that exists entirely on a two-dimensional plane. All different kinds of shapes live, work and play in this world. The story follows Arthur Square (Martin Sheen) and his curious granddaughter Hex (Kristen Bell). When a mysterious visitor (Michael York) arrives from Spaceland, Arthur and Hex must come to terms with the truth of the third dimension, risking dire consequences from the evil Circles that have ruled Flatland for thousands of years. "Flatland" is an animated story that includes action, drama, and geometry lessons. This heartfelt movie challenges audiences to grasp the limitations of our own assumptions about reality, and to think about the idea of higher dimensions.

  2. Calculation of one-loop anomalous dimensions by means of the background field method

    International Nuclear Information System (INIS)

    Morozov, A.Yu.

    1983-01-01

    The knowledge of propagators in background fields makes calculation of anomalous dimensions (AD) straightforward and brief. The paper illustrates this statement by calculation of AD of many spin-zero and one QCD operators up to the eighth dimension included. The method presented does not simplify calculations in case of four-quark operators, therefore these are not discussed. Together with calculational difficulties arising for operators with derivatives this limits capacities of the whole approach and leads to incompleteness of some mixing matrices found in the article

  3. Many body calculations in atomic physics

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1985-01-01

    The use of the many-body perturbation theory for atomic calculations are reviewed. The major emphasis is on the use of the linked-cluster many-body perturbation theory derived by Brueckner and Goldstone. Applications of many-body theory to calculations of hyperfine structure are examined. Auger rates and parity violation are discussed. Photoionization is reviewed, and the authors show how many-body perturbation theory can be applied to problems ranging from structural properties such as correlation energies and hyperfine structure to dynamical properties such as transitions induced by weak neutral currents and photoionization cross sections

  4. Flatland a romance of many dimensions

    CERN Document Server

    Abbott, Edwin Abbott

    2015-01-01

    In 1884, Edwin Abbott Abbott wrote a mathematical adventure set in a two-dimensional plane world, populated by a hierarchical society of regular geometrical figures-who think and speak and have all too human emotions. Since then Flatland has fascinated generations of readers, becoming a perennial science-fiction favorite. By imagining the contact of beings from different dimensions, the author fully exploited the power of the analogy between the limitations of humans and those of his two-dimensional characters. A first-rate fictional guide to the concept of multiple dimensions of space, the book will also appeal to those who are interested in computer graphics. This field, which literally makes higher dimensions seeable, has aroused a new interest in visualization. We can now manipulate objects in four dimensions and observe their three-dimensional slices tumbling on the computer screen. But how do we interpret these images? In his introduction, Thomas Banchoff points out that there is no better way to begin ...

  5. MURALB - a programme for calculating neutron fluxes in many groups

    International Nuclear Information System (INIS)

    MacDougall, J.

    1977-09-01

    The program MURALB solves the multi-group transport equation (with no upscatter) in many equal lethargy groups to produce neutron fluxes in these groups. The code has been made very flexible by confining the spatial flux solution to a single subroutine which takes as input the cross section data and source for a single group and calculates the flux for that group. In this way by supplying different versions of this routine different geometries and methods of solution of the transport equation may be treated. At present plane, cylindrical and spherical diffusion theory and collision probability solutions are available, together with a two region collision probability solution for a rod in a square cell. There is no basic restriction to one dimension but the practical size of problem tends to be limited to about 30 spatial regions by core storage requirements. In addition to the flux solution, the code calculates neutron balance, reaction rates and few groups cross sections for each mesh region, together with the values averaged over the system (cell or reactor). The program is available both as a stand-alone code and integrated into the COSMOS system. (author)

  6. Determinants of Individual Academic Achievement - Group Selectivity Effects Have Many Dimensions

    NARCIS (Netherlands)

    Zwick, Th.

    2013-01-01

    This paper measures determinants of individual academic achievements. In addition to an extensive list of individual characteristics, skills obtained during study and socio-economic background factors, many dimensions of selectivity into academic study subjects are shown to drive individual academic

  7. Many-body problem in one-dimension

    International Nuclear Information System (INIS)

    Emery, V.J.

    1979-11-01

    This work attempts to give a qualitative feeling for the more important physical ideas involved with the study of many-body systems in one dimension, and considers a particular strong-coupling model. This model provides an excellent description of the chains of mercury ions in Hg/sub 3-delta/AsF 6 ; some of the predictions of the theory can be checked by x-ray and neutron diffraction. Much of the physics of nearly one-dimensional materials is concerned with understanding the possible types of phase transition that may take place, and establishing the conditions in which one or another will be predominant. The most significant feature of purely one-dimensional systems is the dominant effect of fluctuations. The paper is organized as follows: introduction; qualitative aspects of one-dimensional systems (general survey, mathematical model, qualitative discussion of strong coupling - strong attractive U, strong repulsive U, large V); strong coupling between parallel spins (independent spin systems, coupling between opposite spins); mercury chains; electrons with arbitrary coupling; boson representations of operators; and classical Coulomb gas

  8. A Monte Carlo method for calculating strength functions in many-fermion systems

    International Nuclear Information System (INIS)

    Bloom, S.D.; Grimes, S.M.

    1980-01-01

    The calculation of moments is an essential first step in the calculation of strength functions for operators. A method for calculating approximate moments of a variety of operators in large vector spaces (dimension Nsub(e)) based on the use of sets of random multiparticle vectors (dimension Nsub(d) in two nuclear cases: 21 Ne(n = 1 to 10) and 28 Si(n = 1 to 3). The random vectors, which we call RRV's (random representative vectors), are constructed by statistically sampling a fraction f = Nsub(d)/Nsub(e) of the full space. Useful results are obtained with f -6 (case of 28 Si, Nsub(e) = 5.5 x 10 7 ). For Nsub(d) = Nsub(e) (case of 21 Ne, Nsub(e) = 1935) our results for the dispersions of the sets of the moments closely approximate the predictions of Porter. (orig.)

  9. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    Science.gov (United States)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  10. Many body perturbation calculations of photoionization

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1979-01-01

    The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)

  11. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  12. On some problems encountered in calculating the correlation dimension of EEG

    International Nuclear Information System (INIS)

    Dvorak, I.; Siska, J.

    1986-06-01

    Results of calculations of correlation dimension of the human EEG are presented. Effects of proband's mental activity, of the length of scrutinized signal and of the locus of registration on the computed values are studied. Evidence is given for a deterministic component in the EEG signal. (author)

  13. The structure of common psychiatric symptoms: how many dimensions of neurosis?

    Science.gov (United States)

    Ormel, J; Oldehinkel, A J; Goldberg, D P; Hodiamont, P P; Wilmink, F W; Bridges, K

    1995-05-01

    In order to replicate and elaborate the two-dimensional model of depression and anxiety underlying the structure of common psychiatric symptoms proposed by Goldberg et al. (1987), we carried out latent trait analyses on PSE symptom data of the original Manchester study and two recent Dutch studies. We used the same analytical strategy as Goldberg et al. to facilitate comparison with the earlier work. It was found that a more comprehensive set of common psychiatric symptoms caused an extra, third dimension to emerge, so that the earlier anxiety dimension became split between a specific anxiety axis characterized by situational and phobic anxiety and avoidance, and a non-specific anxiety axis characterized by free-floating anxiety, various symptoms relating to tension, irritability and restlessness. It is argued that three dimensions are sufficient to account for the covariance between common psychiatric symptoms. A fairly consistent correlation between the non-specific anxiety and the depression dimension was found across sites, as well as independence of the specific anxiety dimension from the other two dimensions. Furthermore, the depression dimension was robust with similar symptom profiles across samples, but there appeared to be local differences in the structure of anxiety symptoms.

  14. Many-spin calculation of tunneling splittings in Mn12 magnetic molecules

    NARCIS (Netherlands)

    Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.

    2002-01-01

    We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant

  15. MAGNUS-3D: Accelerator magnet calculations in 3-dimensions

    Science.gov (United States)

    Pissanetzky, S.

    1988-12-01

    MAGNUS-3D is a professional finite element code for nonlinear magnetic engineering. MAGNUS-3D can solve numerically any general problem of linear or nonlinear magnetostatics in three dimensions. The problem is formulated in a domain with Dirichlet, Neumann or periodic boundary conditions, that can contain any combination of conductors of any shape in space, nonlinear magnetic materials with magnetic properties specified by magnetization tables, and nonlinear permanent magnets with any given demagnetization curve. MAGNUS-3D uses the two-scalar-potentials formulation of Magnetostatics and the finite element method, has an automatic 3D mesh generator, and advanced post-processing features that include graphics on a variety of supported devices, tabulation, and calculation of design quantities required in Magnetic Engineering. MAGNUS-3D is a general purpose 3D code, but it has been extensively used for accelerator work and many special features required for accelerator engineering have been incorporated into the code. One of such features is the calculation of field harmonic coefficients averaged in the direction of the beam, so important for the design of magnet ends. Another feature is its ability to calculate line integrals of any field component along the direction of the beam, or plot the field as a function of the z coordinate. MAGNUS-3D has found applications to the design of accelerator magnets and spectrometers, steering magnets, wigglers and undulators for free electron lasers, microtrons and magnets for synchrotron light sources, as well as magnets for NMR and medical applications, recording heads and various magnetic devices. There are three more programs closely associated with MAGNUS-3D. MAGNUS-GKS is the graphical postprocessor for the package; it supports a numer of output devices, including color vector or bit map devices. WIRE is an independent program that can calculate the field produced by any configuration of electric conductors in space, at any

  16. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    Science.gov (United States)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  17. Scenery reconstruction in two dimensions with many colors

    NARCIS (Netherlands)

    Löwe, M.; Matzinger, H.

    2002-01-01

    Kesten has observed that the known reconstruction methods of random sceneries seem to strongly depend on the one-dimensional setting of the problem and asked whether a construction still is possible in two dimensions. In this paper we answer this question in the affirmative under the condition that

  18. Continuous dimensions and evanescent couplings

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1975-01-01

    Analytical solutions for the wave equation in many dimensional calculation, are given. The difference for even or odd number of dimensions is shown. The simplest cases of the lowest order divergent diagrams (self-energy, vacuum polarization) are discussed. Causal solution of Klein-Gordon equation is used [pt

  19. The many-body problem an encyclopedia of exactly solved models in one dimension

    CERN Document Server

    1993-01-01

    This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space - such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz - can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developmen

  20. Inflation from extra dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.

    1984-01-01

    Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically

  1. Many Forms of Culture

    Science.gov (United States)

    Cohen, Adam B.

    2009-01-01

    Psychologists interested in culture have focused primarily on East-West differences in individualism-collectivism, or independent-interdependent self-construal. As important as this dimension is, there are many other forms of culture with many dimensions of cultural variability. Selecting from among the many understudied cultures in psychology,…

  2. Large-dimension configuration-interaction calculations of positron binding to the group-II atoms

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.

    2006-01-01

    The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e + Be, e + Mg, e + Ca, and e + Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l→∞ limit. The binding energies were 0.00317 hartree for e + Be, 0.0170 hartree for e + Mg, 0.0189 hartree for e + Ca, and 0.0131 hartree for e + Sr

  3. Many-body calculations with deuteron based single-particle bases and their associated natural orbits

    Science.gov (United States)

    Puddu, G.

    2018-06-01

    We use the recently introduced single-particle states obtained from localized deuteron wave-functions as a basis for nuclear many-body calculations. We show that energies can be substantially lowered if the natural orbits (NOs) obtained from this basis are used. We use this modified basis for {}10{{B}}, {}16{{O}} and {}24{{Mg}} employing the bare NNLOopt nucleon–nucleon interaction. The lowering of the energies increases with the mass. Although in principle NOs require a full scale preliminary many-body calculation, we found that an approximate preliminary many-body calculation, with a marginal increase in the computational cost, is sufficient. The use of natural orbits based on an harmonic oscillator basis leads to a much smaller lowering of the energies for a comparable computational cost.

  4. Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions {d ≤slant 3}

    Science.gov (United States)

    Fröhlich, Jürg; Knowles, Antti; Schlein, Benjamin; Sohinger, Vedran

    2017-12-01

    We prove that Gibbs measures of nonlinear Schrödinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in dimensions {d =1,2,3}. The many-body quantum thermal states that we consider are the grand canonical ensemble for d = 1 and an appropriate modification of the grand canonical ensemble for {d =2,3}. In dimensions d = 2, 3, the Gibbs measures are supported on singular distributions, and a renormalization of the chemical potential is necessary. On the many-body quantum side, the need for renormalization is manifested by a rapid growth of the number of particles. We relate the original many-body quantum problem to a renormalized version obtained by solving a counterterm problem. Our proof is based on ideas from field theory, using a perturbative expansion in the interaction, organized by using a diagrammatic representation, and on Borel resummation of the resulting series.

  5. Review of many-body calculations

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1981-01-01

    A brief review is given of many-body perturbation theory and its application to atomic physics. Particular attention is given to the choice of single-particle potential used to generate excited states. Applications to many atomic properties are discussed including hyperfine structure, photoabsorption including multiple processes, and parity non-conserving transitions in heavy atoms

  6. A new information dimension of complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Daijun [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Science, Hubei University for Nationalities, Enshi 445000 (China); Wei, Bo [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Hu, Yong [Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang, Haixin [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Engineering, Vanderbilt University, TN 37235 (United States)

    2014-03-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  7. A new information dimension of complex networks

    International Nuclear Information System (INIS)

    Wei, Daijun; Wei, Bo; Hu, Yong; Zhang, Haixin; Deng, Yong

    2014-01-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  8. Equilibrium of field reversed configurations with rotation. II. One space dimension and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2002-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed

  9. Accurate first principles calculation of many-body interactions

    International Nuclear Information System (INIS)

    Tawa, G.J.; Moskowitz, J.W.; Schmidt, K.E.

    1991-01-01

    This paper reports on the electronic structure Schrodinger equation that is solved for the van der Waals complexes spin-polarized H 2 and H 3 , and the closed-shell systems He 2 and He 3 by Monte Carlo methods. Two types of calculations are performed, variational Monte Carlo, which gives an upper bound to the eigenvalue of the Schrodinger equation, and Green's function Monte Carlo, which can solve the Schrodinger equation exactly within statistical sampling errors. The simulations are carried out on an ETA-10 supercomputer, and already existing computer codes were extensively modified to ensure highly efficient coding. A major component of the computations was the development of highly optimized many-electron wave functions. The results from the variational Monte Carlo simulations are reported for both the two- and three-body interaction energies

  10. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  11. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors

    Science.gov (United States)

    Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano

    2018-03-01

    We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.

  12. Time dependence, complex scaling, and the calculation of resonances in many-electron systems

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Beck, D.R.

    1978-01-01

    The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references

  13. Sn transport calculations on vector and parallel processors

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.

    1987-01-01

    The transport of radiation from the source to the location of people or equipment gives rise to some of the most challenging of calculations. A problem may involve as many as a billion unknowns, each evaluated several times to resolve interdependence. Such calculations run many hours on a Cray computer, and a typical study involves many such calculations. This paper will discuss the steps taken to vectorize the DOT code, which solves transport problems in two space dimensions (2-D); the extension of this code to 3-D; and the plans for extension to parallel processors

  14. Correlation dimension of financial market

    Science.gov (United States)

    Nie, Chun-Xiao

    2017-05-01

    In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.

  15. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Quiney, H.M.

    1993-01-01

    A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence

  16. A class of explicitly soluble, local, many-center hamiltonians for one-particle quantum mechanics in two and three dimensions. I

    International Nuclear Information System (INIS)

    Grossmann, A.; Mebkhout, M.; Centre National de la Recherche Scientifique, 13 - Marseille

    1979-02-01

    An explicit formula for the resolvent of a class of one-particle, many-center, local Hamiltonians is derived. This formula gives, in particular, a full description of a model molecule given by point interactions at n arbitrarily placed fixed centers in three dimensions. It also gives a three-dimensional analogue of the Kronig-Penney model

  17. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    Science.gov (United States)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  18. Relativistic many-body calculations of magnetic dipole transitions in Be-like ions

    International Nuclear Information System (INIS)

    Safronova, U.I.; Johnson, W.R.; Derevianko, A.

    1999-01-01

    Reduced matrix elements and transition rates are calculated for all magnetic dipole (M1) transitions within 2l2l' configurations and for some 2l3l'-2l2l' transitions in Be-like ions with nuclear charges ranging from Z = 4 to 100. Many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded M1 matrix elements. The calculations start with a (1s) 2 Dirac-Fock potential and include all possible n = 2 configurations, leading to 4 odd-parity and 6 even-parity states, and some n = 3 configurations. First-order perturbation theory is used to obtain intermediate coupling coefficients. Second-order MBPT is used to determine the matrix elements, which are evaluated for all 11 M1 transitions within 2l2l' configurations and for 35 M1 transitions between 2l3l' and 2l2l' states. The transition energies used in the calculation of oscillator strengths and transition rates are obtained from second-order MBPT. The importance of negative-energy contributions to M1 transition amplitudes is discussed. (orig.)

  19. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  20. Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1980-03-01

    A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings

  1. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  2. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-06-21

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.

  3. Ultraviolet sensitivity in higher dimensions

    International Nuclear Information System (INIS)

    Hoover, Doug; Burgess, Clifford P.

    2006-01-01

    We calculate the first three Gilkey-DeWitt (heat-kernel) coefficients, a 0 , a 1 and a 2 , for massive particles having the spins of most physical interest in n dimensions, including the contributions of the ghosts and the fields associated with the appropriate generalized Higgs mechanism. By assembling these into supermultiplets we compute the same coefficients for general supergravity theories, and show that they vanish for many examples. One of the steps of the calculation involves computing these coefficients for massless particles, and our expressions in this case agree with - and extend to more general background spacetimes - earlier calculations, where these exist. Our results give that part of the low-energy effective action which depends most sensitively on the mass of heavy fields once these are integrated out. These results are used in hep-th/0504004 to compute the sensitivity to large masses of the Casimir energy in Ricci-flat 4D compactifications of 6D supergravity

  4. More dimensions: Less entropy

    International Nuclear Information System (INIS)

    Kolb, E.W.; Lindley, D.; Seckel, D.

    1984-01-01

    For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions

  5. Equilibrium of field reversed configurations with rotation. IV. Two space dimensions and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2003-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed

  6. A new approach to spectrum calculations in lattice Hamiltonian field theories. 1. Introduction and application to lambda phi4 in (1+1) dimensions

    International Nuclear Information System (INIS)

    Barnes, T.; Daniell, G.J.

    1982-09-01

    A finite lattice technique is introduced for calculating the spectrum of fluctuating Bose theories in the continuum limit. The method gives the continuum spectrum to an estimated approximately 1% accuracy in (1+1) dimensions using available computer memory. The spectrum of lambda phi 4 theory in (1+1) dimensions is studied as a trial application; results are found consistent with a free theory spectrum. (author)

  7. Relativistic Dirac-Fock and many-body perturbation calculations on He, He-like ions, Ne, and Ar

    International Nuclear Information System (INIS)

    Ishikawa, Y.

    1990-01-01

    Relativistic Dirac-Fock and diagrammatic many-body perturbation-theory calculations have been performed on He, several He-like ions, Ne, and Ar. The no-pair Dirac-Coulomb Hamiltonian is taken as the starting point. A solution of the Dirac-Fock equations is obtained by analytic expansion in basis sets of Gaussian-type functions. Many-body perturbation improvements of Coulomb correlation are done to third order

  8. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  9. Divergence, spacetime dimension and fractal structure

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    2000-01-01

    With a Cantor spacetime in mind, we assume the dimension of spacetime to be slightly smaller than four. Within the framework of QED, this dimension can be determined by calculating Feynman diagrams. We infer that the dimension of spacetime may be influenced by holes in space. (author)

  10. Three dimensions transport calculations for PWR core

    International Nuclear Information System (INIS)

    Richebois, E.

    2000-01-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  11. Classical equation of motion and anomalous dimensions at leading order

    International Nuclear Information System (INIS)

    Nii, Keita

    2016-01-01

    Motivated by a recent paper by Rychkov-Tan http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 , we calculate the anomalous dimensions of the composite operators at the leading order in various models including a ϕ"3-theory in (6−ϵ) dimensions. The method presented here relies only on the classical equation of motion and the conformal symmetry. In case that only the leading expressions of the critical exponents are of interest, it is sufficient to reduce the multiplet recombination discussed in http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 to the classical equation of motion. We claim that in many cases the use of the classical equations of motion and the CFT constraint on two- and three-point functions completely determine the leading behavior of the anomalous dimensions at the Wilson-Fisher fixed point without any input of the Feynman diagrammatic calculation. The method developed here is closely related to the one presented in http://dx.doi.org/10.1088/1751-8113/48/29/29FT01 but based on a more perturbative point of view.

  12. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  13. Experimental-calculation technique for Ksub(IC) determination using the samples of decreased dimensions

    International Nuclear Information System (INIS)

    Vinokurov, V.A.; Dymshits, A.V.; Pirusskij, M.V.; Ovsyannikov, B.M.; Kononov, V.V.

    1981-01-01

    A possibility to decrease the size of samples, which is necessary for the reliable determination of fractUre toughness Ksub(1c), is established. The dependences of crack-resistance caracteristics on the sample dimensions are determined experimentally. The static bending tests are made using the 1251 model of ''Instron'' installation with a specially designed device. The samples of the 20KhNMF steel have been tested. It is shown that the Ksub(1c) value, determined for the samples with the largest netto cross section (50x100 rm), is considerably lower than Ksub(1c) values, determined for the samples with the decreased sizes. it is shown that the developed experimental-calculated method of Ksub(1c) determination can be practically used for the samples of the decreased sizes with the introduction of the corresponding amendment coefficient [ru

  14. Natural generalization of Slater determinants to more than one dimension

    Science.gov (United States)

    Sunko, Denis

    The calculation of realistic N-body wave functions for identical fermions is still an open problem in physics, chemistry, and materials science, even for N as small as two. Here a fundamental algebraic structure of many-body Hilbert space is described, enabling theoretically well-founded systematic investigation of wave-function space. The structure allows an arbitrary many-fermion wave function to be written in terms of a finite number of antisymmetric functions called shapes, which cannot be constructed by combining one-dimensional wave functions. Shapes naturally generalize the single-Slater-determinant form for the ground state to more than one dimension. Their number is exactly N! d - 1 in d dimensions. A general algorithm is given to list them all in terms of standard Slater determinants. Conversely, excitations which can be induced from the one-dimensional case are bosonised into a system of distinguishable bosons, called Euler bosons, much like the electromagnetic field is quantized in terms of photons distinguishable by their wave numbers. Their wave functions are given explicitly in terms of elementary symmetric functions, reflecting the fact that the fermion sign problem is trivial in one dimension. The shapes are all possible vacua for the Euler bosons.

  15. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  16. Space: The Hunt for Hidden Dimensions

    International Nuclear Information System (INIS)

    Hewett, JoAnne

    2006-01-01

    Extra dimensions of space may be present in our universe. Their discovery would dramatically change our view of the cosmos and would prompt many questions. How do they hide? What is their shape? How many are there? How big are they? Do particles and forces feel their presence? This lecture will explain the concept of dimensions and show that current theoretical models predict the existence of extra spatial dimensions which could be in the discovery reach of present and near-term experiments. The manner by which these additional dimensions reveal their existence will be described. Searches for modifications of the gravitational force, astrophysical effects, and collider signatures already constrain the size of extra dimensions and will be summarized. Once new dimensions are discovered, the technology by which the above questions can be answered will be discussed.

  17. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  18. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    International Nuclear Information System (INIS)

    Savukov, I. M.; Filin, D. V.

    2014-01-01

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions

  19. DeWitt-Schwinger renormalization and vacuum polarization in d dimensions

    International Nuclear Information System (INIS)

    Thompson, R. T.; Lemos, Jose P. S.

    2009-01-01

    Calculation of the vacuum polarization, 2 (x)>, and expectation value of the stress tensor, μν (x)>, has seen a recent resurgence, notably for black hole spacetimes. To date, most calculations of this type have been done only in four dimensions. Extending these calculations to d dimensions includes d-dimensional renormalization. Typically, the renormalizing terms are found from Christensen's covariant point splitting method for the DeWitt-Schwinger expansion. However, some manipulation is required to put the correct terms into a form that is compatible with problems of the vacuum polarization type. Here, after a review of the current state of affairs for 2 (x)> and μν (x)> calculations and a thorough introduction to the method of calculating 2 (x)>, a compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional spacetimes is derived. This formula should be useful for calculations of 2 (x)> and μν (x)> in even dimensions, and the renormalization terms are shown explicitly for four and six dimensions. Furthermore, use of the finite terms of the DeWitt-Schwinger expansion as an approximation to 2 (x)> for certain spacetimes is discussed, with application to four and five dimensions.

  20. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  1. Reduced dimension rovibrational variational calculations of the S1 state of C2H2. I. Methodology and implementation

    International Nuclear Information System (INIS)

    Changala, P. Bryan

    2014-01-01

    The bending and torsional degrees of freedom in S 1 acetylene, C 2 H 2 , are subject to strong vibrational resonances and rovibrational interactions, which create complex vibrational polyad structures even at low energy. As the internal energy approaches that of the barrier to cis-trans isomerization, these energy level patterns undergo further large-scale reorganization that cannot be satisfactorily treated by traditional models tied to local minima of the potential energy surface for nuclear motion. Experimental spectra in the region near the cis-trans transition state have revealed these complicated new patterns. In order to understand near-barrier spectroscopic observations and to predict the detailed effects of cis-trans isomerization on the rovibrational energy level structure, we have performed reduced dimension rovibrational variational calculations of the S 1 state. In this paper, we present the methodological details, several of which require special care. Our calculation uses a high accuracy ab initio potential surface and a fully symmetrized extended complete nuclear permutation inversion group theoretical treatment of a multivalued internal coordinate system that is appropriate for large amplitude bending and torsional motions. We also discuss the details of the rovibrational basis functions and their symmetrization, as well as the use of a constrained reduced dimension rovibrational kinetic energy operator

  2. From few to many. Ultracold atoms in reduced dimensions

    International Nuclear Information System (INIS)

    Wenz, Andre Niklas

    2013-01-01

    This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of 87 Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.

  3. From few to many. Ultracold atoms in reduced dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Andre Niklas

    2013-12-19

    This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of {sup 87}Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.

  4. Fractal dimension of turbulent black holes

    Science.gov (United States)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  5. VC-dimension of univariate decision trees.

    Science.gov (United States)

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  6. A translationally invariant RPA-calculation for 16O on the basis of an algebraic solution of the many-body oscillator problem

    International Nuclear Information System (INIS)

    Schwesinger, B.

    1978-01-01

    The solution of the many-body oscillator problem is used as a basis for a RPA-calculation of 16 O. The calculation is performed in a LS-coupling scheme with an interaction containing central, spin-orbit and tensor forces. The main differences with conventional RPA-calculations occur for the transition probabilities. (orig.) [de

  7. Vacuum polarization and renormalized charge in ν-dimensions

    International Nuclear Information System (INIS)

    Marinho Junior, R.M.; Lucinda, J.

    1984-01-01

    The expression for the vacuum polarization is obtained for any momentum transfer in ν dimensions. Using the Wilson loop for QED, the renormalized electric charge in ν dimensions is calculated. (Author) [pt

  8. Three-dimension reconstruction based on spatial light modulator

    International Nuclear Information System (INIS)

    Deng Xuejiao; Zhang Nanyang; Zeng Yanan; Yin Shiliang; Wang Weiyu

    2011-01-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  9. Three-dimension reconstruction based on spatial light modulator

    Science.gov (United States)

    Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu

    2011-02-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  10. Integrable reductions of many component magnetic systems in (1,1) dimensions

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1983-01-01

    A generalized many component Heisenberg spin chain with phonon interaction is proposed. Some reductions of the proposed model leading to different real magnetic systems such as many chained magnetic crystals with nontrivial interchain couplings, a mixture of many chained ferro and antiferromagnets, a ''colour'' generalized Pierels-Hubbard model, etc., are studied. It has been shown that the dynamics of all the above real models are close to some integrable systems and coincide with them in certain limits. Such integrable systems are the coupled generalised system of Yajima and Oikawa and U(p,q) nonlinear Schrodinger equation, already well studied. (Auth.)

  11. Impact of Packet Sampling on Link Dimensioning

    NARCIS (Netherlands)

    Schmidt, R.D.O.; Sadre, R.; Sperotto, A.; Berg, H. van den; Pras, A.

    2015-01-01

    Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic

  12. Impact of packet sampling on link dimensioning

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; Stadler, R.; Sadre, R.; Sperotto, Anna; van den Berg, Hans Leo; Pras, Aiko

    Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic

  13. Dimension and extensions

    CERN Document Server

    Aarts, JM

    1993-01-01

    Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...

  14. The many faces of a face: Comparing stills and videos of facial expressions in eight dimensions (SAVE database).

    Science.gov (United States)

    Garrido, Margarida V; Lopes, Diniz; Prada, Marília; Rodrigues, David; Jerónimo, Rita; Mourão, Rui P

    2017-08-01

    This article presents subjective rating norms for a new set of Stills And Videos of facial Expressions-the SAVE database. Twenty nonprofessional models were filmed while posing in three different facial expressions (smile, neutral, and frown). After each pose, the models completed the PANAS questionnaire, and reported more positive affect after smiling and more negative affect after frowning. From the shooting material, stills and 5 s and 10 s videos were edited (total stimulus set = 180). A different sample of 120 participants evaluated the stimuli for attractiveness, arousal, clarity, genuineness, familiarity, intensity, valence, and similarity. Overall, facial expression had a main effect in all of the evaluated dimensions, with smiling models obtaining the highest ratings. Frowning expressions were perceived as being more arousing, clearer, and more intense, but also as more negative than neutral expressions. Stimulus presentation format only influenced the ratings of attractiveness, familiarity, genuineness, and intensity. The attractiveness and familiarity ratings increased with longer exposure times, whereas genuineness decreased. The ratings in the several dimensions were correlated. The subjective norms of facial stimuli presented in this article have potential applications to the work of researchers in several research domains. From our database, researchers may choose the most adequate stimulus presentation format for a particular experiment, select and manipulate the dimensions of interest, and control for the remaining dimensions. The full stimulus set and descriptive results (means, standard deviations, and confidence intervals) for each stimulus per dimension are provided as supplementary material.

  15. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    Science.gov (United States)

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  16. A Capacity Dimensioning Method for Broadband Distribution Networks

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Pedersen, Jens Myrup; Bergheim, Hans

    2010-01-01

    This paper presents capacity dimensioning for a hypothetical distribution network in the Danish municipality of Aalborg. The number of customers in need for a better service level and the continuous increase in network traffic makes it harder for ISPs to deliver high levels of service to their cu......This paper presents capacity dimensioning for a hypothetical distribution network in the Danish municipality of Aalborg. The number of customers in need for a better service level and the continuous increase in network traffic makes it harder for ISPs to deliver high levels of service...... to their customers. This paper starts by defining three levels of services, together with traffic demands based on research of traffic distribution and generation in networks. Calculations for network dimension are then calculated. The results from the dimensioning are used to compare different network topologies...

