WorldWideScience

Sample records for calculating near-field pressures

  1. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  2. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  3. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2011-01-01

    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law is prese...

  4. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  5. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  6. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  7. Project-90 Near-field calculations using CALIBRE

    International Nuclear Information System (INIS)

    Worgan, K.; Robinson, P.

    1992-02-01

    A comprehensive set of near-field calculations for the Swedish Nuclear Power Inspectorates Project-90 safety assessment has been performed using the CALIBRE model. In the majority of cases considered the redox front migrates through the bentonite buffer and into the rock, where it becomes effectively immobilised. The fracture remains in a reducing state, which means that for solubility-limited nuclides, the concentration at the bentonite/fracture interface can never be greater than the reducing solubility limit. The calculations also show that significant retardation occurs for nuclides which are even moderately sorbed. The effect is less pronounced in the wider fracture and high flow cases, as the opportunity for diffusion from the fracture to the rock matrix is reduced. In contrast, the release from the near-field of poorly-sorbed nuclides which are not solubility limited is governed by the release rate from the fuel, the diffusive mass transfer resistance of the buffer, rock matrix and fracture, the initial inventories and the nuclide half-lives. In the reference case, the maximum dose potential of nuclides emerging from the near-field occur for I-129 and was 3.2 x 10 -7 Sv per canister-year, assuming the flux to be discharged directly into the wall receptor biosphere. The parameters which have the most impact on the reference base results are high flow, wide aperture and poor chemistry (i.e. high solubility limits and low sorption distribution coefficients). The effects of combining extreme values of parameters does not give results which are in proportion to their effect when applied in isolation. In the worst case variant (early canister failure high flow, wide aperture and poor chemistry) the maximum dose potential is 1.0 x 10 -4 Sv per canister-year, compared with 8.9 x 10 -6 Sv in the high flow case, 4.5 x 10 -7 in the wide aperture case, 2.3 x 10 -6 in the poor chemistry case and 3.9 x 10 -6 in the early failure, wide aperture and high flow case. (au)

  8. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  9. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  10. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  11. A comparison of inverse boundary element method and near-field acoustical holography

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....

  12. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  13. Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Czarnetzki, Uwe

    2010-01-01

    Electric field measurements at near-atmospheric pressure environments based on electric-field induced Raman scattering are applied to repetitively pulsed nanosecond discharges. The results have revealed that the peak electric field near the centre of the gap is almost independent of the applied voltage. Minimum sustainable voltage measurements suggests that, at each discharge pulse, charged particles that remain from the previous pulse serve as discharge seeds and play an important role for generation of uniform glow-like discharges.

  14. Near field studies within the SKB 91 Project

    International Nuclear Information System (INIS)

    Widen, H.; Bengtsson, A.; Grundfelt, B.

    1991-06-01

    A number of near field studies was preformed during the early part of the SKB91 project. This report summaries this work and includes: - Simulation of the steady release from the near field with different time for canister penetration. - Simulation of the release from a repository with 5300 canisters with different penetration times for different parts of the canisters due to manufacturing error, glaciations, inner over pressure and corrosion. - Calculation with a numerical model of the transient release of the instantaneously dissolvable species and the effect of different boundary conditions both at the canister/bentonite and the bentonite/rock interface. - Description of the implementation of a resistance network model for the calculation of the steady state transport resistances in the different pathways from the canisters. - Comparison of two analytical models for the calculation of the release of the instantaneously dissolvable species. (au)

  15. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  16. A line array based near field imaging technique for characterising acoustical properties of elongated targets

    NARCIS (Netherlands)

    Driessen, F.P.G.

    1995-01-01

    With near field imaging techniques the acoustical pressure waves at distances other than the recorded can be calculated. Normally, acquisition on a two dimensional plane is necessary and extrapolation is performed by a Rayleigh integral. A near field single line instead of two dimensional plane

  17. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    International Nuclear Information System (INIS)

    Kalin, J.; Petkovsek, B.; Montarnal, Ph.; Genty, A.; Deville, E.; Krivic, J.; Ratej, J.

    2011-01-01

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  18. Comparison of two numerical modelling codes for hydraulic and transport calculations in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, J., E-mail: jan.kalin@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Petkovsek, B., E-mail: borut.petkovsek@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Montarnal, Ph., E-mail: philippe.montarnal@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Genty, A., E-mail: alain.genty@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Deville, E., E-mail: estelle.deville@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Krivic, J., E-mail: jure.krivic@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia); Ratej, J., E-mail: joze.ratej@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.

  19. Nuclide release calculation in the near-field of a reference HLW repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung

    2004-01-01

    The HLW-relevant R and D program for disposal of high-level radioactive waste has been carried out at Korea Atomic Energy Research Institute (KAERI) since early 1997 in order to develop a conceptual Korea Reference Repository System for direct disposal of nuclear spent fuel by the end of 2007. A preliminary reference geologic repository concept considering such established criteria and requirements as waste and generic site characteristics in Korea was roughly envisaged in 2003 focusing on the near-field components of the repository system. According to above basic repository concept, which is similar to that of Swedish KBS-3 repository, the spent fuel is first encapsulated in corrosion resistant canisters, even though the material has not yet been determined, and then emplaced into the deposition holes surrounded by high density bentonite clay in tunnels constructed at a depth of about 500 m in a stable plutonic rock body. Not only to demonstrate how much a reference repository is safe in the generic point of view with several possible scenarios and cases associated with a preliminary repository concept by conducting calculations for nuclide release and transport in the near-field components of the repository, even though enough information has not been available that much yet, but also to show a methodology by which a generic safety assessment could be performed for further development of Korea reference repository concept, nuclide release calculation study strongly seems to be necessary

  20. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  1. Migration model for the near field

    International Nuclear Information System (INIS)

    Andersson, G.; Rasmusson, A.; Neretnieks, I.

    1982-11-01

    The near field model describes the transport of substances dissolved in the groundwater to and from a canister in which radioactive materials are stored. The migration of substances that can cause corrosion (oxidants) of the canister is described by means of a mathematical model. The model takes into account diffusion through the buffer material and water flow in the rock fractures. Two distinct transport resistances can be distinguished in this transport process. The first consists of the diffusion resistance in the buffer material and the second arises due to diffusion resistance in the flowing water in the thin fractures in the rock. The model can also be used to calculate the non-steady-state phase of the inward or outward transport of dissolved species. The model has also been used to calculate how a redox front caused by radiolytically produced oxidants moves out through the clay and into the rock. It has been shown that the migration rate of the redox front can be calculated with good accuracy by means of simple mass balance computations. The transport of radiolytically formed hydrogen away from the fuel has been calculated. When dissolved in the water, hydrogen can be transported through the clay barrier by means of diffusion without the partial pressure of the hydrogen exceeding the hydrostatic pressure. (author)

  2. Pressure algorithm for elliptic flow calculations with the PDF method

    Science.gov (United States)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  3. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  4. Model calculations of stresses and deformations in rock salt in the near field of heated borehols

    International Nuclear Information System (INIS)

    Pudewills, A.

    1984-08-01

    With the help of the finite element computer code ADINA thermally induced borehole closure and stress distribution in the salt were investigated by the example of the 'Temperature Test 3' performed in the Asse mine during which the temperature and the borehole closure were measured. The aim of the calculations has been the assessment of the capabilities of the ADINA code to solve complex thermomechanical problems and to verify the available thermomechanical material laws for rock salt. In these computations the modulus of elasticity and the creep law of salt were varied in order to assess the influence exerted by these material parameters. The computed borehole closures are in good agreement with the measured data. In second part the model computations of thermomechanical phenomena around a 300 m deep borehole are presented for a HLW repository with and without brine, respectively. The finite element investigations are carried out for a periodical and symmetrical disposal field configuration with an equivalent radius of 28 m of the cylindrical unit cell. The initial state of stress was assumed to be lithostatic. A hydrostatic fluid pressure of 12 MPa was chosen for the case of accidental flooding of the repository field shortly after emplacement of the waste canisters. The essential results of this thermomechanical analysis are the borehole closure and the stresses in rock salt in the near field of the repository borehole. (orig./HP) [de

  5. Thermodynamic Calculations of Hydrogen-Oxygen Detonation Parameters for Various Initial Pressures

    Science.gov (United States)

    Bollinger, Loren E.; Edse, Rudolph

    1961-01-01

    Composition, temperature, pressure and density behind a stable detonation wave and its propagation rate have been calculated for seven hydrogen-oxygen mixture at 1, 5, 25 and 100 atm initial pressure, and at an initial temperature of 40C. For stoichiometric mixtures that calculations also include an initial temperature of 200C. According to these calculations the detonation velocities of hydrogen-oxygen mixtures increase with increasing initial pressure, but decrease slightly when the initial temperature is raised from 40 to 200 C. The calculated detonation velocities agree satisfactorily with values determined experimentally. These values will be published in the near future.

  6. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force

    International Nuclear Information System (INIS)

    Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

    2012-01-01

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635–40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier–Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier–Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced

  7. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  8. Statistical analysis of the hydrodynamic pressure in the near field of compressible jets

    International Nuclear Information System (INIS)

    Camussi, R.; Di Marco, A.; Castelain, T.

    2017-01-01

    Highlights: • Statistical properties of pressure fluctuations retrieved through wavelet analysis • Time delay PDFs approximated by a log-normal distribution • Amplitude PDFs approximated by a Gamma distribution • Random variable PDFs weakly dependent upon position and Mach number. • A general stochastic model achieved for the distance dependency - Abstract: This paper is devoted to the statistical characterization of the pressure fluctuations measured in the near field of a compressible jet at two subsonic Mach numbers, 0.6 and 0.9. The analysis is focused on the hydrodynamic pressure measured at different distances from the jet exit and analyzed at the typical frequency associated to the Kelvin–Helmholtz instability. Statistical properties are retrieved by the application of the wavelet transform to the experimental data and the computation of the wavelet scalogram around that frequency. This procedure highlights traces of events that appear intermittently in time and have variable strength. A wavelet-based event tracking procedure has been applied providing a statistical characterization of the time delay between successive events and of their energy level. On this basis, two stochastic models are proposed and validated against the experimental data in the different flow conditions

  9. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    Science.gov (United States)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  10. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    Science.gov (United States)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  11. A compartment model for nuclide release calculation in the near-and far-field of a HLW repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Hahn, Pil Soo

    2004-01-01

    The HLW-relevant R and D program for disposal of high-level radioactive waste has been carried out at Korea Atomic Energy Research Institute (KAERI) since early 1997, from which a conceptual Korea Reference Repository System for direct disposal of nuclear spent fuel is to be introduced by the end of 2007. A preliminary reference geologic repository concept considering such established criteria and requirements as spent fuel and generic site characteristics in Korea was roughly envisaged in 2003. Not only to demonstrate how much a reference repository is safe in the generic point of view with several possible scenarios and cases associated with a preliminary repository concept by conducting calculations for nuclide release and transport in the near - and far - field components of the repository, even though sufficient information has not been available that much yet, but also to show a appropriate methodology by which both a generic and site - specific safety assessment could be performed for further in - depth development of Korea reference repository concept, nuclide release calculation study for various nuclide release cases is mandatory. To this end a similar study done and yet limited for the near - field release case has been extended to the case including far - field system by introducing some more geosphere compartments. Advective and longitudinal dispersive nuclide transports along the fracture with matrix diffusion as well as several retention mechanisms and nuclide ingrowth has been added

  12. Calculation of near-field concentrations of hydrogen sulphide

    International Nuclear Information System (INIS)

    Baynes, C.J.