  17. Transfer Area Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Dianda, B.

    2004-01-01

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their

  18. An introduction to extra dimensions

    International Nuclear Information System (INIS)

    Perez-Lorenzana, Abdel

    2005-01-01

    Models that involve extra dimensions have introduced completely new ways of looking up on old problems in theoretical physics. The aim of the present notes is to provide a brief introduction to the many uses that extra dimensions have found over the last few years, mainly following an effective field theory point of view. Most parts of the discussion are devoted to models with flat extra dimensions, covering both theoretical and phenomenological aspects. We also discuss some of the new ideas for model building where extra dimensions may play a role, including symmetry breaking by diverse new and old mechanisms. Some interesting applications of these ideas are discussed over the notes, including models for neutrino masses and proton stability. The last part of this review addresses some aspects of warped extra dimensions, and graviton localization

  19. Socio-cultural dimensions to sharpen designer's cultural eyeglasses

    NARCIS (Netherlands)

    Van Boeijen, A.G.C.

    2013-01-01

    This paper answers the question, how the dimensions that have been developed by anthropologists to typify cultures, can support designers in user-centred design processes. An analysis and evaluation of the use of cultural dimensions in design projects was performed. Although many of the dimensions

  20. Three-dimension reconstruction based on spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xuejiao; Zhang Nanyang; Zeng Yanan; Yin Shiliang; Wang Weiyu, E-mail: daisydelring@yahoo.com.cn [Huazhong University of Science and Technology (China)

    2011-02-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  1. Mixed quantization dimensions of self-similar measures

    International Nuclear Information System (INIS)

    Dai Meifeng; Wang Xiaoli; Chen Dandan

    2012-01-01

    Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.

  2. Determination of representative CANDU feeder dimensions for engineering simulator

    International Nuclear Information System (INIS)

    Cho, S.; Muzumdar, A.

    1996-01-01

    This paper describes a logic for selection of representative channel groups and a methodology for determination of representative CANDU feeder dimensions and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this logic and methodology and helps perform a calculation of representative feeder dimensions for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data (pressure, quality, density) at inlet/outlet header. The representative feeder dimensions calculated based on this methodology will be useful for the engineering simulator for the CANDU type reactor. (author)

  3. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    D O Haryeni

    2017-11-17

    Nov 17, 2017 ... Partition dimension; disconnected graph; component. 2010 Mathematics Subject Classification. 05C12, 05C15. 1. Introduction. The study of the partition dimension for graphs was initiated by Chartrand et al. [2] aimed at finding a new way to solve the problem in metric dimensions of graphs. Many results.

  4. STOSS - A computer module which can be used in Monte-Carlo-calculation for determining the path of a particle in a heterogeneous medium in three dimensions

    International Nuclear Information System (INIS)

    Sdouz, G.

    1980-09-01

    The computer program STOSS determines the path of a particle in a heterogenous medium in three dimensions. The program can be used as a module in Monte-Carlo-calculations. The collision can be transferred from the centre-of-mass system into a fixed cartesian coordinate-system by means of appropriate transformations. Then the path length is determined and the location of the next collision is calculated. The computational details are discussed at some length. (auth.)

  5. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  6. New dimensions new hopes

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2001-05-01

    We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged where only gravity propagates in the extra dimension and all other interactions are confined to only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 10 16 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 10 19 GeV. With this new idea it is possible to bring down all unification scales within the reach of the new generation accelerators, i.e., around 10 4 GeV. (author)

  7. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...

  8. Relativistic multireference many-body perturbation theory calculations on F-, Ne-, Na-, Mg-, Al-, Si- and P-like xenon ions

    International Nuclear Information System (INIS)

    Vilkas, Marius J; Ishikawa, Yasuyuki; Traebert, Elmar

    2006-01-01

    Many-body perturbation theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. We discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, Δn = 0 transitions of Na-, Mg-, Al- and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance

  9. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  10. Mechanical calculation of heat exchangers

    International Nuclear Information System (INIS)

    Osweiller, Francis.

    1977-01-01

    Many heat exchangers are still being dimensioned at the present time by means of the American TEMA code (Tubular Exchanger Manufacturers Association). The basic formula of this code often gives rise to significant tubular plate thicknesses which, apart from the cost of materials, involve significant machining. Some constructors have brought into use calculation methods that are more analytic so as to take into better consideration the mechanical phenomena which come into play in a heat exchanger. After a brief analysis of these methods it is shown, how the original TEMA formulations have changed to reach the present version and how this code has incorporated Gardner's results for treating exchangers with two fixed heads. A formal and numerical comparison is then made of the analytical and TEMA methods by attempting to highlight a code based on these methods or a computer calculation programme in relation to the TEMA code [fr

  11. Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems

    Science.gov (United States)

    Meyer, Gregory; Machado, Francisco; Yao, Norman

    2017-04-01

    Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.

  12. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  13. Quantum simulation of an extra dimension.

    Science.gov (United States)

    Boada, O; Celi, A; Latorre, J I; Lewenstein, M

    2012-03-30

    We present a general strategy to simulate a D+1-dimensional quantum system using a D-dimensional one. We analyze in detail a feasible implementation of our scheme using optical lattice technology. The simplest nontrivial realization of a fourth dimension corresponds to the creation of a bi-volume geometry. We also propose single- and many-particle experimental signatures to detect the effects of the extra dimension.

  14. Understanding many-body physics in one dimension from the Lieb–Liniger model

    International Nuclear Information System (INIS)

    Jiang Yu-Zhu; Chen Yang-Yang; Guan Xi-Wen

    2015-01-01

    This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb–Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb–Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang–Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb–Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. (topical review)

  15. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  16. Electron correlation in molecules: concurrent computation Many-Body Perturbation Theory (ccMBPT) calculations using macrotasking on the NEC SX-3/44 computer

    International Nuclear Information System (INIS)

    Moncrieff, D.; Wilson, S.

    1992-06-01

    The ab initio determination of the electronic structure of molecules is a many-fermion problem involving the approximate description of the motion of the electrons in the field of fixed nuclei. It is an area of research which demands considerable computational resources but having enormous potential in fields as diverse as interstellar chemistry and drug design, catalysis and solid state chemistry, molecular biology and environmental chemistry. Electronic structure calculations almost invariably divide into two main stages: the approximate solution of an independent electron model, in which each electron moves in the average field created by the other electrons in the system, and then, the more computationally demanding determination of a series of corrections to this model, the electron correlation effects. The many-body perturbation theory expansion affords a systematic description of correlation effects, which leads directly to algorithms which are suitable for concurrent computation. We term this concurrent computation Many-Body Perturbation Theory (ccMBPT). The use of a dynamic load balancing technique on the NEC SX-3/44 computer in electron correlation calculations is investigated for the calculation of the most demanding energy component in the most accurate of contemporary ab initio studies. An application to the ground state of the nitrogen molecule is described. We also briefly discuss the extent to which the calculation of the dominant corrections to such studies can be rendered computationally tractable by exploiting both the vector processing and parallel processor capabilities of the NEC SX-3/44 computer. (author)

  17. Relations between effective potentials in different dimensions

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1983-01-01

    Using dimensional regularization, the one-loop approximation for the effective potential (finite temperature) is computed as an analytic function of the number of dimensions. It is shown that a simple relation exists between potentials for different dimensions. This relation reduces to a simple derivative when these numbers differ by two units. The limit of zero temperature is calculated and also the finite temperature corrections are given. (Author) [pt

  18. Dimensioning aspects of 48 V telecommunications power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Jakab, L. [Siemens Telefongyar Kft (Hungary)

    2000-07-01

    Considering the reliable operation of the 48 V telecommunications power supply systems it is essential the appropriate dimensioning. The basic elements of the power supply systems, i.e. batteries, rectifiers, DC/AC cabling, fuses, etc., should be defined by exact calculation. The presentation reviews the main questions and problems of dimensioning. It lays a special emphasis on the optimized planning procedure, further it also deals with the economical impacts of the dimensioning parameters. (orig.)

  19. The Cultural Dimensions of Language Teaching and Learning

    DEFF Research Database (Denmark)

    Risager, Karen

    2011-01-01

    Language teaching and learning has many different cultural dimensions, and over the years more and more of these have been the subject of research. The first dimension to be explored was that of content: the images of target language countries and the world that were offered in textbooks...... and presented in class. The next dimension was that of the learner: the (inter)cultural learning, competence and identity of the learner or subject. The next dimension was context: the situation and role of language teaching and learning in society and in the world....

  20. Exact results for the many-body problem in one dimension with repulsive delta-function interaction

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    The repulsive δ interaction problem in one dimension for N particles is reduced, through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group S/sub N/. For some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis, in a generalized form. In particular, the ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation

  1. Many-objective thermodynamic optimization of Stirling heat engine

    International Nuclear Information System (INIS)

    Patel, Vivek; Savsani, Vimal; Mudgal, Anurag

    2017-01-01

    This paper presents a rigorous investigation of many-objective (four-objective) thermodynamic optimization of a Stirling heat engine. Many-objective optimization problem is formed by considering maximization of thermal efficiency, power output, ecological function and exergy efficiency. Multi-objective heat transfer search (MOHTS) algorithm is proposed and applied to obtain a set of Pareto-optimal points. Many objective optimization results form a solution in a four dimensional hyper objective space and for visualization it is represented on a two dimension objective space. Thus, results of four-objective optimization are represented by six Pareto fronts in two dimension objective space. These six Pareto fronts are compared with their corresponding two-objective Pareto fronts. Quantitative assessment of the obtained Pareto solutions is reported in terms of spread and the spacing measures. Different decision making approaches such as LINMAP, TOPSIS and fuzzy are used to select a final optimal solution from Pareto optimal set of many-objective optimization. Finally, to reveal the level of conflict between these objectives, distribution of each decision variable in their allowable range is also shown in two dimensional objective spaces. - Highlights: • Many-objective (i.e. four objective) optimization of Stirling engine is investigated. • MOHTS algorithm is introduced and applied to obtain a set of Pareto points. • Comparative results of many-objective and multi-objectives are presented. • Relationship of design variables in many-objective optimization are obtained. • Optimum solution is selected by using decision making approaches.

  2. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  3. Critical dimension of strings with an extrinsic curvature

    International Nuclear Information System (INIS)

    Matsuki, T.; Viswanathan, K.S.

    1988-01-01

    The conformal anomaly is calculated by using the path-integral method to determine the critical dimension for a string theory with an extrinsic curvature by appropriately defining the first-order form of this Lagrangian. The critical dimension, defined by the vanishing of the Liouville kinetic term, is found to be D = 26, the same as for the ordinary bosonic string theory

  4. Mismatch of Cultural Dimensions in an Urban Medical Educational Environment

    Directory of Open Access Journals (Sweden)

    Bethany Malone

    2013-01-01

    Full Text Available Objective. To identify cultural dimensions and their potential mismatches between attending physicians and their residents and medical students. Methods. We surveyed faculty and students, both undergraduates and postgraduate resident physicians, at the SUNY Downstate College of Medicine, using Hofstede’s VSM-08 questionnaire, and calculated cultural dimensions, including the Power-Distance Index (PDI, Individualism (IDV, Masculinity (MAS, Uncertainty Avoidance Index (UAI, and Long-term Outlook (LTO. Correlations between faculty and student demographic data and cultural dimensions were calculated (SPSS. Results. There were 237 student and resident respondents and 96 faculty respondents. Comparing all faculty and student respondents, significant differences were found in four of five cultural dimensions, with faculty scoring higher in MAS, and lower in PDI, IDV, UAI, and LTO. Conclusions. These differences may be important in the design and implementation of a medical educational curriculum, and, particularly, in the measurement and evaluation of educational outcomes.

  5. C{sub T} for non-unitary CFTs in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Hugh [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road,Cambridge CB3 0WA, England (United Kingdom); Stergiou, Andreas [Department of Physics, Yale University,New Haven, CT 06520 (United States)

    2016-06-13

    The coefficient C{sub T} of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large-N calculations for the CFTs arising from the O(N) non-linear sigma and Gross-Neveu models in specific even dimensions. C{sub T} is also calculated for the CFT arising from (n−1)-form gauge fields with derivatives in 2n+2 dimensions. Results for (n−1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C{sub T} differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.

  6. Effect of exposure time and image resolution on fractal dimension

    International Nuclear Information System (INIS)

    An, Byung Mo; Heo, Min Suk; Lee, Seung Pyo; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2002-01-01

    To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (alpha = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (alpha = 0.05). The optimal range for exposure time and resolution was determined to be 0.08-0.40 seconds and from 400-1000 dpi, respectively. Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.

  7. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    Science.gov (United States)

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  8. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China); Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China)

    2016-07-07

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.

  9. Many-dimensional anisotropic anharmonic oscillator

    International Nuclear Information System (INIS)

    Turbiner, A.V.

    1987-01-01

    Precision calculation of energies of several first states at d=2 and first 17 states at d=3 has been performed within the framework of a unique method based on ''nonlinearization'' method for d-dimension anisotropic an harmonic oscillator. Spectrum behaviour within the limit d → ∞ has been investigated and problems of the given approach accuracy have been studied. For the first time properties of nodal surfaces of the given task have been investigated. Routine perturbation theory in degrees of a perturbation parameter has been constructed for several first states

  10. Physics in one dimension: theoretical concepts for quantum many-body systems.

    Science.gov (United States)

    Schönhammer, K

    2013-01-09

    Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.

  11. Topological magnetoelectric pump in three dimensions

    Science.gov (United States)

    Fukui, Takahiro; Fujiwara, Takanori

    2017-11-01

    We study the topological pump for a lattice fermion model mainly in three spatial dimensions. We first calculate the U(1) current density for the Dirac model defined in continuous space-time to review the known results as well as to introduce some technical details convenient for the calculations of the lattice model. We next investigate the U(1) current density for a lattice fermion model, a variant of the Wilson-Dirac model. The model we introduce is defined on a lattice in space but in continuous time, which is suited for the study of the topological pump. For such a model, we derive the conserved U(1) current density and calculate it directly for the (1 +1 )-dimensional system as well as (3 +1 )-dimensional system in the limit of the small lattice constant. We find that the current includes a nontrivial lattice effect characterized by the Chern number, and therefore the pumped particle number is quantized by the topological reason. Finally, we study the topological temporal pump in 3 +1 dimensions by numerical calculations. We discuss the relationship between the second Chern number and the first Chern number, the bulk-edge correspondence, and the generalized Streda formula which enables us to compute the second Chern number using the spectral asymmetry.

  12. Novel correlations in two dimensions: Some exact solutions

    International Nuclear Information System (INIS)

    Murthy, M.V.; Bhaduri, R.K.; Sen, D.

    1996-01-01

    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society

  13. RIFIFI: Analytical calculation method of the critical condition and flux in a varied regions reactor by two-group theory and one dimension developed for the Mercury-Ferranti computer; Rififi: methode de calcul analytique de la condition critique et des flux d'une pile a regions variees en theorie a deux groupes et a une dimension programmee pour le calculateur electronique Mercury (Ferranti)

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, A; Bacher, P; Lago, B; Mengin, F L; Parker, E [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The calculation method presented in this report has been developed for the Mercury-Ferranti computer of the C.E.N.S. This calculation method allows to resolve the diffusion equations and continuity equations of flux and flow with two groups of neutrons and one dimension in spherical, cylindrical and linear geometry. In the cylindrical and linear configurations, we can take the height and extrapolated radius into account. The critical condition can be realised by varying linearly one or more parameters: k{sub {infinity}}, medium frontier, height or extrapolated radius. The calculation method enables also to calculate the flux, adjoint flux and various integrals. In the first part, it explains what is needed to know before using the method: data presentation, method possibilities, results presentation with some information about restrictions, accuracy and calculation time. The complete formulation of the calculation method is given in the second part. (M.P.)

  14. A first course in topology continuity and dimension

    CERN Document Server

    McCleary, John

    2006-01-01

    How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincar� argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time. The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended fo...

  15. Vortex-glass transition in three dimensions

    International Nuclear Information System (INIS)

    Reger, J.D.; Tokuyasu, T.A.; Young, A.P.; Fisher, M.P.A.

    1991-01-01

    We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simulations at finite temperature and domain-wall renormalization-group calculations at T=0 indicate that d=3 is just above the lower critical dimension d l , though the possibility that d l =3 cannot be definitely ruled out. A comparison is made with XY and Ising spin glasses. The (effective) correlation-length exponent ν and dynamical exponent z are in fairly good agreement with experiment

  16. Fractal Dimension of Fracture Surface in Rock Material after High Temperature

    Directory of Open Access Journals (Sweden)

    Z. Z. Zhang

    2015-01-01

    Full Text Available Experiments on granite specimens after different high temperature under uniaxial compression were conducted and the fracture surfaces were observed by scanning electron microscope (SEM. The fractal dimensions of the fracture surfaces with increasing temperature were calculated, respectively. The fractal dimension of fracture surface is between 1.44 and 1.63. Its value approximately goes up exponentially with the increase of temperature. There is a quadratic polynomial relationship between the rockburst tendency and fractal dimension of fracture surface; namely, a fractal dimension threshold can be obtained. Below the threshold value, a positive correlativity shows between rockburst tendency and fractal dimension; when the fractal dimension is greater than the threshold value, it shows an inverse correlativity.

  17. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  18. Resolution of the multigroup scattering equation in a one-dimensional geometry and subsidiary calculations: the MUDE code; Resolution de l'equation multigroupe de la diffusion dans une geometrie a une dimension et calculs annexes: code MUDE

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C; Dandeu, Y; Saint-Amand, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    MUDE is a nuclear code written in FORTRAN II for IBM 7090-7094. It resolves a system of difference equations approximating to the one-dimensional multigroup neutron scattering problem. More precisely, this code makes it possible to: 1. Calculate the critical condition of a reactor (k{sub eff}, critical radius, critical composition) and the corresponding fluxes; 2. Calculate the associated fluxes and various subsidiary results; 3. Carry out perturbation calculations; 4. Study the propagation of fluxes at a distance; 5. Estimate the relative contributions of the cross sections (macroscopic or microscopic); 6. Study the changes with time of the composition of the reactor. (authors) [French] MUDE est un code nucleaire ecrit en FORTRAN II pour IBM 7090-7094. Il resout un systeme d'equations aux differences approchant le probleme de diffusion neutronique multigroupe a une dimension. Plus precisement ce code permet de: 1. Calculer la condition critique d'un reacteur (k{sub eff}, rayon critique, composition critique) et les flux correspondants; 2. Calculer les flux adjoints et divers resultats connexes; 3. Effectuer des calculs de perturbation; 4. Etudier la propagation des flux a longue distance; 5. Ponderer des sections efficaces (macroscopiques ou microscopiques); 6. Etudier l'evolution de la composition du reacteur au cours du temps. (auteurs)

  19. LEGO Dimensions meets Doctor Who: Transbranding and New Dimensions of Transmedia Storytelling?

    Directory of Open Access Journals (Sweden)

    Matt Hills

    2016-01-01

    Full Text Available This article explores how the ‘toys-to-life’ videogame LEGO Dimensions (WarnerBros. Interactive Entertainment/Traveller’s Tales/The LEGO Group, 2015 mashes upmany different franchise storyworlds and brands. Specifically, I focus on how DoctorWho (BBC, 1963—, the British TV science fiction series, is licensed and transmediallyengaged with in Dimensions. I consider how the transbranding of LEGO Dimensionsappears to co-opt children’s “transgressive play” (Nørgård and Toft-Nielsen, 2014by combining intellectual properties, but actually continues to operate according tologics of shared corporate ownership where many of the combined storyworlds areultimately owned by Time Warner (placing Dimensions in competition with Disney’sown ‘toys-to-life’ game. Considering what value might accrue to the brand of DoctorWho by participating in LEGO Dimensions, I identify this as a particular example of“What If?” transmedia (Mittell, 2015, arguing that LEGO Dimensions’ Doctor Whonevertheless fluctuates in terms of its brand (inauthenticity. The Starter Pack remainscloser to LEGO Games’/Traveller’s Tales’ established format, subordinating Who, whilstthe separate Level Pack engages more precisely with Doctor Who’s history, albeit stilldisplaying some notable divergences from the TV series (Booth, 2015. Although LEGODimensions challenges influential theories of transmedia storytelling (Jenkins, 2006;Aldred, 2014, its transbranding and child/adult targeting accord with established approachesto transmedia licensing (Santo 2015 and fan-consumer socialization (Kinder1991.

  20. Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology

    CERN Document Server

    Alonso, Rodrigo; Manohar, Aneesh V; Trott, Michael

    2014-01-01

    We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combining these results with our previous results for the $\\lambda$ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 $CP$-even and $1149$ $CP$-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire $2499 \\times 2499$ anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormalization of the dimension $d \\le 4$ terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the effects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as $gg \\to h...

  1. Optimization parametric study of the fuel pellet dimensions

    International Nuclear Information System (INIS)

    Mai, L.A.

    1986-01-01

    A method to determine the dimensions of fuel pellets, is presented, obtaining the maximum core reactivity at the end of cycle. Other unit cell parameters, fixed in a given reactor, are considered constants. It is seen that the cycle length is an important parameter in the determinations of the pellet dimensions. The optimal pellet radius is found as an increasing function of the cycle length. All calculation have been performed using the HAMMER code. (Author) [pt

  2. Massive particles in five dimensions

    International Nuclear Information System (INIS)

    Copeland, E.J.

    1985-01-01

    We consider a five-dimensional model of the universe with a dynamical extra dimension. Calculations of the ratio of the number density of Kolb and Slansky type pyrgons to that of photons show the model to be unacceptable. However by inserting N matter fields into the original action, it becomes possible to reduce the ratio below the observational bound. (orig.)

  3. Extra Dimensions of Space

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  4. Closed contour fractal dimension estimation by the Fourier transform

    International Nuclear Information System (INIS)

    Florindo, J.B.; Bruno, O.M.

    2011-01-01

    Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.

  5. Shielding calculations for ships carrying irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Burstall, R.F.; Dean, M.H.

    1983-01-01

    A number of ships have been constructed to carry irradiated fuel from Japan to the UK and France, for reprocessing. About twenty transport flasks may be carried on each voyage. Permanent shielding must be provided on the ships to ensure that no member of the crew receives an annual dose rate greater than a specified limit. As the fuel is of varying type and radiation history, and as flasks of differing designs are used, many calculations are needed. There are a number of difficulties in making shielding calculations for the ships. The geometry is complex, dimensions are large, and considerable air spaces are involved. The paper considers possible methods of calculation. The line-of-sight method is chosen for most of the calculations, for both gamma radiation and neutrons. The basic data which is used in the calculations is described. As the methods of calculation are somewhat approximate, it is necessary to provide confirmation that they are sufficiently accurate. Validation has been provided in two ways. First, measurements have been made on board the ships, and these have been checked against calculation. Second, a simplified model of the flasks and ship has been set up, and calculations checked against more sophisticated methods. Results of the validation checks are presented, and it is shown that adequate accuracy is achieved. (author)

  6. Shielding calculations for ships carrying irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Dean, M.H.

    1985-01-01

    A number of ships have been constructed to carry irradiated fuel from Japan to the U.K. and France, for reprocessing. About 20 transport flasks may be carried on each voyage. Permanent shielding must be provided on the ships to ensure that no member of the crew receives an annual dose greater than a specified limit. As the fuel is of varying type and radiation history, and as flasks of differing designs are used, many shielding calculations are needed. There are a number of difficulties in making shielding calculations for the ships. The geometry is complex, dimensions are large and considerable air spaces are involved. The paper considers possible methods of calculation. The line-of-sight method is chosen for most of the calculations, for both γ-radiation and neutrons. The basic data which is used in the calculations is described. As the methods of calculation are somewhat approximate, it is necessary to provide confirmation that they are sufficiently accurate. Validation has been provided in two ways. First, measurements have been made on board one of the ships, Pacific Crane, and these have been checked against calculation. Second, a simplified model of the flasks and ship has been set up, and calculations checked against more sophisticated methods. Results of the validation checks are presented, and it is shown that adequate accuracy is achieved. (author)

  7. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  8. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  9. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  10. Unexploited Dimensions of Virtual Humans

    NARCIS (Netherlands)

    Ruttkay, Z.M.; Reidsma, Dennis; Huang, Thomas; Nijholt, Antinus; Pantic, Maja; Pentlant, Alex

    Virtual Humans are on the border of fiction and realism: while it is obvious that they do not exist in reality and function on different principles than real people, they have been endowed with human features such as being emotionally sensitive. In this article we argue that many dimensions, both

  11. Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions. [HELIPS, and COFAC to determine derivatives of determinants, in FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Wadlinger, E.A.

    1980-03-01

    A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings.

  12. Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2014-01-01

    We calculate the complete order y^2 and y^4 terms of the 59 x 59 one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory, where y is a generic Yukawa coupling. These terms, together with the terms of order lambda, lambda^2 and lambda y^2 depending on the Standard Model Higgs self-coupling lambda which were calculated in a previous work, yield the complete one-loop anomalous dimension matrix in the limit of vanishing gauge couplings. The Yukawa contributions result in non-trivial flavor mixing in the various operator sectors of the Standard Model effective theory.

  13. Effective dimension in flocking mechanisms

    International Nuclear Information System (INIS)

    Baglietto, Gabriel; Albano, Ezequiel V.

    2011-01-01

    Even in its minimal representation (Vicsek Model, VM [T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet. Phys. Rev. Lett. 75, 1226 (1995).]), the widespread phenomenon of flocking raises intriguing questions to the statistical physicists. While the VM is very close to the better understood XY Model because they share many symmetry properties, a major difference arises by the fact that the former can sustain long-range order in two dimensions, while the latter can not. Aiming to contribute to the understanding of this feature, by means of extensive numerical simulations of the VM, we study the network structure of clusters showing that they can also sustain purely orientational, mean-field-like, long-range order. We identify the reason of this capability with the key concept of ''effective dimension.'' In fact, by analyzing the behavior of the average path length and the mean degree, we show that this dimension is very close to four, which coincides with the upper critical dimension of the XY Model, where orientational order is also of a mean-field nature. We expect that this methodology could be generalized to other types of dynamical systems.

  14. Supersymmetry breaking and composite extra dimensions

    International Nuclear Information System (INIS)

    Luty, Markus A.; Sundrum, Raman

    2002-01-01

    We study supergravity models in four dimensions where the hidden sector is superconformal and strongly coupled over several decades of energy below the Planck scale, before undergoing spontaneous breakdown of scale invariance and supersymmetry. We show that large anomalous dimensions can suppress Kaehler contact terms between the hidden and visible sectors, leading to models in which the hidden sector is 'sequestered' and anomaly-mediated supersymmetry breaking can naturally dominate, thus solving the supersymmetric flavor problem. We construct simple, explicit models of the hidden sector based on supersymmetric QCD in the conformal window. The present approach can be usefully interpreted as having an extra dimension responsible for sequestering replaced by the many states of a (spontaneously broken) strongly coupled superconformal hidden sector, as dictated by the anti-de Sitter conformal field theory correspondence

  15. Substrate Screening Effects in ab initio Many-body Green's Function Calculations of Doped Graphene on SiC

    Science.gov (United States)

    Vigil-Fowler, Derek; Lischner, Johannes; Louie, Steven

    2013-03-01

    Understanding many-electron interaction effects and the influence of the substrate in graphene-on-substrate systems is of great theoretical and practical interest. Thus far, both model Hamiltonian and ab initio GW calculations for the quasiparticle properties of such systems have employed crude models for the effect of the substrate, often approximating the complicated substrate dielectric matrix by a single constant. We develop a method in which the spatially-dependent dielectric matrix of the substrate (e.g., SiC) is incorporated into that of doped graphene to obtain an accurate total dielectric matrix. We present ab initio GW + cumulant expansion calculations, showing that both the cumulant expansion (to include higher-order electron correlations) and a proper account of the substrate screening are needed to achieve agreement with features seen in ARPES. We discuss how this methodology could be used in other systems. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NERSC and NICS. D.V-F. acknowledges funding from the DOD's NDSEG fellowship.

  16. Universality in driven-dissipative quantum many-body systems

    International Nuclear Information System (INIS)

    Sieberer, L.M.

    2015-01-01

    Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel

  17. Calculating Casimir energies in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Milton, Kimball A.

    2003-01-01

    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges were studied by several authors. Quite recently, Graham et al. have reexamined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well known that in two space dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general spatial dimension D not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for curved boundaries. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in D and in three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations

  18. Scale invariance, killing vectors, and the size of the fifth dimension

    International Nuclear Information System (INIS)

    Ross, D.K.

    1986-01-01

    An analysis is made of the classical five-dimensional sourceless Kaluza-Klein equations with the existence of the usual α/α/PSI/ Killing vector not assumed, where /PSI/ is the coordinate of the fifth dimension. The physical distance around the fifth dimension D 5 , needed for the calculation of the fine structure constant α, is not calculable in the usual theory because the equations have a global scale invariance. In the present case, the Killing vector and the global scale invariance are not present, but it is found rather generally that D 5 = 0. This indicates that quantum gravity is a necessary ingredient if α is to be calculated. It also provides an alternate explanation of why the universe appears four-dimensional

  19. Preliminary isodose calculation for gynecological curietherapy

    International Nuclear Information System (INIS)

    Bridier, A.; Dutreix, A.; Gerbaulet, A.; Chassagne, D.

    1981-01-01

    We present a preliminary method of calculating the dimensions of the reference isodose, based upon the geometrical distribution and length of the sources used, their linear activity and the length of treatment, that does not require use of a computer. Inversely, this method can be used to determine the factors necessary to produce a given shape of isodose, and also to predict the change in shape of the isodose that will be produced by altering the various factors. This method was derived from a systematic computer study of dose distribution in which each factor was varied independently of all others. The dimensions of the isodoses, calculated by this method, were found to be in agreement with those derived from computer calculation to within an error of about 2 mm. The method is only applicable for a limited range of positions of the vaginal sources. The influence of the positions of these sources along the line of the axis of uterine catheter and of their inclination to this line, are currently being studied. The results are presented as mathematical formulae relating each dimension of the isodose curves to the features of the application, but could equally well be expressed in tabular form that would be more convenient for everyday use. An example of the calculation used is given to facilitate understanding of the method [fr

  20. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  1. The proceedings of the 9th international conference on recent progress in many-body theories

    International Nuclear Information System (INIS)

    Neilson, D.; Bishop, R. F.

    1998-01-01

    This inaugural volume in this new World Scientific Publications series, 'Advances in Quantum Many-Body Theory' records the invited and contributed papers given at the Ninth International Conference on Recent Progress in Many-Body Theories. This conference was held in the School of Physics at The University of New South Wales in Sydney in July, 1997. The conference was also the seventh in the University's series of Gordon Godfrey International Workshop on Theoretical Physics. The style and format of the conference followed the accepted pattern for the series, focusing on the development, refinement, and important applications of many-body methods. A major aim of the series has been to foster an exchange of ideas among physicists working in such diverse areas as nuclear and subnuclear physics, quantum chemistry, complex systems, quantum field theory, strongly correlated electronic systems, magnetism, quantum fluids and condensed matter physics. A special feature of this ninth conference was a session devoted to theories for many-electron systems in zero dimensions (quantum dots), one dimension (quantum wires) and two dimensions (electron layers). These new systems are now firmly established as fertile sources of novel and challenging many-body phenomena

  2. Optimization of MNSR upper reflector material and dimensions

    International Nuclear Information System (INIS)

    Albarhoum, M.

    2007-04-01

    Calculations for the optimization of the material and dimensions of the Syrian MNSR was performed. Calculations showed that the considerably important reflectors in this case are Beryllium, Heavy water and Graphite. Dimensions of the reflector cannot any way exceed the Shim Tray dimensions. Two different ways of filling the Shim Tray with the reflector material were established: 1- the radial filling mode, and 2- the axial mode. Both modes can be performed using single sectors or cumulative ones. The axial mode proved to be better than the radial one. The axial cumulative mode proved to be more efficient than the single axial one. The axial cumulative mode was studied from two points of view; the neutronic and the economic ones. From the neutronic point of view the beryllium proved to be the best reflector, and the best dimensions were found to coincide with a thickness equal to 0.11235 cm with the bottom end being 0.4494 cm distant from the bottom of the Shim Tray. From the economic point of view it was found that the cost of the reactivity unit is the smallest when the Graphite is used. Results of this study can be applied directly to the Syrian MNSR since fabrication of any plastic containment for the reflector can easily be achieved. This is because the reactivity worth resulting from mass unit of the reflector varies depending on its position positions in the Shim Tray.(author)

  3. User's manual of MANYCASK code for calculation of spatial distributions of radiation dose rates in a system composed of many spent-fuel-shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    A calculation code MANYCASK is designed for evaluation of spatial distributions of radiation dose rates in ships loaded with a lot of spent fuel shipping casks. Principle of the calculation method adopted in this code is different from that of ordinary codes, and is advantageous for calculating highly reliable dose rate distributions with a very short calculation time. Basic concept of the principle has been described in other reports in detail. A brief description of the principle will be included in the present report along with a technique named Shadow Technique in this report, in addition to format descriptions of output data as well as input data. Results of sample calculations are compared with measured results in figures so as to show how the calculation method adopted is valid. For the purpose of making this code popular among many people, the author writes the user's manual in the present report in Japanese for domestic users, and in English in another report for people in abroad. (author)

  4. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  5. Content validation of the dimensions constituting non-adherence to treatment of arterial hypertension

    Directory of Open Access Journals (Sweden)

    Jose Wicto Pereira Borges

    2013-10-01

    Full Text Available The objective of the study was to validate the content of the dimensions that constituted nonadherence to treatment of arterial systemic hypertension. It was a methodological study of content validation. Initially an integrative review was conducted that demonstrated four dimensions of nonadherence: person, disease/treatment, health service, and environment. Definitions of these dimensions were evaluated by 17 professionals, who were specialists in the area, including: nurses, pharmacists and physicians. The Content Validity Index was calculated for each dimension (IVCi and the set of the dimensions (IVCt, and the binomial test was conducted. The results permitted the validation of the dimensions with an IVCt of 0.88, demonstrating reasonable systematic comprehension of the phenomena of nonadherence.

  6. Just How Many Different Forms of Culture Are There?

    Science.gov (United States)

    Cohen, Adam B.

    2010-01-01

    Responds to comments by H. Takooshian and J. K. Tebes on the current author's original article, "Many forms of culture". The current author argued that psychologists tend to focus on too narrow a set of cultures (ethnic and national cultures) and some dimensions of those cultures (individualism-collectivism, independence-interdependence). He then…

  7. Schematic large-dimension coupled-channel study of strong inelastic excitations to high-lying states in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.

  8. 2-Dimensional graphene as a route for emergence of additional dimension nanomaterials.

    Science.gov (United States)

    Patra, Santanu; Roy, Ekta; Tiwari, Ashutosh; Madhuri, Rashmi; Sharma, Prashant K

    2017-03-15

    Dimension has a different and impactful significance in the field of innovation, research and technologies. Starting from one-dimension, now, we all are moving towards 3-D visuals and try to do the things in this dimension. However, we still have some very innovative and widely applicable nanomaterials, which have tremendous potential in the form of 2-D only i.e. graphene. In this review, we have tried to incorporate the reported pathways used so far for modification of 2-D graphene sheets to make is three-dimensional. The modified graphene been applied in many fields like supercapacitors, sensors, catalysis, energy storage devices and many more. In addition, we have also incorporated the conversion of 2-D graphene to their various other dimensions like zero-, one- or three-dimensional nanostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Measuring the relative importance of strategic thinking dimensions in relation to counterproductive behavior

    Directory of Open Access Journals (Sweden)

    Afsaneh Zamani Moghaddam

    2013-11-01

    Full Text Available The purpose of this paper is to explore the relative importance of strategic thinking dimensions in prediction of counter-productive behavior. The research method is based on a descriptive- Survey research. After collecting the questionnaires from 73 top managers and 110 staffs, the correlations between strategic thinking dimensions and counterproductive behavior were calculated. The relative importance method was used to calculate the relative weight of each dimension of strategic thinking in prediction of counterproductive behaviors. The results show that the strategic thinking of top managers is associated with their counterproductive behavior (correlation coefficient -0.38. Furthermore, The results of the Relative Importance Method indicate that the relative importance of each dimension of strategic thinking in prediction of counterproductive behavior is not the same. System perspective with 31.1% has the highest importance and hypothesis driven with 11.7% has the lowest weight. Intent focus, thinking in time and intelligent opportunism predict 14.1%, 13.3%, and 29.8% of counter-productive changes, respectively.

  10. Topological cell decomposition and dimension theory in P-minimal fields

    OpenAIRE

    Cubides-Kovacsics, Pablo; Darnière, Luck; Leenknegt, Eva

    2015-01-01

    This paper addresses some questions about dimension theory for P-minimal structures. We show that, for any definable set A, the dimension of the frontier of A is strictly smaller than the dimension of A itself, and that A has a decomposition into definable, pure-dimensional components. This is then used to show that the intersection of finitely many definable dense subsets of A is still dense in A. As an application, we obtain that any m-ary definable function is continuous on a dense, relati...

  11. The probability of the creation of extra dimensions in nuclear collisions

    International Nuclear Information System (INIS)

    Nazarenko, A.V.

    2008-01-01

    The minisuperspace model in 3+d spatial dimensions with matter described by the bag model is considered with the aim of estimating the probability of creation of compactified extra dimensions in nuclear collisions. The amplitude of transition from three- to (3+d)-dimensional space has been calculated both in the case of completely confined matter, when the contribution of radiation is ignored, and in the case of radiation domination, when the bag constant is negligible. It turns out that the number of additional dimensions is limited in the first regime, while it is infinite in the second one. It is shown that the probability of creation of extra dimensions is finite in both regimes. (author)

  12. All-loop anomalous dimensions in integrable λ-deformed σ-models

    Directory of Open Access Journals (Sweden)

    George Georgiou

    2015-12-01

    Full Text Available We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G. Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2 and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.

  13. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    Science.gov (United States)

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  14. Aspects of grand unification in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Wingerter, A.

    2005-07-01

    We consider various aspects of string phenomenology in the context of heterotic orbifold constructions, where special emphasis is laid on the connection between GUT models in extra dimensions and their relation to string theory. We investigate orbifold models with more general structure than the Z{sub 3} orbifold, on which most of the past research had focused. The picture of the heterotic brane world which naturally emerges allows us to make contact to field theoretic orbifold constructions in five and six dimensions, which have recently attracted much attention. We present a classification scheme for inequivalent orbifold models and apply the results to the case of Z{sub 6}-II point group. We develop the mathematical background for a stringy Higgs mechanism which allows us to lower the rank of the gauge group in the higher dimensions, which cannot be achieved by contemporary orbifold constructions. We provide all the calculational methods needed to unambiguously identify the gauge symmetry and to construct the matter representations. For specific model constructions, we focus on two promising gauge groups, namely on SO(10) and E{sub 6}. In the latter case, we derive a GUT model in six dimensions which has a standard model like gauge symmetry SU(3) x SU (2) x U(1) x U(1)' in four dimensions, and discuss its embedding into string theory. (orig.)

  15. Many-body problem in quantum mechanics and quantum statistical mechanics

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    This is a progress report on some work concerning the quantum mechanical calculation of the fugacity coefficients b/sub l/ (which correspond to the classical cluster integrals) of a Bose, a Fermi, and a Boltzmann gas at low temperatures. A binary collision expansion method is developed which allows for the systematic calculation of b/sub l/ as expansions in powers of a/λ, where a represents the parameters of the dimensions of length that characterize the low-energy two-body collision and λ is the thermal wavelength. To any power of (a/λ) the calculation of any specific b/sub l/ is reduced to a finite number of quadratures. The method, therefore, is the low-temperature counterpart of the high-temperature expansion of b/sub l/

  16. Anomalous dimensions of spin-zero four-quark operators without derivatives

    International Nuclear Information System (INIS)

    Jamin, M.; Kremer, M.

    1986-01-01

    The anomalous dimensions of local spin-zero four-quark operators without derivatives are calculated for the case of three flavours. We also give the result in the approximation that no flavour mixing occurs, because this may be relevant for lattice calculations of four-quark condensates in the quenched approximation. We demonstrate the influence of the operator mixing in a specific example. (orig.)

  17. Wind power: breakthrough to global dimensions

    International Nuclear Information System (INIS)

    Horrighs, W.

    1996-01-01

    The beginning of the 1980s saw the start of wind-turbine manufacture. Soon it had become a booming industrial sector, thanks mainly to the spirit of some young entrepreneurs and political support in many countries. But the wind-power market has assumed global dimensions and major structural changes have to be faced. (author)

  18. HOFSTEDE’S CULTURAL DIMENSIONS AND MANAGEMENT IN CORPORATIONS

    Directory of Open Access Journals (Sweden)

    Alexandrina Cristina VASILE

    2016-06-01

    Full Text Available In many cases the success or failure in management is caused by the way leaders understand the cultural environment the companies develop. The leadership approach and rules applied increase or decrease performance in economies and companies. The paper describes the relation between management failure or success and the management adjustment to the cultural dimensions. People build organizations and rule them according to their values, but in the corporation field specific values might be successfully applied or implying the whole company failure. The analysis is made based on Hofstede research and having in mind his dimensions on a dynamic hypothetical case where there are taken into account cultural dimensions for Romania, Germany, Kazakhstan and United States of America.

  19. An approach to the calculation of many-loop massless Feynman integrals

    International Nuclear Information System (INIS)

    Gorishnii, S.G.; Isaev, A.P.

    1985-01-01

    A generalization of the identity of dimensionless regular-zation is proposed. The generalization is used to divide the complete set of dimensionally (and analytically) regularized Feynman integrals with one external momentum into classes of equal integrals, and also for calculating some of them. A nontrivial symmetry of the propagator integrals is revealed, on the basis of which a complete system of functional equations for determining two-loop integrals is derived. Possible generalizations of these equations are discussed

  20. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rieve, J J [Beton- und Monierbau A.G., Duesseldorf (Germany, F.R.)

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised.

  1. Dimensioning statements for the bending support behaviour of reinforced and prestressed concrete

    International Nuclear Information System (INIS)

    Rieve, J.J.

    1978-01-01

    The compound materials reinforced concrete, prestressed concrete, and prestressed concrete with partly prestressed, partly slack reinforcement lack a uniform construction code, but also uniform dimensioning. This one can be derived in sample manner and then illustrates the application of the different kinds of reinforcement. For this purpose, calculation set-ups are derived, verifying tests are proposed and dimensioning tables are devised. (orig.) [de

  2. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    Science.gov (United States)

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  3. Fractal Dimension and Lacunarity analysis of mammographic patterns in assessing breast cancer risk related to HRT treated population

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Nielsen, Mads

    2009-01-01

    and 36 HRT treated volunteers for two years. ROIs with same dimension (250*150 pixels) were created behind the nipple region on these radiographs. Box counting method was used to calculate the fractal dimension (FD) and the Lacunarity. Paired t-test and Pearson correlation coefficient were calculated...... significantly (Pcorrelated to Lacunarity (-0.74, P

  4. Brief communication: age and fractal dimensions of human sagittal and coronal sutures

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Jacobsen, Jens Christian Brings

    2003-01-01

    The fractal dimensions of human sagittal and coronal sutures were calculated on 31 complete skulls from the Terry Collection. The aim was to investigate whether the fractal dimension, relying on the whole sutural length, might yield a better description of age-related changes in sutural morphology......, as opposed to other methods of quantification, which generally rely on more arbitrary scoring systems. However, the fractal dimension did not yield better age correlations than other previously described methods. At best, the results reflected the general observation that young adults below age 40 years...

  5. Spinors fields in co-dimension one braneworlds

    Science.gov (United States)

    Mendes, W. M.; Alencar, G.; Landim, R. R.

    2018-02-01

    In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.

  6. Using "Flatland 2: Sphereland" to Help Teach Motion and Multiple Dimensions

    Science.gov (United States)

    Caplan, Seth; Johnson, Dano; Vondracek, Mark

    2015-01-01

    The 1884 book "Flatland: A Romance of Many Dimensions," written by Edwin Abbott, has captured the interest of numerous generations, and has also been used in schools to help students learn and think about the concept of dimension in a creative, fun way. In 2007, a film was released called "Flatland: The Movie," and over one…

  7. Fractal dimension of microbead assemblies used for protein detection.

    Science.gov (United States)

    Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul

    2014-11-10

    We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    Science.gov (United States)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  9. KOBRA 3 - a code for the calculation of space-charge-influenced trajectories in 3-dimensions

    International Nuclear Information System (INIS)

    Spaedtke, P.; Wipf, S.

    1989-06-01

    KOBRA3 is a three-dimensional multi-purpose program, written in standard FORTRAN77. The main purpose of the program is to calculate the trajectories of charged particles through a static electro-magnetic field in three dimensions. If space charge is not negligible its influence is taken into account by an iterative process. The Laplace equation is solved for the scalar potential. During the ray tracing, in which the equations of motion for charged particles are solved, the space charge term in the Poisson equation is distributed onto the mesh. By repeating this procedure the steady-state Vlasov equation is solved: ∇ 2 φ+∫∫∫f p dxdydz = 0, where φ is the electro-static potential and f p (r vector, v vector) describes the distribution of the charged particles in space. KOBRA3 can handle finite plasma boundaries, which are found by the program automatically. Special features are included within the program to investigate the beam quality (emittance, transverse energy), and to display the geometry, the trajectories and the potential and magnetic fields graphically. The modular structure of the program enables the user to create his (her) own diagnostic programs or interfaces to the main program. This report is intended to facilitate the use of KOBRA3 by describing the theory, structure and numerical methods used. At GSI (Gesellschaft fuer Schwerionenforschung) the program runs on an IBM 3090-40E. The program has been installed on other machines e.g. CRAY XM-P, CRAY II, VAX 8600, IBM 3090-200, IBM 3033, ATARI ST, IBM-AT. (orig./HSI)

  10. Five-loop anomalous dimension of twist-two operators

    Energy Technology Data Exchange (ETDEWEB)

    Lukowski, T. [Institute of Physics, Jagellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Rej, A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Velizhanin, V.N., E-mail: velizh@mail.desy.d [Theoretical Physics Department, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, 188300 St. Petersburg (Russian Federation)

    2010-05-21

    In this article we calculate the five-loop anomalous dimension of twist-two operators in the planar N=4 SYM theory. Firstly, using reciprocity, we derive the contribution of the asymptotic Bethe ansatz. Subsequently, we employ the first finite-size correction for the AdS{sub 5}xS{sup 5} sigma model to determine the wrapping correction. The anomalous dimension found in this way passes all known tests provided by the NLO BFKL equation and double-logarithmic constraints. This result thus furnishes an infinite number of experimental data for testing the veracity of the recently proposed spectral equations for planar AdS/CFT correspondence.

  11. Bar dimensions and bar shapes in estuaries

    Science.gov (United States)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  12. Fractal dimension and image statistics of anal intraepithelial neoplasia

    International Nuclear Information System (INIS)

    Ahammer, H.; Kroepfl, J.M.; Hackl, Ch.; Sedivy, R.

    2011-01-01

    Research Highlights: → Human papillomaviruses cause anal intraepithelial neoplasia (AIN). → Digital image processing was carried out to classify the grades of AIN quantitatively. → The fractal dimension as well as grey value statistics was calculated. → Higher grades of AIN yielded higher values of the fractal dimension. → An automatic detection system is feasible. - Abstract: It is well known that human papillomaviruses (HPV) induce a variety of tumorous lesions of the skin. HPV-subtypes also cause premalignant lesions which are termed anal intraepithelial neoplasia (AIN). The clinical classification of AIN is of growing interest in clinical practice, due to increasing HPV infection rates throughout human population. The common classification approach is based on subjective inspections of histological slices of anal tissues with all the drawbacks of depending on the status and individual variances of the trained pathologists. Therefore, a nonlinear quantitative classification method including the calculation of the fractal dimension and first order as well as second order image statistical parameters was developed. The absolute values of these quantitative parameters reflected the distinct grades of AIN very well. The quantitative approach has the potential to decrease classification errors significantly and it could be used as a widely applied screening technique.

  13. Hausdorff dimension of unique beta expansions

    International Nuclear Information System (INIS)

    Kong, Derong; Li, Wenxia

    2015-01-01

    Given an integer N ⩾ 2 and a real number β > 1, let Γ β, N be the set of all x=∑ i=1 ∞ d i /β i with d i  ∈ {0, 1, ···, N − 1} for all i ⩾ 1. The infinite sequence (d i ) is called a β-expansion of x. Let U β,N be the set of all x's in Γ β,N which have unique β-expansions. We give explicit formula of the Hausdorff dimension of U β,N for β in any admissible interval [β L , β U ], where β L is a purely Parry number while β U is a transcendental number whose quasi-greedy expansion of 1 is related to the classical Thue–Morse sequence. This allows us to calculate the Hausdorff dimension of U β,N for almost every β > 1. In particular, this improves the main results of Gábor Kallós (1999, 2001). Moreover, we find that the dimension function f(β) = dim H U β,N fluctuates frequently for β ∈ (1, N). (paper)

  14. High dimensions - a new approach to fermionic lattice models

    International Nuclear Information System (INIS)

    Vollhardt, D.

    1991-01-01

    The limit of high spatial dimensions d, which is well-established in the theory of classical and localized spin models, is shown to be a fruitful approach also to itinerant fermion systems, such as the Hubbard model and the periodic Anderson model. Many investigations which are probability difficult in finite dimensions, become tractable in d=∞. At the same time essential features of systems in d=3 and even lower dimensions are very well described by the results obtained in d=∞. A wide range of applications of this new concept (e.g., in perturbation theory, Fermi liquid theory, variational approaches, exact results, etc.) is discussed and the state-of-the-art is reviewed. (orig.)

  15. Extra dimensions round the corner?

    International Nuclear Information System (INIS)

    Abel, S.

    1999-01-01

    How many dimensions are we living in? This question is fundamental and yet, astonishingly, it remains unresolved. Of course, on the everyday level it appears that we are living in four dimensions three space plus one time dimension. But in recent months theoretical physicists have discovered that collisions between high-energy particles at accelerators may reveal the presence of extra space-time dimensions. On scales where we can measure the acceleration of falling objects due to gravity or study the orbital motion of planets or satellites, the gravitational force seems to be described by a 1/r 2 law. The most sensitive direct tests of the gravitational law are based on torsion-balance experiments that were first performed by Henry Cavendish in 1798. However, the smallest scales on which this type of experiment can be performed are roughly 1 mm (see J C Long, H W Chan and J C Price 1999 Nucl. Phys. B 539 23). At smaller distances, objects could be gravitating in five or more dimensions that are rolled up or ''compactified'' - an idea that is bread-and-butter to string theorists. Most string theorists however believe that the gravitational effects of compact extra dimensions are too small to be observed. Now Nima Arkani-Hamed from the Stanford Linear Accelerator Center (SLAC) in the US, Savas Dimopoulos at Stanford University and Gia Dvali, who is now at New York University, suggest differently (Phys. Lett. B 1998 429 263). They advanced earlier ideas from string theory in which the strong, weak and electromagnetic forces are confined to membranes, like dirt particles trapped in soap bubbles, while the gravitational force operates in the entire higher-dimensional volume. In their theory extra dimensions should have observable effects inside particle colliders such as the Tevatron accelerator at Fermilab in the US or at the future Large Hadron Collider at CERN. The effect will show up as an excess of events in which a single jet of particles is produced with no

  16. Atoms as many-body systems

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2011-01-01

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  17. Atoms as many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)

    2011-09-16

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  18. Media Convergence: the Culture Dimensions of Thinking%Media Convergence:the Culture Dimensions of Thinking

    Institute of Scientific and Technical Information of China (English)

    Shen Diao; Lan Ju

    2017-01-01

    In the process of meida Convergence,many researchers paid excessive attention to media technology,industry and management,and ignored the culture dimensions of media convergence.Therefore,to transcend media convergence technology,industrial thinking and more to the particularity attach importance to cultural media,it is a right way to achieve media convergence.But in the context of China's culture,media convergence should value the cultural uniqueness and the imbalance of the realistic problems,to reach innovation and breakthrough.

  19. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  20. Hydrophobicity classification of polymeric materials based on fractal dimension

    Directory of Open Access Journals (Sweden)

    Daniel Thomazini

    2008-12-01

    Full Text Available This study proposes a new method to obtain hydrophobicity classification (HC in high voltage polymer insulators. In the method mentioned, the HC was analyzed by fractal dimension (fd and its processing time was evaluated having as a goal the application in mobile devices. Texture images were created from spraying solutions produced of mixtures of isopropyl alcohol and distilled water in proportions, which ranged from 0 to 100% volume of alcohol (%AIA. Based on these solutions, the contact angles of the drops were measured and the textures were used as patterns for fractal dimension calculations.

  1. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2009-01-01

    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  2. Infrared aspects of spontaneous symmetry breaking of gauge theories in two and three dimensions

    International Nuclear Information System (INIS)

    Cho, H.T.

    1987-01-01

    The spontaneous chiral symmetry breaking in SU(N) quantum chromodynamics (QCD) in two dimensions is investigated by calculating the order parameter , where psi is the fermion in the theory, in the authors approximation. In the chiral limit, where the mass of the fermion m → O, is found to be non-zero both in the finite N and N → infinity cases. This implies that chiral symmetry is spontaneously broken by infrared effects in all these cases. The Wilson loop expectation value is calculated for again SU(N) QCD in two dimensions, without fermions. In two dimensions, the Coulomb potential is linear, and thus confining. Under the authors approximation, the area law of the Wilson loop is indeed obtained as expected, for all values of N; in addition, the N-dependent polynomial multiplying the Wilson exponential is also obtained. In quantum electrodynamics (QED) in three dimensions there is a possibility of spontaneous breaking of parity. The authors consider this possibility by studying and the photon propagator. It is found that in the limit m → O, is zero and the photon has a zero mass pole. Therefore, there is no sign of spontaneous parity violation in (QED) in three dimensions induced by infrared effects, in contrast to the positive result of chiral symmetry breaking in two dimensions

  3. Moessbauer lineshape distortions due to finite dimensions of source and detector

    International Nuclear Information System (INIS)

    Flores-Llamas, H.; Zamorano-Ulloa, R.

    1991-01-01

    The effects of non-collimation of γ-rays and finite dimensions of source and detector upon the isomer shift, line broadening and line height of Moessbauer spectra have been determined by means of a two-dimensional angular distribution f(r, ρ) that weights a Lorentzian lineshape function. This distribution function, along with a few approximations, allow one to calculate, with ease, these Moessbauer spectral parameters. Our expressions, valid for finite dimensions, of source, detector and absorber, generalize previous calculations. As a result, we can say that when a finite source (R s = 0.4 cm) is 10 cm distance from a detector (R d = 1.4 cm), the non-collimation of the γ-rays generates distortions of the absorption line that are still within the experimental error. (orig.)

  4. Sobol indices for dimension adaptivity in sparse grids

    NARCIS (Netherlands)

    Dwight, R.P.; Desmedt, S.G.L.; Shoeibi Omrani, P.

    2016-01-01

    Propagation of random variables through computer codes of many inputs is primarily limited by computational expense. The use of sparse grids mitigates these costs somewhat; here we show how Sobol indices can be used to perform dimension adaptivity to mitigate them further. The method is compared to

  5. Dynamic treatment of fission and fusion in two dimensions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.

    1977-01-01

    The barrier penetrability in two dimensions for nuclear fusion and fission phenomena is studied. The equations of fission static trajectories (minimum potential) in Hofmann formalism are derived and the influence of inertia parameters on the penetrability is verified. For fusion case, a realistic potential for exactly penetrability calculation is proposed. The transverse momentum to the fusion and the unidimensional calculation in classical approximation by choose the trajectory which turn into maximum the penetrability are considered. The exact penetrability is compared with calculation in the classical approximation which takes in account the possibility of appearing discontinuity in the barrier along of fusion pathway. (M.C.K.) [pt

  6. GPU-accelerated algorithms for many-particle continuous-time quantum walks

    Science.gov (United States)

    Piccinini, Enrico; Benedetti, Claudia; Siloi, Ilaria; Paris, Matteo G. A.; Bordone, Paolo

    2017-06-01

    Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quantum technology, including quantum search algorithms and universal quantum computation. In order to design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution operator, and compare its performances with those of algorithms based on the exact diagonalization of the Hamiltonian or a 4th order Runge-Kutta integration. We prove that both Taylor-series expansion and Runge-Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion showing the additional advantage of a memory allocation not depending on the precision of calculation. Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the execution time, and make it possible simulations with many interacting particles on large lattices, with the only limit of the memory available on the device.

  7. Electron-phonon coupling in one dimension

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1981-08-01

    The Ward identity is derived for the electron-phonon coupling in one dimension and the spectrum of elementary excitations is calculated by assuming that the Fermi distribution is not strongly distorted by interaction. The electron-phonon vertex is renormalized in the case of the forward scattering and Migdal's theorem is discussed. A model is proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and found to be in agreement with the experimental data for KCP. (author)

  8. Many-Body Theory for Positronium-Atom Interactions

    Science.gov (United States)

    Green, D. G.; Swann, A. R.; Gribakin, G. F.

    2018-05-01

    A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.

  9. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    Science.gov (United States)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  10. City Brand Personality—Relations with Dimensions and Dimensions Inter-Relations

    Directory of Open Access Journals (Sweden)

    Oana Țugulea

    2017-12-01

    Full Text Available City brand strategies play an important part in building strong identities for cities and also for effective promotional campaigns. The purpose of this research is to analyze in more depth the dimensions of the City Brand Personality of Iași, as identified in previous research. The objectives of the present study are to: (1 understand the impact of each dimension upon the entire construct; (2 identify the possible connections between the perception of the city brand personality and the perceptions on particular city features; (3 identify the possible inter-connections between the resulting dimensions. An Independent Samples t test, Discriminant analysis, and Correlations and Regressions analysis were conducted. The dimension Peacefulness/Sincerity has the highest positive impact, while the dimension Malignacy has the lowest negative impact. Respondents who consider the city to be relatively young rate the personality features better for the dimensions of Peacefulness/Sincerity and Competence. Competence and Peacefulness/Sincerity are strongly related. Improving the perception of features composing the Competence dimension leads to an improvement of the entire City Brand Personality. Future research could specifically identify the types of sustainable activities that could be associated with the desired personality traits.

  11. Universal Properties of Many-Body Delocalization Transitions

    Directory of Open Access Journals (Sweden)

    Andrew C. Potter

    2015-09-01

    Full Text Available We study the dynamical melting of “hot” one-dimensional many-body localized systems. As disorder is weakened below a critical value, these nonthermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow subdiffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics. We discuss experimentally testable signatures of the predicted scaling properties.

  12. One dimensional benchmark calculations using diffusion theory

    International Nuclear Information System (INIS)

    Ustun, G.; Turgut, M.H.

    1986-01-01

    This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)

  13. Limits on the size of extra-dimensions

    International Nuclear Information System (INIS)

    Antoniadis, I.

    2001-01-01

    The authors present a summary of the present status of limits on the following scales of new physics: extra-dimensions and string-like sub-structure of matter. The use of compactification is an elegant way to hide extra-dimensions because some of the quantum numbers and interactions of the elementary particles could be accounted to by the topological and geometrical properties of the internal space. Recent progress made in string theory implies that both the string and compactification scales can be made arbitrarily low. Lowering the string scale, one increases the strength of higher (non-renormalizable) operators leading to the possibility of inducing exotic processes at experimentally excluded rates. Although an explicit string realization of the scenario is necessary in order to have a satisfactorily solution, at the effective field theory level many discrete or global symmetries can be displayed that forbid these operators. There are some processes for which there is only one dimension-eight operator allowed, an example is ff-bar → γγ. Useful information could be deduced from the study of such processes through collider experiments. (A.C.)

  14. Many-beam electron extinction distances in zirconium

    International Nuclear Information System (INIS)

    Cann, C.D.

    1977-05-01

    Many-beam extinction distances have been calculated for twenty-two of the lowest order reflections in zirconium. Ten beams comprising the directly transmitted and the nine lowest order systematic reflections were included in each calculation. Extinction distances for each reflection were determined for electron accelerating voltages of 100 and 200 kV, both at the exact Bragg condition and at deviations up to two Bragg angles from this condition. (author)

  15. Stable simulations of many fermion systems

    International Nuclear Information System (INIS)

    Loh, E.Y. Jr.; Gubernatis, J.E.; Scalapino, D.J.; Sugar, R.L.; White, S.R.; Scalettar, R.T.; Los Alamos National Lab., NM; California Univ., Santa Barbara, CA; Illinois Univ., Urbana, IL

    1989-01-01

    As the inverse temperature β becomes large, the diverse numerical scales present in exp(-βH) plague simulations of many-fermion systems on finite-precision computers. Representation of matrices in factorized form stabilizes these calculations, allowing efficient, low-temperature studies of condensed-matter models

  16. Calculating many-body effects in resonant [(dtμ)d2e] formation

    International Nuclear Information System (INIS)

    Leon, M.

    1986-01-01

    A method is developed for calculating the effect of neighboring molecules on the resonant molecular formation reaction tμ + D 2 → [(dtμ)d2e]*, avoiding any expansion in powers of the density. Using a simplified model, the role of collisional broadening, motional narrowing, and the interference of different formation amplitudes is examined. This model is used to generate molecular formation rates as functions of density for fixed temperature. The generalization which will allow comparison with experimental data is discussed

  17. Highly imbalanced fermion-fermion mixtures in one dimension

    International Nuclear Information System (INIS)

    Recher, Christian

    2013-01-01

    In the framework of exactly solvable quantum many-body systems we study models of interacting spin one-half Fermions in one dimension. The first part deals with systems of spin one-half Fermions which interact via repulsive contact interaction. A reformulation of the Bethe-Ansatz solvable many-body wave function is presented. This simplifies considerably the calculations for the highly imbalanced case, where very few particles of one species (minority Fermions) are present. For the other particle species (majority Fermions) the thermodynamic limit is taken. We assume the majority Fermions to be in the ground state such that their non-interacting momentum distribution is a Fermi-sea. Upon this we consider excitations where the particles of the minority species may occupy an arbitrary state within the Fermi-sea. In the case of only a single minority Fermion, the many-body wave function can be expressed as a determinant. This allows us to derive exact thermodynamic expressions for several expectation values as well as for the density-density correlation function. Moreover it is possible to find closed expressions for the single particle Green's function. All of the above mentioned quantities show a non-trivial dependence on the minority particle's momentum. In particular the Green's function in the Tonks-Girardeau regime of hardcore interaction is shown to undergo a transition from the one of impenetrable Bosons to that of free Fermions as the extra particle's momentum varies from the core to the edge of the Fermi-sea. This transition becomes manifest in an algebraic asymptotic decay of the Green's function. If two minority Fermions are present, the many-body wave function turns out to be more complicated. Nevertheless it is possible to derive exact expressions for the two and the three particle density-density correlation functions. Furthermore we calculate the system's total energy and based on that, identify terms which have a natural

  18. Determinants of conformal wave operators in four dimensions

    International Nuclear Information System (INIS)

    Blau, S.K.; Visser, M.; Wipf, A.