    1985-03-01

    This report provides simulations of the near-field dispersion in the atmosphere of postulated releases of hydrogen sulphide gas (H2S) at a heavy water plant. The size and extent of the flammable or detonable gas clouds which might result are estimated. This work was undertaken to support experimental studies of the detonability of H2S releases. Thirty-six different cases were simulated involving the catastrophic failure of a liquid H2S storage tank or tank car of H2S. The major variables were the size of the release, the initial mixing ratio of gas with ambient air, and the wind speed. Since the gas/air mixture is initially heavier than air, an existing heavy gas mathematical model (DENZ) was used for these simulations. The model was modified to provide the outputs needed to support the experimental studies. The outputs were the mass of H2S in the cloud, the mass and volume of the cloud, its radius at ground level and its temperature, all as functions of distance and time from release. The edge of the cloud was defined by a given concentration of H2S in air. The simulations were repeated for ten different values of this parameter, ranging between 3% and 40% H2S by volume. Simulations were also performed using a simple 'top-hat' mixing model to predict the length of the flammable or detonable jet formed at the break in a pipe carrying H2S vapour under pressure. The analysis was conducted for four postulated pipe break diameters and repeated for the same ten concentration levels used in the storage tank studies. The report presents a summary of the results. The complete outputs from the 36 storage tank failure simulations are available on floppy disks in a format suitable for detailed examination using any IBM-PC compatible microcomputer system

  13. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    Science.gov (United States)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  14. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  15. Modeling of Coastal Effluent Transport: an Approach to Linking of Far-field and Near-field Models

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2008-01-01

    One of the challenges in effluent transport modeling in coastal tidal environments is the proper calculation of initial dilution in connection with the far-field transport model. In this study, an approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulate the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuca. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. In the present study, the hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. This study demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the far-field modeled dilution ratio and effluent concentration in the effluent discharge model grid cell match the concentration calculated by the near-field plume model

  16. Calculating trajectories for atoms in near-resonant lightfields

    International Nuclear Information System (INIS)

    Scholten, R.E.; O' Kane, T.J.; Mackin, T.R.; Hunt, T.A.; Farrell, P.M.

    1999-01-01

    We review several methods for calculating the time development of the internal state and the external motion of atoms in near-resonant light fields, with emphasis on studying the focussing of atomic beams into microscopic and potentially nanoscopic patterns. Three different approaches are considered: two-level semiclassical, multi-level semiclassical, and the Monte Carlo wavefunction method. The two-level semiclassical technique of McClelland and Scheinfein (1991) and McClelland (1995) is extended to three dimensions, and used to calculate the trajectories of atoms and the imaging properties of a simple lens formed from a near-resonant travelling TEM 01 mode laser. The model is then extended to multi-level atoms, where we calculate the density matrix for the internal state of a sample of thermal atoms in a standing wave, and show how cooling processes can be simulated. Finally, we use the Monte Carlo wavefunction method to calculate the internal state of the atom, and compare the results and required computation time to those of the multi-level semiclassical technique. (authors)

  17. Quantum vacuum energy near a black hole: the Maxwell field

    International Nuclear Information System (INIS)

    Elster, T.

    1984-01-01

    A quantised Maxwell field is considered propagating in the gravitational field of a Schwarzschild black hole. The vector Hartle-Hawking propagator is defined on the Riemannian section of the analytically continued space-time and expanded in terms of four-dimensional vector spherical harmonics. The equations for the radial functions appearing in the expansion are derived for both odd and even parity. Using the expansion of the vector Hartle-Hawking propagator, the point-separated expectation value of the Maxwellian energy-momentum tensor in the Hartle-Hawking vacuum is derived. The renormalised values of radial pressure, tangential pressure and energy density are obtained near the horizon of the black hole. In contrast to the scalar field, the Maxwell field exhibits a positive energy density near the horizon in the Hartle-Hawking vacuum state. (author)

  18. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  19. Near-to far-field transformation in the aperiodic Fourier modal method

    NARCIS (Netherlands)

    Rook, R.; Pisarenco, M.; Setija, I.D.

    2013-01-01

    This paper addresses the task of obtaining the far-field spectrum for a finite structure given the near-field calculated by the aperiodic Fourier modal method in contrast-field formulation (AFMM-CFF). The AFMM-CFF efficiently calculates the solution to Maxwell's equations for a finite structure by

  20. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  1. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    International Nuclear Information System (INIS)

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-01

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations (ε≡ΔB/2B parallel is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force parallel > by a factor of O(1/ε). A high-frequency limit (ω>>ν) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions

  2. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  3. Quantum field theory near surfaces of discontinuity

    International Nuclear Information System (INIS)

    Onishi, H.T.

    1981-01-01

    This work deals with the problem of a quantized scalar field propagating near a surface of discontinuity. The proper time formalism is employed to express the Green's function and stress tensor as proper time integrals of a transformation function. The transformation function is calculated by a WKB approximation which exhibits the essential singularities generated by the high frequency behavior of waves propagating near the surface. Two singularities are present, the usual direct singularity and an additional reflected singularity generated by the high frequency behavior of waves reflected by the discontinuity. The stress tensor is calculated by dimensional continuation. The results are employed to analyze energy generated by the surface

  4. Near field heat transfer between random composite materials. Applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Eva Yazmin; Esquivel-Sirvent, Raul [Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Fisica

    2017-05-01

    We present a theoretical study of the limits and bounds of using effective medium approximations in the calculation of the near field radiative heat transfer between a composite system made of Au nanoparticles in a SiC host and an homogeneous SiC slab. The effective dielectric function of the composite slab is calculated using three different approximations: Maxwell-Garnett, Bruggeman, and Looyenga's. In addition, we considered an empirical fit to the effective dielectric function by Grundquist and Hunderi. We show that the calculated value of the heat flux in the near field is dependent on the model, and the difference in the effective dielectric function is larger around the plasmonic response of the Au nanoparticles. This, in turn, accounts for the difference in the near field radiative heat flux. For all values of filling fractions, the Looyenga approximation gives a lower bound for the heat flux.

  5. Near field acoustic holography with microphones on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno-Pescador, Guillermo; Fernandez Grande, Efren

    2011-01-01

    Spherical near field acoustic holography (spherical NAH) is a technique that makes it possible to reconstruct the sound field inside and just outside a spherical surface on which the sound pressure is measured with an array of microphones. This is potentially very useful for source identification...

  6. Report of near field group

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Stumer, I.; Figueroa, H.; Kroll, N.; Funk, W.; Lee-Whiting, G.; Pickup, M.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs.

  7. Report of near field group

    International Nuclear Information System (INIS)

    Palmer, R.B.; Baggett, N.; Claus, J.

    1985-04-01

    Substantial progress since the Los Alamos Workshop two years ago is reported. A radio-frequency model of a grating accelerator has been tested at Cornell, and extensive calculations compared with observations. Alternative structures consisting of either hemispherical bumps on a plane, or conducting spheres in space, have also been rf modeled. The use of liquid droplets to form such structures has been proposed and a conceptual design studied. Calculations and experiments have examined the effects of surface plasmas, and shown that in this case the reflectivity is low. However, calculations and observations suggest that gradients in excess of 1 GeV/meter should be obtainable without forming such plasma. An examination of wake fields shows that, with Landau damping, these are independent of wavelength. The use of near field structures to act as high gradient focusing elements has been studied and shows promise, independent of the acceleration mechanism. A proposal has been made to establish a facility that would enable ''proof of principle experiments'' to be performed on these and other laser driven accelerator mechanisms. 11 refs., 10 figs

  8. Review of international near-field modeling for high-level waste disposal

    International Nuclear Information System (INIS)

    Apted, M.J.; Andersson, K.; Pescatore, C.

    1993-01-01

    The primary components of nuclear waste repositories that mitigate radionuclide release are the near-field and the far-field subsystems. The near-field encompasses the waste package, which is composed of engineered barriers; the far-field includes the natural barriers. An international survey and review is being conducted on the latest developments in modeling of near-field performance, with particular emphasis on the conceptual and mathematical models for source-term calculations. The objectives of this review will be to establish the status and commonality among models and methods for assessing near-field performance, as well as to identify possible future needs for continued comparison and collaboration. In parallel with the technical evaluation, an international technical Workshop on near-field performance assessment will be held, in association with the Nuclear Energy Agency, on May 11-13, 1993 in Cadarache, France

  9. Distinct element method modeling of fracture behavior in near field rock

    International Nuclear Information System (INIS)

    Hoekmark, H.

    1990-12-01

    This report concerns the numerical calculations of the behavior of the near field of a nuclear waste repository. The calculations were performed using the two-dimensional distinct element code UDEC. The distinct element method accounts specifically for discontinuities, e.g. fractures that intersect the model region. It is shown that, if an appropriate joint constitutive relation is applied, the calculated joint behavior can be brought in close agreement with empirically derived stress-strain relations. Three basic geometries are studied, namely a vertical tunnel section, a horizontal borehole section and a combination, i.e. a vertical section of tunnel and deposition hole. The effects of different processes and activities are investigated, e.g. effects of excavations, of thermal loads, of internal tunnel pressures and of pore pressures and fracture flow resulting from the hydraulic ground water pressure. The interpretation of the results concerns in particular joint behavior, especially joint openings, in the nearest surroundings of excavations and of thermally affected regions. The calculations show that joint shear and joint normal displacements induced by excavation and by thermal processes may be considerable, and that thermal cycles may result in residual joint aperture changes, especially in systems with loosely bound rock blocks. It is concluded that the UDEC code, when applied to problems that have a two-dimensional character, gives results that are probably quantitatively correct. The results appear to be strongly dependant on the detailed joint structure close to free boundaries such as tunnel walls, which indicated that the 3-D situation regarding joint orientation might have to be considered. It is recommended that 3-D calculations should be performed to verify and quantitatively interpret the 2-D results and to analyze situations that are actually three-dimensional. (au)

  10. Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)

    2015-12-31

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.

  11. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1995-01-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber's, Hardrath-Ohman's as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared

  12. Thermodynamics of the near field

    International Nuclear Information System (INIS)

    Apps, J.A.

    1985-01-01

    The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties

  13. Single-phase Near-well Permeability Upscaling and Productivity Index Calculation Methods

    Directory of Open Access Journals (Sweden)

    Seyed Shamsollah Noorbakhsh

    2014-10-01

    Full Text Available Reservoir models with many grid blocks suffer from long run time; it is hence important to deliberate a method to remedy this drawback. Usual upscaling methods are proved to fail to reproduce fine grid model behaviors in coarse grid models in well proximity. This is attributed to rapid pressure changes in the near-well region. Standard permeability upscaling methods are limited to systems with linear pressure changes; therefore, special near-well upscaling approaches based on the well index concept are proposed for these regions with non-linear pressure profile. No general rule is available to calculate the proper well index in different heterogeneity patterns and coarsening levels. In this paper, the available near-well upscaling methods are investigated for homogeneous and heterogeneous permeability models at different coarsening levels. It is observed that the existing well index methods have limited success in reproducing the well flow and pressure behavior of the reference fine grid models as the heterogeneity or coarsening level increases. Coarse-scale well indexes are determined such that fine and coarse scale results for pressure are in agreement. Both vertical and horizontal wells are investigated and, for the case of vertical homogeneous wells, a linear relationship between the default (Peaceman well index and the true (matched well index is obtained, which considerably reduces the error of the Peaceman well index. For the case of heterogeneous vertical wells, a multiplier remedies the error. Similar results are obtained for horizontal wells (both heterogeneous and homogeneous models.

  14. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    International Nuclear Information System (INIS)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen

    2016-01-01

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm 2 beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm 2 field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  15. Poster - 21: Verification of Monitor Unit Calculations for Breast Field-In-Field Three-Dimensional Conformal Radiotherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kosztyla, Robert; Pierce, Greg; Ploquin, Nicolas; Roumeliotis, Michael; Schinkel, Colleen [Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Tom Baker Cancer Centre, Calgary, AB, Tom Baker Cancer Centre, Calgary, AB (Canada)

    2016-08-15

    Purpose: To determine the source of systematic monitor unit (MU) calculation discrepancies between RadCalc and Eclipse treatment planning software for three-dimensional conformal radiotherapy field-in-field breast treatments. Methods: Data were reviewed for 28 patients treated with a field-in-field breast technique with MU calculations from RadCalc that were larger than MU calculations from Eclipse for at least one field. The distance of the calculation point from the jaws was measured in each field’s beam’s-eye-view and compared with the percentage difference in MU (%ΔMU) between RadCalc and Eclipse. 10×10, 17×13 and 20×20 cm{sup 2} beam profiles were measured using the Profiler 2 diode array for 6-MV photon beams and compared with profiles calculated with Eclipse and RadCalc using a gamma analysis (3%, 3 mm). Results: The mean %ΔMU was 1.3%±0.3%. There was a statistically-significant correlation between %ΔMU and the distance of the calculation point from the Y jaw (r=−0.43, p<0.001). RadCalc profiles differed from measured profiles, especially near the jaws. The gamma pass rate for 6-MV fields of 17×13 cm{sup 2} field size was 95%±1% for Eclipse-generated profiles and 53%±20% for RadCalc-generated profiles (p=0.01). Conclusions: Calculations using RadCalc for field-in-field breast plans resulted in MUs that were larger than expected from previous clinical experience with wedged plans with calculation points far from the jaws due to the position of the calculation point near the jaws in the beam’s-eye-view of each field.