    1988-01-01

    We consider conformally coupled wave operators in four dimensions. Such operators are associated with conformally coupled massless scalars, massless spin 1/2 particles, and abelian gauge bosons. We explicitly calculate the change in the determinant of these wave operators as a function of conformal deformations of the background metric. This variation is given in terms of a geometrical object, the second Seeley-de Witt coefficient. (orig.)

  19. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  20. Confined quantum electrodynamics in 1+1 dimensions : a perturbative analysis

    NARCIS (Netherlands)

    Aerts, A.T.M.; Hansson, T.H.

    1985-01-01

    The spectrum of confined QED in 1+1 dimensions is analysed using perturbation theory. The mass spectra of systems made up of massless fermions are calculated toO(e 2) and compared to the mass spectra obtained using nonperturbative methods. Systems containing heavy fermions are also studied and an

  1. Four fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    It is known that field theories with attractive four-point fermion interactions can produce scalar bound states: Fermion mass generation by spontaneous chiral symmetry breaking associated with such fermion bound states provides an attractive mechanism for building models of composite Higgs bosons. The ratio of fermion and boson masses can then be predicted while it seems to be a free parameter in similar models where a boson field explicitly appears in the action. The main problem is that the corresponding models are renormalizable only in two dimensions, in contrast with models with explicit bosons. Many fermion models with four-point interaction are asymptotically free in two dimensions and then behave also like renormalizable models in higher dimensions, at least within the framework of some 1/N expansion. On the other hand mass ratio predictions also follow in the models with explicit bosons, when they have an IR fixed point, from the additional natural assumption that coupling constants have generic values at the cut-off scale. To the model with a four fermion interaction one can associate an effective model containing an additional scalar field, renormalizable in four dimensions, which has the same large distance, small momentum physics, at least to all orders in some 1/N expansion. Even the leading corrections corresponding to irrelevant or marginal operators are identical. This property is important in four dimensions where the IR fixed point coupling constants vanish: The correction amplitudes can be varied by changing the coupling constants in the renormalizable model and the cut-off function in the perturbatively non-renormalizable model. We shall consider here for definiteness only the Gross-Neveu model but it will be clear that the arguments are more general

  2. Identifying surfaces of low dimensions in high dimensional data

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Methods are presented that find a nonlinear subspace in low dimensions that describe data given by many variables. The methods include nonlinear extensions of Principal Component Analysis and extensions of linear regression analysis. It is shown by examples that these methods give more reliable...

  3. Estimating the dimensions of the SEU-sensitive volume

    International Nuclear Information System (INIS)

    Abdel-Kader, W.G.; McNulty, P.J.; El-Teleaty, S.; Lynch, J.E.; Khondker, A.N.

    1987-01-01

    Simulations of the diffusion contribution to charge collection in SEU events are carried out under the simple assumption of random walk. The results of the simulation are combined with calculations of the funneling length for the field-assisted drift components to determine the effective thickness of the sensitive volume element to be used in calculations of soft-error rates for heavy-ion-induced and proton-induced upsets in microelectronic circuits. Comparison is made between predicted and measured SEU cross-sections for devices for which the critical charges are known from electrical measurements and the dimensions of the sensitive volume used are determined by the techniques described. The agreement is sufficient to encourage confidence that SEU rates can be calculated from first principles and a knowledge of the material, structural, and electrical characteristics of the device

  4. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  5. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  6. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  7. Large bond-dimension time-evolution block decimation study of the XXZ quantum spin chains of S = 1/2 and 1

    Science.gov (United States)

    Choi, Hwan Bin; Lee, Ji-Woo

    2017-09-01

    We study quantum phase transitions of a XXZ spin model with spin S = 1/2 and 1 in one dimension. The XXZ spin chain is one of basic models in understanding various one-dimensional magnetic materials. To study this model, we construct infinite-lattice matrix product state (iMPS), which is a tensor product form for a one-dimensional many-body quantum wave function. By using timeevolution- block-decimation method (TEBD) on iMPS, we obtain the ground states of the XXZ model at zero temperature. This method is very delicate in calculating ground states so that we developed a reliable method of finding the ground state with the dimension of entanglement coefficients up to 300, which is beyond the previous works. By analyzing ground-state energies, half-chain entanglement entropies, and entanglement spectrum, we found the signatures of quantum phase transitions between ferromagnetic phase, XY phase, Haldane phase, and antiferromagnetic phase.

  8. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    Science.gov (United States)

    Cirigliano, V.; Dekens, W.; de Vries, J.; Graesser, M. L.; Mereghetti, E.

    2017-12-01

    We analyze neutrinoless double beta decay (0 νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We develop a power-counting scheme and derive the two-nucleon 0 νββ currents up to leading order in the power counting for each lepton-number-violating operator. We argue that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0 νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0 νββ in terms of the effective Majorana mass m ββ .

  9. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang; Law, Kody; Marzouk, Youssef

    2015-01-01

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  10. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang

    2015-01-07

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  11. High and low dimensions in the black hole negative mode

    International Nuclear Information System (INIS)

    Asnin, Vadim; Gorbonos, Dan; Hadar, Shahar; Kol, Barak; Levi, Michele; Miyamoto, Umpei

    2007-01-01

    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of spacetime dimension λ = λ(d) by constructing two perturbative expansions: one for large d and the other for small d - 3, and determining as many coefficients as we are able to compute analytically. By joining the two expansions, we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d = 4

  12. Gaussian elimination methods for calculating classical periodic trajectories in two dimensions

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1991-08-01

    A Gaussian-elimination method for calculating classical periodic trajectories is formulated for a two-dimensional system. Two variants of the theory are obtained, one assuming that the period of the motion is fixed and the other assuming that the total energy is fixed. Comparisons are made between various approaches. 14 refs

  13. Quantum many-body systems in one dimension

    CERN Document Server

    Ha, N C Zachary

    1996-01-01

    The main theme of the book focuses on the intimate connection between the two families of exactly solvable models: the inverse-square exchange (ISE) and the nearest-neighbour exchange (NNE) models. Topics discussed include the Luttinger liquid concept and fractional statistics.

  14. Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2013-01-01

    We calculate the order \\lambda, \\lambda^2 and \\lambda y^2 terms of the 59 x 59 one-loop anomalous dimension matrix of dimension-six operators, where \\lambda and y are the Standard Model Higgs self-coupling and a generic Yukawa coupling, respectively. The dimension-six operators modify the running of the Standard Model parameters themselves, and we compute the complete one-loop result for this. We discuss how there is mixing between operators for which no direct one-particle-irreducible diagram exists, due to operator replacements by the equations of motion.

  15. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    Sabra, M. K.; Suman, H.

    2007-01-01

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  16. The McMillan Theorem for Colored Branching Processes and Dimensions of Random Fractals

    Directory of Open Access Journals (Sweden)

    Victor Bakhtin

    2014-12-01

    Full Text Available For the simplest colored branching process, we prove an analog to the McMillan theorem and calculate the Hausdorff dimensions of random fractals defined in terms of the limit behavior of empirical measures generated by finite genetic lines. In this setting, the role of Shannon’s entropy is played by the Kullback–Leibler divergence, and the Hausdorff dimensions are computed by means of the so-called Billingsley–Kullback entropy, defined in the paper.

  17. Blast experiments for the derivation of initial cloud dimensions after a ''Dirty Bomb'' event

    International Nuclear Information System (INIS)

    Thielen, H.; Schroedl, E.

    2004-01-01

    Basis for the assessment of potential consequences of a ''dirty bomb'' event is the calculation of the atmospheric dispersion of airborne particles. The empirical derivation of parameters for the estimation of the initial pollutant cloud dimensions was the principal purpose for blast experiments performed in the training area Munster in summer 2003 with the participation of several highly engaged German organisations and institutions. The experiments were performed under variation of parameters like mass and kind of explosive, subsurface characteristics or meteorological conditions and were documented by digital video recording. The blasting experiments supplied significant results under reproducible conditions. The initial cloud dimension was primarily influenced by the explosive mass. The influence of other parameters was relatively small and within the range of the experimental uncertainties. Based on these experimental results a new correlation was determined for the empirical estimation of the initial cloud dimensions as a function of explosive mass. The observed initial cloud volumes were more than an order of magnitude smaller than those calculated with other widely-used formulas (e.g. HOTSPOT). As a smaller volume of the initial cloud leads to higher near-ground concentration maxima, our results support an appropriate adjustment of currently employed calculation methods. (orig.)

  18. Fractal dimension at the phase transition of inhomogeneous cellular automata

    International Nuclear Information System (INIS)

    da Silva, L.R.

    1988-01-01

    For random binary mixtures of cellular automata in the square lattice, calculations are made of the fractal dimensions associated with the damage spreading and the propagation time of damage at the transition to chaos. Two rules are mixed and universalities of these quantities are sought with respect to change of the rules

  19. The memory effect for particle scattering in even spacetime dimensions

    Science.gov (United States)

    Garfinkle, David; Hollands, Stefan; Ishibashi, Akihiro; Tolish, Alexander; Wald, Robert M.

    2017-07-01

    We explicitly calculate the gravitational wave memory effect for classical point particle sources in linearized gravity off an even dimensional Minkowski background. We show that there is no memory effect in d  >  4 dimensions, in agreement with the general analysis of Hollands et al (2016 arXiv:1612.03290).

  20. On calculating intensity from XPS spectra

    International Nuclear Information System (INIS)

    Vegh, Janos

    2006-01-01

    The intensity calculation is the basis for all quantitative applications of electron spectroscopy. Unfortunately, some misinterpreted terms are used and correctly interpreted terms are misused in the overwhelming majority of publications in XPS, including most textbooks as well as accepted and proposed standards. Due to this mistake the number of the detected electrons is given as having dimension of energy (?) and also the formulas for calculating the peak area and its standard deviation are wrong. Since in all other spectroscopic fields the number of the detected particles is dimensionless, continuing this practice leads to isolating XPS from both other measurement sciences and theory, because the measured total intensity in XPS is simply not comparable to the ones derived with other spectroscopic methods or theoretically. Therefore, the basic measuring processes and terms are critically reviewed and their physically correct interpretation is given. This interpretation reveals that the error is hidden in the incorrect interpretation of both the measurement process and the measured quantity. It is shown that through using the correct interpretation both the dimensions of the intensity calculated from electron spectroscopic measurements as well as the formulas related to the intensity and its standard deviation will agree with all other spectroscopic fields

  1. Atomic many-body theory of giant resonances

    International Nuclear Information System (INIS)

    Kelly, H.P.; Altun, Z.

    1987-01-01

    In this paper the use of many-body perturbation theory (MBPT) to include effects of electron correlations is discussed. The various physical processes contributing to the broad photoionization cross sections of the rare gases are studied in terms of the relevant many-body diagrams. Use of the random phase approximation with exchange (RPAE) is discussed by Amusia and Cherepkov. Calculations using the relativistic RPAE are reviewed by Johnson. In addition, many-body perturbation theory (MBPT) is used to study resonances which are due to excitation of bound states degenerate with the continuum. Very interesting giant resonance structure can occur when an inner shell electron is excited into a vacant open-shell orbital of the same principal quantum number. A particular example which is studied is the neutral manganese atom 3p 6 3d 5 4s 2 ( 6 S), in which the spins of the five 3d electrons are aligned. A very large resonance occurs in the 3d and 4s cross sections due to 3p → 3d excitation near 51 eV, and calculations of this resonance by MBPT and RPAE are discussed. A second example of this type of resonance occurs in open-shell rare-earth atoms with configurations 4d 10 4f/sup n/5s 2 5p 6 s 2 . Calculations and experimental results will be discussed for the case of europium with a half-filled sub-shell 4f 7 . 71 references, 15 figures

  2. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  3. A general procedure to evaluate many-body spin operator amplitudes from periodic calculations: application to cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Iberio de P R [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain); Calzado, Carmen J [Departamento de Quimica Fisica, Universidad de Sevilla, C/ Prof. GarcIa Gonzalez s/n, E-41012 Sevilla (Spain); Malrieu, Jean-Paul [IRSAMC, Laboratoire de Physique Quantique, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse-Cedex (France); Illas, Francesc [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain)

    2007-10-15

    A general procedure is presented which permits the form of an extended spin Hamiltonian to be established for a given magnetic solid and the magnitude of its terms to be evaluated from spin polarized, Hartree-Fock or density functional calculations carried out for periodic models. The computational strategy makes use of a general mapping between the energy of pertinent broken-symmetry solutions and the diagonal terms of the spin Hamiltonian in a local representation. From this mapping it is possible to determine not only the amplitude of the well-known two-body magnetic coupling constants between near-neighbor sites, but also the amplitudes of four-body cyclic exchange terms. A scrutiny of the on-site spin densities provides additional information and control of the many broken-symmetry solutions which can be found. The procedure is applied to the La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 2}F{sub 2}, Sr{sub 2}CuO{sub 2}Cl{sub 2} and Ca{sub 2}CuO{sub 2}Cl{sub 2} square lattices and the SrCu{sub 2}O{sub 3} ladder compound. It is shown that a proper description of the magnetic structure of these compounds requires that two- and four-body terms are explicitly included in the spin Hamiltonian. The implications for the interpretation of recent experiments are discussed.

  4. Geometrical dimensioning of PWR UO2 pellets

    International Nuclear Information System (INIS)

    Silva, A.T.

    1988-08-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pelet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experiemtnal data. (author) [pt

  5. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  6. Quantum many-body dynamics of ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Stefan

    2014-04-15

    number basis realized by a single-site detection. The analysis of the resulting quantum Zeno physics shows regimes for which the initial many-particle configurations are stabilized or destabilized, depending on the observation time interval and the interaction strength. In the second part, the measurement of the local current operator in an optical lattice is discussed. We propose a measurement protocol that combines single-site detection with already existing optical superlattices. The measurement outcomes can even be used to calculate spatial current-current correlations since the local currents are simultaneously measured at various positions. We illustrate the prospects of this new sensing method by a numerical study of the current statistics for interacting bosons in one and two dimensions. In the latter case, we discuss how the on-site interactions affect the equilibrium currents of bosons in an artificial magnetic field. We substantiate the feasibility of the protocol by considering possible error sources, restrictions in currently used single-site detection, and its applicability in experimental setups used to create artificial gauge fields.

  7. Quantum many-body dynamics of ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Kessler, Stefan

    2014-01-01

    number basis realized by a single-site detection. The analysis of the resulting quantum Zeno physics shows regimes for which the initial many-particle configurations are stabilized or destabilized, depending on the observation time interval and the interaction strength. In the second part, the measurement of the local current operator in an optical lattice is discussed. We propose a measurement protocol that combines single-site detection with already existing optical superlattices. The measurement outcomes can even be used to calculate spatial current-current correlations since the local currents are simultaneously measured at various positions. We illustrate the prospects of this new sensing method by a numerical study of the current statistics for interacting bosons in one and two dimensions. In the latter case, we discuss how the on-site interactions affect the equilibrium currents of bosons in an artificial magnetic field. We substantiate the feasibility of the protocol by considering possible error sources, restrictions in currently used single-site detection, and its applicability in experimental setups used to create artificial gauge fields.

  8. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix

    International Nuclear Information System (INIS)

    Vecharynski, Eugene; Yang, Chao; Pask, John E.

    2015-01-01

    We present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimal block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer

  9. The Modal Dimension

    Directory of Open Access Journals (Sweden)

    Giluano Torrengo

    2018-05-01

    Full Text Available Space and time are two obvious candidates as dimensions of reality. Yet, are they the only two dimensions of reality? Famously, David Lewis maintained the doctrine of ―modal realism‖, the thesis that possible worlds exist and are entities as concrete as the actual world that we live in. In this paper, I will explore the idea that modality can be construed as a dimension along with space and time. However, although Lewis‘ modal realism is the main source of inspiration for this construal of modality, I will argue that something else is required for having a modal dimension.

  10. Analyzing Process Quality of Early Childhood Education with Many Facet Rash Measurement Model

    Science.gov (United States)

    Basturk, Ramazan; Isikoglu, Nesrin

    2008-01-01

    Quality of early childhood education institutions specifically, dimensions of process quality should be evaluated. Purpose of this study is to analyze process quality of early childhood education by using many-facet Rasch measurement model (MFRM). In this study, data were collected from twelve early childhood education institutions by four…

  11. Supersymmetric Janus solutions in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bobev, Nikolay [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Pilch, Krzysztof [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Warner, Nicholas P. [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA Saclay,CNRS-URA 2306, 91191 Gif sur Yvette (France); Institut des Hautes Etudes Scientifiques,Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, 91440 (France)

    2014-06-10

    We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS{sub 4} vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G{sub 2} global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G{sub 2} global symmetry. In eleven dimensions, this G{sub 2} to G{sub 2} solution corresponds to a domain wall across which a magnetic flux reverses orientation.

  12. Supersymmetric Janus solutions in four dimensions

    International Nuclear Information System (INIS)

    Bobev, Nikolay; Pilch, Krzysztof; Warner, Nicholas P.

    2014-01-01

    We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS 4 vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G 2 global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G 2 global symmetry. In eleven dimensions, this G 2 to G 2 solution corresponds to a domain wall across which a magnetic flux reverses orientation

  13. Dimensions of Creative Evaluation

    DEFF Research Database (Denmark)

    Christensen, Bo; Ball, Linden J.

    2016-01-01

    We examined evaluative reasoning taking place during expert ‘design critiques’. We focused on key dimensions of creative evaluation (originality, functionality and aesthetics) and ways in which these dimensions impact reasoning strategies and suggestions offered by experts for how the student could...... continue. Each dimension was associated with a specific underpinning ‘logic’ determining how these dimensions were evaluated in practice. Our analysis clarified how these dimensions triggered reasoning strategies such as running mental simulations or making design suggestions, ranging from ‘go...

  14. Analytical Calculation And FEM Analysis Main Girder Double Girder Bridge Crane

    Directory of Open Access Journals (Sweden)

    Muamer Delić

    2017-02-01

    Full Text Available The cranes are now not replaceable mode of transport of materials and finished products both in production halls and in the open space. This paper made the whole analytical calculation of double girder bridge cranes to be used in laboratories exclusively for testing, determined by the maximum bending stress and deflection of the main girder. After calculating the dimensions, we created a model cranes in software CATIA V5. The same model was subjected to FEM analysis of the same name software. At the end of the paper comparison has been done. The objective of the calculation and analysis of the model was to develop a model crane and to serve for the next tests. Dimensions of the crane are given according to the laboratory where it will be located.

  15. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions.

    Science.gov (United States)

    Vivek, Skanda; Kelleher, Colm P; Chaikin, Paul M; Weeks, Eric R

    2017-02-21

    Phase transitions significantly differ between 2D and 3D systems, but the influence of dimensionality on the glass transition is unresolved. We use microscopy to study colloidal systems as they approach their glass transitions at high concentrations and find differences between two dimensions and three dimensions. We find that, in two dimensions, particles can undergo large displacements without changing their position relative to their neighbors, in contrast with three dimensions. This is related to Mermin-Wagner long-wavelength fluctuations that influence phase transitions in two dimensions. However, when measuring particle motion only relative to their neighbors, two dimensions and three dimensions have similar behavior as the glass transition is approached, showing that the long-wavelength fluctuations do not cause a fundamental distinction between 2D and 3D glass transitions.

  16. Current algebras and many-body physics

    International Nuclear Information System (INIS)

    Albertin, U.K.

    1989-01-01

    Several applications of current algebras in many body physics are examined. The first is the interacting Bose gas in three dimensions. Theories for phonons, vortices and rotons are all described within the current algebra formalism. Next the one dimensional electron gas is examined within the approximation of linear dispersion so that relativistic current algebra techniques may be used. The relation with Thirring strings and compactified boson models is examined, and points of enhanced symmetry in the compactified boson models are shown to lie on phase transition lines for the electron gas. Finally, mathematical aspects of the current algebra are studied. The theory of induced representations of the diffeomorphism group are used to describe the Aharanov-Bohm effect, the thermodynamics of the Bose gas, and the Bose gas in the presence of vortex filaments

  17. Dimensional discontinuity in quantum communication complexity at dimension seven

    Science.gov (United States)

    Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2017-02-01

    Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.

  18. q-Virasoro algebra, q-conformal dimensions and free q-superstring

    International Nuclear Information System (INIS)

    Chaichian, M.

    1996-01-01

    The commutators of standard Virasoro generators and fields generate various representations of the centreless Virasoro algebra depending on a conformal dimension J of the field in question (J is related to the Bargmann index of SU(1,1) generated by L m , m=0,±1). We introduce the notion of q-conformal dimension for various oscillator realizations of q-deformed Virasoro (super)algebras proposed earlier. We use the field theoretical approach introduced recently in which the q-Virasoro currents L α (z) are expressed as Schwinger-like point-split normally ordered quadratic expressions in elementary fields. We extend this approach and probe the elementary fields A(z) (the q-superstring coordinate, momentum and fermionic field) and their powers by the q-Virasoro generators L α m (i.e. we calculate the commutators [L α m ,A(z)]) and show that to all of them can be assigned just the standard non-deformed conformal dimension. (orig.)

  19. Non-renormalizability of supersymmetric non-linear sigma models in four dimensions

    International Nuclear Information System (INIS)

    Spence, B.

    1985-01-01

    The one-loop, on-shell, ultraviolet-divergent part of the effective action is calculated for the N=1 and 2 supersymmetric non-linear sigma models in four dimensions. These infinities cannot be absorbed into a redefinition of the bare Kaehler potential and the theories are not renormalizable. (orig.)

  20. Comparison of neutron transport calculations with NRC test results

    International Nuclear Information System (INIS)

    Koban, J.; Hofmann, W.

    1981-02-01

    For an exactly defined reactor arrangement (PCA = Pool Critical Assembly) neutron fluxes, neutron spectra and reaction rates for several neutron detectors were calculated by means of one and two dimensional transport codes. An international comparison proved the methods applied at KWU to be adequate. There were difficulties, however, in considering the three dimensions of the assembly which result mainly from its small dimension. This fact applies to all participants who didn't use three dimensional codes. (orig.) [de

  1. Characterizing adult human nasal airway dimensions

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Griffith, W.C.

    1994-01-01

    Respiratory tract models used in calculating radiation dose from exposure to inhaled radioactive aerosols have only recently focused attention on the importance of the nasal airways (NAs). Because the NAs are the first tissues of the respiratory tract available for aerosol deposition in normally nose-breathing people, any deposition of aerosol in this anatomical structure will reduce the amounts available to be deposited in the remainder of the respiratory tract. Thus, uncertainties in estimating the deposition fractions in the NAs will propagate throughout the remainder of the respiratory tract, creating errors in the calculated dose estimates. Additionally, there is evidence that the NAs are also at risk for induction of cancer from exposure to certain occupational aerosols such as wood dust, leather dust, chromium, and nickel. The purpose of this investigation was to conduct an anatomical study to assess the variabilities in NA dimensions

  2. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  3. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  4. Minimum dimensions of rock models for calibration of radiometric probes for the neutron-gamma well logging

    International Nuclear Information System (INIS)

    Czubek, J.A.; Lenda, A.

    1979-01-01

    The minimum dimensions have been calculated assuring 91, 96 and 98 % of the probe response in respect to the infinite medium. The models are of cylindrical form, the probe (source-to-detector distance equal to 60 or 90 cm) being placed on the model axis, symmetrically with respect to the two end-faces. All the models are ''embedded'' in various media, such as: air, sand of 40% porosity and completely saturated with water, sand of 30 % porosity and of moisture content equal to 10 %, and water. The models are of three types of material: sandstone, limestone and dolomite, with various porosities, ranging from 0 to 100 %. The probe response is due to gamma rays arising from the radiativecapture of thermal neutrons. The calculations were carried out for the highest energy line of gamma rays arising in given litology. Gamma-ray flux from the neutron radiative capture has been calculated versus rock porosity and model dimensions and radiation migration lengths determined for given litologies. The minimum dimensions of cylindrical models are given as functions of: porosity, probe length (source-to-detector distance) lithology of model and type of medium surrounding our model. (author)

  5. Symmetry of anomalous dimension matrices for colour evolution of hard scattering processes

    International Nuclear Information System (INIS)

    Seymour, Michael H.

    2005-01-01

    In a recent paper, Dokshitzer and Marchesini rederived the anomalous dimension matrix for colour evolution of gg→gg scattering, first derived by Kidonakis, Oderda and Sterman. They noted a weird symmetry that it possesses under interchange of internal (colour group) and external (scattering angle) degrees of freedom and speculated that this may be related to an embedding into a context that correlates internal and external variables such as string theory. In this short note, I point out another symmetry possessed by all the colour evolution anomalous dimension matrices calculated to date. It is more prosaic, but equally unexpected, and may also point to the fact that colour evolution might be understood in some deeper theoretical framework. To my knowledge it has not been pointed out elsewhere, or anticipated by any of the authors calculating these matrices. It is simply that, in a suitably chosen colour basis, they are complex symmetric matrices

  6. E-Government Dimension

    OpenAIRE

    Rosiyadi, Didi; Suryana, Nana; Cahyana, Ade; Nuryani, Nuryani

    2007-01-01

    Makalah ini mengemukakan E-Government Dimension yang merupakan salah satu hasil TahapanPengumpulan Data, dimana tahapan ini adalah bagian dari penelitian kompetitif di Lembaga Ilmu PengetahuanIndonesia 2007 yang sekarang sedang dilakukan. Data E-Government Dimension ini didapatkan dari berbagaisumber yang meliputi E-Government beberapa Negara di dunia, E-Government yang dibangun oleh beberapapenyedia aplikasi E-Government. E-Government Dimension terdiri dari tiga dimensi yaitu DemocraticDimen...

  7. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  8. Comparing Dimensions of Four-Strand Hamstring Tendon Grafts with Native Anterior and Posterior Cruciate Ligaments

    Directory of Open Access Journals (Sweden)

    Barış Yılmaz

    2016-01-01

    Full Text Available Background. The aim of the study was to evaluate whether or not there was any incompatibility between four-strand hamstring tendons taken from the same knee and the dimensions of the ACL and PCL. Methods. 15 fresh frozen cadaver hamstrings were prepared as four-strand grafts and measurements made of the ACL and PCL circumferences in the midsection were made in the narrowest part of the midsection. The cross-section areas and diameters were calculated with geometric calculations used to measure the cross-sectional area of cylinders. Accepting that the geometric insertions were elliptical, the length, width, and area were calculated for entry areas. Results. A significant relationship at 96.2% was determined between the ACL mid and the hamstring diameter. A significant relationship at 96.7% was determined between the ACL and the hamstring mid area. A significant relationship at 96.4% was determined between the PCL mid and the hamstring diameter. A significant relationship at 95.7% was determined between the PCL and the hamstring mid area. Conclusion. For the reconstruction of ACL and PCL, it was determined that there is less incompatibility between the four-strand hamstring tendons taken from the same knee and the dimensions of the midsection PCL compared to the ACL dimensions.

  9. Acceleration methods for assembly-level transport calculations

    International Nuclear Information System (INIS)

    Adams, Marvin L.; Ramone, Gilles

    1995-01-01

    A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs

  10. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  11. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the

  12. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  13. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  14. DIFFERENT DIMENSIONS OF TEAMS

    OpenAIRE

    Goparaju Purna SUDHAKAR

    2013-01-01

    Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...

  15. Heavy-Particle Collisions Involving Many Active Electrons: How (In-)Accurate Are Our Calculated Cross Sections?

    International Nuclear Information System (INIS)

    Kirchner, Tom

    2014-01-01

    Full text: The theoretical description of ion-atom and ion-molecule collisions is a difficult task: one deals with a two-center or a multi-center problem, for which standard angular momentum expansions do not work very well, and one typically faces the problem that several processes, such as electron transfer and ionization into the continuum, compete with each other. If more than two electrons are present, the numerical solution of the full Schrödinger equation of the collision system is out of reach and assumptions and approximations have to be introduced at the outset. This is to say that one solves (at most) a model in order to describe the collision system and, as a consequence, has to deal with a two-fold problem when it comes to estimating the uncertainties and inaccuracies of the calculated data: (i) to assess the limitations of the model (which may be compared with quantifying systematic errors in an experiment); (ii) to perform careful convergence studies for the numerical procedures involved (which may be compared with narrowing statistical experimental errors). These two interrelated problems were illustrated by using a recent work on X-ray emission from a highly-charged ion after electron capture as an example. The calculations for this problem are based on the assumption that collisional capture and post-collisional de-excitation processes can be treated independently. This introduces a first systematic error, but probably a very small one, because capture and de-excitation take place on different time scales. Similarly, the assumption of a classical straight-line projectile trajectory is uncritical. Three sources of significant uncertainties are present in the collision calculation: (i) usage of the independent-electron model, (ii) usage of a finite basis set to solve the single-electron time-dependent Schrödinger equation, (iii) usage of multinomial statistics to calculate multiple (shell-specific) capture probabilities, which form the starting

  16. Calculation of anomalous dimension of single-particle Green function in scalar field theory with strong nonlinear interaction

    International Nuclear Information System (INIS)

    Kolesnichenko, A.V.

    1980-01-01

    An expression for the anomalous dimension of the single-particle Green function is derived in the scalar theory with the interaction Hamiltonian Hsub(int)=g(phisup(n)/n) in the limit n→infinity. It is simultaneously shown that in this model the range of essential distances is of order of nsup(-1/2)

  17. Changes in lateral dimensions of irradiated volume and their impact on the accuracy of dose delivery during radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Senkus-Konefka, Elzbieta; Naczk, Edmund; Borowska, Ilona; Badzio, Andrzej; Jassem, Jacek

    2006-01-01

    Background and purpose: To assess changes in lateral dimensions of irradiated volume during head and neck cancer radiotherapy and to determine their impact on the accuracy of dose delivery. Patients and methods: Lateral dimensions of irradiated volumes were measured in five predefined points prior to treatment and then bi-weekly. For each measurement, midline dose was calculated and verified using in vivo dosimetry. Early radiation reactions, patient weight changes and the need to modify radiotherapy accessories were also recorded. The study included 33 head and neck cancer patients irradiated using parallel opposed megavoltage fields. Results: Body mass changes during radiotherapy ranged from -18 to +4 kg (median -5). Lateral dimension changes >5 mm (range -37 to +16) occurred in 32 patients (97%). For axis measurements, the degree of lateral dimension changes were correlated with treatment field size (P=0.022) and degree of mucositis (P=0.017). Axis doses calculated for changed dimensions varied from those prescribed by -2.5 to +6% (median +2%). Differences larger than 5% were present in 4.8% of calculations. In 17 patients (52%), radiotherapy accessories had to be modified during treatment. The need to modify radiotherapy accessories correlated with larger treatment portals (P=0.004), more weight loss during treatment (P=0.01) and higher initial N stage (P=0.04). Conclusions: Changes of irradiated volume lateral dimensions during head and neck cancer radiotherapy may lead to considerable dose delivery inaccuracies. Watchful monitoring, corrections to calculated dose when changes observed are significant and radiotherapy accessories modification during the course of treatment are strongly recommended

  18. Topological Hausdorff dimension and level sets of generic continuous functions on fractals

    International Nuclear Information System (INIS)

    Balka, Richárd; Buczolich, Zoltán; Elekes, Márton

    2012-01-01

    Highlights: ► We examine a new fractal dimension, the so called topological Hausdorff dimension. ► The generic continuous function has a level set of maximal Hausdorff dimension. ► This maximal dimension is the topological Hausdorff dimension minus one. ► Homogeneity implies that “most” level sets are of this dimension. ► We calculate the various dimensions of the graph of the generic function. - Abstract: In an earlier paper we introduced a new concept of dimension for metric spaces, the so called topological Hausdorff dimension. For a compact metric space K let dim H K and dim tH K denote its Hausdorff and topological Hausdorff dimension, respectively. We proved that this new dimension describes the Hausdorff dimension of the level sets of the generic continuous function on K, namely sup{ dim H f -1 (y):y∈R} =dim tH K-1 for the generic f ∈ C(K), provided that K is not totally disconnected, otherwise every non-empty level set is a singleton. We also proved that if K is not totally disconnected and sufficiently homogeneous then dim H f −1 (y) = dim tH K − 1 for the generic f ∈ C(K) and the generic y ∈ f(K). The most important goal of this paper is to make these theorems more precise. As for the first result, we prove that the supremum is actually attained on the left hand side of the first equation above, and also show that there may only be a unique level set of maximal Hausdorff dimension. As for the second result, we characterize those compact metric spaces for which for the generic f ∈ C(K) and the generic y ∈ f(K) we have dim H f −1 (y) = dim tH K − 1. We also generalize a result of B. Kirchheim by showing that if K is self-similar then for the generic f ∈ C(K) for every y∈intf(K) we have dim H f −1 (y) = dim tH K − 1. Finally, we prove that the graph of the generic f ∈ C(K) has the same Hausdorff and topological Hausdorff dimension as K.

  19. Parameterized post-Newtonian coefficients for Brans-Dicke gravity with d + 1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, Matthew D, E-mail: klimek@physics.rutgers.ed [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2009-03-21

    We present calculations of post-Newtonian parameters for Brans-Dicke tensor-scalar gravity in an arbitrary number of compact extra dimensions in both the Jordan and Einstein conformal frames. We find that the parameter gamma, which measures the amount of spacetime curvature per unit mass, becomes a function of omega, the coefficient of the scalar kinetic term in the Brans-Dicke Lagrangian. Experiment has placed strong constraints on gamma which require that omega becomes negative in the Jordan frame for any number of extra dimensions, highlighting that this formulation is not physical. We also confirm the well-known result that a compact extra dimension can be equivalently viewed as a massless scalar 'dilaton.' In the Einstein frame, we find that the behavior of gamma as constrained by experiment replicates that which is predicted by string theory.

  20. Geometry, relativity and the fourth dimension

    CERN Document Server

    Rucker, Rudolf

    1977-01-01

    This is a highly readable, popular exposition of the fourth dimension and the structure of the universe. A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to expl

  1. Trisections in Three and Four Dimensions

    Science.gov (United States)

    Koenig, Dale R.

    Every closed orientable three dimensional manifold has a Heegaard splitting, a decomposition into two handlebodies. Any two Heegaard splittings of the same manifold can be made isotopic after a finite number of stabilization operations. The notion of trisections, developed by Gay and Kirby, provided an analogue in four dimensions. They showed that any closed smooth orientable four dimensional manifold can be broken into three four dimensional handlebodies, with "niceness" conditions on their intersections, and showed that any two trisections are isotopic after stabilizations. In this thesis we investigate the notion of trisections in both three and four dimensions. In dimension three we define trisections of 3-manifolds and stabilization on these trisections. We use this to define the trisection genus of a 3-manifold. We then present several examples, showing among other things that the trisection genus is not additive under connect sum. We prove a stable equivalence theorem for trisections of 3-manifolds, showing that any two trisections of the same three-manifold can be made isotopic after stabilizations. We also show that trisections of S3 can be very complicated, so there is no analogue of Waldhausen's theorem for trisections of three manifolds. We then move on to trisections in four dimensions. We first show that if there exist four manifolds with unbalanced trisection genus lower than their balanced trisection genus, then trisection genus as defined by Gay and Kirby is not additive under connect sum. We produce several new classes of trisections, including several likely such examples. We include a class of examples that are provably minimal genus. We provide trisection diagrams for many of these trisections, and summarize some methods for quickly checking that these diagrams produce valid trisections.

  2. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  3. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  4. Geometric dimensioning of UO2 pellets for PWR

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.

    1988-01-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pellet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experimental data.(autor) [pt

  5. Deconstructing dimensions

    International Nuclear Information System (INIS)

    Cohen, A.G.

    2003-01-01

    Extra-dimensional physics is realized as the low-energy limit of lower-dimensional gauge theories. This 'deconstruction' of dimensions provides a UV completion of higher-dimensional theories, and has been used to investigate the physics of extra-dimensions. This technique has also led to a variety of interesting phenomenological applications, especially a new class of models of electroweak superconductivity, called the 'little Higgs'. (author)

  6. Method card design dimensions

    DEFF Research Database (Denmark)

    Wölfel, Christiane; Merritt, T.

    2013-01-01

    There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers....... The card-based tools are explained in terms of five design dimensions including the intended purpose and scope of use, duration of use, methodology, customization, and formal/material qualities. Our analysis suggests three design patterns or archetypes for existing card-based design method tools...... and highlights unexplored areas in the design space. The paper concludes with recommendations for the future development of card-based methods for the field of interaction design....

  7. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  8. Nucleon many-body problem using quantum-mechanical few-body technique

    International Nuclear Information System (INIS)

    Horiuchi, Wataru

    2016-01-01

    A nucleus is treated as a quantum-mechanical many-body system consisting of protons and neutrons that interact with each other by nuclear force. This paper explains the variational calculation using the correlated basis function as a powerful technique for obtaining the precise solution of Schroedinger equation of many-body, and tries to understand the nucleon many-body system from the viewpoint of a few-body through the application cases of various nuclear systems. It describes the important correlation that characterizes the nucleon many-body system such as the mean field, cluster, and tensor of bound state, and shows that non-bound state is also describable. Since such precise theory is mantic, it is essential for explaining the nature of unknown unstable nuclei, and for determining the nuclear reaction rate under the environment of the stars difficult for experiment. The method is general and flexible, and can be applied to various quantum-mechanical many-body problems. For example, the multi-body calculation of atoms and molecules, hypernuclei, and hadron spectroscopy can be carried out only by changing the potential and particles. (A.O.)

  9. Methods for tornado frequency calculation of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Haibin; Li Lin

    2012-01-01

    In order to take probabilistic safety assessment of nuclear power plant tornado attack event, a method to calculate tornado frequency of nuclear power plant is introduced based on HAD 101/10 and NUREG/CR-4839 references. This method can consider history tornado frequency of the plant area, construction dimension, intensity various along with tornado path and area distribution and so on and calculate the frequency of different scale tornado. (authors)

  10. Homological Order in Three and Four dimensions: Wilson Algebra, Entanglement Entropy and Twist Defects

    Science.gov (United States)

    Roy, Abhishek; Chen, Xiao; Teo, Jeffrey

    2013-03-01

    We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship

  11. Finite entanglement entropy and spectral dimension in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia

    2017-12-15

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  12. Finite entanglement entropy and spectral dimension in quantum gravity

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  13. Finite entanglement entropy and spectral dimension in quantum gravity

    International Nuclear Information System (INIS)

    Arzano, Michele; Calcagni, Gianluca

    2017-01-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  14. Symptom Dimensions and Neurocognitive Functioning in Adult ADHD

    OpenAIRE

    Butcher, Andrew Timothy

    2000-01-01

    Ongoing controversies regarding the clinical and nosological status of ADHD in adults emphasize the need for studies examining whether DSM-IV ADHD symptom dimensions and subtypes identified in research with children are valid for adults. Firm symptom criteria validated by data from adult samples have not been developed. Moreover, many clinic-referred adults present with attentional complaints and exhibit symptoms, neurocognitive weaknesses, and secondary problems similar to those seen in A...

  15. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  16. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Science.gov (United States)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  17. Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms

    Science.gov (United States)

    Barbieri, Carla; Valdivia, Corinne

    2010-01-01

    Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…

  18. The fourth dimension

    CERN Document Server

    Rucker, Rudy

    2014-01-01

    ""This is an invigorating book, a short but spirited slalom for the mind."" - Timothy Ferris, The New York Times Book Review ""Highly readable. One is reminded of the breadth and depth of Hofstadter's Gödel, Escher, Bach."" - Science""Anyone with even a minimal interest in mathematics and fantasy will find The Fourth Dimension informative and mind-dazzling... [Rucker] plunges into spaces above three with a zest and energy that is breathtaking."" - Martin Gardner ""Those who think the fourth dimension is nothing but time should be encouraged to read The Fourth Dimension, along with anyone else

  19. Fractal dimension to classify the heart sound recordings with KNN and fuzzy c-mean clustering methods

    Science.gov (United States)

    Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.

    2018-01-01

    The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.

  20. Krull dimension in modal logic

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.

    2017-01-01

    We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that

  1. Global Well-Posedness of the NLS System for Infinitely Many Fermions

    Science.gov (United States)

    Chen, Thomas; Hong, Younghun; Pavlović, Nataša

    2017-04-01

    In this paper, we study the mean field quantum fluctuation dynamics for a system of infinitely many fermions with delta pair interactions in the vicinity of an equilibrium solution (the Fermi sea) at zero temperature, in dimensions d = 2, 3, and prove global well-posedness of the corresponding Cauchy problem. Our work extends some of the recent important results obtained by Lewin and Sabin in [33,34], who addressed this problem for more regular pair interactions.

  2. Investigating Treatment Outcomes Across OCD Symptom Dimensions in a Clinical Sample of OCD Patients.

    Science.gov (United States)

    Chase, Tannah; Wetterneck, Chad T; Bartsch, Robert A; Leonard, Rachel C; Riemann, Bradley C

    2015-01-01

    Despite the heterogeneous nature of obsessive-compulsive disorder (OCD), many self-report assessments do not adequately capture the clinical picture presenting within each symptom dimension, particularly unacceptable thoughts (UTs). In addition, obsessions and ordering/arranging compulsions are often underrepresented in samples of treatment outcome studies for OCD. Such methodological discrepancies may obscure research findings comparing treatment outcomes across OCD symptom dimensions. This study aimed to improve upon previous research by investigating treatment outcomes across OCD symptom dimensions using the Dimensional Obsessive-Compulsive Scale, which offers a more comprehensive assessment of UTs. The study included a primarily residential sample of 134 OCD patients. Results indicated that there were no significant differences in treatment outcomes across symptom dimensions. However, the severity of UTs remained significantly greater than other symptom dimensions at both admission and discharge. Thus, it is possible that UTs may exhibit uniquely impairing features, compared with other symptom dimensions. It is also possible that these findings may reflect the characteristics of the residential OCD samples. These speculations as well as implications for OCD treatment and future research are discussed.

  3. NRSC, Neutron Resonance Spectrum Calculation System

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2004-01-01

    1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements

  4. Diffusing diffusivity: Rotational diffusion in two and three dimensions

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-06-01

    We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.

  5. USE THE METHOD OF DIMENSIONING OF INFILTRATION-RETENTION BASINS FOR MANAGEMENT OF RAINWATER

    Directory of Open Access Journals (Sweden)

    Ewa Suchanek

    2015-01-01

    Full Text Available The easiest way to “use” rainwater is its detention in places where it falls, and referral to the ground. Systems of rainwater utilization system can be implemented in different variants. In the simplest configuration it is a tank, with a runoff from the roof. The principle of operation of the tank (basin is a method for rain water management. The article presents a practical application of methods of dimensioning infiltration basins by performing calculations showing how to alter the dimensions of the basin when changing the ground conditions while maintaining the same filling.

  6. Resonating-group method for nuclear many-body problems

    International Nuclear Information System (INIS)

    Tang, Y.C.; LeMere, M.; Thompson, D.R.

    1977-01-01

    The resonating-group method is a microscopic method which uses fully antisymmetric wave functions, treats correctly the motion of the total center of mass, and takes cluster correlation into consideration. In this review, the formulation of this method is discussed for various nuclear many-body problems, and a complex-generator-coordinate technique which has been employed to evaluate matrix elements required in resonating-group calculations is described. Several illustrative examples of bound-state, scattering, and reaction calculations, which serve to demonstrate the usefulness of this method, are presented. Finally, by utilization of the results of these calculations, the role played by the Pauli principle in nuclear scattering and reaction processes is discussed. 21 figures, 2 tables, 185 references

  7. Theory of many-electron atoms. Selected papers

    International Nuclear Information System (INIS)

    Jucys, A.P.

    1978-01-01

    Selected papers of the founder of contemporary theoretical physics in Lithuania Adolfas Jucys on the theory of many-electron atoms and their spectra are presented, as well as a complete bibliography of his scientific works, a brief biographical essay and description of his scientific and social activities, reminiscences of other scientists about him. In these papers such questions are considered: Fock's self-consistent field in different approximations, various problems of the many-configurational approximation, incomplete separation of variables, expanded calculation method, application of nonorthogonal radial orbitals, method of irreducible tensor operators, graphical representation of the matrix elements and a number of other problems

  8. User Experience Dimensions

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2016-01-01

    The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the obser...

  9. Relaxing to Three Dimensions

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Extra dimensions of space might be present in our universe. If so, we want to know 'How do dimensions hide?' and 'Why are three dimensions special?' I'll give potential answers to both these questions in the context of localized gravity. Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00. Talk is broadcasted in Council Chamber

  10. Bringing a few new dimensions to physics - We live in a three- dimensional world - or do we? We may need as many as 11 dimensions to explain experimental findings, according to a Science Week Ireland presentation

    CERN Multimedia

    Ahlstrom, D

    2002-01-01

    Prof Werner Nahm, of the School of Theoretical Physics, last night delivered talk at the Dublin Institute for Advanced Studies entitled, 'Hidden Dimensions'. It was one of a series offered by the Institute as part of Science Week Ireland (1 page).

  11. Dimensions of service quality in healthcare: a systematic review of literature.

    Science.gov (United States)

    Fatima, Iram; Humayun, Ayesha; Iqbal, Usman; Shafiq, Muhammad

    2018-06-13

    Various dimensions of healthcare service quality were used and discussed in literature across the globe. This study presents an updated meaningful review of the extensive research that has been conducted on measuring dimensions of healthcare service quality. Systematic review method in current study is based on PRISMA guidelines. We searched for literature using databases such as Google, Google Scholar, PubMed and Social Science, Citation Index. In this study, we screened 1921 identified papers using search terms/phrases. Snowball strategies were adopted to extract published articles from January 1997 till December 2016. Two-hundred and fourteen papers were identified as relevant for data extraction; completed by two researchers, double checked by the other two to develop agreement in discrepancies. In total, 74 studies fulfilled our pre-defined inclusion and exclusion criteria for data analysis. Service quality is mainly measured as technical and functional, incorporating many sub-dimensions. We synthesized the information about dimensions of healthcare service quality with reference to developed and developing countries. 'Tangibility' is found to be the most common contributing factor whereas 'SERVQUAL' as the most commonly used model to measure healthcare service quality. There are core dimensions of healthcare service quality that are commonly found in all models used in current reviewed studies. We found a little difference in these core dimensions while focusing dimensions in both developed and developing countries, as mostly SERVQUAL is being used as the basic model to either generate a new one or to add further contextual dimensions. The current study ranked the contributing factors based on their frequency in literature. Based on these priorities, if factors are addressed irrespective of any context, may lead to contribute to improve healthcare quality and may provide an important information for evidence-informed decision-making.

  12. Massification and Diversity of Higher Education Systems: Interplay of Complex Dimensions

    Science.gov (United States)

    Guri-Rosenblit, Sarah; Sebkova, Helena; Teichler, Ulrich

    2007-01-01

    This paper provides a synthetic overview of the complex dimensions that shape the interrelations between the massification of higher education systems and their structure and composition. Many higher education systems worldwide expanded extensively in the last decades, and have undergone wide and deep structural changes. Most notably, the…

  13. Spatial Dimension as a Variable in Quantum Mechanics

    Science.gov (United States)

    Doren, Douglas James

    Several approximation methods potentially useful in electronic structure calculations are developed. These methods all treat the spatial dimension, D, as a variable. In an Introduction, the motivations for these methods are described, with special attention to the semiclassical 1/D expansion. Several terms in this expansion have been calculated for two-electron atoms. The results have qualitative appeal but poor convergence properties when D = 3. Chapter 1 shows that this convergence problem is due to singularities in the energy at D = 1 and a method of removing their effects is demonstrated. Chapter 2 treats several model problems, showing how to identify special dimensions at which the energy becomes singular or the Hamiltonian simplifies. Expansions are developed about these special finite values of D which are quite accurate at low order, regardless of the physical parameters of the Hamiltonian. In Chapter 3, expansions about singular points in the energy at finite values of D are used to resum the 1/D series in cases where its leading orders are not sufficient. This leads to a hybrid expansion which typically improves on both the 1/D and the finite D series. These methods are applied in Chapter 4 to two -electron atoms. The ground state energy of few-electron systems is dominated by the presence of a pole when D = 1. The residue of this pole is determined by the eigenvalue of a simple limiting Schrodinger equation. The limit and first order correction are determined for both unapproximated nonrelativistic two-electron atoms and the Hartree-Fock approximation to them. The hybrid expansion using only the first few terms in the 1/D series determines the energy at arbitrary D, providing estimates accurate to four or five figures when D = 3. Degeneracies between D = 3 states and those in nonphysical dimensions are developed in Chapter 5 which provide additional applications for this series. Chapter 6 illustrates these methods in an application to the H(' -) ion, an

  14. Many-particle interference beyond many-boson and many-fermion statistics

    International Nuclear Information System (INIS)

    Tichy, Malte C; Tiersch, Markus; Mintert, Florian; Buchleitner, Andreas

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers. (paper)

  15. On the development, environmental effects and human dimension of weed management strategies

    NARCIS (Netherlands)

    Riemens, M.M.

    2009-01-01

    On the development, environmental effects and human dimension of weed management strategies. On farm weed management is influenced by many factors. These factors comprise the development and availability of weed management tools, the environmental impact of these tools and the attitude and

  16. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  17. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  18. Many-spin effects and tunneling splittings in Mn12 magnetic molecules

    NARCIS (Netherlands)

    Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.

    2002-01-01

    We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant

  19. Correlation dimension based nonlinear analysis of network traffics with different application protocols

    International Nuclear Information System (INIS)

    Wang Jun-Song; Yuan Jing; Li Qiang; Yuan Rui-Xi

    2011-01-01

    This paper uses a correlation dimension based nonlinear analysis approach to analyse the dynamics of network traffics with three different application protocols—HTTP, FTP and SMTP. First, the phase space is reconstructed and the embedding parameters are obtained by the mutual information method. Secondly, the correlation dimensions of three different traffics are calculated and the results of analysis have demonstrated that the dynamics of the three different application protocol traffics is different from each other in nature, i.e. HTTP and FTP traffics are chaotic, furthermore, the former is more complex than the later; on the other hand, SMTP traffic is stochastic. It is shown that correlation dimension approach is an efficient method to understand and to characterize the nonlinear dynamics of HTTP, FTP and SMTP protocol network traffics. This analysis provided insight into and a more accurate understanding of nonlinear dynamics of internet traffics which have a complex mixture of chaotic and stochastic components. (general)

  20. Higgs Production and Decay in Models of a Warped Extra Dimension with a Bulk Higgs

    OpenAIRE

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2014-01-01

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS$_5$ space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusio...

  1. Electrohydrodynamic Liquid Disintegration in Micro-, Meso- and Nanoscopic Dimensions

    Science.gov (United States)

    Vertes, Akos

    2008-11-01

    The electrohydrodynamic dispersion of liquids spans length scales from 1 mm to 1 nm and involves temporal variations from 1 s to 10 ps. The disintegration mechanisms are diverse and, due to the differences in the dominating forces, vary on the micro-, meso- and nanoscale extending to lower boundaries of 1 μm, 10 nm and 1 nm, respectively. Using fast imaging, spray current measurements, phase Doppler anemometry and molecular dynamics calculations, we followed the behavior of electrified liquids in the three most common geometries, spherical, pendant drop and slender jet, with dimensions ranging from 100 μm to 1 nm. Microscale disintegration involves jet ejection from conical surface deformations, jet breakup due to varicose, kink and ramified jet instabilities, and asymmetric droplet fission resulting in side jets. As the liquid dimensions shift from the microscopic dimensions where the processes are governed by the surface tension and the Maxwell stress, to the meso- and nanoscale, thermal fluctuations become increasingly important. The presence of charges in nanodroplets leads to enhanced surface fluctuations, the formation of extreme protrusions and eventually solvated ion evaporation. Charging of slender nanojets results in longer shape relaxation times along with the fission of systems charged below the Rayleigh limit. In collaboration with Jelena Lusic and Peter Nemes, George Washington University.

  2. Microscopic calculation of level densities: the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Alhassid, Yoram

    2012-01-01

    The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments

  3. Information dimension analysis of bacterial essential and nonessential genes based on chaos game representation

    International Nuclear Information System (INIS)

    Zhou, Qian; Yu, Yong-ming

    2014-01-01

    Essential genes are indispensable for the survival of an organism. Investigating features associated with gene essentiality is fundamental to the prediction and identification of the essential genes. Selecting features associated with gene essentiality is fundamental to predict essential genes with computational techniques. We use fractal theory to make comparative analysis of essential and nonessential genes in bacteria. The information dimensions of essential genes and nonessential genes available in the DEG database for 27 bacteria are calculated based on their gene chaos game representations (CGRs). It is found that weak positive linear correlation exists between information dimension and gene length. Moreover, for genes of similar length, the average information dimension of essential genes is larger than that of nonessential genes. This indicates that essential genes show less regularity and higher complexity than nonessential genes. Our results show that for bacterium with a similar number of essential genes and nonessential genes, the CGR information dimension is helpful for the classification of essential genes and nonessential genes. Therefore, the gene CGR information dimension is very probably a useful gene feature for a genetic algorithm predicting essential genes. (paper)

  4. Bethe-salpeter equation from many-body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)

    2013-07-01

    The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.

  5. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs).

  6. clınıcal EVALUATION OF FREE GINGIVAL GRAFT SHRINKAGE IN HORIZONTAL AND VERTICAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Emine ÇİFCİBAŞI

    2015-10-01

    Full Text Available Purpose: To assess the shrinkage of Free Gingival Graft (FGG in horizontal and vertical dimensions and calculate the changes in the surface area of the transplanted tissue in a 3 months period. Materials and Methods: A total of 30 FGG were placed aiming to increase attached gingiva around recession sites. Vertical recessions, horizontal recessions, surface area, plaque index, gingival index, periodontal probing depth and clinical attachment level were assesed at baseline, 1 and 3 months postoperatively. Results: Graft shrinkage between baseline and 1 month was more evident than 1 to 3 months in either dimensions. Both horizontal and vertical dimensions were significantly decreased (p0.05. . Conclusion: The shrinkage of vertical and horizontal dimensions of the grafts were almost equal unlike the literature. In addition, the different dimensional changes observed in individual level deserve further research.

  7. The hydrogen atom in D = 3 - 2ɛ dimensions

    Science.gov (United States)

    Adkins, Gregory S.

    2018-06-01

    The nonrelativistic hydrogen atom in D = 3 - 2 ɛ dimensions is the reference system for perturbative schemes used in dimensionally regularized nonrelativistic effective field theories to describe hydrogen-like atoms. Solutions to the D-dimensional Schrödinger-Coulomb equation are given in the form of a double power series. Energies and normalization integrals are obtained numerically and also perturbatively in terms of ɛ. The utility of the series expansion is demonstrated by the calculation of the divergent expectation value .

  8. The quantum cosmology of Einstein-Yang-Mills theory in Eight-dimensions

    International Nuclear Information System (INIS)

    Su Bing; Li Xinzhou

    1991-01-01

    The quantum cosmology of Einstein-Yang-Mills has been studied. The Hartle-Hawking's proposal for the boundary conditions of the universe is extended to Eight-dimensional Einstein-Yong-Mills theory. A miniuperspace wave function is calculated in the classical limit corresponding to a superposition of classical solutions in which four of the dimensions remain small while the other four behave like an inflationary universe

  9. Verification of using SABINE-3.1 code for calculations of radioactive inventory in reactor shield

    International Nuclear Information System (INIS)

    Moukhamadeev, R.; Suvorov, A.

    2000-01-01

    This report presents the results of calculations of radioactive inventory and doses of activation radiation for the International Benchmark Calculations of Radioactive Inventory for Fission Reactor Decommissioning, IAEA, and measurements of activation doses in shield of WWER-440 (Armenian NPP), using one-dimension modified code SABINE-3.1. For decommissioning of NPP it is very important to evaluate in correct manner radioactive inventory in reactor construction and shield materials. One-dimension code SABINE-3.1 (removing-diffusion method for neutron calculation) was modified to perform calculation of radioactive inventory in reactor shield materials and dose from activation photons behind them. These calculations are carried out on the base of nuclear constant system ABBN-78 and new library of activation data for a number of long-lived isotopes, prepared by authors on the base of [9], which present at shield materials as microimpurities and manage radiation situation under the decay more than 1 year. (Authors)

  10. Challenges in large scale quantum mechanical calculations: Challenges in large scale quantum mechanical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E. [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemon IL USA; Mohr, Stephan [Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona Spain; Huhs, Georg [Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona Spain; Deutsch, Thierry [University Grenoble Alpes, INAC-MEM, Grenoble France; CEA, INAC-MEM, Grenoble France; Masella, Michel [Laboratoire de Biologie Structurale et Radiologie, Service de Bioénergétique, Biologie Structurale et Mécanisme, Institut de Biologie et de Technologie de Saclay, CEA Saclay, Gif-sur-Yvette Cedex France; Genovese, Luigi [University Grenoble Alpes, INAC-MEM, Grenoble France; CEA, INAC-MEM, Grenoble France

    2016-11-07

    During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.

  11. The anomalous dimension of the gluon-ghost mass operator in Yang-Mills theory

    International Nuclear Information System (INIS)

    Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sobreiro, R.; Sorella, S.P.; Picariello, M.; Gracey, J.A.

    2003-01-01

    The local composite gluon-ghost operator (((1)/(2))A aμ A μ a +αc-bar a c a ) is analysed in the framework of the algebraic renormalization in SU(N) Yang-Mills theories in the Landau, Curci-Ferrari and maximal abelian gauges. We show, to all orders of perturbation theory, that this operator is multiplicatively renormalizable. Furthermore, its anomalous dimension is not an independent parameter of the theory, being given by a general expression valid in all these gauges. We also verify the relations we obtain for the operator anomalous dimensions by explicit 3-loop calculations in the MS-bar scheme for the Curci-Ferrari gauge

  12. Determination of dimensions and theoretical evaluation of the performance of electron accelerator structures

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Setrao, V.A.

    1987-03-01

    A method to calculate the dimensions of a constant gradient disk-loaded structure of a linear accelerator is presented. The method is based on a description of the RF power flux along the structure axis and involves a particular dispersion that includes details of the iris geometry. The dimensions of the v p = c structure and of the buncher section of the CURUMIM linear accelerator, have been determined as an application of the above method. The theoretical performance of the accelerating structure has been evaluated for electron pulse widths ranging from 10 ns to 2 μs and for peak currents up to 10 A. (author) [pt

  13. Large spin behavior of anomalous dimensions and short-long strings duality

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, George; Savvidy, George, E-mail: georgiou@inp.demokritos.gr, E-mail: savvidy@inp.demokritos.gr [Demokritos National Research Center, Institute of Nuclear Physics, Ag. Paraskevi, GR-15310 Athens (Greece)

    2011-07-29

    We consider the semi-classical string soliton solution of Gubser, Klebanov and Polyakov which represents highly excited states on the leading Regge trajectory, with large spin in AdS{sub 5}. A prescription relates this soliton solution with the corresponding field theory operators with many covariant derivatives, whose anomalous scaling dimension grows logarithmically with the spacetime spin. We explicitly derive the coefficients in the large spin expansion of the anomalous dimension in the leading ln{sup n}S/S{sup n} and next-to-leading ln{sup n}S/S{sup n+1} orders. We develop an iteration procedure which, in principle, allows us to derive all terms in the large spin expansion of the anomalous scaling dimension of twist two operators. Our string theory results are consistent with the conjectured 'reciprocity' relation, which has been verified to hold in perturbation theory up to five loops in N = 4 SYM. We also derive a duality relation between long and short strings.

  14. Geodesics without differential equations: general relativistic calculations for introductory modern physics classes

    International Nuclear Information System (INIS)

    Rowland, D R

    2006-01-01

    Introductory courses covering modern physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics

  15. 1. Dimensions of sustainable development

    International Nuclear Information System (INIS)

    Repetto, R.

    1992-01-01

    This chapter discusses the following topics: the concept of sustainable development; envisioning sustainable development (economic dimensions, human dimensions, environmental dimensions, technological dimensions); policy implications (economic policies, people-oriented policies, environmental policies, creating sustainable systems); and global issues (effect of war on development and the environment and the debt burden). This chapter also introduces the case studies by discussing the levels of economic development and comparing key trends (economic growth, human development, population growth, and energy use)

  16. Hausdorff dimension of exponential parameter rays and their endpoints

    International Nuclear Information System (INIS)

    Bailesteanu, Mihai; Balan, Horia Vlad; Schleicher, Dierk

    2008-01-01

    We investigate the set I of parameters κ for which the singular value of z map e z + κ converges to ∞. The set I consists of uncountably many parameter rays, plus landing points of some of these rays (Förster et al 2008 Proc Am. Math. Soc. 136 at press (Preprint math.DS/0311427)). We show that the parameter rays have Hausdorff dimension 1, which implies (Qiu 1994 Acta Math. Sin. (N.S.) 10 362–8) that the ray endpoints in I alone have dimension 2. Analogous results were known for dynamical planes of exponential maps (Karpińska 1999 C. R. Acad. Sci. Paris Sér. I: Math. 328 1039–44; Schleicher and Zimmer 2003 J. Lond. Math. Soc. 67 380–400); our result shows that this also holds in parameter space

  17. Free energy and plaquette expectation value for gluons on the lattice, in three dimensions

    International Nuclear Information System (INIS)

    Panagopoulos, H.; Skouroupathis, A.; Tsapalis, A.

    2006-01-01

    We calculate the perturbative value of the free energy in lattice QCD in three dimensions, up to three loops. Our calculation is performed using the Wilson formulation for gluons in SU(N) gauge theories. The free energy is directly related to the average plaquette. To carry out the calculation, we compute the coefficients involved in the perturbative expansion of the Free Energy up to three loops, using an automated set of procedures developed by us in Mathematica. The dependence on N is shown explicitly in our results. For purposes of comparison, we also present the individual contributions from every diagram. These have been obtained by means of two independent calculations, in order to cross check our results

  18. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  19. Loading, absorption, and Fokker-Planck calculations for upcoming ICRF experiments on ATF

    International Nuclear Information System (INIS)

    Shepard, T.D.; Carter, M.D.; Goulding, R.H.; Kwon, M.