  16. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  17. Near-field Spectroscopy of Surface Plasmons in Flat Gold Nanoparticles

    International Nuclear Information System (INIS)

    Achermann, Marc; Shuford, Kevin L.; Schatz, George C.; Dahanayaka, D.H.; Bumm, Lloyd A; Klimov, Victor I.

    2007-01-01

    We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes

  18. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  19. Calculation of population doses with RADTRAN for route segments that have an unpopulated near-field region

    International Nuclear Information System (INIS)

    Kanipe, F.L.; Neuhauser, S.; Sprung, J.L.

    1998-03-01

    The RADTRAN code (Neuhauser and Kanipe, 1994) models the radiological consequences of the transportation of radioactive materials, both the exposures that will occur if the transport occurs without incident, and the exposures that may occur should the transport vehicle be involved in an accident while en route. Because accidents might occur at any point along a transportation route, RADTRAN divides the route into segments (links) and uses a uniform population density and constant meteorological conditions (wind speed and atmospheric stability) to represent the population and weather characteristics of each route segment. A way to perform RADTRAN calculations, that allows an unpopulated near-field region along a transportation link to be approximately modeled, is described, validated, and then illustratively applied to a coastal sailing route

  20. Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-10-01

    Full Text Available Many factors influence the near-field visualization of plasmonic structures that are based on perforated elliptical slits. Here, characterization errors are experimentally analyzed in detail from both fabrication and measurement points of view. Some issues such as geometrical parameter, probe–sample surface interaction, misalignment, stigmation, and internal stress, have influence on the final near-field probing results. In comparison to the theoretical ideal case of near-field probing of the structures, numerical calculation is carried out on the basis of a finite-difference and time-domain (FDTD algorithm so as to support the error analyses. The analyses performed on the basis of both theoretical calculation and experimental probing can provide a helpful reference for the researchers probing their plasmonic structures and nanophotonic devices.

  1. On the extraction of pressure fields from PIV velocity measurements in turbines

    Science.gov (United States)

    Villegas, Arturo; Diez, Fancisco J.

    2012-11-01

    In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.

  2. Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations

    International Nuclear Information System (INIS)

    Patrick, W.C.; Montan, D.N.; Ballou, L.B.

    1981-01-01

    The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test

  3. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  4. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    Science.gov (United States)

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  5. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  6. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  7. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  8. Calculation Of Pneumatic Attenuation In Pressure Sensors

    Science.gov (United States)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  9. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  10. Field calculations. Part I: Choice of variables and methods

    International Nuclear Information System (INIS)

    Turner, L.R.

    1981-01-01

    Magnetostatic calculations can involve (in order of increasing complexity) conductors only, material with constant or infinite permeability, or material with variable permeability. We consider here only the most general case, calculations involving ferritic material with variable permeability. Variables suitable for magnetostatic calculations are the magnetic field, the magnetic vector potential, and the magnetic scalar potential. For two-dimensional calculations the potentials, which each have only one component, have advantages over the field, which has two components. Because it is a single-valued variable, the vector potential is perhaps the best variable for two-dimensional calculations. In three dimensions, both the field and the vector potential have three components; the scalar potential, with only one component,provides a much smaller system of equations to be solved. However the scalar potential is not single-valued. To circumvent this problem, a calculation with two scalar potentials can be performed. The scalar potential whose source is the conductors can be calculated directly by the Biot-Savart law, and the scalar potential whose source is the magnetized material is single valued. However in some situations, the fields from the two potentials nearly cancel; and the numerical accuracy is lost. The 3-D magnetostatic program TOSCA employs a single total scalar potential; the program GFUN uses the magnetic field as its variable

  11. Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure

    International Nuclear Information System (INIS)

    Abd Elmeguid, M.

    1979-01-01

    The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de

  12. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    Science.gov (United States)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  13. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  14. Radionuclide transport in the repository near-field and far-field

    International Nuclear Information System (INIS)

    Poteri, A.; Nordman, H.; Pulkkanen, V.-M.; Smith, P.

    2014-01-01

    This report is a background report of the TURVA-2012 safety case report 'Assessment of Radionuclide Release Scenarios for the Repository System'. This report gives a comprehensive account of the modelling of radionuclide release from a defective canister and the subsequent migration to the surface groundwater system. The focus of this report is in the radionuclide migration both in the repository near-field and in the repository far-field. Radionuclide releases from the canister and migration through the repository near-field and far-field have also been analysed in the probabilistic sensitivity analysis based on the Monte Carlo simulation method. Those simulations are discussed in a separate report by Cormenzana. Calculation cases are derived from three different types of scenarios: (i) The base scenario that assumes a single initially defective canister located in a cautiously selected canister position, i.e. selecting the failed canister location such that radionuclide release and transport properties are conservative compared to the statistics over all canister locations. Migration processes and parameter values follow the most likely lines of evolution. Repository safety functions are assumed to perform according to the design basis. Calculation cases defined in the Assessment of Radionuclide Release Scenarios report are also supplemented by additional calculation cases that are aimed to study variability between different DFN realisations (additional BS-ALL cases), longitudinal dispersion (BS-RC-ld cases) and alternative realisations of the transport classes along the release paths (BS-RC-tc cases), (ii) Variant scenarios that study declined performance of the repository safety functions. These include enhanced corrosion failure and degradation of the buffer under variant geochemical conditions (iii) Disturbance scenarios that analyse influences of unlikely events on the radionuclide release and migration. Analysis of the variant and disturbance scenarios

  15. Induced Light Emission from Quantum Dots: The Directional Near-Field Pattern

    DEFF Research Database (Denmark)

    Iezhokin, Igor; Keller, Ole; Lozovski, Valeri

    2010-01-01

    The optical Lippmann-Schwinger equation, supplemented by the microscopic conductivity tensor, is used to establish a near-field radiation theory for a mesoscopic particle. The present theory deviates from previous ones in that it allows one to take into account the finite size of the particle...... in a selfconsistent local-field calculation. The main result of the basic theory is illustrated by a number of numerical calculations on box-shaped quantum dots keeping only two optically mobile electrons. Particular attendance is paid to the distance and angular dependences of the near-field radiation pattern When...... the distance between the particle and observation point exceeds just a few times the linear dimension of the particle the directional radiation diagrams all become qualitatively identical to those of an electric point-dipole radiator The result of the present theory may be of particular interest for studies...

  16. Field noise near ferromagnetic films

    Science.gov (United States)

    McMichael, Robert; Liu, Hau-Jian; Yoon, Seungha

    Thermally driven magnetization fluctuations can be viewed as a nuisance noise source or as interesting physics. For example, mag noise in a field sensor may set the minimum detectable field of that sensor. On the other hand, the field noise spectrum reflects the dynamics of the magnetic components, which are essential for device operation. Here, we model the field noise spectrum near the surface of a magnetic film due to thermal spin waves, and we calculate its effect on the T1 relaxation rate of a nearby nitrogen-vacancy (NV) center spin. The model incorporates four components: the spin wave dispersion of the magnetization in a finite-thickness film, thermal excitation of spin waves, the coupling geometry between waves in the film and an external point dipole and finally, the relaxation dynamics of the NV spin. At a distance of 100 nm above a 50 nm thick permalloy film, we find that the strongest stray fields are along the film normal and parallel to the magnetization, on the order of 1 mA m-1 Hz- 1 / 2 or 1 nT Hz- 1 / 2, yielding relaxation times on the order of 10 μs. The spin wave field noise can dominate the intrinsic relaxation, (T1 1 ms) of the NV center spin.

  17. REFREP: a near-field model for a spent fuel repository

    International Nuclear Information System (INIS)

    Hautojaervi, A.; Vieno, T.

    1988-05-01

    A code package for near-field performance analysis of spent fuel disposal has been programmed. The conceptual models used are shortly described in connection with th model presentations. For more comprehensive descriptions the previous safety analysis and references therein are referred. The REFREP package consists of nine individual modules performing the following tasks: viewing and updating of the data files (UPDATE), calculating of the breaching times of canisters (CORRFLUX), calculating of stationary nuclide release rates using solubility values (MASSFLUX), calculating of actinide inventories from chain decay (INVENT), calculating of elemental inventories of actinides (ELEMENT), calculating of nuclide release rates according to congruent release (CONGRUNT), performing of sensitivity analysis for one variable (SENSIT), summing of release rates from individual canisters according to given probability distributions of canister breaching times (PROBREL), and forming a compact data file including all the input values (DATAOUT). The results have been shown to agree very well with the results of the previous safety analysis where near-field analysis was performed by means of separate codes and manual calculation. The REFREP model offers already at this stage some additional features to the old procedures and more versatile capabilities can easyly be added into the modular structure of the package. REFREP has been developed in a VAX-environment. Some changes in file handling might be necessary if the code is transferred to another computer

  18. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  19. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    International Nuclear Information System (INIS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-01-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data

  20. Light pressure of time-dependent fields in plasmas

    International Nuclear Information System (INIS)

    Zeidler, A.; Schnabl, H.; Mulser, P.

    1985-01-01

    An expression of the light pressure Pi is derived for the case of a nearly monochromatic electromagnetic wave with arbitrarily time-dependent amplitude. Thereby Pi is defined as the time-averaged force density exerted on a plasma by the wave. The resulting equations are valid for both transverse and longitudinal waves. The light pressure turns out to consist of two components: the well-known gradient-type term and a new nonstationary solenoidal term. This is true for warm as well as cold plasmas. The importance of the new term for the generation of static magnetic fields is shown, and a model in which shear forces may result is given. Formulas for the nonstationary light pressure developed previously are discussed

  1. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  2. Analysis of artificial opals by scanning near field optical microscopy

    Science.gov (United States)

    Barrio, J.; Lozano, G.; Lamela, J.; Lifante, G.; Dorado, L. A.; Depine, R. A.; Jaque, F.; Míguez, H.

    2011-04-01

    Herein we present a detailed analysis of the optical response of artificial opal films realized employing a near-field scanning optical microscope in collection and transmission modes. Near-field patterns measured at the rear surface when a plane wave impinges on the front face are presented with the finding that optical intensity maps present a clear correlation with the periodic arrangement of the outer surface. Calculations based on the vector Korringa-Kohn-Rostoker method reproduce the different profiles experimentally observed as well as the response to the polarization of the incident field. These observations constitute the first experimental confirmation of the collective lattice resonances that give rise to the optical response of these three dimensional periodic structures in the high-energy range.

  3. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    Science.gov (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  4. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  5. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  6. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    Science.gov (United States)

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  7. Membrane viewpoint on black holes: Dynamical electromagnetic fields near the horizon

    International Nuclear Information System (INIS)

    Macdonald, D.A.; Suen, W.

    1985-01-01

    This paper is part of a series of papers with the aim of developing a complete self-consistent formalism for the treatment of electromagnetic and gravitational fields in the neighborhood of a black-hole horizon. In this membrane formalism, the horizon is treated as a closed two-dimensional membrane lying in a curved three-dimensional space, and endowed with familiar physical properties such as entropy and temperature, surface pressure and viscosity, and electrical conductivity, charge, and current. This paper develops the concept of the ''stretched horizon,'' which will be vital for both the electromagnetic and gravitational aspects of the formalism, and it presents several model problems illustrating the interaction of dynamical electromagnetic fields with stationary black-hole horizons: The field of a test charge in various states of motion outside the Schwarzschild horizon is analyzed in the near-horizon limit, where the spatial curvature may be ignored and the metric may be approximated by that of Rindler. This analysis elucidates the influence of the horizon on the shapes and motions of electric and magnetic field lines when external agents move the field lines in arbitrary manners. It also illustrates how the field lines interact with the horizon's charge and current to produce an exchange of energy and momentum between the external agent and the horizon. A numerical calculation of the dynamical relaxation of a magnetic field threading a Schwarzschild black hole is also presented, illustrating the ''cleaning'' of a complicated field structure by a black-hole horizon, and elucidating the constraints on the location of the stretched horizon

  8. A model for electron currents near a field null

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1987-01-01

    The fluid approximation is invalid near a field null, since the local electron orbit size and the magnetic scale length are comparable. To model the electron currents in this region we propose a single equation of motion describing the bulk electron dynamics. The equation applies to the plasma within one thermal orbit size of the null. The region is treated as unmagnetized; electrons are accelerated by the inductive electric field and drag on ions; damping is provided by viscosity due to electrons and collisions with ions. Through variational calculations and a particle tracking code for electrons, the size of the terms in the equation of motion have been estimated. The resulting equation of motion combines with Faraday's Law to produce a governing equation which implicitly contains the self inductive field of the electrons. This governing equation predicts that viscosity prevents complete cancellation of the ion current density by the electrons in the null region. Thus electron dynamics near the field null should not prevent the formation and deepening of field reversal using neutral-beam injection

  9. Interior near-field acoustical holography in flight.

    Science.gov (United States)

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  10. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  11. Nuclide release from the near-field of a L/ILW repository

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Hoeglund, L.O.; Pers, K.