    1989-01-01

    ICRF experiments on ATF at the 100-kW level are planned for the current 1989 operating period. These plans include the 2ω/sub cH/ regime at f/sub RF/ = 28.88 MHz, D(H) at 14.44 MHz, and 4 He( 3 He) and D( 3 He) at 9.63 MHz. ECH target plasmas have n/sub eO/ /approxreverse arrowlt/ 0.15 /times/ 10 20 m/sup /minus/3/ and B = 0.95 T. The density and temperature profiles obtained are broader than those from 1988, owing to recent field error corrections. The values used for target-plasma parameters in the calculations were taken from initial 1989 ATF data. Loading and absorption calculations have been performed using the 3D RF heating code ORION with a helically symmetric equilibrium, and Fokker-Planck calculations were performed using the steady-state code RFTRANS with two velocity dimensions and one spatial dimension. 6 refs., 3 figs

  20. Estimation of Dynamic Errors in Laser Optoelectronic Dimension Gauges for Geometric Measurement of Details

    Directory of Open Access Journals (Sweden)

    Khasanov Zimfir

    2018-01-01

    Full Text Available The article reviews the capabilities and particularities of the approach to the improvement of metrological characteristics of fiber-optic pressure sensors (FOPS based on estimation estimation of dynamic errors in laser optoelectronic dimension gauges for geometric measurement of details. It is shown that the proposed criteria render new methods for conjugation of optoelectronic converters in the dimension gauge for geometric measurements in order to reduce the speed and volume requirements for the Random Access Memory (RAM of the video controller which process the signal. It is found that the lower relative error, the higher the interrogetion speed of the CCD array. It is shown that thus, the maximum achievable dynamic accuracy characteristics of the optoelectronic gauge are determined by the following conditions: the parameter stability of the electronic circuits in the CCD array and the microprocessor calculator; linearity of characteristics; error dynamics and noise in all electronic circuits of the CCD array and microprocessor calculator.

  1. Thermal dimension of quantum spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni, E-mail: amelino@roma1.infn.it [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Brighenti, Francesco [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Dipartimento di Fisica e Astronomia dell' Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna (Italy); Gubitosi, Giulia [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Santos, Grasiele [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)

    2017-04-10

    Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.

  2. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  3. Constructive Dimension and Turing Degrees

    OpenAIRE

    Bienvenu, Laurent; Doty, David; Stephan, Frank

    2007-01-01

    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of...

  4. Accounting for many-body correlation effects in the calculation of the valence band photoelectron emission spectra of ferromagnets

    International Nuclear Information System (INIS)

    Minar, J.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.; De Nadai, C.; Brookes, N.B.

    2005-01-01

    The influence of dynamical correlation effects on the valence band photoelectron emission of ferromagnetic Fe, Co and Ni has been investigated. Angle-resolved as well as angle-integrated valence band photoelectron emission spectra were calculated on the basis of the one-particle Green's function, which was obtained by using the fully relativistic Korringa-Kohn-Rostoker method. The correlation effects have been included in terms of the electronic self-energy which was calculated self-consistently within Dynamical Mean-Field Theory (DMFT). In addition a theoretical approach to calculate high-energy angle-resolved valence band photoelectron emission spectra is presented

  5. SU-D-BRA-04: Fractal Dimension Analysis of Edge-Detected Rectal Cancer CTs for Outcome Prediction

    International Nuclear Information System (INIS)

    Zhong, H; Wang, J; Hu, W; Shen, L; Wan, J; Zhou, Z; Zhang, Z

    2015-01-01

    Purpose: To extract the fractal dimension features from edge-detected rectal cancer CTs, and to examine the predictability of fractal dimensions to outcomes of primary rectal cancer patients. Methods: Ninety-seven rectal cancer patients treated with neo-adjuvant chemoradiation were enrolled in this study. CT images were obtained before chemoradiotherapy. The primary lesions of the rectal cancer were delineated by experienced radiation oncologists. These images were extracted and filtered by six different Laplacian of Gaussian (LoG) filters with different filter values (0.5–3.0: from fine to coarse) to achieve primary lesions in different anatomical scales. Edges of the original images were found at zero-crossings of the filtered images. Three different fractal dimensions (box-counting dimension, Minkowski dimension, mass dimension) were calculated upon the image slice with the largest cross-section of the primary lesion. The significance of these fractal dimensions in survival, recurrence and metastasis were examined by Student’s t-test. Results: For a follow-up time of two years, 18 of 97 patients had experienced recurrence, 24 had metastasis, and 18 were dead. Minkowski dimensions under large filter values (2.0, 2.5, 3.0) were significantly larger (p=0.014, 0.006, 0.015) in patients with recurrence than those without. For metastasis, only box-counting dimensions under a single filter value (2.5) showed differences (p=0.016) between patients with and without. For overall survival, box-counting dimensions (filter values = 0.5, 1.0, 1.5), Minkowski dimensions (filter values = 0.5, 1.5, 2.0, 2,5) and mass dimensions (filter values = 1.5, 2.0) were all significant (p<0.05). Conclusion: It is feasible to extract shape information by edge detection and fractal dimensions analysis in neo-adjuvant rectal cancer patients. This information can be used to prognosis prediction

  6. Many-body effects in the mesoscopic x-ray edge problem

    International Nuclear Information System (INIS)

    Hentschel, Martina; Roeder, Georg; Ullmo, Denis

    2007-01-01

    Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)

  7. QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin; Savcheva, Antonia, E-mail: svetlin.tassev@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-10

    Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.

  8. Preimage entropy dimension of topological dynamical systems

    OpenAIRE

    Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao

    2014-01-01

    We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...

  9. Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets

    Science.gov (United States)

    Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.

    2011-10-01

    The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.

  10. Sex determination from hand and foot dimensions in a North Indian population.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2011-03-01

    Hands and feet are often recovered from the site of natural as well as man-made disasters because of bomb blasts, train accidents, plane crashes, or mass homicides. This study is intended to establish standards for determination of sex from the dimensions of hands and feet in a North Indian population. The data for this study comprise 123 men and 123 women aged between 17 and 20 years from the "Rajput" population of Himachal Pradesh in North India. Four anthropometric measurements viz. hand length, hand breadth, foot length, and foot breadth have been taken on both sides of each subject following international anthropometric standards. The hand index (hand breadth/hand length × 100) and the foot index (foot breadth/foot length × 100) were calculated. Sectioning points and regression models are derived for the hand and foot dimensions and the derived indices. The hand and foot dimensions show a higher accuracy in sex determination by sectioning point analysis when compared to hand and foot index. Of the hand and the foot dimensions, hand breadth and foot breadth showed better accuracy in sex determination. Hand index and foot index remain poor sex discriminators in the study. © 2011 American Academy of Forensic Sciences.

  11. Anomalous dimensions in deformed WZW models on supergroups

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin [Institut fuer Theoretische Physik, Zuerich (Switzerland); Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We investigate a class of current-current, Gross-Neveu like, perturbations of WZW models in which the full left-right affine symmetry is broken to the diagonal global algebra only. Our analysis focuses on those supergroups for which such a perturbation preserves conformal invariance. A detailed calculation of the 2-point functions of affine primary operators to 3-loops is presented. Furthermore, we derive an exact formula for the anomalous dimensions of a large subset of fields to all orders in perturbation theory. Possible applications of our results, including the study of non-perturbative dualities, are outlined.

  12. Criticality calculations for homogeneous mixtures of uranium and plutonium

    International Nuclear Information System (INIS)

    Spiegelberg, R. de S.H.

    1981-05-01

    Critical parameters were calculated using the one-dimensional multigroup transport theory. Calculations have been performed for water mixture of uranium metal and uranium oxides and plutonium nitrates to determine the dimensions of simple critical geometries (sphere and cylinder). The results of the calculations were plotted showing critical parameters (volume, radius or critical mass). The critical values obtained in Handbuch zur Kritikalitat were used to compare with critical parameters. A sensitivity study for the influences of mesh space size, multigroup structure and order of the S sub(n) approximation on the critical radius was carried out. The GAMTEC-II code was used to generate multigroup cross sections data. Critical radius were calculated using the one-dimensional multigroup transport code DTF-IV. (Author) [pt

  13. Fractal dimension algorithms and their application to time series associated with natural phenomena

    International Nuclear Information System (INIS)

    La Torre, F Cervantes-De; González-Trejo, J I; Real-Ramírez, C A; Hoyos-Reyes, L F

    2013-01-01

    Chaotic invariants like the fractal dimensions are used to characterize non-linear time series. The fractal dimension is an important characteristic of systems, because it contains information about their geometrical structure at multiple scales. In this work, three algorithms are applied to non-linear time series: spectral analysis, rescaled range analysis and Higuchi's algorithm. The analyzed time series are associated with natural phenomena. The disturbance storm time (Dst) is a global indicator of the state of the Earth's geomagnetic activity. The time series used in this work show a self-similar behavior, which depends on the time scale of measurements. It is also observed that fractal dimensions, D, calculated with Higuchi's method may not be constant over-all time scales. This work shows that during 2001, D reaches its lowest values in March and November. The possibility that D recovers a change pattern arising from self-organized critical phenomena is also discussed

  14. Chiral Floquet Phases of Many-Body Localized Bosons

    Directory of Open Access Journals (Sweden)

    Hoi Chun Po

    2016-12-01

    Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.

  15. Finite Element Method in the Three Dimensions Deformation Computation ofKartini Reactor Stack

    International Nuclear Information System (INIS)

    Supriyono; Syarip; Wibisono, I

    2000-01-01

    The calculation of the Kartini reactor stack i.e. one of the nuclearinstallations in P3TM-BATAN Yogyakarta by using SAP 90 software have beendone. The calculation is done as a safety review of building towards theearthquake style in Yogyakarta. The 3-dimension deformation calculation isperformed by the numeric method i.e. finite element method with the form ofelements is the shell. The result obtained showed that the construction oftower safe to the existing earthquake, where the moment exerted as a resultof earthquake style was different under the moment having been kept by thebuilding structure. By knowing the deformation on the stack it is expectedcould be used for concluding the strength of the whole reactor building.(author)

  16. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    Science.gov (United States)

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  17. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  18. Classification of the Weyl tensor in higher dimensions and applications

    International Nuclear Information System (INIS)

    Coley, A

    2008-01-01

    We review the theory of alignment in Lorentzian geometry and apply it to the algebraic classification of the Weyl tensor in higher dimensions. This classification reduces to the well-known Petrov classification of the Weyl tensor in four dimensions. We discuss the algebraic classification of a number of known higher dimensional spacetimes. There are many applications of the Weyl classification scheme, especially when used in conjunction with the higher dimensional frame formalism that has been developed in order to generalize the four-dimensional Newman-Penrose formalism. For example, we discuss higher dimensional generalizations of the Goldberg-Sachs theorem and the peeling theorem. We also discuss the higher dimensional Lorentzian spacetimes with vanishing scalar curvature invariants and constant scalar curvature invariants, which are of interest since they are solutions of supergravity theory. (topical review)

  19. Mathematical diagnosis of pediatric echocardiograms with fractal dimension measures evaluated through intrinsic mathematical harmony

    International Nuclear Information System (INIS)

    Rodriguez V, Javier O; Prieto, Signed E; Ortiz, Liliana

    2010-01-01

    Geometry allows the objective mathematical characterization of forms. Fractal geometry characterizes irregular objects. The left ventricle dynamical states form observed through echocardiography can be objectively evaluated through fractal dimension measures. Methods: A measurement of fractal dimension was performed using the Box-counting method of three defined objects in 28 echocardiographic images, 16 from normal children (group A) and 12 ill children (group B), in order to establish differences between health and illness from its comparison with the fractal dimensions of 2 normality prototypes and 2 disease prototypes. Results: A new diagnostic, clinical application methodology was developed based in the intrinsic mathematical harmony (IMH) concept, and it was observed that the fractal dimensions of the defined objects for an abnormal echocardiogram show similarity to its fourth significant number, thus demonstrating the possibility of following up the evolution from normality towards disease. According to the performed calculations, 68.75% of the cases in group A could be better evaluated with the developed diagnostic methodology, and the ill ones could be diagnosed more effectively. Conclusions: The pediatric echocardiography images can be objectively characterized with fractal dimension measurements, thus enabling the development of a clinical diagnostic methodology of echocardiography in children from the IMH concept.

  20. Calculations of radiation levels during reactor operations for safeguard inspections

    International Nuclear Information System (INIS)

    Sobhy, M.

    1996-01-01

    When an internal core spent fuel storage is used in the shield tank to accommodate a large number of spent fuel baskets, physical calculations are performed to determine the number of these spent fuel elements which can be accommodated and still maintain the gamma activity outside under the permissible limit. The corresponding reactor power level is determined. The radioactivity calculations are performed for this internal storage at different axial levels to avoid the criticality of the reactor core. Transport theory is used in calculations based on collision probability for multi group cell calculations. Diffusion theory is used in three dimensions in the core calculations. The nuclear fuel history is traced and radioactive decay is calculated, since reactor fission products are very sensitive to power level. The radioactivity is calculated with a developed formula based on fuel basket loading integrity. (author)

  1. Exploring extra dimensions with scalar fields

    Science.gov (United States)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  2. Many-particle interference beyond many-boson and many-fermion statistics

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Tiersch, Markus; Mintert, Florian

    2012-01-01

    Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the ......Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show...... that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell...

  3. Advances in supercell calculation methods and comparison with measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, B [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Baril, R; Hotte, G [Hydro-Quebec, Central Nucleaire Gentilly, Montreal, Quebec (Canada)

    1996-07-01

    In the last few years, modelling techniques have been developed in new supercell computer codes. These techniques have been used to model the CANDU reactivity devices. One technique is based on one- and two-dimensional transport calculations with the WIMS-AECL lattice code followed by super homogenization and three-dimensional flux calculations in a modified version of the MULTICELL code. The second technique is based on two- and three-dimensional transport calculations in DRAGON. The code calculates the lattice properties by solving the transport equation in a two-dimensional geometry followed by supercell calculations in three dimensions. These two calculation schemes have been used to calculate the incremental macroscopic properties of CANDU reactivity devices. The supercell size has also been modified to define incremental properties over a larger region. The results show improved agreement between the reactivity worth of zone controllers and adjusters. However, at the same time the agreement between measured and simulated flux distributions deteriorated somewhat. (author)

  4. Note on soft theorems and memories in even dimensions

    Science.gov (United States)

    Mao, Pujian; Ouyang, Hao

    2017-11-01

    Recently, it has been shown that the Weinberg's formula for soft graviton production is essentially a Fourier transformation of the formula for gravitational memory which provides an effective way to understand how the classical calculation arises as a limiting case of the quantum result. In this note, we propose a general framework that connects the soft theorems to the radiation fields obtained from classical computation for different theories in even dimensions. We show that the latter is nothing but Fourier transformation of the former. The memory formulas can be derived from radiation fields explicitly.

  5. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction.

    Science.gov (United States)

    Nie, Feiping; Xu, Dong; Tsang, Ivor Wai-Hung; Zhang, Changshui

    2010-07-01

    We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points. For semi-supervised dimension reduction, we aim to find the optimal prediction labels F for all the training samples X, the linear regression function h(X) and the regression residue F(0) = F - h(X) simultaneously. Our new objective function integrates two terms related to label fitness and manifold smoothness as well as a flexible penalty term defined on the residue F(0). Our Semi-Supervised learning framework, referred to as flexible manifold embedding (FME), can effectively utilize label information from labeled data as well as a manifold structure from both labeled and unlabeled data. By modeling the mismatch between h(X) and F, we show that FME relaxes the hard linear constraint F = h(X) in manifold regularization (MR), making it better cope with the data sampled from a nonlinear manifold. In addition, we propose a simplified version (referred to as FME/U) for unsupervised dimension reduction. We also show that our proposed framework provides a unified view to explain and understand many semi-supervised, supervised and unsupervised dimension reduction techniques. Comprehensive experiments on several benchmark databases demonstrate the significant improvement over existing dimension reduction algorithms.

  6. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  7. Determination of optimum shape and dimensions of anode high-voltage isolators for gaseous proportional counters

    International Nuclear Information System (INIS)

    Jelen, K.; Jagusztyn, W.

    1975-01-01

    The influence of the shape and dimensions of the high-voltage anode-to-cathods isolator on the regularity of the electrostatic field distribution along the anode of a cylindrical gaseous proportional counter is studied. For a counter of fixed dimensions, the length and diameter of the glass isolators were optimized to disrupt as little as possible the regularity of the field distribution in the active volume of the counter. Results of calculations are in agreement with experimental data. The obtained results provide a basis for obtaining a correct ratio of the active volume of the counter to its total volume. (author)

  8. Lattice Methods and the Nuclear Few- and Many-Body Problem

    Science.gov (United States)

    Lee, Dean

    This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.

  9. On asymptotic solutions of Regge field theory in zero transverse dimensions

    International Nuclear Information System (INIS)

    Bondarenko, S.; Horwitz, L.; Levitan, J.; Yahalom, A.

    2013-01-01

    An investigation of dynamical properties of solutions of a toy model of interacting Pomerons with triple vertex in zero transverse dimension is performed. Stable points and corresponding solutions at the limit of large rapidity are studied in the framework of a given model. It is shown that, at large rapidity, the “fan” amplitude is also a leading solution for the full RFT-0 (Regge Field Theory in zero transverse dimensions) Hamiltonian with both vertices of Pomeron splitting and merging included. An analytical form of the symmetrical solution of the equations of motion at high energy is obtained as well. For the solutions we have found, the scattering amplitude at large values of rapidity is calculated. Stability of the solutions is investigated by Lyapunov functions and the presence of closed cycles in solutions is demonstrated by the new method

  10. Fractionary statistics and field theories in (2+1) dimensions

    International Nuclear Information System (INIS)

    Gomes, M.

    1989-01-01

    The existence of fractionary angular momentum and the exotic statistics in many dimensions are analysed. The soliton type excitations of non linear sigma model with 0(3) symmetry are considered. The parity breaking through mass term and the generation of Chern Simon term are discussed in three dimensional fermion model. It is shown that the symmetry breaking can be due to vacuum and this possibility is illustrated in the context of Gross-Never similar model. (M.C.K.)

  11. Scheme-Independent Calculation of $γ_{\\barψψ,IR}$ for an SU(3) Gauge Theory

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2016-01-01

    We present a scheme-independent calculation of the infrared value of the anomalous dimension of the fermion bilinear, $\\gamma_{\\bar\\psi\\psi,IR}$ in an SU(3) gauge theory as a function of the number of fermions, $N_f$, via a series expansion in powers of $\\Delta_f$, where $\\Delta_f=(16.5-N......_f)$, to order $\\Delta_f^4$. We perform an extrapolation to obtain the first determination of the exact $\\gamma_{\\bar\\psi\\psi,IR}$ from continuum field theory. The results are compared with calculations of the $n$-loop values of this anomalous dimension from series in powers of the coupling and from lattice...

  12. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    Alves, V.S.; Gomes, M.

    1994-01-01

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  13. Quantum gravity in more than four dimensions

    International Nuclear Information System (INIS)

    Vaz, C.

    1987-01-01

    Ever since its inception, Einstein's general relativity has been considered a most remarkable theory. It is generally believed today, that the classical theory is well understood. Nevertheless, in the pursuit of a deeper understanding of physics in terms of a grand unification of forces, one would like to quantize the theory, thus bringing it under the known forces of nature. The author will address the possibility that space-time is of dimension greater that four. In the pursuit of Einstein's dream of a unification of physical interactions, many interesting ideas have been developed. Beginning with Weyl and Kaluza, we have progressed to strings and superstrings. The thing that is common to all these theories is the requirement of a space-time of more than four dimensions. While Kaluza's theory implicitly assumes that Einstein's gravity is classically correct in any number of dimensions, superstring phenomenology may suggest otherwise. Generalizations to Einstein's gravity are indicated, and the gravitational Casimir energy is explicitly approximate on a background configuration M 4 x S 6 , on a ten dimensional space-time. Weyl invariance is particularly interesting to the quantum gravitationalist. One finds that energy momentum tensor of the Weyl invariant quantum field picks up an anomalous trace, which is related to particle production by the curved background. He therefore computes the conformal anomaly for a conformally coupled scalar field and considers some of its consequences. He then suggest that the conformal anomaly, when combined with the perfect fluid hypothesis, can be used to determine the complete energy momentum tensor of the quantum field in certain backgrounds

  14. WIMSD5, Deterministic Multigroup Reactor Lattice Calculations

    International Nuclear Information System (INIS)

    2004-01-01

    1 - Description of program or function: The Winfrith improved multigroup scheme (WIMS) is a general code for reactor lattice cell calculation on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered the choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are included in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a successor version of WIMS-D/4. 2 - Method of solution: The treatment of resonances is based on the use of equivalence theorems with a library of accurately evaluated resonance integrals for equivalent homogeneous systems at a variety of temperatures. The collision theory procedure gives accurate spectrum computations in the 69 groups of the library for the principal regions of the lattice using a simplified geometric representation of complicated lattice cells. The computed spectra are then used for the condensation of cross-sections to the number of groups selected for solution of the transport equation in detailed geometry. Solution of the transport equation is provided either by use of the Carlson DSN method or by collision probability methods. Leakage calculations including an allowance for streaming asymmetries may be made using either diffusion theory or the more elaborate B1-method. The output of the code provides Eigenvalues for the cases where a simple buckling mode is applicable or cell-averaged parameters for use in overall reactor calculations. Various reaction rate edits are provided for direct comparison with experimental measurements. 3 - Restrictions on the complexity of

  15. Calculated critical parameters in simple geometries for oxide and nitrate water mixtures of U-233, U-235 and Pu-239 with thorium. Final report

    International Nuclear Information System (INIS)

    Converse, W.E.; Bierman, S.R.

    1979-11-01

    Calculations have been performed on water mixtures of oxides and nitrates of 233 U, 235 U, and 239 Pu with chemically similar thorium compounds to determine critical dimensions for simple geometries (sphere, cylinder, and slab). Uranium enrichments calculated were 100%, 20%, 10%, and 5%; plutonium calculations assumed 100% 239 Pu. Thorium to uranium or plutonium weight ratios (Th: U or Pu) calculated were 0, 1, 4, and 8. Both bare and full water reflection conditions were calculated. The results of the calculations are plotted showing a critical dimension versus the uranium or plutonium concentration. Plots of K-infinity and material buckling for each material type are also shown

  16. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  17. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  18. DCIs, SEPs, and CCs, Oh My! Understanding the Three Dimensions of the NGSS

    Science.gov (United States)

    Duncan, Ravit Golan; Cavera, Veronica L.

    2015-01-01

    The "Next Generation Science Standards'" three dimensions--disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCs)--were headliners at NSTA's national conference in Chicago and featured in many of the organization's other professional-development efforts this year (NGSS Lead States 2013).…

  19. Extra dimensions in space and time

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    Covers topics such as Einstein and the Fourth Dimension; Waves in a Fifth Dimension; and String Theory and Branes Experimental Tests of Extra Dimensions. This book offers a discussion on Two-Time Physics

  20. Selecting dimensions of reserve ore bodies by the method of the PPR Institute of Mines

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, V; Pytlyazh, T

    1979-01-01

    The authors propose a new method for calculating the dimensions of an untouched ore body to store mine tailings and objects on the surface. The method is computer-based. The method features logical compactness and permits a considerable reduction in the ore left intact for the shaft. One qualified technician can prepare the data for entry into the computer in the course of an hour, while the calculation and processing of the results takes no more than 20 to 30 min.

  1. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters.

    Science.gov (United States)

    Stenull, O; Janssen, H K

    2001-07-01

    We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed percolating phase. The resistor-like bonds and the diode-like bonds under forward bias voltage obey a generalized Ohm's law V approximately I(r). Based on general grounds such as symmetries and relevance we develop a field theoretic model. We focus on the average two-port resistance, which is governed at the transition by the resistance exponent straight phi(r). By employing renormalization group methods we calculate straight phi(r) for arbitrary r to one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via considering distinct values of the nonlinearity r, we determine the dimension of the red bonds, the chemical path, and the backbone to two-loop order.

  2. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  3. Logical-rules and the classification of integral dimensions: Individual differences in the processing of arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Anthea G. Blunden

    2015-01-01

    Full Text Available A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner (i.e., coactively. In two experiments, sixteen participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner.

  4. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    Science.gov (United States)

    Boyd, O.S.

    2006-01-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.

  5. Dimensions of Adolescent Employment.

    Science.gov (United States)

    Mael, Fred A.; Morath, Ray A.; McLellan, Jeffrey A.

    1997-01-01

    Examines positive and negative correlates of adolescent work as a function of work dimensions. Results indicate that concurrent costs and benefits of adolescent employment may depend on dimensions of work as well as adolescent characteristics. Adolescent employment was generally related to subsequent work motivation and nonacademic performance.…

  6. Void coefficient of reactivity calculation for AP-600 core

    International Nuclear Information System (INIS)

    Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran

    1998-01-01

    Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data

  7. Relationship between tooth dimensions and malocclusion

    International Nuclear Information System (INIS)

    Farooq, J.; Ahmed, I.; Erum, G.

    2014-01-01

    Objective: To observe the difference in dimension of teeth among adult females with and without malocclusion. Methods: The cross-sectional study was conducted at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, from April 2011 to April 2013, and used non-probability consecutive sampling. Mesiodistal and buccolingual crown dimensions were measured on study casts by using digital sliding caliper in 2 groups of females. Group1 had 150 subjects with normal occlusion, while Group 2 had 234 with malocclusion. Independent t test was conducted to evaluate the difference between the dimensions of teeth of the two groups. Statistical analysis was done on SPSS version 16, and p value was considered significant at 0.05. Results: Overall, the difference between the groups showed a greater tooth dimension in the malocclusion group of population compared to the normal group, and the most significant difference was observed in the mesiodistal dimension of maxillary 2nd premolar, which was 0.9+-0.6801mm greater in dimension in the malocclusion group compared to the normal group. The least difference was observed in the buccolingual dimension of the mandibular central incisor where the malocclusion group had only 0.08+-0.5247mm larger mandibular central incisors in the buccolingual dimension compared to the normal group. Conclusion: Mesiodistal and buccolingual crown dimensions were characteristically larger in the malocclusion group. (author)

  8. Extra dimensions and color confinement

    Energy Technology Data Exchange (ETDEWEB)

    Pleitez, V

    1995-04-01

    An extension of the ordinary four dimensional Minkowski space by introducing additional dimensions which have their own Lorentz transformation is considered. Particles can transform in a different way under each Lorentz group. It is shown that only quark interactions are slightly modified and that color confinement automatic since these degrees of freedom run only in the extra dimensions. No compactification of the extra dimensions is needed. (author). 4 refs.

  9. [Penile dimensions in type 2 diabetes].

    Science.gov (United States)

    Belousov, I I; Kogan, M I; Ibishev, H S; Vorobyev, S V; Khripun, I A; Gusova, Z R

    2015-12-01

    The current literature provides a wide range of publications on the anthropometry of the penis specifying the relationship between penile dimensions and sex hormones, weight, height and erectile function. But most of the studies involved healthy volunteers or young patients with erectile dysfunction. Our study was conducted in patients with type 2 diabetes. Penile measurements obtained in the present study were compared those of the average Russian man. The patients were divided into groups with preserved and impaired erectile function. Erectile function was also studied relative to the variability of penile dimensions. The effect of DM duration on erectile function was defined. Comparative analysis revealed the relationship between penile anatomical dimensions and erectile function. We studied the effect of type 2 diabetes on the anatomical dimensions and elasticity of the penis, established the relationship between penile dimensions and elasticity of the penis. The correlation between the severity of erectile dysfunction and serum testosterone levels on one side, and penile dimensions on the other was found. The effect of penile dimensions on erectile function in DM patients was also examined. Determining penile dimensions and their variability due to various pathological conditions or processes, may eventually lead to better result of ED management.

  10. Particle Phenomenology of Compact Extra Dimensions

    International Nuclear Information System (INIS)

    Melbeus, Henrik

    2012-01-01

    This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models

  11. Distinguishing dimensions of pro-environmental behaviour

    OpenAIRE

    Lynn, Peter

    2014-01-01

    This study empirically identifies dimensions of behaviour that are distinct in terms of the extent to which people act pro-environmentally. Three dimensions are identified, relating to at-home, transport-related and purchasing behaviour. The correlation between behaviour in each dimension is explored and the characteristics and attitudes associated with the extent to which behaviour is pro-environmental in each dimension are compared. The correlates of pro-environmental behaviour are found to...

  12. Analytic continuation of the harmonic sums for the 3-loop anomalous dimensions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Moch, S.O.

    2005-03-01

    We present for numerical use the analytic continuations to complex arguments of those basic Mellin transforms, which build the harmonic sums contributing to the 3-loop anomalous dimensions. Eight new basic functions contribute in addition to the analytic continuations for the 2-loop massless Wilson coefficients calculated previously. The representations derived have a relative accuracy of better than 10 -7 in the range x element of [10 -6 , 0.98]. (orig.)

  13. The present state and future of the development of dimension stone mining in Slovak conditions

    Directory of Open Access Journals (Sweden)

    Viliam Žiaran

    2005-03-01

    Full Text Available In comparing to both ores and energetical minerals there are occurences of extremly rich non-methallics minerals on the Slovak territory. These minerals represent very large-scale sortiment with a considerable amount of verified reserves. Reserves of magnesite, salt rock, dolomite, limestone, talc, bentonite, clays and another construction minerals present many possibilities of their industrial utilization. A specific case is the mining of dimension stones such as stable ingeneous,sedimentary and metamorphic rocks that are mined in the open-pit blocks. Applicable to the production of both ingeneous stone and gross stone [3].The open-pit mining and dimension stone processing by the both above mentioned stone productions forms are focused mainly to the external and internal building industry. Despite of the fact that the natural reserves of dimension stone are limited at the Slovak territory, being distributed at large numbers of open-pits mines, from the point of view of the next development of the dimension stone industry its technical and economic vitalitycan be expected. The paper deals with both the technological and ecological mining problems of dimension stone and shows the possibilities how to improve both the works productivity and quality of products including the ecological impacts by the dimension stone mining.

  14. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Burgess, C.P. [McMaster Univ., Hamilton (Canada). Dept. of Physics and Astronomy; Perimeter Institute for Theoretical Physics, Waterloo (Canada); Quevedo, F. [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-04-15

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  15. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    International Nuclear Information System (INIS)

    Cicoli, M.; Burgess, C.P.; Quevedo, F.

    2011-04-01

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  16. Assessing the match between female primary students’ anthropometric dimensions and furniture dimensions in Hamadan schools in 2013

    Directory of Open Access Journals (Sweden)

    R. Heidarimoghadam

    2015-04-01

    Conclusion: Despite differences in the body dimensions of primary school students, there is no regularity in using of school furniture. Overall, the dimensions of existing benches and desks are not matched with the anthropometric dimensions of students.