    1986-12-01

    For Project Gewaehr 1985, the release of nuclides from a repository for low- and intermediate-level radioactive waste is calculated. The calculations are made for a reference design repository located in the marl host rock at the Oberbauen Stock reference site. The results are limited to the release of the nuclides from the waste through the engineered barriers into the surrounding host rock and will, therefore, constitute a source term for the far-field and biosphere calculations. The most probable nuclide transport mechanism is diffusion and releases are thus influenced by the nuclide diffusivities in the barriers, nuclide sorption and nuclide solubility limits. Degradation of the engineered concrete barriers is taken into account. The effects of convective flow through the barriers are described elsewhere. A near-field release model is presented. It consists of a set of computer programs suited to handel different repository designs, solubility limitations and the different waste categories. The release calculations were made for a base case in which best estimates of the parameters were used. Sensitivity to the choice of the most important parameters was tested by parameter variations. The numerical models used were checked by comparative calculations with different codes and similar data. The results of the base calculations show that near-field barriers will cause both a delay of the release to the far-field and a reduced rate of release. The sorbed nuclides, comprising the actinides and some activation and fission products, will be delayed by 10'000 years and have a maximum release rate of less than 10 -3 Ci/a each. The non-sorbed nuclides are delayed by only about 100 years and the maximum release rate is less than 10 -2 Ci per year and nuclide. The parameter variations and the design model tests gave only limited deviations from the base case results. (author)

  12. A unidirectional subwavelength focusing near-field plate

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F.; Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-01-28

    Near-field plates consist of non-periodically patterned surfaces that can overcome the diffraction limit and confine electromagnetic fields to subwavelength dimensions. Previous near-field plates experimentally demonstrated extreme field tailoring capabilities. However, their performance suffered from radiation/reflection in undesired directions, those other than the subwavelength focus. This issue can limit the practical use of near-field plates. In this paper, we address this issue by designing a unidirectional near-field plate that can form a subwavelength focal pattern, while suppressing the field radiated/reflected in other directions. The design and operation of the proposed unidirectional near-field plate are verified through full-wave simulation. The unidirectional near-field plate may find application in high resolution imaging and probing, high density data storage, and wireless power transfer systems. As an example, its utility as a high resolution probe is demonstrated through full-wave electromagnetic simulation.

  13. Near-field and far-field modeling of scattered surface waves. Application to the apertureless scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Muller, J.; Parent, G.; Fumeron, S.; Jeandel, G.; Lacroix, D.

    2011-01-01

    The detection of surface waves through scanning near-field optical microscopy (SNOM) is a promising technique for thermal measurements at very small scales. Recent studies have shown that electromagnetic waves, in the vicinity of a scattering structure such as an atomic force microscopy (AFM) tip, can be scattered from near to far-field and thus detected. In the present work, a model based on the finite difference time domain (FDTD) method and the near-field to far-field (NFTFF) transformation for electromagnetic waves propagation is presented. This model has been validated by studying the electromagnetic field of a dipole in vacuum and close to a dielectric substrate. Then simulations for a tetrahedral tip close to an interface are presented and discussed.

  14. Finite element method used in strength calculations of nuclear power plant pressure vessels

    International Nuclear Information System (INIS)

    Hanulak, E.

    1987-01-01

    A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)

  15. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  16. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  17. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  18. Methodology to estimate the relative pressure field from noisy experimental velocity data

    International Nuclear Information System (INIS)

    Bolin, C D; Raguin, L G

    2008-01-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  19. Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme

    International Nuclear Information System (INIS)

    Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe; Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi

    2010-01-01

    Electric fields are measured for the first time in molecular nitrogen at atmospheric pressures. Measurements are performed in either pure nitrogen or air. The laser spectroscopic technique applied here is based on a CARS-like four-wave mixing scheme originally developed for measurements in molecular hydrogen by Ochkin and Tskhai in 1995. The technique is ideal for investigation of microdischarges at atmospheric pressures. The frequencies of two focussed laser beams in the visible are tuned to match the energy difference between the two lowest vibrational levels in nitrogen. The presence of a static electric field then leads to the emission of coherent IR radiation at this difference frequency. The signal intensity scales with the square of the static electric field strength. Parallel to this process also anti-Stokes radiation by the standard CARS process is generated. Normalization of the IR signal by the CARS signal provides a population independent measurement quantity. Experimental results at various pressures and electric field strengths are presented.

  20. Near-field effects of asteroid impacts in deep water

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  1. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  2. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  3. Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji

    1999-01-01

    Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)

  4. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  5. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  6. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  7. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction

    International Nuclear Information System (INIS)

    Hillenbrand, Rainer

    2004-01-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si 3 N 4 . Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics--a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics

  8. Antenna diagnostics for power flow in extreme near-field of a standard gain horn

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Breinbjerg, Olav

    2016-01-01

    The plane wave spectrum of an aperture antenna can be calculated from a complex measurement of the radiated near- or far-field and it facilitates antenna diagnostics for the extreme near-field of the antenna. While antenna diagnostics often concerns the magnitude of the co-polar field, the plane...... wave spectrum actually allows for determination of both magnitude and phase of all three components of the electric as well as the magnetic field - and thus also the Poynting vector. In this work we focus on the Poynting vector and thus the power flow in the extreme near-field; as an example we employ...... that these oscillations are not merely a “Gibbs-like” phenomenon due to the availability of only the visible region of the plane wave spectrum and they are not caused by multiple reflections between the horn and the near-field probe - but resulted from the interference between the direct field and the edge...

  9. Sequential least-square reconstruction of instantaneous pressure field around a body from TR-PIV

    Science.gov (United States)

    Jeon, Young Jin; Gomit, G.; Earl, T.; Chatellier, L.; David, L.

    2018-02-01

    A procedure is introduced to obtain an instantaneous pressure field around a wing from time-resolved particle image velocimetry (TR-PIV) and particle image accelerometry (PIA). The instantaneous fields of velocity and material acceleration are provided by the recently introduced multi-frame PIV method, fluid trajectory evaluation based on ensemble-averaged cross-correlation (FTEE). The integration domain is divided into several subdomains in accordance with the local reliability. The near-edge and near-body regions are determined based on the recorded image of the wing. The instantaneous wake region is assigned by a combination of a self-defined criterion and binary morphological processes. The pressure is reconstructed from a minimization process of the difference between measured and reconstructed pressure gradients in a least-square sense. This is solved sequentially according to a decreasing order of reliability of each subdomain to prevent a propagation of error from the less reliable near-body region to the free-stream. The present procedure is numerically assessed by synthetically generated 2D particle images based on a numerical simulation. Volumetric pressure fields are then evaluated from tomographic TR-PIV of a flow around a 30-degree-inclined NACA0015 airfoil. A possibility of using a different scheme to evaluate material acceleration for a specific subdomain is presented. Moreover, this 3D application allows the investigation of the effect of the third component of the pressure gradient by which the wake region seems to be affected.

  10. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators. © 2015 Wiley Periodicals, Inc.

  11. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  12. A Study of a Powder Coating Gun near Field: A Case of Staggered Concentric Jet Flow

    Directory of Open Access Journals (Sweden)

    Edward Grandmaison

    2013-11-01

    Full Text Available This paper examines, experimentally and numerically, an isothermal coaxial air jet, created by an innovative nozzle design for an air propane torch, used for the thermal deposition of polymers. This design includes staggering the origins of the central and annular jets and creating an annular air jet with an inward radial velocity component. The experimental work used a Pitot tube to measure axial velocity on the jet centerline and in the fully developed flow. The static gauge pressure in the near field was also measured and found to be positive, an unexpected result. The numerical work used Gambit and Fluent. An extensive grid sensitivity study was conducted and it was found that results from a relatively coarse mesh were substantially the same as results from a mesh with almost 11 times the number of control volumes. A thorough evaluation of all of the RANS models in Fluent 6.3.26 found that the flow fields they calculated showed at most partial agreement with the experimental results. The greatest difference between numerical and experimental results was the incorrect prediction by all RANS models of a recirculation zone in the near field on the jet axis. Experimental work showed it did not exist.

  13. FDTD simulations of near-field mediated semiconductor molecular optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dai; Sakrow, Marcus; Mihaljevic, Josip; Meixner, Alfred J. [Institute of Physical and Theoretical Chemistry, University Tuebingen, Auf der Morgenstelle 8, Tuebingen (Germany)

    2010-07-01

    The optical properties of molecules can be dramatically altered when they are in a close proximity of an excited metal antenna. In order to get insight into how the antenna generated near-field influences the optical properties of low quantum yield molecules, we carried out FDTD simulations of a sharp laser-illuminated Au tip approaching to a semiconductor thin film. The time-averaged field distribution between the semiconductor thin film and the tip antenna is calculated regarding to different distances. Our calculation demonstrates that the coupling between the localized plasmon at the tip apex and semiconductor polariton can be achieved building up a distance-dependent high field enhancement. Our experimental results show that such a high field strength enhances not only the excitation process by a factor of 104, but alters the radiative: non-radiative decay rate giving approx. 15 times stronger photoluminescence emission.

  14. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    Science.gov (United States)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  15. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  16. Stochastic field line structures appearing in field line tracing calculations for a helical magnetic limiter on TORE SUPRA

    International Nuclear Information System (INIS)

    Fuchs, G.; Steffen, B.; Blenski, T.; Grosman, A.; Samain, A.

    1985-05-01

    The influence on the structure of the magnetic field of a tokamak produced by small helical currents flowing near the plasma in TORE SUPRA was investigated numerically by drawing Poincare plots. The current in the helical conductors, the pitch of the windings, the rotational transform and the plasma pressure have been varied. The topology of the magnetic field line structure is discussed in some detail and simple examples are given for illustration. (orig.)

  17. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    International Nuclear Information System (INIS)

    Liu Xinkun; Xu Jinzhou; Cui Tongfei; Guo Ying; Zhang Jing; Shi Jianjun

    2013-01-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm −1 Torr −1 , which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap

  18. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  19. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  20. Near field acoustic holography with microphones mounted on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno, Guillermo; Fernandez Grande, Efren

    2008-01-01

    Spherical near field acoustic holography (spherical NAH) is a technique that makes it pos-sible to reconstruct the sound field inside and just outside an acoustically transparent spherical surface on which the sound pressure is measured with an array of microphones with negligible scattering...... is only valid if it can be assumed that the sphere has a negligible in-fluence on the incident sound field, and this is not necessarily a good assumption when the sphere is very close to a radiating surface. This paper describes the modified spherical NAH theory and examines the matter through simulations...

  1. Spherical near field acoustic holography with microphones on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Hald, Jørgen; Fernandez Grande, Efren

    2008-01-01

    Spherical near field acoustic holography (SNAH) is a recently developed technique that makes it possible to reconstruct the sound field inside and just outside an acoustically transparent spherical surface on which the sound pressure is measured with an array of microphones with negligible...... with an array of microphones flush-mounted on a rigid sphere. However, this approach is only valid if it can be assumed that the sphere has a negligible influence on the incident sound field, in other words if multiple scattering can be ignored, and this is not necessarily a good assumption when the sphere...

  2. Large-area parallel near-field optical nanopatterning of functional materials using microsphere mask

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.X. [NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Hong, M.H. [NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, ASTAR, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)], E-mail: Hong_Minghui@dsi.a-star.edu.sg; Lin, Y. [NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Wang, Z.B. [Data Storage Institute, ASTAR, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Ng, D.K.T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, ASTAR, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Xie, Q. [Data Storage Institute, ASTAR, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Tan, L.S. [NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Chong, T.C. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, ASTAR, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2008-01-31

    Large-area parallel near-field optical nanopatterning on functional material surfaces was investigated with KrF excimer laser irradiation. A monolayer of silicon dioxide microspheres was self-assembled on the sample surfaces as the processing mask. Nanoholes and nanospots were obtained on silicon surfaces and thin silver films, respectively. The nanopatterning results were affected by the refractive indices of the surrounding media. Near-field optical enhancement beneath the microspheres is the physical origin of nanostructure formation. Theoretical calculation was performed to study the intensity of optical field distributions under the microspheres according to the light scattering model of a sphere on the substrate.

  3. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  4. Viscoacoustic model for near-field ultrasonic levitation

    Science.gov (United States)

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  5. Near-field heat transfer between graphene/hBN multilayers

    Science.gov (United States)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  6. Comparison of MHD pressure losses of liquid-lithium flows in coaxial and parallel ducts, passing through strong transverse magnetic fields

    International Nuclear Information System (INIS)

    Trommer, G.

    1979-08-01

    This report deals with theoretical calculations of MHD pressure losses of liquid-lithium flows in tubes of circular cross-section exposed to strong magnetic fields. Some simplifying assumptions were introduced, yielding an analytical solution which allows the pressure drop and losses in double tubes of coaxial geometry to be compared with those in normal flow pipes. The investigations show that coaxial ducts require much more pumping power than normal ones under similar conditions. This great difference of the properties of the two duct types will decrease if the pipes are embedded in materials of good electrical conductivity. In this case the normal duct will afford a drastic increase in the pressure drop, while the coaxial one will be nearly unaffected. But even under these conditions the losses of the latter will dominate. (orig.)

  7. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  8. The calculation and visualization of the fluid field in the canned pump

    International Nuclear Information System (INIS)

    Cheng De; Xue Yabo; Shen Hong; Yao Zhenqiang; Lu Xiangping; Li Cangxue

    2013-01-01

    A kind of canned pump is composed of the motor and the pump section. The canned motor is lubricated and cooled by high pressure water. The rotor in the motor is big and the rotor's velocity is high. The water channel inside the motor is complicated. In this article, the software Fluent is used to calculate the fluid field of the key parts in the motor. Then post-processing software Ensight is used to visualize the result of the FEM analysis. The velocity and pressure of the fluid fields in the motor's key parts can be studied thoroughly. A video and pictures are created to illustrate the function of the middle impeller and the gratitude of the fluid fields. (authors)

  9. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  10. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  11. Application of the graphics processor unit to simulate a near field diffraction

    Science.gov (United States)

    Zinchik, Alexander A.; Topalov, Oleg K.; Muzychenko, Yana B.

    2017-06-01

    For many years, computer modeling program used for lecture demonstrations. Most of the existing commercial software, such as Virtual Lab, LightTrans GmbH company are quite expensive and have a surplus capabilities for educational tasks. The complexity of the diffraction demonstrations in the near zone, due to the large amount of calculations required to obtain the two-dimensional distribution of the amplitude and phase. At this day, there are no demonstrations, allowing to show the resulting distribution of amplitude and phase without much time delay. Even when using Fast Fourier Transform (FFT) algorithms diffraction calculation speed in the near zone for the input complex amplitude distributions with size more than 2000 × 2000 pixels is tens of seconds. Our program selects the appropriate propagation operator from a prescribed set of operators including Spectrum of Plane Waves propagation and Rayleigh-Sommerfeld propagation (using convolution). After implementation, we make a comparison between the calculation time for the near field diffraction: calculations made on GPU and CPU, showing that using GPU for calculations diffraction pattern in near zone does increase the overall speed of algorithm for an image of size 2048×2048 sampling points and more. The modules are implemented as separate dynamic-link libraries and can be used for lecture demonstrations, workshops, selfstudy and students in solving various problems such as the phase retrieval task.

  12. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  13. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  14. A procedure for temperature-stress fields calculation of WWER-1000 primary circuit in PTS event

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, G [Technical Univ., Dept. Thermal and Nuclear Power Engineering, Sofia (Bulgaria); Groudev, P; Argirov, J [Bulgarian Academy of Science, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    1997-09-01

    The paper presents the procedure of an investigation of WWER-1000 primary circuit temperature-stress field by the use of thermohydraulic computation data for a pressurized thermal shock event ``Core overcooling``. The procedure is based on a model of the plane stress state with ideal contact between wall and medium for the calculation. The computation data are calculated on the base of WWER-1000 thermohydraulic model by the RELAP5/MOD3 codes. This model was developed jointly by the Bulgarian and BNL/USA staff to provide an analytical tool for performing safety analysis. As a result of calculations by codes the computation data for temperature field law (linear laws of a few distinguished parts) and pressure of coolant at points on inner surface of WWER-1000 primary circuit equipment are received. Such calculations can be used as a base for determination of all-important load-carrying sections of the primary circuit pipes and vessels, which need further consideration. (author). 7 refs, 2 figs, 2 tabs.

  15. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  16. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  17. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  18. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    Science.gov (United States)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  19. Best Practices for Mudweight Window Generation and Accuracy Assessment between Seismic Based Pore Pressure Prediction Methodologies for a Near-Salt Field in Mississippi Canyon, Gulf of Mexico

    Science.gov (United States)

    Mannon, Timothy Patrick, Jr.

    Improving well design has and always will be the primary goal in drilling operations in the oil and gas industry. Oil and gas plays are continuing to move into increasingly hostile drilling environments, including near and/or sub-salt proximities. The ability to reduce the risk and uncertainly involved in drilling operations in unconventional geologic settings starts with improving the techniques for mudweight window modeling. To address this issue, an analysis of wellbore stability and well design improvement has been conducted. This study will show a systematic approach to well design by focusing on best practices for mudweight window projection for a field in Mississippi Canyon, Gulf of Mexico. The field includes depleted reservoirs and is in close proximity of salt intrusions. Analysis of offset wells has been conducted in the interest of developing an accurate picture of the subsurface environment by making connections between depth, non-productive time (NPT) events, and mudweights used. Commonly practiced petrophysical methods of pore pressure, fracture pressure, and shear failure gradient prediction have been applied to key offset wells in order to enhance the well design for two proposed wells. For the first time in the literature, the accuracy of the commonly accepted, seismic interval velocity based and the relatively new, seismic frequency based methodologies for pore pressure prediction are qualitatively and quantitatively compared for accuracy. Accuracy standards will be based on the agreement of the seismic outputs to pressure data obtained while drilling and petrophysically based pore pressure outputs for each well. The results will show significantly higher accuracy for the seismic frequency based approach in wells that were in near/sub-salt environments and higher overall accuracy for all of the wells in the study as a whole.

  20. Magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Ming-Wu, Fan [Institute of Atomic Energy, Peking (China)

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake.

  1. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  2. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  3. Near Field Communication: Introduction and Implications

    Science.gov (United States)

    McHugh, Sheli; Yarmey, Kristen

    2012-01-01

    Near field communication is an emerging technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. Though primarily associated with mobile payment, near field communication has many different potential commercial applications, ranging from marketing to nutrition,…

  4. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.

    2018-05-01

    Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.

  5. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  6. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  7. A simple model for the pressure field from a distribution of hotspots

    International Nuclear Information System (INIS)

    Lambourn, B D; Lacy, H J; Handley, C A; James, H R

    2014-01-01

    At the APS SCCM in 2009, Hill, Zimmermann and Nichols showed that assuming burn fronts propagate at constant speed from individual point hotspots distributed randomly in a volume, the reaction rate history could be determined. In this paper a simple analytic approximation is found for the time history of the pressure in the volume. Using acoustic theory, the time history of the pressure field for burning from a single spherical, isolated hotspot of finite radius is developed. Then at any point in the volume, the overall pressure history is determined from the sum of the pressure fields from all the individual hotspots. The results are shown to be in qualitative agreement with 1D mesoscale hydrocode calculations of the reaction and burning from a finite size spherical hotspot.

  8. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    Science.gov (United States)

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  9. Develoment of pressure drop calculation modules for a wire-wrapped LMR subassembly

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Lim, Hyun Jin; Kim, Won Seok; Kim, Young Il

    2000-06-01

    Pressure drop calculation modules for a wire-wrapped LMR subassembly was been developed. This report summarizes present information on pressure drop calculation modules for inlet hole, lower part and upper part of a wire-wrapped LMR subassembly which was developed using simple formulas of sudden expansion and sudden contraction. A case calculation study was done using design data of a KALIMER driver fuel subassembly. And the total pressure drop in the driver fuel subassembly, except for the bundle part, was calculated as 0.13 MPa, which is in the reasonable pressure drop range. The developed modules will be integrated in the total subassembly pressure drop calculation code with further improvements

  10. Magnetic field structure near the plasma boundary in helical systems and divertor tokamaks

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Itoh, Kimitaka

    1990-02-01

    Magnetic field structure of the scrape off layer (SOL) region in both helical systems and divertor tokamaks is studied numerically by using model fields. The connection length of the field line to the wall is calculated. In helical systems, the connection length, L, has a logarithmic dependence on the distance from the outermost magnetic surface or that from the residual magnetic islands. The effect of axisymmetric fields on the field structure is also determined. In divertor tokamaks, the connection length also has logarithmic properties near the separatrix. Even when the perturbations, which resonate to rational surfaces near the plasma boundary, are added, logarithmic properties still remain. We compare the connection length of torsatron/helical-heliotron systems with that of divertor tokamaks. It is found that the former is shorter than the latter by one order magnitude with similar aspect ratio. (author)

  11. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  12. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  13. Evaluation of long-term mechanical stability of near field

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Sugino, Hiroyuki; Okutsu, Kazuo; Miura, Kazuhiko; Tabei, Kazuto; Noda, Masaru; Takahashi, Shinichi; Sugie, Shigehiko

    1999-11-01

    In the near field, as tunnels and pits are excavated, a redistribution of stresses in the surrounding rock will occur. For a long period of time after the emplacement of waste packages various events will take place, such as the swelling of the buffer, sinking of the overpack under its own weight, deformation arising from expansion of overpack corrosion products and the creep deformation of the rock mass. The evaluation of what effects these changes in the stress-state will have on the buffer and rock mass is a major issue from the viewpoint of safety assessment. Therefore, rock creep analysis, overpack corrosion expansion analysis and overpack sinking analysis have been made in order to examine the long-term mechanical stability of the near field and the interaction of various events that may affect the stability of the near field over a long period of time. As the results, rock creep behavior, the variations of the stress-state and the range of the influence zone differ from the rock strength, strength of buffer in the tunnel and side pressure coefficient etc. about the hard rock system and soft rock system established as basic cases. And the magnitude of the stress variations for buffer by the overpack sinking and rock creep deformation is negligible compared with it by the overpack corrosion expansion. Furthermore, though very limited zone of buffer around the overpack is close to the critical state by the overpack corrosion expansion, the engineered barrier system attains a comparatively stable state for a long period of time. (author)

  14. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  15. Patch near-field acoustic holography: The influence of acoustic contributions from outside the source

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Zhang, Yong-Bin

    2009-01-01

    It is a requirement of conventional Near-field Acoustic Holography that the measurement area covers the entire surface of the source. In the case of Patch Near-field Acoustic Holography (patch NAH), the measurement area can be reduced to cover only a specific area of the source which...... is of particular interest (known as the “patch” or “source patch”). The area of the source beyond this patch is not of interest in the analysis. However, its acoustic output may nevertheless contribute to the total sound field in the measurement plane, and influence the reconstruction of the field close...... to the patch. The purpose of this paper is to investigate how the acoustic radiation from outside the patch area influences the reconstruction of the sound field close to the source. The reconstruction is based on simulated measurements of sound pressure and particle velocity. The methods used in this paper...