  17. Quantum Physics in One Dimension

    International Nuclear Information System (INIS)

    Logan, David

    2004-01-01

    To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted peculiarities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic - spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assuming little theoretical background on the part of the reader (well just a little), Giamarchi writes in a

  18. Artificial magnetic-field quenches in synthetic dimensions

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and

  19. DIMENSIONS AND EFFECTS OF EMOTIONS IN ORGANIZATIONAL SETTINGS

    Directory of Open Access Journals (Sweden)

    Andreea ARMEAN

    2014-12-01

    Full Text Available The emotions and their management in the workplace have become popular topics in the literature as a result of their effects in organizations. With regards to the conceptualization of emotions and their impact within the organizational context, terms such as emotion, affect, and affective state are often used as synonyms by many authors, but there are situations when they have different significance. The meanings associated with these concepts are herein discussed. The affect is present in all the organizational parts, is the root of all its relationships. The emotions influence many organizational dimensions such as decision-making, creativity, teamwork, negotiation, leadership, turnover, and job performance. Another essential construct in this field is emotional labor or the management of emotions. This concept has a special significance in the tertiary sector because it is an important driver of customer satisfaction.

  20. Rank restriction for the variational calculation of two-electron reduced density matrices of many-electron atoms and molecules

    International Nuclear Information System (INIS)

    Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.

    2011-01-01

    Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N 2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.

  1. On the dimension of complex responses in nonlinear structural vibrations

    Science.gov (United States)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to

  2. Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H.

    2017-01-01

    We extend the O(α s 5 ) result of the analytic calculation of the quark mass anomalous dimension in pQCD https://www.doi.org/10.1007/JHEP10(2014)076 to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.

  3. Phenomenology of spinless adjoints in two universal extra dimensions

    International Nuclear Information System (INIS)

    Ghosh, Kirtiman; Datta, Anindya

    2008-01-01

    We discuss the phenomenology of (1,1)-mode adjoint scalars in the framework of two Universal Extra Dimensions. The Kaluza-Klein (KK) towers of these adjoint scalars arise in the 4-dimensional effective theory from the 6th component of the gauge fields after compactification. Adjoint scalars can have KK-number conserving as well as KK-number violating interactions. We calculate the KK-number violating operators involving these scalars and two Standard Model fields. Decay widths of these scalars into different channels have been estimated. We have also briefly discussed pair-production and single production of such scalars at the Large Hadron Collider

  4. Perturbation calculations with Wilson loop

    International Nuclear Information System (INIS)

    Peixoto Junior, L.B.

    1984-01-01

    We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt

  5. Temporal dimension in cognitive models

    International Nuclear Information System (INIS)

    Decortis, F.; Cacciabue, P.C.

    1988-01-01

    Increased attention has been given to the role of humans in nuclear power plant safety, but one aspect seldom considered is the temporal dimension of human reasoning. Time is recognized as crucial in human reasoning and has been the subject of empirical studies where cognitive mechanisms and strategies to face the temporal dimension have been studied. The present study shows why temporal reasoning is essential in Human Reliability Analysis and how it could be introduced in a human model. Accounting for the time dimension in human behaviour is discussed first, with reference to proven field studies. Then, theoretical modelling of the temporal dimension in human reasoning and its relevance in simulation of cognitive activities of plant operator is discussed. Finally a Time Experience Model is presented

  6. Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining

    International Nuclear Information System (INIS)

    Khasin, M.; Kosloff, R.

    2010-01-01

    An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n 3/2 (ln n) -1 compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10 4 and 2x10 6 cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.

  7. Broyden's method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.

    2008-01-01

    Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations

  8. CO2 calculator

    DEFF Research Database (Denmark)

    Nielsen, Claus Werner; Nielsen, Ole-Kenneth

    2009-01-01

    Many countries are in the process of mapping their national CO2 emissions, but only few have managed to produce an overall report at municipal level yet. Denmark, however, has succeeded in such a project. Using a new national IT-based calculation model, municipalities can calculate the extent...

  9. Scalar one-loop integrals using the negative-dimension approach

    International Nuclear Information System (INIS)

    Anastasiou, C.; Glover, E.W.N.; Oleari, C.

    2000-01-01

    We study massive one-loop integrals by analytically continuing the Feynman integral to negative dimensions as advocated by Halliday and Ricotta and developed by Suzuki and Schmidt. We consider n-point one-loop integrals with arbitrary powers of propagators in general dimension D. For integrals with m mass scales and q external momentum scales, we construct a template solution valid for all n which allows us to obtain a representation of the graph in terms of a finite sum of generalised hypergeometric functions with m+q-1 variables. All solutions for all possible kinematic regions are given simultaneously, allowing the investigation of different ranges of variation of mass and momentum scales. As a first step, we develop the general framework and apply it to massive bubble and vertex integrals. Of course many of these integrals are well known and we show that the known results are recovered. To give a concrete new result, we present expressions for the general vertex integral with one off-shell leg and two internal masses in terms of hypergeometric functions of two variables that converge in the appropriate kinematic regions. The kinematic singularity structure of this graph is sufficiently complex to give insight into how the negative-dimension method operates and gives some hope that more complicated graphs can also be evaluated

  10. Dimensions des stabulations 2018

    OpenAIRE

    Früh, Barbara; Maurer, Veronika; Schneider, Claudia; Schürmann, Stefan; Spengler Neff, Anet; Werne, Steffen

    2018-01-01

    Les «Dimensions des stabulations» contiennent toutes les dimensions pour les stabulations et les parcours pour la production animale en agriculture biologique. Cette liste sert d’instrument de planification pour les éleveurs, d’outil de travail pour la vulgarisation et d’ouvrage de référence pour le contrôle bio.

  11. Ab initio theory and calculations of X-ray spectra

    International Nuclear Information System (INIS)

    Rehr, J.J.; Kas, J.J.; Prange, M.P.; Sorini, A.P.; Takimoto, Y.; Vila, F.

    2009-01-01

    There has been dramatic progress in recent years both in the calculation and interpretation of various x-ray spectroscopies. However, current theoretical calculations often use a number of simplified models to account for many-body effects, in lieu of first principles calculations. In an effort to overcome these limitations we describe in this article a number of recent advances in theory and in theoretical codes which offer the prospect of parameter free calculations that include the dominant many-body effects. These advances are based on ab initio calculations of the dielectric and vibrational response of a system. Calculations of the dielectric function over a broad spectrum yield system dependent self-energies and mean-free paths, as well as intrinsic losses due to multielectron excitations. Calculations of the dynamical matrix yield vibrational damping in terms of multiple-scattering Debye-Waller factors. Our ab initio methods for determining these many-body effects have led to new, improved, and broadly applicable x-ray and electron spectroscopy codes. (authors)

  12. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    Science.gov (United States)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  13. Conformal mapping calculation of railgun skin inductance

    International Nuclear Information System (INIS)

    Huerta, M.A.; Nearing, J.C.

    1991-01-01

    This paper considers the common rail arrangement consisting of two long, parallel, rectangular rails. The authors calculate the inductance per unit length L' in the short flight time limit where the skin depth is much smaller than any rail dimensions, the current is all on the rail surface, and the magnetic field does not penetrate the rails. The authors give the solution based on the Schwartz-Christoffel transformation that maps the boundaries of the problem into a simpler shape

  14. Dimensions and intensity of inter-professional teamwork in primary care: evidence from five international jurisdictions.

    Science.gov (United States)

    Levesque, Jean-Frederic; Harris, Mark F; Scott, Cathie; Crabtree, Benjamin; Miller, William; Halma, Lisa M; Hogg, William E; Weenink, Jan-Willem; Advocat, Jenny R; Gunn, Jane; Russell, Grant

    2017-10-23

    Inter-professional teamwork in primary care settings offers potential benefits for responding to the increasing complexity of patients' needs. While it is a central element in many reforms to primary care delivery, implementing inter-professional teamwork has proven to be more challenging than anticipated. The objective of this study was to better understand the dimensions and intensity of teamwork and the developmental process involved in creating fully integrated teams. Secondary analyses of qualitative and quantitative data from completed studies conducted in Australia, Canada and USA. Case studies and matrices were used, along with face-to-face group retreats, using a Collaborative Reflexive Deliberative Approach. Four dimensions of teamwork were identified. The structural dimension relates to human resources and mechanisms implemented to create the foundations for teamwork. The operational dimension relates to the activities and programs conducted as part of the team's production of services. The relational dimension relates to the relationships and interactions occurring in the team. Finally, the functional dimension relates to definitions of roles and responsibilities aimed at coordinating the team's activities as well as to the shared vision, objectives and developmental activities aimed at ensuring the long-term cohesion of the team. There was a high degree of variation in the way the dimensions were addressed by reforms across the national contexts. The framework enables a clearer understanding of the incremental and iterative aspects that relate to higher achievement of teamwork. Future reforms of primary care need to address higher-level dimensions of teamwork to achieve its expected outcomes. © The Author 2017. Published by Oxford University Press.

  15. Methods of calculation and determination of density and moisture of inhomogeneous materials within capacity of limited dimensions

    International Nuclear Information System (INIS)

    Mukanov, D.M.

    1996-01-01

    Both a definition of optimal sizes and an opinion about representation of assay present practical interest during process of physical characteristics calculation of inhomogeneous materials by neutron method. The opinion about calculation sphere is introduced for definition of necessary dependences. It presents limited by convex surface with center coinciding with center of initial measuring transformer. Sizes of calculation sphere have been defined by physical process character of neutral radiation interaction with measured substance and its nuclear-physical parameters. 3 figs

  16. New universality class in three dimensions

    DEFF Research Database (Denmark)

    Codello, A.; Safari, M.; Vacca, G. P.

    2017-01-01

    We study the Blume-Capel universality class in d=103-ϵ dimensions. The renormalization group flow is extracted by looking at poles in fractional dimension of three loop diagrams using MS. The theory is the only nontrivial universality class which admits an expansion to three dimensions with ϵ=13<...

  17. Robust dimensions of anxiety sensitivity : Development and initial validation of the anxiety sensitivity index-3

    NARCIS (Netherlands)

    Taylor, Steven; Zvolensky, Michael J.; Cox, Brian J.; Deacon, Brett; Heimberg, Richard G.; Ledley, Deborah Roth; Abramowitz, Jonathan S.; Holaway, Robert M.; Sandin, Bonifacio; Stewart, Sherry H.; Coles, Meredith; Eng, Winnie; Daly, Erin S.; Arrindell, Willem A.; Bouvard, Martine; Cardenas, Samuel Jurado

    Accumulating evidence suggests that anxiety sensitivity (fear of arousal-related sensations) plays an important role in many clinical conditions, particularly anxiety disorders. Research has increasingly focused on how the basic dimensions of anxiety sensitivity are related to various forms of

  18. Stress tensor for GYM in 4p dimensions and viability of GYM-Higgs in four dimensions

    International Nuclear Information System (INIS)

    O'Brien, G.M.; Tchrakian, D.H.

    1985-01-01

    We present the stress tensor for GYM systems in 4p dimensions and give a method to compute this tensor density for a GYM-Higgs system in four dimensions. This computation is made explicitly for the first such system and its viability in four Euclidean dimensions is checked. The possibility of extracting phenomenological models from this system is analysed briefly. (Author)

  19. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    International Nuclear Information System (INIS)

    Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam

    2013-01-01

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure

  20. Relativistic many-body calculation of energies, transition rates, lifetimes, and multipole polarizabilities in Cs-like La iii

    Science.gov (United States)

    Safronova, U. I.; Safronova, M. S.

    2014-05-01

    Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

  1. The Relationship between Spiritual Health and other Dimensions of Health: Presentation of a Model

    Directory of Open Access Journals (Sweden)

    Akram Heidari

    2016-06-01

    Full Text Available Attitudes to humankind will have different effects on health service delivery. Health might used to be intended to provide physical health in the past; today, however, many researchers and clinicians consider the concept health to be beyond physical health. In support of this claim, it is enough to indicate that the bio-psycho-social model has for years been held by scientific communities to be a fully admitted model. However, the missing ring in this model, as suggested by many, is the spiritual health. In recent years, the relationship between spirituality and clinical interventions with a comprehensive focus on health has been under increasing scrutiny. Although different models have been presented for investigation of the relationship between spiritual health and other dimensions, the fundamental challenge in this regard is the actual place of spiritual health compared with other dimensions. In this article, attempts are made to address the position and weight of spiritual health from the Islam’s point of view.

  2. An assessment of the ethical dimensions that impact on corruption

    OpenAIRE

    Napal, Geetanee

    2006-01-01

    This paper addresses the ethical dimensions of corruption. Corruption in the form of bribery is widespread in the developing world and this includes Mauritius. Corruption assessed in absolute terms is unethical. However, if one were to use relativistic views, one would make allowances for ‘mild’ forms of corruption like seeking favours to obtain unwarranted advantages or paying bribes in the form of ‘speed-up gratuities’. Our study shows that in many contexts, acts of corruption are acc...

  3. Electrons, pseudoparticles, and quasiparticles in the one-dimensional many-electron problem

    International Nuclear Information System (INIS)

    Carmelo, J.M.; Castro Neto, A.H.

    1996-01-01

    We generalize the concept of quasiparticle for one-dimensional (1D) interacting electronic systems. The ↑ and ↓ quasiparticles recombine the pseudoparticle colors c and s (charge and spin at zero-magnetic field) and are constituted by one many-pseudoparticle topological-momentum shift and one or two pseudoparticles. These excitations cannot be separated. We consider the case of the Hubbard chain. We show that the low-energy electron-quasiparticle transformation has a singular character which justifies the perturbative and nonperturbative nature of the quantum problem in the pseudoparticle and electronic basis, respectively. This follows from the absence of zero-energy electron-quasiparticle overlap in 1D. The existence of Fermi-surface quasiparticles both in 1D and three dimensional (3D) many-electron systems suggests their existence in quantum liquids in dimensions 1 1 or whether it becomes finite as soon as we leave 1D remains an unsolved question. copyright 1996 The American Physical Society

  4. Computer Simulation of Replaceable Many Sider Plates (RMSP) with Enhanced Chip-Breaking Characteristics

    OpenAIRE

    Korchuganova, Mariya Anatolievna; Syrbakov, Andrey Pavlovich; Chernysheva, Tatiana Yurievna; Ivanov, G.; Gnedasch, E.

    2016-01-01

    Out of all common chip curling methods, a special tool face form has become the most widespread which is developed either by means of grinding or by means of profile pressing in the production process of RMSP. Currently, over 15 large tool manufacturers produce tools using instrument materials of over 500 brands. To this, we must add a large variety of tool face geometries, which purpose includes the control over form and dimensions of the chip. Taking into account all the many processed mate...

  5. Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P.A. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,1(2), Leninskie gory, Moscow 119991 (Russian Federation); Chetyrkin, K.G.; Kühn, J.H. [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede-Straße 1, 726128 Karlsruhe (Germany)

    2017-04-20

    We extend the O(α{sub s}{sup 5}) result of the analytic calculation of the quark mass anomalous dimension in pQCD https://www.doi.org/10.1007/JHEP10(2014)076 to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.

  6. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...

  7. CREDIBILITY OF WEBSITES THROUGH FACETS AND DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Oana ȚUGULEA

    2017-05-01

    Full Text Available This study aims to investigate important aspects to concern on when building a commercial presentation website, in order to increase the credibility of the certain categories of a presentation website. Factor analysis was used in order to identify the dimensions of each category. The categories and resulted dimensions discussed were: “image” – with the following dimensions: Projected image, Specialist, Advert and Coherence, “relationship” – with the following dimensions: Bi-directional communication and Contact information, “product presentation” – with the following dimensions: In-depth description and Variety and “site functionality” – with the following dimensions: Usefulness, Official relationship, Complete communication, Exterior communication, Information format and References.

  8. VERA Pin and Fuel Assembly Depletion Benchmark Calculations by McCARD and DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Monte Carlo (MC) codes have been developed and used to simulate a neutron transport since MC method was devised in the Manhattan project. Solving the neutron transport problem with the MC method is simple and straightforward to understand. Because there are few essential approximations for the 6- dimension phase of a neutron such as the location, energy, and direction in MC calculations, highly accurate solutions can be obtained through such calculations. In this work, the VERA pin and fuel assembly (FA) depletion benchmark calculations are performed to examine the depletion capability of the newly generated DeCART multi-group cross section library. To obtain the reference solutions, MC depletion calculations are conducted using McCARD. Moreover, to scrutinize the effect by stochastic uncertainty propagation, uncertainty propagation analyses are performed using a sensitivity and uncertainty (S/U) analysis method and stochastic sampling (S.S) method. It is still expensive and challenging to perform a depletion analysis by a MC code. Nevertheless, many studies and works for a MC depletion analysis have been conducted to utilize the benefits of the MC method. In this study, McCARD MC and DeCART MOC transport calculations are performed for the VERA pin and FA depletion benchmarks. The DeCART depletion calculations are conducted to examine the depletion capability of the newly generated multi-group cross section library. The DeCART depletion calculations give excellent agreement with the McCARD reference one. From the McCARD results, it is observed that the MC depletion results depend on how to split the burnup interval. First, only to quantify the effect of the stochastic uncertainty propagation at 40 DTS, the uncertainty propagation analyses are performed using the S/U and S.S. method.

  9. Extra dimensions and neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Gozdz, Marek; Kaminski, Wieslaw A.; Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect 'experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model

  10. MATHEMATICAL SOLUTIONS FOR OPTIMAL DIMENSIONING OF NUMBER AND HEIGHTS OF SOME HYDROTECHNIQUE ON TORRENTIAL FORMATION

    Directory of Open Access Journals (Sweden)

    Nicolae Petrescu

    2010-01-01

    Full Text Available This paper is intended to achieve a mathematical model for the optimal dimensioning of number and heights of somedams/thresholds during a downpour, a decrease of water flow rate being obtained and by the solid material depositionsbehind the constructions a new smaller slope of the valley that changes the torrential nature that had before theconstruction is obtained.The choice of the dam and its characteristic dimensions may be an optimization issue and the location of dams on thetorrential (rainfall aspect is dictated by the capabilities of the foundation and restraint so that the chosen solutions willhave to comply with these sites. Finally, the choice of optimal solution to limit torrential (rainfall aspect will be basedon a calculation where the number of thresholds / dams can be a variable related to this, their height properly varying.The calculation method presented is an attempt to demonstrate the multiple opportunities available to implement atechnical issue solving conditions offered by the mathematics against soil erosion, which now is currently very topicalon the environmental protection.

  11. Density functional and many-body theories of Hydrogen plasmas

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1983-11-01

    This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state

  12. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    International Nuclear Information System (INIS)

    Halverson, Thomas; Poirier, Bill

    2012-01-01

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a “weylet” basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality—the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  13. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Thomas; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)

    2012-12-14

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  14. Theoretical approaches to many-body perturbation theory and the challenges

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of many-body perturbation theory (MBPT) and its applications in nuclear physics is given. Problems regarding its application to nuclear-structure calculations are discussed and analysed. It is concluded that the usefulness of nuclear MBPT in terms of an expansion in the nuclear reaction matrix G for the calculation of effective interactions in shell-model investigations is severely challenged and restricted by the problems and uncertainties connected with this approach. New methods based on unitary transformation approaches have proven to be more accurate and reliable, particularly for light nuclei

  15. Accelerated Dimension-Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2016-10-27

    This work describes improvements by algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [H. Haario, E. Saksman, and J. Tamminen, Bernoulli, (2001), pp. 223--242] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension $d \\\\geq 1000$) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL (math kernel library) parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) with fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.

  16. Inflation from periodic extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Department of Physics, Keio University, Kanagawa 223-8522 (Japan); Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp [Department of Physics, Waseda University, Tokyo 169-8555 (Japan)

    2017-07-01

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.

  17. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  18. Gender Dimensions Framework Application

    OpenAIRE

    Rubin, D.

    2011-01-01

    This is a presentation of the The Gender Dimensions Framework (GDF). The GDF was developed to provide guidance to USAID staff and partner organizations for working with USAID projects looking at promoting equitable opportunities in agricultural value chains. The GDF contemplates four dimensions: access to and control over key productive assets (tangible and intangible); beliefs and perceptions; practices and participation, and legal frameworks. CCRA-7 (Gendered Knowledge)

  19. Supersymmetry breaking with extra dimensions

    International Nuclear Information System (INIS)

    Zwirner, Fabio

    2004-01-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)

  20. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics

    Science.gov (United States)

    Catani, Lorenzo; E Browne, Dan

    2017-07-01

    Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. Many aspects of quantum mechanics and protocols from quantum information can be reproduced in the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete. Formal rules for the update of states after measurement had not been written down, and the theory had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we remedy this, by deriving measurement update rules and extending the framework to derive models in all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of quantum mechanics with restricted states, transformations and measurements. First derived for the purpose of constructing error correcting codes, it now plays a role in many areas of quantum information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-prime. This equivalence provides new technical tools for the study of technically difficult compound-dimensional SQM.

  1. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics

    International Nuclear Information System (INIS)

    Catani, Lorenzo; Browne, Dan E

    2017-01-01

    Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. Many aspects of quantum mechanics and protocols from quantum information can be reproduced in the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete. Formal rules for the update of states after measurement had not been written down, and the theory had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we remedy this, by deriving measurement update rules and extending the framework to derive models in all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of quantum mechanics with restricted states, transformations and measurements. First derived for the purpose of constructing error correcting codes, it now plays a role in many areas of quantum information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-prime. This equivalence provides new technical tools for the study of technically difficult compound-dimensional SQM. (paper)

  2. Calcul du flux thermique a travers la liaison batiment- Sol | Diao ...

    African Journals Online (AJOL)

    In this work, we propose analytical models in two dimensions (2D) for the calculation of the thermal transfers through the connection building and ground in steady, witch we determine the linear thermal coefficient, and dynamic method. The methods used hold parameters geometrical and thermal having a great influence on ...

  3. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  4. Importance-truncated no-core shell model for fermionic many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  5. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  6. Pellet dimension checker

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1980-01-01

    A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)

  7. Can modified gravity from extra dimensions explain dark matter effects?

    International Nuclear Information System (INIS)

    Kar, S.; Bharadwaj, S.; Pal, S.

    2006-01-01

    Observations on galaxy rotation curves and X-ray profiles of galaxy clusters over several decades have shown us that there exists a need for non-luminous (dark) matter. Cosmological observations also point towards the existence of dark components of two kinds - dark matter and dark energy - which, together, seem to be most of what is there the universe. However, for several years, there has been a line of thought which proposes modified gravity as an alternative to dark matter. In this article, we show, how the effective Einstein equations which arise in the context of the currently fashionable warped braneworld models, can explain the effects of dark matter as a manifestation of the consequences of the existence of extra dimensions. Finally, in order to distinguish between the effects of material dark matter and modified gravity, we calculate gravitational lensing in our modified gravity theory and show distinct differences in the deflection angles. If confirmed with observations, our results may shed new light on the existence of extra dimensions and dark matter. (authors)

  8. A fast way for calculating longitudinal wakefields for high Q resonances

    International Nuclear Information System (INIS)

    Cheng-Yang Tan and James M Steimel

    2001-01-01

    We have come up with a way for calculating longitudinal wakefields for high Q resonances by mapping the wake functions to a two dimension vector space. Then in this space, a transformation which is basically a scale change and a rotation, allows us to calculate the new wakefield by knowing only one previous wakefield and one previous particle passage through the cavity. We will also compare this method to the brute force method which needs to know all the passages of the previous particles through the cavity

  9. Physics with large extra dimensions

    Indian Academy of Sciences (India)

    can then be accounted by the existence of large internal dimensions, in the sub- ... strongly coupled heterotic theory with one large dimension is described by a weakly ..... one additional U(1) factor corresponding to an extra 'U(1)' D-brane is ...

  10. A variational principle for the Hausdorff dimension of fractal sets

    DEFF Research Database (Denmark)

    Olsen, Lars; Cutler, Colleen D.

    1994-01-01

    Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...

  11. A subjective domestic cat (Felis silvestris catus) temperament assessment results in six independent dimensions.

    Science.gov (United States)

    Ha, Daniel; Ha, James

    2017-08-01

    The study of personality or temperament is well developed in many species, but in domestic cats (Felis silvestris catus) it has lagged behind. We applied one common methodology, subjective surveys, performed by their owners, to investigate the dimensions of cat temperament. To do this, we developed an eighteen question survey covering common behavioral traits of cats, and had the evaluators rank their cat on a seven point Likert scale for trait. The responses were analyzed with factor analysis, and resulted in six significant dimensions of temperament across the 251 surveys. The six dimensions, in order of importance, are: Cat Social, Active, Human Nonsocial, Human Aggressive, and Intense. Supplemental questions were also included in all the surveys, and MANOVA analysis of these showed that outdoor usage, feeding style (ad-lib vs. meal fed), living with other cats, sex, duration of ownership, and previous history as a stray all had effects on at least one of the dimensions of cat temperament. Future work is clearly needed to fully validate our model and to further investigate our findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Origin of Everything and the 21 Dimensions of the Universe

    Science.gov (United States)

    Loev, Mark

    2009-03-01

    The Dimensions of the Universe correspond with the Dimensions of the human body. The emotion that is a positive for every dimension is Love. The negative emotion that effects each dimension are listed. All seven negative emotions effect Peace, Love and Happiness. 21st Dimension: Happiness Groin & Heart 20th Dimension: Love Groin & Heart 19th Dimension: Peace Groin & heart 18th Dimension: Imagination Wave Eyes Anger 17th Dimension: Z Wave / Closed Birth 16th Dimension: Electromagnetic Wave Ears Anger 15th Dimension: Universal Wave Skin Worry 14th Dimension: Lover Wave Blood Hate 13th Dimension: Disposal Wave Buttocks Fear 12th Dimension: Builder Wave Hands Hate 11th Dimension: Energy Wave Arms Fear 10th Dimension: Time Wave Brain Pessimism 9th Dimension: Gravity Wave Legs Fear 8th Dimension: Sweet Wave Pancreas Fear 7th Dimension: File Wave Left Lung Fear 6th Dimension: Breathing Wave Right Lung Fear 5th Dimension: Digestive Wave Stomach Fear 4th Dimension: Swab Wave Liver Guilt 3rd Dimension: Space Wave Face Sadness 2nd Dimension: Line Wave Mouth Revenge 1st Dimension: Dot Wave Nose Sadness The seven deadly sins correspond: Anger Hate Sadness Fear Worry Pessimism Revenge Note: Guilt is fear

  13. Dynamic simulations of many-body electrostatic self-assembly

    Science.gov (United States)

    Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.

    2018-03-01

    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.

  14. Saliency of social comparison dimensions

    NARCIS (Netherlands)

    Kuyper, H.

    2007-01-01

    The present article discusses a theory of the saliency of social comparison dimensions and presents the results of an experiment about the effects of two different experimental situations on the saliency of exterior, task-related and socio-emotional dimensions. Saliency was operationalized with a

  15. Anna Mani

    Indian Academy of Sciences (India)

    Srimath

    National Congress adopted complete independence as its goal, Anna Mani became increasingly drawn to nationalist ... college, Anna Mani obtained a scholarship to do research in physics at the Indian Institute of. Science. ... Anna Mani returned to Independent India in 1948, and she joined the Indian Meteorological.

  16. Reduced dimension rovibrational variational calculations of the S{sub 1} state of C{sub 2}H{sub 2}. II. The S{sub 1} rovibrational manifold and the effects of isomerization

    Energy Technology Data Exchange (ETDEWEB)

    Changala, P. Bryan, E-mail: bryan.changala@colorado.edu; Baraban, Joshua H.; Field, Robert W. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Merer, Anthony J. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)

    2014-01-14

    Reduced dimension variational calculations have been performed for the rovibrational level structure of the S{sub 1} state of acetylene. The state exhibits an unusually complicated level structure, for various reasons. First, the potential energy surface has two accessible conformers, trans and cis. The cis conformer lies about 2700 cm{sup −1} above the trans, and the barrier to cis-trans isomerization lies about 5000 cm{sup −1} above the trans minimum. The trans vibrations ν{sub 4} (torsion) and ν{sub 6} (asym. bend) interact very strongly by Darling-Dennison and Coriolis resonances, such that their combination levels and overtones form polyads with unexpected structures. Both conformers exhibit very large x{sub 36} cross-anharmonicity since the pathway to isomerization is a combination of ν{sub 6} and ν{sub 3} (sym. bend). Near the isomerization barrier, the vibrational levels show an even-odd K-staggering of their rotational levels as a result of quantum mechanical tunneling through the barrier. The present calculations address all of these complications, and reproduce the observed K-structures of the bending and C–C stretching levels with good qualitative accuracy. It is expected that they will assist with the assignment of the irregular patterns near the isomerization barrier.

  17. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Science.gov (United States)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  18. Some polarization properties of many-fermion systems for N-dimensional worlds in the framework of self-consistent renormalization

    International Nuclear Information System (INIS)

    Kucheryavy, V.I.

    1997-01-01

    Using the self-consistent renormalization we calculate five types of quantities (having the mass anisotropy in general) associated with the canonical Ward identities and reduction identities for two-point chronological fermion current correlators which describe most general polarization properties of fermionic sector for all n-dimensional quantum field theories incorporating fermions with both degenerate and nondegenerate fermion mass spectrum. The analysis of the vector and axial-vector Ward identities and the reduction ones for regular values of these quantities is carried out. The effective formulae for nontrivial quantum corrections (NQC) to the canonical Ward identities are obtained for any space-time dimension. The properties of the NQC are investigated in detail. The emphasis on the space-time dimension and the signature dependence has been made. Particular properties of the two-dimensional words are pointed out

  19. The scaling dimension of low lying Dirac eigenmodes and of the topological charge density

    CERN Document Server

    Aubin, C.; Gottlieb, Steven; Gregory, E.B.; Heller, Urs M.; Hetrick, J.E.; Osborn, J.; Sugar, R.; Toussaint, D.; de Forcrand, Ph.; Jahn, Oliver

    2005-01-01

    As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.

  20. Application of nomograms to calculate radiography parameters

    International Nuclear Information System (INIS)

    Voronin, S.A.; Orlov, K.P.; Petukhov, V.I.; Khomchenkov, Yu.F.; Meshalkin, I.A.; Grachev, A.V.; Akopov, V.'S.; Majorov, A.N.

    1979-01-01

    The method of calculation of radiography parameters with the help of nomograms usable for practical application under laboratory and industrial conditions, is proposed. Nomograms are developed for determining the following parameters: relative sensitivity, general non-definition of image, permissible difference of blackening density between the centre and edge of the picture (ΔD), picture contrast, focus distance, item thickness, radiation-physical parameter, dose build up factor, groove dimension and error. An experimental test has been carried out for evaluating the results, obtained with nomograms. Steel items from 25 to 79 mm thick have been subjected to testing 191 Ir has been used as a source. Comparison of calculation and experimental results has shown the discrepancy in sensitivity values, caused by ΔDsub(min) apriori index and the error, inherent in graphical plotting on a nomogram

  1. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    accident conditions are taken into consideration. The parameters considered in the calculations are the main body metallic walls width, the primary lid bottom flange and the body welds. The guidelines of the ASME Code and the recommendations of the ORNL Handbook ORNL/M-5003 were followed in this dimensioning. (author)

  2. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  3. Conformal dimension theory and application

    CERN Document Server

    Mackay, John M

    2010-01-01

    Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...

  4. The search for extra dimensions

    International Nuclear Information System (INIS)

    Abel, Steven; March-Russell, John

    2000-01-01

    The possibility of extra dimensions, beyond the three dimensions of space of our everyday experience, sometimes crops up as a convenient, if rather vague, plot in science fiction. In science, however, the idea of extra dimensions has a rich history, dating back at least as far as the 1920s. Recently there has been a remarkable renaissance in this area due to the work of a number of theoretical physicists. It now seems possible that we, the Earth and, indeed, the entire visible universe are stuck on a membrane in a higher-dimensional space, like dust particles that are trapped on a soap bubble. In this article the authors look at the major issues behind this new development. Why, for example, don't we see these extra dimensions? If they exist, how can we detect them? And perhaps the trickiest question of all: how did this fanciful idea come to be considered in the first place? (U.K.)