  16. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    Chemical reactions control the performance, stability, and rate of degradation of natural and engineered barriers to waste repositories of the near field. Chemical processes are overviewed in this context. Temperature, and associated temperature gradients, are also important parameters in near-field performance assessment. The mechanical conditions of the near-field rock will be perturbed by construction of the underground repository. Mechanical analysis in the near field is further complicated by the introduction of HLW canisters and associated engineered barrier materials. Hydrological processes important to near-field performance include those associated with fluid transport. Considerable discussions and studies have been conducted on the issue of coupling among chemical-thermal-mechanical-hydrological processes; they are overviewed. (R.P.) 2 figs., 2 tabs

  17. A magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    International Nuclear Information System (INIS)

    Yan Chen; Fan Ming-Wu

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake

  18. Field-emitting Townsend regime of surface dielectric barrier discharges emerging at high pressure up to supercritical conditions

    International Nuclear Information System (INIS)

    Pai, David Z; Stauss, Sven; Terashima, Kazuo

    2015-01-01

    Surface dielectric barrier discharges (DBDs) in CO 2 from atmospheric pressure up to supercritical conditions generated using 10 kHz ac excitation are investigated experimentally. Using current–voltage and charge–voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy, we identify and characterize a field-emitting Townsend discharge regime that emerges above 0.7 MPa. An electrical model enables the calculation of the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The space-averaged Laplacian field is accounted for in the circuit model by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are demonstrated to fit the description of atmospheric-pressure Townsend DBDs (Naudé et al 2005 J. Phys. D: Appl. Phys. 38 530–8), i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron–neutral bremsstrahlung corresponding to an average electron temperature of 2600 K. Raman spectra of CO 2 near the critical point demonstrate that the average gas temperature increases by less than 1 K. (paper)

  19. SITE-94. Modelling of near-field chemistry for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Apted, M. [QuantiSci, Denver, CO (United States)

    1996-12-01

    This report evaluates methods for the incorporation of site data into models simulating the long-term chemical evolution of the near field. The models are based on limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe{sup o} corrosion products of the canister and spent fuel. A l kg reference mass of site groundwater is assumed to equilibrate first with bentonite and then with the canister`s corrosion products. A third closed system representing spent fuel is modeled in terms of spent-fuel dissolution in 1 kg of water evolved from the canister, coupled with steady-state constraints on the rate of oxidant production by {alpha} radiolysis of H{sub 2}O(l). Precipitation of secondary minerals controlling the solubilities of radioelements dissolved from spent fuel is also simulated in this model. Version 7.2 of the EQ3/6 geochemical software package and its supporting composite thermodynamic database, dataO.com.R22, are used to carry out these calculations. It is concluded that chemical models of near-field evolution combined with thermodynamic models of radionuclide speciation-solubility behavior can assist efforts to assimilate site characterization data into the performance assessment process, and to deal with uncertainties that are inherent in both site properties and in concepts of near field chemistry. It is essential, however, that expert judgement and prudence should be exercised such that model results are conservative with respect to acknowledged and documented uncertainties. Most importantly, it must be recognized that it is probably not possible to model with a high-level of accuracy the complex chemical environments and long timescales involved in disposal technologies for nuclear wastes. For performance assessment, however, only bounding values are needed, and modeling approaches such as described in this report are useful for this purpose. Technical peer review and cross-comparisons of near-field

  20. Hydrogenic donor impurity in parallel-triangular quantum wires: Hydrostatic pressure and applied electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Giraldo, E.; Miranda, G.L.; Ospina, W.; Duque, C.A.

    2009-01-01

    The combined effects of the hydrostatic pressure and in-growth direction applied electric field on the binding energy of hydrogenic shallow-donor impurity states in parallel-coupled-GaAs-Ga 1-x Al x As-quantum-well wires are calculated using a variational procedure within the effective-mass and parabolic-band approximations. Results are obtained for several dimensions of the structure, shallow-donor impurity positions, hydrostatic pressure, and applied electric field. Our results suggest that external inputs such us hydrostatic pressure and in-growth direction electric field are two useful tools in order to modify the binding energy of a donor impurity in parallel-coupled-quantum-well wires.

  1. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    The aim of this chapter is to describe the performance assessment (PA) context in which near-field models have been developed and applied. An overview is given of a number of PA studies. Although the focus is on near-field models, the overview covers the full context in which the PAs have been performed, including the purpose of the studies and regulatory context. Special emphasis has been given to the scenarios analyzed in the assessments; the scenarios set the framework for model development and application. Another aspect to consider in a study of near-field modeling from the perspective of total PA is the linking between near-field and far-field assessment. (R.P.) 6 tabs

  2. Pressure calculations in nanochannel gas flows

    NARCIS (Netherlands)

    Kim, J.H.; Frijns, A.J.H.; Nedea, S.V.; Steenhoven, van A.A.; Frijns, A.J.H.; Valougeorgis, D.; Colin, S.; Baldas, L.

    2012-01-01

    In this research, pressure driven flow within a nanochannel is studied for argon in rarefied gas states. A Molecular Dynamics simulation is used to resolve the density and stress variations. Normal stress calculations are based on Irving-Kirkwood method, which divides the stress tensor into its

  3. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  4. Near-field study with a photon scanning tunneling microscope: Comparison between dielectric nanostructure and metallic nanostructure

    International Nuclear Information System (INIS)

    Mahmoud, Mahmoud Youcef; Bassou, Ghaouti; Salomon, Laurant; Chekroun, Z.; Djamai, Nesrine

    2007-01-01

    Scanning near-field optical microscopy (SNOM) integrates standard optical methods with scanning probe microscopy (SPM) techniques allowing to collect optical information with resolution well beyond the diffraction limit. We study the influence on image formation of several parameters in scanning near-field microscopy. The numerical calculations have been carried out using the differential method. We investigate a 2D-PSTM configuration with a dielectric rectangular object. We will focus on the collection type SNOM in a constant height scanning mode. Various oscillation patterns are observed from both sides of the nanostructure, which we interpret as interference between the diffracted waves scattered by the nanostructure (with the components of the wave vector parallel to the surface) and the evanescent incident wave above the surface. Using an optical near-field analysis and by calculating the electric field intensity distribution, we investigate the probe-sample distance effect. It is found that the distribution of the intensity related to the electric field is depending on sample-probe distance. We noticed the loss of details in the image and the presence of dramatic oscillations. Also, both of the polarization state of the illuminating light effect and the angle of incidence are investigated. We conclude that a differential method provides physical insight into the main features of the different images

  5. Near-field study with a photon scanning tunneling microscope: Comparison between dielectric nanostructure and metallic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mahmoud Youcef [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria)], E-mail: mahmoudhamoud@yahoo.com; Bassou, Ghaouti [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria); Laboratoire de Physique (LPUB), CNRS UMR 5027, Groupe d' Optique de Champ Proche, Faculte des Sciences Mirande, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47 870, 21078 Dijon Cedex (France); Salomon, Laurant [Laboratoire de Physique (LPUB), CNRS UMR 5027, Groupe d' Optique de Champ Proche, Faculte des Sciences Mirande, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47 870, 21078 Dijon Cedex (France); Chekroun, Z. [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria); Djamai, Nesrine [Laboratoire de telecommunications et de traitement numerique du signal (LTTNS), Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences de l' ingenieur, Departement d' electronique (Algeria)

    2007-08-25

    Scanning near-field optical microscopy (SNOM) integrates standard optical methods with scanning probe microscopy (SPM) techniques allowing to collect optical information with resolution well beyond the diffraction limit. We study the influence on image formation of several parameters in scanning near-field microscopy. The numerical calculations have been carried out using the differential method. We investigate a 2D-PSTM configuration with a dielectric rectangular object. We will focus on the collection type SNOM in a constant height scanning mode. Various oscillation patterns are observed from both sides of the nanostructure, which we interpret as interference between the diffracted waves scattered by the nanostructure (with the components of the wave vector parallel to the surface) and the evanescent incident wave above the surface. Using an optical near-field analysis and by calculating the electric field intensity distribution, we investigate the probe-sample distance effect. It is found that the distribution of the intensity related to the electric field is depending on sample-probe distance. We noticed the loss of details in the image and the presence of dramatic oscillations. Also, both of the polarization state of the illuminating light effect and the angle of incidence are investigated. We conclude that a differential method provides physical insight into the main features of the different images.

  6. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2008-01-01

    A simple and effective procedure for the reduction of truncation errors in planar near-field measurements of aperture antennas is presented. The procedure relies on the consideration that, due to the scan plane truncation, the calculated plane wave spectrum of the field radiated by the antenna is...

  7. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  8. Pressure potential and stability analysis in an acoustical noncontact transportation

    Science.gov (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  9. Two-temperature model of the energy balance for the plasma of a high-frequency induction discharge near the plasmoid axis

    International Nuclear Information System (INIS)

    Gerasimov, A.V.; Kirpichnikov, A.P.

    2000-01-01

    On the basis of analysis of the equation system for energy balance within near-the-axis range of HF-plasmatron inductor in terms of a two-temperature model one derived the analytical dependences to calculate temperature fields within that range in a two-dimensional definition of the problem. Paper presents the results of calculations carried out for various cross sections of HF-discharge plasmoid. The calculations were carried out for the air plasma under the atmospheric pressure. The derived formulae describe rather accurately distribution of temperature fields near the plasmoid axis and may be applied to tackle rather wide scope of problems dealing with heat transfer [ru

  10. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  11. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.

    1999-01-01

    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...

  12. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    Science.gov (United States)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  13. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  14. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  15. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  16. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  17. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  18. Low-pressure gas breakdown in longitudinal combined electric fields

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  19. Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations

    Directory of Open Access Journals (Sweden)

    Yannick Bousquet

    2014-01-01

    Full Text Available This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side.

  20. Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of air holes immersed in a dielectric are studied in this work. The field patterns of electromagnetic waves radiated from a point source through the PC slab are calculated with the finite-difference time-domain method. Comparing the field patterns with the corresponding equifrequency-surface contours simulated by the plane-wave expansion method, we find that an excellent-quality near-field image may be formed through the PC slab by the mechanisms of the simultaneous action of the self-collimation effect and the negative-refraction effect. Near-field imaging may be obtained within two different frequency regions in two vertical directions of the PC slab.

  1. Nanomanipulation using near field photonics.

    Science.gov (United States)

    Erickson, David; Serey, Xavier; Chen, Yih-Fan; Mandal, Sudeep

    2011-03-21

    In this article we review the use of near-field photonics for trapping, transport and handling of nanomaterials. While the advantages of traditional optical tweezing are well known at the microscale, direct application of these techniques to the handling of nanoscale materials has proven difficult due to unfavourable scaling of the fundamental physics. Recently a number of research groups have demonstrated how the evanescent fields surrounding photonic structures like photonic waveguides, optical resonators, and plasmonic nanoparticles can be used to greatly enhance optical forces. Here, we introduce some of the most common implementations of these techniques, focusing on those which have relevance to microfluidic or optofluidic applications. Since the field is still relatively nascent, we spend much of the article laying out the fundamental and practical advantages that near field optical manipulation offers over both traditional optical tweezing and other particle handling techniques. In addition we highlight three application areas where these techniques namely could be of interest to the lab-on-a-chip community, namely: single molecule analysis, nanoassembly, and optical chromatography. This journal is © The Royal Society of Chemistry 2011

  2. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  3. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  4. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... in a photo-sensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambigiously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded...... that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with he uncoated probes are discussed in relation to the probe...

  5. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  6. Development and qualification of reference calculation schemes for absorbers in pressured water reactor

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    2001-01-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  7. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  8. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  9. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  10. Improving MODPRESS heat loss calculations for PWR pressurizers

    International Nuclear Information System (INIS)

    Ramos, Natalia V.; Lira, Carlos A. Brayner O.; Castrillho, Lazara S.

    2009-01-01

    The improvement of heat loss calculations in MODPRESS transient code for PWR pressurizer analysis is the main focus of this investigation. Initially, a heat loss model was built based on heat transfer coefficient (HTC) correlations obtained in handbooks of thermal engineering. A hand calculation for Neptunus experimental test number U47 yielded a thermal power loss of 11.2 kW against 17.3 kW given by MODPRESS at the same conditions, while the experimental estimate is given as 17 kW. This comparison is valid only for steady state or before starting the transient experiment, because MODPRESS does not update HTC's when the transient phase begins. Furthermore, it must be noted that MODPRESS heat transfer coefficients are adjusted to reproduce the experimental value of the specific type of pressurizer. After inserting the new routine for HTC's into MODPRESS, the heat loss was calculated as 11.4 kW, a value very close to the first estimate but far below 17 kW found in the U47 experiment. In this paper, the heat loss model and results will be described. Further research is being developed to find a more general HTC that allows the analysis of the effects of heat losses on transient behavior of Neptunus and IRIS pressurizers. (author)

  11. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    Science.gov (United States)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  12. On calculating the pressure on cylindrical timbers of vertical shafts in clayey soils

    Energy Technology Data Exchange (ETDEWEB)

    Mizyumskii, V A

    1979-11-01

    In order to calculate the pressure built up on timbers which have been constructed to hold back freely moving soil in a clay environment, a formula is recommended which characterizes the state of clayey soil. The formula incorporates the parameters for volume information, momentary and long displacement modulus, decay factor of deformations of the after effect, viscosity factor in the starting zone of reforming. Because the timber creates a reaction pressure on the contour of the working, the radial travel of the timber is calculated and then the pressure on the timber. Correlation of the calculated pressure with the results of measurements in workings showed that the pressure of clayey soil on the timber is the result of viscous flow deformations. Disregarding these deformations, the pressures on the shaft timbering in the Yuzhno-Belozerskii deposit were calculated at 0.004 and 0.006 tons/m/sup 2/ respectively at a depth of 90 and 142 meters. After reworking the soil and setting up timbering the pressure was calculated at 2/3 of that of the highest measurements. The formula suggested is suitable for determining pressure on timbers having a large creep. (12 refs.) (In Russian)

  13. Methodological problems in pressure profile calculations for lipid bilayers

    DEFF Research Database (Denmark)

    Sonne, Jacob; Hansen, Flemming Yssing; Peters, Günther H.J.

    2005-01-01

    calculations: The first problem is that the pressure profile is not uniquely defined since the expression for the local pressure involves an arbitrary choice of an integration contour. We have investigated two different choices leading to the Irving-Kirkwood (IK) and Harasima (H) expressions for the local...

  14. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  15. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  16. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  17. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  18. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    Science.gov (United States)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  19. Facilitating breakdown in noble gases at near-atmospheric pressure using antennas

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, A; Van Veldhuizen, E M; Haverlag, M [Eindhoven University of Technology, Department of Applied Physics, Postbus 513, 5600MB Eindhoven (Netherlands); Gendre, M F; Manders, F, E-mail: a.sobota@tue.nl [Philips Lighting, Mathildelaan 1, 5600JM Eindhoven (Netherlands)

    2011-04-20

    Electrical breakdown in near-atmospheric pressure noble gases requires voltages that are quite high, which is undesirable for a large number of possible applications. Metallic structures (antennas) were used on the outer side of the lamp burner to enhance the electric field locally while keeping the same potential difference across the electrodes. Optical and electrical measurements were performed in an argon or xenon atmosphere at 0.3 or 0.7 bar, with 4 or 7 mm between the electrode tips. We used rod-shaped tungsten electrodes of 0.6 mm in diameter. We found that both active and passive antennas facilitate breakdown, and we demonstrated the differences between the two types and their effects on the breakdown process.

  20. Facilitating breakdown in noble gases at near-atmospheric pressure using antennas

    International Nuclear Information System (INIS)

    Sobota, A; Van Veldhuizen, E M; Haverlag, M; Gendre, M F; Manders, F

    2011-01-01

    Electrical breakdown in near-atmospheric pressure noble gases requires voltages that are quite high, which is undesirable for a large number of possible applications. Metallic structures (antennas) were used on the outer side of the lamp burner to enhance the electric field locally while keeping the same potential difference across the electrodes. Optical and electrical measurements were performed in an argon or xenon atmosphere at 0.3 or 0.7 bar, with 4 or 7 mm between the electrode tips. We used rod-shaped tungsten electrodes of 0.6 mm in diameter. We found that both active and passive antennas facilitate breakdown, and we demonstrated the differences between the two types and their effects on the breakdown process.

  1. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  2. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-05-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  3. Numerical calculation of flashing from long pipes using a two-field model

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1975-11-01

    A two-field model for two-phase flows, in which the vapor and liquid phases have different densities, velocities, and temperatures, has been used to calculate the flashing of water from long pipes. The IMF (Implicit Multifield) technique is used to numerically solve the transient equations that govern the dynamics of each phase. The flow physics is described with finite rate phase transitions, interfacial friction, heat transfer, pipe wall friction, and appropriate state equations. The results of the calculations are compared with measured histories of pressure, temperature, and void fraction. A parameter study indicates the relative sensitivity of the results to the various physical models that are used

  4. Non-contact transportation using near-field acoustic levitation

    Science.gov (United States)

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  5. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  6. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  7. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, S. Y.; Lee, K. J.; Chang, S. H.; Lee, K. J.; Chang, S. H.

    2012-01-01

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research

  8. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Lee, K. J.; Chang, S. H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, K. J.; Chang, S. H. [Khalifa Univ. of Science/Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-03-15

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research.

  9. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  10. The geochemistry of the near-field

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-10-01

    This report describes a study of the Swiss disposal concept used in 'Project Gewaehr 1985' safety analysis. The main components of the near-field of a high level waste repository are the waste glass matrix, the thick steel canister and the surrounding backfill of compressed bentonite. In this report it is concluded that mineralogical alteration of the backfill will be negligibly small over the million year period considered. Its physical and chemical properties can thus be relied on for such a period. The canister will retain its integrity for > 10/sup 3/ y and thereafter will act as an Eh/pH buffer. The near-field buffers ensure more alkaline and reducing conditions than in the far-field. Complete degradation of the glass matrix will take > 10/sup 5/ years and nuclide release will be limited by their congruent dissolution although it may be further constrained by low solubility. Diffusion of dissolved nuclides through the backfill is so slow that many species decay to insignificance within it. The large uptake capacity of the bentonite also significantly extends the release duration for longer lived, non-solubility limited nuclides thus decreasing output mixima. Possible perturbing factors such as radiolysis and hydrogen production by anoxic corrosion are of little importance but modelling of speciation/solubility in the near-field and, in particular, colloid formation and mobility are identified as areas in which more work is required. Although the main analysis aims to err on the side of conservatism, the extent of such pessimism is assessed in a 'realistic' appraisal of the near-field. This suggests that the engineered barriers will prevent any radiologically significant releases over periods in excess of a million years which would strengthen their role in the multiple barrier safety concept. (author)

  11. Evaluation of seismic stability of near field

    International Nuclear Information System (INIS)

    Taniguchi, Wataru; Takaji, Kazuhiko; Sugino, Hiroyuki; Mori, Koji

    1999-11-01

    For the buffer material of geological disposal of high-level radioactive waste (HLW) in Japan, it is considered to use a compacted bentonite or a compacted sand-mixture bentonite that is one kind of clay. The buffer material is expected to maintain long-term mechanical stability, to hold the waste in designated place, and to avoid the effects on the radionuclides migration. It is considered that the cyclic load due to seismic activities affects long-term mechanical stability in Japan, where many earthquakes have been occurring. In this report, aseismic mechanical stability of engineered barrier of HLW is studied by dynamic analysis based on equation of vibration, mainly in the view point of mechanical stability of the buffer. The analytical computer code that has been developed by JNC in cooperative project with National Research Institute for Earth Science and Disaster Prevention Science and Technology Agency is used in this study. Seismic wave at the disposal depth in the assumed geological environment is established by multiple reflection theory analysis, and then seismic wave at the disposal depth is used for the aseismic mechanical stability analysis. For the aseismic mechanical stability, total stress analyses (single-phase system) with the target field of near field are conducted to evaluate the shear failure of the buffer, the displacement of overpack, and vibrational behavior of the engineered barrier, and then effective stress analyses (two-phase system) with the target field of the engineered barrier are conducted to evaluate excursion in the pore water pressure within the buffer (i. e. liquefaction), concerning the non-linear dynamic properties of the buffer material. From the results, the following conclusions are obtained. (1) From the results of the total stress analyses, it is confirmed that the buffer must not reach a shear failure condition from the stresses caused by an earthquake and the overpack must not move significantly due to the inertial

  12. EARLY DETECTION OF NEAR-FIELD TSUNAMIS USING UNDERWATER SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    L. E. Freitag

    2012-01-01

    Full Text Available We propose a novel approach for near-field tsunami detection, specifically for the area near the city of Padang, Indonesia. Padang is located on the western shore of Sumatra, directly across from the Mentawai segment of the Sunda Trench, where accumulated strain has not been released since the great earthquake of 1797. Consequently, the risk of a major tsunamigenic earthquake on this segment is high. Currently, no ocean-bottom pressure sensors are deployed in the Mentawai basin to provide a definitive tsunami warning for Padang. Timely warnings are essential to initiate evacuation procedures and minimize loss of human life. Our approach augments existing technology with a network of underwater sensors to detect tsunamis generated by an earthquake or landslide fast enough to provide at least 15 minutes of warning. Data from the underwater sensor network would feed into existing decision support systems that accept input from land and sea-based sensors and provide warning information to city and regional authorities.

  13. RFID Antenna Near-field Characterization Using a New 3D Magnetic Field Probe

    Directory of Open Access Journals (Sweden)

    Kassem Jomaa

    2017-05-01

    Full Text Available In this paper the design of a new 3D magnetic field (H-field probe with a near-field scanning system is presented, then the near electromagnetic fields radiated by a Library RFID system is characterized. The proposed system is developed in order to determine the magnetic near-field emitted by electronic devices. The designed isotropic H-field probe consists of three orthogonal and identical loops each of diameter of 6 mm having 3 turns. The antenna factor of the designed probe is presented for a frequency range from 10 MHz to 1 GHz. The designed probe is tested and validated using a standard passive circuit as a device under test. An RFID reader antenna is also designed and simulated on HFSS (high frequency structural simulator and the radiated magnetic field, obtained by simulations, is then compared to the real measured one above the fabricated circuit. The obtained levels are checked if they satisfy the European and ICNIRP Electromagnetic Fields Guidelines.

  14. Spherical near-field scanning at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Hansen, J. E.; Jensen, F.

    1988-01-01

    The early work (1969-79) on spherical near-field antenna measurements at the Technical University of Denmark (TUD) is outlined. A spherical near-field transmission formula is described and the first probe-corrected spherical near-field measurements are discussed. The TUD-ESA (European Space Agency...

  15. The ties that bind? Galactic magnetic fields and ram pressure stripping

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu [Department of Astrophysics, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-11-10

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  16. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    Science.gov (United States)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  17. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    Science.gov (United States)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  18. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  19. A New Method for Determining Optimal Regularization Parameter in Near-Field Acoustic Holography

    Directory of Open Access Journals (Sweden)

    Yue Xiao

    2018-01-01

    Full Text Available Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH based on the equivalent source method (ESM, and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.

  20. Confinement factor, near and far field patterns in InGaN MQW laser diodes

    Science.gov (United States)

    Martín, J.; Sánchez, M.

    2005-07-01

    In this work the influence of the QW number in the active region on spectral characteristics in InGaN multi quamtun well lasers is analyzed. A comparison between the abrupt index step structure (Step) and a graded-index structure (GRIN) is done. The effect of the introduction of a p-AlxGa1-xN electron blocking layer, placed above the last InGaN barrier in the Step structure is also analyzed. Calculations of the confinement factor, near and far field patterns were carried out. We found that with the adequate aluminum content in this layer, the confinement factor, near and far field patterns are improved, and values similar to those obtained with GRIN structure can be reached.

  1. Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    International Nuclear Information System (INIS)

    Kawasaki, S; Tabuchi, T; Zheng Guoqing; Wang, X F; Chen, X H

    2010-01-01

    75 As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe 2 As 2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependencies of nuclear-spin-lattice relaxation rate (1/T 1 ) measured in the tetragonal phase show no coherence peak just below T c (P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar ≤ P ≤ 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.

  2. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  3. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  4. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  5. Relation between second-order moment radius of focal spot and near field distribution of laser beam

    International Nuclear Information System (INIS)

    Gao Xueyan; Su Yi; Ye Yidong; Guan Youguang

    2011-01-01

    In order to analyze the effect of aberration of amplitude and phase of laser beam on second-order moment radius of focal spot, based on the Fraunhofer formula for light wave scalar diffraction theory and the definition of second-order moment radius, the general expression for focal spot second-order moment radius depending on the complex amplitude of near field is derived. The second-order moment radius of the focal spot depending on intensity distribution and phase distribution of near field is derived, and its clear physical meaning is described. The second-order moment radius and the divergence angle of focal spot may be easily calculated with the second-order moment radius expression of focal spot. At last, the divergence angles of focal spots of several kinds of Gaussian laser beams are calculated directly, and the results are in accordance with those in the related references. (authors)

  6. Modeling of Near-Field Blast Performance

    Science.gov (United States)

    2013-11-01

    The freeze-out temperature is chosen by comparison of calorimetry experiments (2, 3) and thermoequilibrium calculations using CHEETAH (4). The near...P.; Vitello, P. CHEETAH Users Manual; Lawrence Livermore National Laboratory: Livermore, CA, 2012. 5. Walter, P. Introduction to Air Blast

  7. Computational lens for the near field

    DEFF Research Database (Denmark)

    Carney, P. Scott; Franzin, Richard A.; Bozhevolnyi, Sergey I.

    2004-01-01

    A method is presented to reconstruct the structure of a scattering object from data acquired with a photon scanning tunneling microscope . The data may be understood to form a Gabor type near-field hologram and are obtained at a distance from the sample where the field is defocused and normally...

  8. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  9. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    International Nuclear Information System (INIS)

    Jia Bing; Chen Chao; Zhao Chunsheng

    2011-01-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange-Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    Science.gov (United States)

    Jia, Bing; Chen, Chao; Zhao, Chun-Sheng

    2011-12-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange—Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  11. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  12. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  13. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  14. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  15. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  16. Calculation of neutron fluence in the region of the pressure vessel for the history of different reactors by using the Monte-Carlo-method

    International Nuclear Information System (INIS)

    Barz, H.U.; Bertram, W.