  5. Critical dimension and pattern size enhancement using pre-strained lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jian-Wei [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Yang, Chung-Yuan [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Lo, Cheng-Yao, E-mail: chengyao@mx.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China)

    2014-10-13

    This paper proposes a non-wavelength-shortening-related critical dimension and pattern size reduction solution for the integrated circuit industry that entails generating strain on the substrate prior to lithography. Pattern size reduction of up to 49% was achieved regardless of shape, location, and size on the xy plane, and complete theoretical calculations and process steps are described in this paper. This technique can be applied to enhance pattern resolution by employing materials and process parameters already in use and, thus, to enhance the capability of outdated lithography facilities, enabling them to particularly support the manufacturing of flexible electronic devices with polymer substrates.

  6. On the secondly quantized theory of the many-electron atom

    International Nuclear Information System (INIS)

    Gaigalas, Gediminas; Rudzikas, Zenonas

    1996-01-01

    The traditional theory of many-electron atoms and ions is based on the coefficients of fractional parentage and matrix elements of tensorial operators, composed of unit tensors. The calculation of spin-angular coefficients of radial integrals appearing in the expressions of matrix elements of arbitrary physical operators of atomic quantities has two main disadvantages: (i) the numerical codes for the calculation of spin-angular coefficients are usually very time consuming; (ii) f-shells are often omitted from programs for matrix element calculations since the tables for their coefficients of fractional parentage are very extensive. The authors assume that a series of difficulties persisting in the traditional approach to the calculation of spin-angular parts of matrix elements can be avoided by using this secondly quantized methodology, based on angular momentum theory, on the concept of the irreducible tensorial sets, on a generalized graphical method, on quasispin and on the reduced coefficients of fractional parentage. (author)

  7. A method for calculation of dose per unit concentration values for aquatic biota

    International Nuclear Information System (INIS)

    Batlle, J Vives i; Jones, S R; Gomez-Ros, J M

    2004-01-01

    A dose per unit concentration database has been generated for application to ecosystem assessments within the FASSET framework. Organisms are represented by ellipsoids of appropriate dimensions, and the proportion of radiation absorbed within the organisms is calculated using a numerical method implemented in a series of spreadsheet-based programs. Energy-dependent absorbed fraction functions have been derived for calculating the total dose per unit concentration of radionuclides present in biota or in the media they inhabit. All radionuclides and reference organism dimensions defined within FASSET for marine and freshwater ecosystems are included. The methodology has been validated against more complex dosimetric models and compared with human dosimetry based on ICRP 72. Ecosystem assessments for aquatic biota within the FASSET framework can now be performed simply, once radionuclide concentrations in target organisms are known, either directly or indirectly by deduction from radionuclide concentrations in the surrounding medium

  8. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  9. 1/ r potential in higher dimensions

    Science.gov (United States)

    Chakraborty, Sumanta; Dadhich, Naresh

    2018-01-01

    In Einstein gravity, gravitational potential goes as 1/r^{d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as 1/r^{α }, with α =(d-2m-1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by d=3m+1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m+1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.

  10. Variations in rest vertical dimension: effects of standing posture in edentulous patients.

    Science.gov (United States)

    Makzoume, Joseph E

    2007-01-01

    The orientation of a patient's head changes, depending on whether he or she is sitting or standing in a relaxed upright position. An edentulous patient's vertical dimension at rest may show variations that can result in an inaccurate determination of his or her occlusal vertical dimension. This study recorded the rest vertical dimension (RVD) established among 60 totally edentulous subjects who were standing in the position of greatest comfort (self-balance position) and compared it with the patients' RVD when they were seated in a relaxed upright position, with the Frankfort Plane parallel to the horizontal. The RVD was measured (in mm) between two dots located on the midline of the face. Two measurements were made: one when the patient was seated upright and relaxed (with the Frankfort Plane parallel to the horizontal) with no head support, and the other when the patient was standing relaxed on both feet in a self-balance position. Five alternated measurements were made for each subject in each position. A mean RVD was calculated for each subject in each body posture and the mean values from both positions were compared. Statistical analysis was performed using Student's t-test (alpha = 0.05). No significant differences were noted between the RVD of the seated and standing positions (P = 0.67).

  11. Practical Calculation of Thermal Deformation and Manufacture Error uin Surface Grinding

    Institute of Scientific and Technical Information of China (English)

    周里群; 李玉平

    2002-01-01

    The paper submits a method to calculate thermal deformation and manufacture error in surface grinding.The author established a simplified temperature field model.and derived the thermal deformaiton of the ground workpiece,It is found that there exists not only a upwarp thermal deformation,but also a parallel expansion thermal deformation.A upwarp thermal deformation causes a concave shape error on the profile of the workpiece,and a parallel expansion thermal deformation causes a dimension error in height.The calculations of examples are given and compared with presented experiment data.

  12. Estimating the level of dynamical noise in time series by using fractal dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sase, Takumi, E-mail: sase@sat.t.u-tokyo.ac.jp [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Ramírez, Jonatán Peña [CONACYT Research Fellow, Center for Scientific Research and Higher Education at Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California (Mexico); Kitajo, Keiichi [BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Aihara, Kazuyuki; Hirata, Yoshito [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan)

    2016-03-11

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  13. Estimating the level of dynamical noise in time series by using fractal dimensions

    International Nuclear Information System (INIS)

    Sase, Takumi; Ramírez, Jonatán Peña; Kitajo, Keiichi; Aihara, Kazuyuki; Hirata, Yoshito

    2016-01-01

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  14. The Hidden Dimensions of Art.

    Science.gov (United States)

    Klein, Bruce

    1982-01-01

    Describes an art program for preschool children that includes four social dimensions of art in order to heighten aesthetic perception, improve artistic creativity, and nurture self-esteem. The social dimensions are children having power, children acting on norms legitimate in their own eyes, children functioning "nonestrangedly," and children…

  15. Non-adiabatic generator-coordinate calculation of H2+

    International Nuclear Information System (INIS)

    Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de

    1982-10-01

    A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt

  16. Calculational approach to ionization spectrometer design

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1974-01-01

    Many factors contribute to the design and overall performance of an ionization spectrometer. These factors include the conditions under which the spectrometer is to be used, the required performance, the development of the hadronic and electromagnetic cascades, leakage and binding energies, saturation effects of densely ionizing particles, nonuniform light collection, sampling fluctuations, etc. The calculational procedures developed at Oak Ridge National Laboratory that have been applied to many spectrometer designs and that include many of the influencing factors in spectrometer design are discussed. The incident-particle types which can be considered with some generality are protons, neutrons, pions, muons, electrons, positrons, and gamma rays. Charged kaons can also be considered but with less generality. The incident-particle energy range can extend into the hundreds of GeV range. The calculations have been verified by comparison with experimental data but only up to approximately 30 GeV. Some comparisons with experimental data are also discussed and presented so that the flexibility of the calculational methods can be demonstrated. (U.S.)

  17. Fractal Dimension Analysis of Texture Formation of Whey Protein-Based Foods

    Directory of Open Access Journals (Sweden)

    Robi Andoyo

    2018-01-01

    Full Text Available Whey protein in the form of isolate or concentrate is widely used in food industries due to its functionality to form gel under certain condition and its nutritive value. Controlling or manipulating the formation of gel aggregates is used often to evaluate food texture. Many researchers made use of fractal analysis that provides the quantitative data (i.e., fractal dimension for fundamentally and rationally analyzing and designing whey protein-based food texture. This quantitative analysis is also done to better understand how the texture of whey protein-based food is formed. Two methods for fractal analysis were discussed in this review: image analysis (microscopy and rheology. These methods, however, have several limitations which greatly affect the accuracy of both fractal dimension values and types of aggregation obtained. This review therefore also discussed problem encountered and ways to reduce the potential errors during fractal analysis of each method.

  18. Simultaneous description of conductance and thermopower in single-molecule junctions from many-body ab initio calculations

    DEFF Research Database (Denmark)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...

  19. Spectral dimension in causal set quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Mizera, Sebastian

    2014-01-01

    We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)

  20. Some calculations for the RHIC kicker

    International Nuclear Information System (INIS)

    Claus, J.

    1996-12-01

    This paper starts with a brief discussion of the design of the RHIC injection kicker magnets which calls for longitudinal and capacitive sections of the same order as the aperture, not much larger nor much smaller. This makes accurate analytical prediction of their behavior very difficult. In order to gain at least some qualitative insight of that behavior, the author preformed calculations which are based on the actual dimensions of the kickers but which neglect the end effects of the individual sections. The effects of the sectionalization are therefore exaggerated relative to reality in the results

  1. FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    S. Mozaffari

    2014-09-01

    Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.

  2. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  3. Escaping in extra dimensions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Recent progress in the formulation of fundamental theories for a Universe with more than 4 dimensions will be reviewed. Particular emphasis will be given to theories predicting the existence of extra dimensions at distance scales within the reach of current or forthcoming experiments. The phenomenological implications of these theories, ranging from detectable deviations from Newton's law at sub-millimeter scales, to phenomena of cosmological and astrophysical interest, as well as to high-energy laboratory experiments, will be discussed.

  4. Evolution of the pion wave function in the scalar /phi/63 model: two-loop calculation

    International Nuclear Information System (INIS)

    Mikhailov, S.V.; Radyushkin, A.V.

    1986-01-01

    The authors study the structure of the contributions that violate the multiplicative renormalizability of the conformal operators in the model based on the /phi/ 6 3 theory in space-time of six dimensions. This theory has a number of features in common with QCD in four dimensions. The basic propositions are presented and the key elements of the calculation are demonstrated. The connection between the kernels for exclusive and inclusive processes are discused and the structure of the two-loop evolution kernel V(x,y) and the solution of the evolution equation are discussed. Main conclusions are formulated and the results of the calculations for concrete diagrams are deferred to in Appendix A. Formulas for the transition from the exclusive to the inclusive kernels are presented in Appendix B

  5. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue

    International Nuclear Information System (INIS)

    Flueraru, C; Mao, Y; Chang, S; Popescu, D P; Sowa, M G

    2010-01-01

    Optical coherence tomography (OCT) images of left-descending coronary tissues harvested from three porcine specimens were acquired with a home-build swept-source OCT setup. Despite the fact that OCT is capable of acquiring high resolution circumferential images of vessels, many distinct histological features of a vessel have comparable optical properties leading to poor contrast in OCT images. Two classification methods were tested in this report for the purpose of enhancing contrast between soft-tissue components of porcine coronary vessels. One method involved analyzing the attenuation of the OCT signal as a function of light penetration into the tissue. We demonstrated that by analyzing the signal attenuation in this manner we were able to differentiate two media sub-layers with different orientations of the smooth muscle cells. The other classification method used in our study was fractal analysis. Fractal analysis was implemented in a box-counting (fractal dimension) image-processing code and was used as a tool to differentiate and quantify variations in tissue texture at various locations in the OCT images. The calculated average fractal dimensions had different values in distinct regions of interest (ROI) within the imaged coronary samples. When compared to the results obtained by using the attenuation of the OCT signal, the method of fractal analysis demonstrated better classification potential for distinguishing amongst the tissue ROI.

  6. Calculating trajectories for atoms in near-resonant lightfields

    International Nuclear Information System (INIS)

    Scholten, R.E.; O' Kane, T.J.; Mackin, T.R.; Hunt, T.A.; Farrell, P.M.

    1999-01-01

    We review several methods for calculating the time development of the internal state and the external motion of atoms in near-resonant light fields, with emphasis on studying the focussing of atomic beams into microscopic and potentially nanoscopic patterns. Three different approaches are considered: two-level semiclassical, multi-level semiclassical, and the Monte Carlo wavefunction method. The two-level semiclassical technique of McClelland and Scheinfein (1991) and McClelland (1995) is extended to three dimensions, and used to calculate the trajectories of atoms and the imaging properties of a simple lens formed from a near-resonant travelling TEM 01 mode laser. The model is then extended to multi-level atoms, where we calculate the density matrix for the internal state of a sample of thermal atoms in a standing wave, and show how cooling processes can be simulated. Finally, we use the Monte Carlo wavefunction method to calculate the internal state of the atom, and compare the results and required computation time to those of the multi-level semiclassical technique. (authors)

  7. The International, Global and Intercultural Dimensions in Schools: An Analysis of Four Internationalised Israeli Schools

    Science.gov (United States)

    Yemini, Miri; Fulop, Alexandra

    2015-01-01

    Many educational systems worldwide are making substantial efforts to integrate an international dimension into local schools, fostering significant changes in the processes of instruction and learning as well as transformations at pedagogical and organisational levels. In this paper, we analyse data collected in four schools in Israel that the…

  8. Many-body approaches to nuclear physics

    International Nuclear Information System (INIS)

    Hjorth-Jensen, M.

    1993-10-01

    This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs

  9. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oguma

    Full Text Available OBJECTIVES: (a To assess the effects of computed tomography (CT scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b to investigate the limitations of accurate quantitative assessment of small airways using CT images. METHODS: An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai, and the wall area percentage (WA%. To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. RESULTS: Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001, and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. CONCLUSIONS: The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner.

  10. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  11. Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions

    International Nuclear Information System (INIS)

    Bork, L.V.; Kazakov, D.I.; Kompaniets, M.V.; Tolkachev, D.M.; Vlasenko, D.E.

    2015-01-01

    The main aim of this paper is to study the scattering amplitudes in gauge field theories with maximal supersymmetry in dimensions D=6,8 and 10. We perform a systematic study of the leading ultraviolet divergences using the spinor helicity and on-shell momentum superspace framework. In D=6 the first divergences start at 3 loops and we calculate them up to 5 loops, in D=8,10 the first divergences start at 1 loop and we calculate them up to 4 loops. The leading divergences in a given order are the polynomials of Mandelstam variables. To be on the safe side, we check our analytical calculations by numerical ones applying the alpha-representation and the dedicated routines. Then we derive an analog of the RG equations for the leading pole that allows us to get the recursive relations and construct the generating procedure to obtain the polynomials at any order of perturbation theory (PT). At last, we make an attempt to sum the PT series and derive the differential equation for the infinite sum. This equation possesses a fixed point which might be stable or unstable depending on the kinematics. Some consequences of these fixed points are discussed.

  12. The calculation of warping spools of warp-knitting machines

    Directory of Open Access Journals (Sweden)

    Vitaliy V. Chaban

    2014-12-01

    Full Text Available The paper is devoted to the development of scientific bases of the knitting machine design, in particular, to the calculation of warping spools of warp-knitting machines. The method of calculating the operating parameters of warping spools and mode of winding is offered. A formula that is obtained allows to define relationship between the parameters of the threads wound on a warping spool, their pull, structural dimensions of spool barrel and the diameter of spooling. With the given spool design and the given value of permissible tension of the material of its barrel, the offered formula allows to determine the maximum tension of the threads in the process of their winding on a spool. By this formula the safe diameter of winding the threads onto the spool can be calculated at a given pull of the threads during winding.

  13. Supersymmetric many-body systems from partial symmetries — integrability, localization and scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Pramod [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); Rey, Soo-Jong [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); School of Physics and Astronomy & Center for Theoretical Physics, Seoul National University,Seoul 06544 (Korea, Republic of); Department of Basic Sciences, University of Science and Technology, Daejeon 34113 (Korea, Republic of); Teixeira, Daniel; Trancanelli, Diego [Institute of Physics, University of São Paulo, 05314-970 São Paulo (Brazil)

    2017-05-25

    Partial symmetries are described by generalized group structures known as symmetric inverse semigroups. We use the algebras arising from these structures to realize supersymmetry in (0+1) dimensions and to build many-body quantum systems on a chain. This construction consists in associating appropriate supercharges to chain sites, in analogy to what is done in spin chains. For simple enough choices of supercharges, we show that the resulting states have a finite non-zero Witten index, which is invariant under perturbations, therefore defining supersymmetric phases of matter protected by the index. The Hamiltonians we obtain are integrable and display a spectrum containing both product and entangled states. By introducing disorder and studying the out-of-time-ordered correlators (OTOC), we find that these systems are in the many-body localized phase and do not thermalize. Finally, we reformulate a theorem relating the growth of the second Rényi entropy to the OTOC on a thermal state in terms of partial symmetries.

  14. Cosmology in theories with extra dimensions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1985-01-01

    Some possible cosmological effects of the existence of extra compact dimensions are discussed. Particular attention is given to the possibility that extra dimensions might naturally lead to an inflationary Universe scenario

  15. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  16. Comparison of Two-Block Decomposition Method and Chebyshev Rational Approximation Method for Depletion Calculation

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2016-01-01

    The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.

  17. Comparison of Two-Block Decomposition Method and Chebyshev Rational Approximation Method for Depletion Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Cho, Nam Zin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.

  18. 1/r potential in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India); IUCAA, Pune (India); Dadhich, Naresh [IUCAA, Pune (India); Center for Theoretical Physics, New Delhi (India)

    2018-01-15

    In Einstein gravity, gravitational potential goes as 1/r{sup d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1/r form in four dimensions. On the other hand, it goes as 1/r{sup α}, with α = (d - 2m - 1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1/r potential for the non-compactified dimension spectrum given by d = 3m + 1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m + 1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions. (orig.)

  19. Computational applications of the many-interacting-worlds interpretation of quantum mechanics.

    Science.gov (United States)

    Sturniolo, Simone

    2018-05-01

    While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.

  20. Complex numbers in n dimensions

    CERN Document Server

    Olariu, Silviu

    2002-01-01

    Two distinct systems of hypercomplex numbers in n dimensions are introduced in this book, for which the multiplication is associative and commutative, and which are rich enough in properties such that exponential and trigonometric forms exist and the concepts of analytic n-complex function, contour integration and residue can be defined. The first type of hypercomplex numbers, called polar hypercomplex numbers, is characterized by the presence in an even number of dimensions greater or equal to 4 of two polar axes, and by the presence in an odd number of dimensions of one polar axis. The other type of hypercomplex numbers exists as a distinct entity only when the number of dimensions n of the space is even, and since the position of a point is specified with the aid of n/2-1 planar angles, these numbers have been called planar hypercomplex numbers. The development of the concept of analytic functions of hypercomplex variables was rendered possible by the existence of an exponential form of the n-complex numbe...

  1. Dynamical calculations for RHEED intensity oscillations

    Science.gov (United States)

    Daniluk, Andrzej

    2005-03-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and

  2. Decomposition by tree dimension in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2015-01-01

    In this paper we investigate the use of the concept of tree dimension in Horn clause analysis and verification. The dimension of a tree is a measure of its non-linearity - for example a list of any length has dimension zero while a complete binary tree has dimension equal to its height. We apply ...

  3. Lovelock inflation and the number of large dimensions

    CERN Document Server

    Ferrer, Francesc

    2007-01-01

    We discuss an inflationary scenario based on Lovelock terms. These higher order curvature terms can lead to inflation when there are more than three spatial dimensions. Inflation will end if the extra dimensions are stabilised, so that at most three dimensions are free to expand. This relates graceful exit to the number of large dimensions.

  4. Two level calculation of assembly neutronic data libraries; Schema de calcul de bibliotheques a deux niveaux

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, M

    1998-09-01

    The neutronic modeling of a nuclear reactor core requires 2 steps. The first step that is called transport calculation, is an accurate modeling of each type of assemblies put in a simple configuration. APOLLO2, a French neutronic code is used. This step allows the constitution of assembly data libraries. The second step represents the computing of the whole core by the diffusion theory and by using the data libraries defined in the first step. This work is dedicated to the improvement of the first step by allowing both a 172 group energy meshing and a two-dimension spatial processing. (A.C.) 7 refs.

  5. The fourth-order non-linear sigma models and asymptotic freedom in four dimensions

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Ketov, S.V.

    1991-01-01

    Starting with the most general Lagrangian of the fourth-order non-linear sigma model in four space-time dimensions, we calculate the one-loop, on-shell ultra-violet-divergent part of the effective action. The formalism is based on the background field method and the generalised Schwinger-De Witt technique. The multiplicatively renormalisable case is investigated in some detail. The renormalisation group equations are obtained, and the conditions for a realisation of asymptotic freedom are considered. (orig.)

  6. Massively Parallel Dimension Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2015-01-01

    parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non

  7. Simulation of the measure of the microparticle size distribution in two dimensions

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Silva Neto, P.P. da

    1987-01-01

    For the nuclear ceramic industry, the determination of the porous size distribution is very important to predict the dimensional thermal stability of uranium dioxide sintered pellets. The determination of the grain size distribution is still very important to predict the operation behavior of these pellets, as well as to control the fabrication process. The Saltykov method is commonly used to determine the microparticles size distribution. A simulation for two-dimensions, using this method and the size distribution of cords to calculate the area distribution [pt

  8. Relationship of Inglehart's and Schwartz's value dimensions revisited.

    Science.gov (United States)

    Dobewall, Henrik; Strack, Micha

    2014-08-01

    This study examines the relationship between Inglehart's and Schwartz's value dimensions-both at the individual and the country levels. By rotating one set of items towards the other, we show that these value dimensions have more in common than previously reported. The ranking of countries (N = 47) based on Schwartz's Embeddedness--Autonomy and the Survival--Self-Expression dimensions reached a maximum of similarity, r = .82, after rotating Inglehart's factor scores 27 degrees clockwise. The correlation between the other pair of dimensions (Schwartz's Hierarchy-Mastery--Egalitarianism-Harmony and Inglehart's Traditional--Secular-Rational values) was near zero before and after rotation. At the individual level (N = 46,444), positive correlations were found for Schwartz's Conservation--Openness dimension with both of Inglehart's dimensions (Survival--Self-Expression and Traditional--Secular-Rational values). The highest correlation with this Schwartz dimension was obtained at the Secular-Rational/Self-Expression diagonal, r = .24, after rotating the factor scores 45 degrees clockwise. We conclude that Schwartz's and Inglehart's originally proposed two-dimensional value structures share one dimension at the country level and some commonality at the individual level, whereas the respective other pair of dimensions seem to be more or less unrelated. © 2013 International Union of Psychological Science.

  9. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  10. The existential dimension in general practice

    DEFF Research Database (Denmark)

    Assing Hvidt, Elisabeth; Søndergaard, Jens; Ammentorp, Jette

    2016-01-01

    Objective: The objective of this study is to identify points of agreement and disagreements among general practitioners (GPs) in Denmark concerning how the existential dimension is understood, and when and how it is integrated in the GP–patient encounter. Design: A qualitative methodology with semi......-structured focus group interviews was employed. Setting: General practice setting in Denmark. Subjects: Thirty-one GPs from two Danish regions between 38 and 68 years of age participated in seven focus group interviews. Results: Although understood to involve broad life conditions such as present and future being...... points Although integration of the existential dimension is recommended for patient care in general practice, little is known about GPs’ understanding and integration of this dimension in the GP–patient encounter. The existential dimension is understood to involve broad and universal life conditions...

  11. The existential dimension in general practice

    DEFF Research Database (Denmark)

    Assing Hvidt, Elisabeth; Søndergård, Jens; Ammentorp, Jette

    2016-01-01

    OBJECTIVE: The objective of this study is to identify points of agreement and disagreements among general practitioners (GPs) in Denmark concerning how the existential dimension is understood, and when and how it is integrated in the GP-patient encounter. DESIGN: A qualitative methodology with semi......-structured focus group interviews was employed. SETTING: General practice setting in Denmark. SUBJECTS: Thirty-one GPs from two Danish regions between 38 and 68 years of age participated in seven focus group interviews. RESULTS: Although understood to involve broad life conditions such as present and future being...... POINTS: Although integration of the existential dimension is recommended for patient care in general practice, little is known about GPs’ understanding and integration of this dimension in the GP-patient encounter. The existential dimension is understood to involve broad and universal life conditions...

  12. Evolution Of The Concept Of Dimension

    International Nuclear Information System (INIS)

    Journeau, Philippe F.

    2007-01-01

    Concepts of time elapsing 'in' a space measuring the real emerge over the centuries. But Kant refutes absolute time and defines it, with space, as forms reacting to Newtonian mechanics. Einstein and Minkowski open a 20th century where time is a dimension, a substratum of reality 'with' space rather than 'in' it. Kaluza-Klein and String theories then develop a trend of additional spatial dimensions while de Broglie and Bohm open the possiblity that form, to begin with wave, be a reality together 'with' a space-time particle. Other recent theories, such as spin networks, causal sets and twistor theory, even head to the idea of other 'systems of dimensions'. On the basis of such progresses and recent experiments the paper then considers a background independent fourfold time-form-action-space system of dimensions

  13. Surmounting the sign problem in nonrelativistic calculations: A case study with mass-imbalanced fermions

    Science.gov (United States)

    Rammelmüller, Lukas; Porter, William J.; Drut, Joaquín E.; Braun, Jens

    2017-11-01

    The calculation of the ground state and thermodynamics of mass-imbalanced Fermi systems is a challenging many-body problem. Even in one spatial dimension, analytic solutions are limited to special configurations and numerical progress with standard Monte Carlo approaches is hindered by the sign problem. The focus of the present work is on the further development of methods to study imbalanced systems in a fully nonperturbative fashion. We report our calculations of the ground-state energy of mass-imbalanced fermions using two different approaches which are also very popular in the context of the theory of the strong interaction (quantum chromodynamics, QCD): (a) the hybrid Monte Carlo algorithm with imaginary mass imbalance, followed by an analytic continuation to the real axis; and (b) the complex Langevin algorithm. We cover a range of on-site interaction strengths that includes strongly attractive as well as strongly repulsive cases which we verify with nonperturbative renormalization group methods and perturbation theory. Our findings indicate that, for strong repulsive couplings, the energy starts to flatten out, implying interesting consequences for short-range and high-frequency correlation functions. Overall, our results clearly indicate that the complex Langevin approach is very versatile and works very well for imbalanced Fermi gases with both attractive and repulsive interactions.

  14. Planning Of Drainage Channel Dimension In The Core Zone Of Muara Takus Temple

    Science.gov (United States)

    Saleh, Alfian

    2017-12-01

    Preservation of Cultural Heritage is a dynamic effort to maintain the existence of cultural heritage by protecting, developing, and utilizing the cultural heritage in the contemporary context. To protect the cultural heritage in term of conservation called protection of which the effort to prevent and overcome from damage, it needs to do destruction or obliteration through rescue, security, zoning, maintenance, and restoration of cultural heritage. The most fundamental issue is the hydrological impact of the existence of Hydroelectric Power Koto Panjang located around Muara Takus temple that could threaten the sustainability of the region. In this case, hydroelectric dam frequently causes Kampar Kanan River overflowed thus potentially floods, especially in the rainy season that could eventually submerges Muara Takus area. The total area of the region Muara Takus enshrinement is ± 94.5 hectares that are divided into two main parts. Those are the terrestrial land of ± 56.44 m², and PLTA Koto Panjang lake of ± 38.06 m². Consequently, it is necessary for drainage planning of economical dimension in the core zone of Muara Takus temple. Furthermore, from the data of the maximum rainfall of 101 mm/day obtained a discharge of rainfall of 0.38 m3/second so that this discharge of rainfall can be designed drainage channel dimension to accommodate the discharge of rainfall. From the analysis of dimension designed drainage is the size of 30 cm x 45 cm. this dimension can accommodate the discharge rainfall that is equal to 0.43 m3 / second. Regarding the finding, it can be concluded that the discharge of rainfall that occurred less than discharge calculation of dimensional analysis of drainage channel so that the size of this dimension can accommodate discharge rainfall occurs.

  15. Variational method for field theories on the lattice and the spectrum of the phi4 theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Abad, J.; Esteve, J.G.; Pacheco, A.F.

    1985-01-01

    An approximation technique to construct the low-lying energy eigenstates of any bosonic field theory on the lattice is proposed. It is based on the SLAC blocking method, after performing a finite-spin approximation to the individual degrees of freedom of the problem. General expressions for any polynomial self-interacting theory are given. Numerical results for phi 2 and phi 4 theories in 1+1 dimensions are offered; they exhibit a fast convergence rate. The complete low-lying energy spectrum of the phi 4 theory in 1+1 dimensions is calculated

  16. Bianchi identities in higher dimensions

    International Nuclear Information System (INIS)

    Pravda, V; Pravdova, A; Coley, A; Milson, R

    2004-01-01

    A higher dimensional frame formalism is developed in order to study implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes of the algebraic types III and N in arbitrary dimension n. It follows that the principal null congruence is geodesic and expands isotropically in two dimensions and does not expand in n - 4 spacelike dimensions or does not expand at all. It is shown that the existence of such principal geodesic null congruence in vacuum (together with an additional condition on twist) implies an algebraically special spacetime. We also use the Myers-Perry metric as an explicit example of a vacuum type D spacetime to show that principal geodesic null congruences in vacuum type D spacetimes do not share this property

  17. The Existential Dimension of Right

    DEFF Research Database (Denmark)

    Hartz, Emily

    2017-01-01

    for discussing the existential dimension of right by bringing central parts of Fichte’s and Arendt’s work into dialogue. By facilitating this – admittedly unusual – dialogue between Fichte and Arendt the author explicates how, for both Fichte and Arendt, the concept of right can only be adequately understood......The following article paves out the theoretical ground for a phenomenological discussion of the existential dimension of right. This refers to a dimension of right that is not captured in standard treatments of right, namely the question of whether – or how the concept of rights relates...... as referring to the existential condition of plurality and uses this insight to draw up a theoretical ground for further phenomenological analysis of right....

  18. Correlated Electrons in Reduced Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  19. Social and ethical dimensions of nanoscale science and engineering research.

    Science.gov (United States)

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.

  20. Antisocial behavior: Dimension or category(ies?

    Directory of Open Access Journals (Sweden)

    Biro Mikloš

    2008-01-01

    Full Text Available Classificatory systems (DSM-IV, ICD-10 use different criteria for defining a rather common antisocial disorder, traditionally referred as psychopathy. Most empirical studies of this phenomenon use Cleckley's operational definition that was applied and amended in Hare's revised Psychopathy Checklist (PCL-R. In modern literature, the fact that there is less than a perfect correspondence between classificatory systems and Hare's PCL-R is often cited as an indication that antisocial behavior is not confined to a distinct category of people but is rather a continuous personality dimension. In order to further elucidate the nosology of antisocial behaviors, a Psychopathy Assessment Questionnaire (PAQ based on Cleckley - Hare's criteria and consisting of 40 binary items was administered to 339 men (135 prisoners and 204 members of the general population. Four distinct clusters of respondents were identified by means of hierarchical cluster analysis: Psychopathic type (characterized by high positive scores on dimension of Unemotionality; Antisocial type (characterized by high positive scores on Social deviance dimension; Adapted type (characterized by negative scores on all dimensions; and Hyper-controlled type (characterized by extremely negative scores on dimension Social deviance accompanied with positive scores on Unemotionality dimension. Additional comparison with MMPI profiles which classified prison sample in two groups ("Psychopathic profiles" and "Non- Psychopathic profiles" shows that there is no expected compatibility between MMPI and PAQ. We conclude that Antisocial type can be treated as a distinct category, while Psychopathic type displays characteristics of dimensional distribution.