    1992-01-01

    Embrittlement of pressure vessel material caused by neutron irradiation is a very important problem for VVER-440 reactors. For the estimation of the fracture risk highly reliable neutron fluence values are necessary. For this reason a special theoretical determination of space dependent neutron fluences has been performed mainly on the basis of Monte-Carlo calculations. The described method allows the accurate calculation of neutron fluences near the pressure vessel in the height of the core region for all reactor histories and loading cycles in an efficient manner. To illustrate the accuracy of the suggested method a comparison with experimental results was done. The calculated neutron fluence values can be used for planning the loading schemes of each reactor according to the safety requirements against brittle fracture. (orig.)

  17. Poloidal field equilibrium calculations for JET

    International Nuclear Information System (INIS)

    Khalafallah, A.K.

    1976-01-01

    The structure of the JET 2D Poloidal Field Analysis Package is discussed. The ability to cope with different plasma current density distributions (skin, flat or peaked), each with a range of Beta poloidal values and varying plasma shapes is a new feature of these calculations. It is possible to construct instant-by-instant pictures of equilibrium configurations for various plasma build up scenarios taking into account the level of flux in the iron core and return limbs. The equilibrium configurations are calculated for two possible sequences of plasma build up. Examples of the magnetic field calculations being carried out under contract to JET at the Rutherford Laboratory, using a 3D code, are also given

  18. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Near-Field Source Localization by Using Focusing Technique

    Science.gov (United States)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  20. Near-Field Source Localization by Using Focusing Technique

    Directory of Open Access Journals (Sweden)

    Joseph Saillard

    2008-12-01

    Full Text Available We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007 is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics

  1. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  2. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  3. Theoretical and experimental examination of near-field acoustic levitation.

    Science.gov (United States)

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  4. Magnetic particle movement program to calculate particle paths in flow and magnetic fields

    International Nuclear Information System (INIS)

    Inaba, Toru; Sakazume, Taku; Yamashita, Yoshihiro; Matsuoka, Shinya

    2014-01-01

    We developed an analysis program for predicting the movement of magnetic particles in flow and magnetic fields. This magnetic particle movement simulation was applied to a capturing process in a flow cell and a magnetic separation process in a small vessel of an in-vitro diagnostic system. The distributions of captured magnetic particles on a wall were calculated and compared with experimentally obtained distributions. The calculations involved evaluating not only the drag, pressure gradient, gravity, and magnetic force in a flow field but also the friction force between the particle and the wall, and the calculated particle distributions were in good agreement with the experimental distributions. Friction force was simply modeled as static and kinetic friction forces. The coefficients of friction were determined by comparing the calculated and measured results. This simulation method for solving multiphysics problems is very effective at predicting the movements of magnetic particles and is an excellent tool for studying the design and application of devices. - Highlights: ●We developed magnetic particles movement program in flow and magnetic fields. ●Friction force on wall is simply modeled as static and kinetic friction force. ●This program was applied for capturing and separation of an in-vitro diagnostic system. ●Predicted particle distributions on wall were agreed with experimental ones. ●This method is very effective at predicting movements of magnetic particles

  5. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements

    Directory of Open Access Journals (Sweden)

    Eric Van den Bulck

    2008-11-01

    Full Text Available In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  6. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements.

    Science.gov (United States)

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-11-28

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  7. The study of field and density cavity in the near wake region of a space vehicle

    International Nuclear Information System (INIS)

    Luo Qing; Wang Jing; Hu Taoping

    2011-01-01

    Under the static limit,using the method of Fourier transformation, the non-steady, nonlinear interactions between plasma and field in the near wake region of a space vehicle are investigated. Numerical calculations are performed and the results show that there are the formation of the electromagnetic soliton and density caviton in the near wake region of the space vehicle, which can be detected due to the collapse of electric field. Therefore, we can trace out the space vehicle by means of observing the structure and intensity of the density caviton and electromagnetic soliton although the space vehicle may be have a disguised characteristic. (authors)

  8. Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations

    International Nuclear Information System (INIS)

    Yin Lin; Winske, Dan

    2003-01-01

    Collisionless reconnection is studied using two-dimensional (2-D) hybrid (particle ions, massless fluid electrons) and Hall-magnetohydrodynamics (Hall-MHD) simulations. Both use the full electron pressure tensor instead of a localized resistivity in Ohm's law to initiate reconnection; an initial perturbation or boundary driving to the equilibrium is used. The initial configurations include one-dimensional (1-D) and 2-D current sheets both with and without a guide field. Electron dynamics from the two calculations are compared, and overall agreement is found between the calculations in both reconnection rate and global configuration [L. Yin et al., J. Geophys. Res. 106, 10761 (2001)]. It is shown that the electron drifts in the small-transverse-scale fields near the X point cause the electron motion to decouple from the ion motion, and that reconnection occurs due to electron viscous effects contained in the off-diagonal terms of the electron pressure tensor. Comparing the hybrid and Hall-MHD simulations shows that effects of the off-diagonal terms in the ion pressure tensor, i.e., the ion gyro-radius effects, are necessary in order to model correctly the ion out-of-plane motion. It is shown that these effects can be modeled efficiently in a particle Hall-MHD simulation in which particle ions are used in a predictor/corrector manner to implement ion gyro-radius corrections [L. Yin et al., Phys. Plasmas 9, 2575 (2002)]. For modeling reconnection in large systems, a new integrated approach is examined in which Hall-MHD calculations using a full electron pressure tensor model is embedded inside a MHD simulation. The embedded simulation of current sheet thinning and reconnection dynamics in a realistic 2-D magnetotail equilibrium exhibits smooth transitions of plasma and field quantities between the two regions, with small-scale physics represented well in the compressed current sheet and in the near-X-point region

  9. Diverse radiofrequency sensitivity and radiofrequency effects of mobile or cordless phone near fields exposure in Drosophila melanogaster.

    Science.gov (United States)

    Geronikolou, Styliani; Zimeras, Stelios; Davos, Constantinos H; Michalopoulos, Ioannis; Tsitomeneas, Stephanos

    2014-01-01

    The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations) and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects.

  10. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because they are thought unlikely to occur to a significant degree, or because they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. (author) figs., tabs., refs

  11. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm 2 field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.

  12. Pressure propagation in a 2D CDA model by method of near characteristics

    International Nuclear Information System (INIS)

    Jasmin Sudha, A.; Harvey, J.; Kannan, S.E.

    1999-01-01

    Parametric hydrodynamic computations are carried out by method of near characteristics for a simulated core disruptive accidental condition. The model comprises of a rigid cylindrical vessel filled with water up to a certain level, which simulates the coolant, and a high pressure spherical bubble which represents the expanding core. Top lid force, impulse and mid plane pressure time histories are obtained for different initial bubble pressures ranging between 10 MPa and 400 MPa. The impulse per unit work potential of the bubble increases with increase in the bubble pressure up to 40 MPa and then shows a decreasing trend for higher pressures of the bubble. For a given initial bubble pressure, the force and impulse on the top lid are studied at different cover gas volumes which are 6%, 16%, 20% and 25% of the vessel volume. It is observed that larger the cover gas volume lesser the impulse on the top lid. The role of vapour expansion constant of the bubble γ in causing damage to the top lid is assessed for different values of γ, viz. 0.65, 0.72, 0.85, 0.9, 1.4 and 1.67. It is noted that the impulse on the top lid decreases for increasing values of γ. Calculations have been carried out by replacing water medium by sodium at 500 deg C. It is seen that the force and impulse on the top lid are higher in the case of sodium than water by 55% and 10% respectively. (author)

  13. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  14. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi, P G [CNR-Istituto per i Processi Chimico-Fisici, sezione Messina, Salita Sperone, Contrada Papardo, I-98158 Faro Superiore, Messina (Italy); Lopes, M; Deturche, R; Julien, C; Barchiesi, D; Chapelle, M Lamy de la [Institut Charles Delaunay-CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP2060, 10010 Troyes (France)

    2008-05-28

    We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.

  15. Motion of Charged Particles near Magnetic Field Discontinuities

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2000-01-01

    The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles

  16. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  17. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  18. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    Science.gov (United States)

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  19. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  20. Wind turbine sound pressure level calculations at dwellings.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Leroux, Tony; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise propagation method. Both methods yielded statistically equivalent results. The A- and C-weighted results were highly correlated over the 1238 dwellings (Pearson's linear correlation coefficient r > 0.8). Calculated wind turbine SPLs were compared to ambient SPLs from other sources, estimated using guidance documents from the United States and Alberta, Canada.

  1. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  2. Near-Field Resonance Microwave Tomography and Holography

    Science.gov (United States)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  3. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  4. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Science.gov (United States)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  5. Shallow donor impurities in different shaped double quantum wells under the hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Sokmen, I.

    2005-01-01

    The combined electric field and hydrostatic pressure effects on the binding energy of the donor impurity in double triangle quantum well (DTQW), double graded (DGQW) and double square (DSQW) GaAs-(Ga,Al)As quantum wells are calculated by using a variational technique within the effective-mass approximation. The results have been obtained in the presence of an electric field applied along the growth direction as a function of hydrostatic pressure, the impurity position, barrier width and the geometric shape of the double quantum wells

  6. Near-field photon wave mechanics in the Lorenz gauge

    International Nuclear Information System (INIS)

    Keller, Ole

    2007-01-01

    Optical near-field interactions are studied theoretically in the perspective of photon wave mechanics paying particular attention to the dynamics in the wave-vector time domain. A unitary transformation is used to replace the scalar and longitudinal photon variables by so-called near-field and gauge photon variables. Dynamical equations are established for these types of photon variables, and it is shown that these equations are invariant against gauge transformations within the Lorenz gauge. The near-field photon is absent in the free-field limit, and the gauge photon can be eliminated by a suitable gauge transformation. Implicit solutions for the near-field, gauge, and transverse photon variables are obtained and discussed. The general theory is applied to an investigation of transverse photon propagation in a uniform solid-state plasma dominated by the diamagnetic field-matter interaction. It is found that the diamagnetic response can be incorporated in a quantum mechanical wave equation for a massive transverse photon. The Compton wave number of the massive photon equals the plasma wave number of the electron system. A dynamical equation describing the emission of a massive transverse photon from a mesoscopic source embedded in the plasma is finally established

  7. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  8. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  9. Building Practical Apertureless Scanning Near-Field Microscopy

    Science.gov (United States)

    Gungordu, M. Zeki

    The fundamental objective of this study is to establish a functional, practical apertureless type scanning near-field optical microscope, and to figure out the working mechanism behind it. Whereas a far-field microscope can measure the propagating field's components, this gives us little information about the features of the sample. The resolution is limited to about half of the wavelength of the illuminating light. On the other hand, the a-SNOM system enables achieving non-propagating components of the field, which provides more details about the sample's features. It is really difficult to measure because the amplitude of this field decays exponentially when the tip is moved away from the sample. The sharpness of the tip is the only limitation for resolution of the a-SNOM system. Consequently, the sharp tips are achieved by using electrochemical etching, and these tips are used to detect near-field signal. Separating the weak a-SNOM system signals from the undesired background signal, the higher demodulation background suppression is utilized by lock-in detection.

  10. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    International Nuclear Information System (INIS)

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  11. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  12. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  13. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  14. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  15. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  16. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  17. Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension.

    Science.gov (United States)

    Cortes-Puentes, Gustavo A; Gard, Kenneth E; Adams, Alexander B; Faltesek, Katherine A; Anderson, Christopher P; Dries, David J; Marini, John J

    2013-08-01

    To clarify the effect of progressively increasing intra-abdominal pressure on esophageal pressure, transpulmonary pressure, and functional residual capacity. Controlled application of increased intra-abdominal pressure at two positive end-expiratory pressure levels (1 and 10 cm H2O) in an anesthetized porcine model of controlled ventilation. Large animal laboratory of a university-affiliated hospital. Eleven deeply anesthetized swine (weight 46.2 ± 6.2 kg). Air-regulated intra-abdominal hypertension (0-25 mm Hg). Esophageal pressure, tidal compliance, bladder pressure, and end-expiratory lung aeration by gas dilution. Functional residual capacity was significantly reduced by increasing intra-abdominal pressure at both positive end-expiratory pressure levels (p ≤ 0.0001) without corresponding changes of end-expiratory esophageal pressure. Above intra-abdominal pressure 5 mm Hg, plateau airway pressure increased linearly by ~ 50% of the applied intra-abdominal pressure value, associated with commensurate changes of esophageal pressure. With tidal volume held constant, negligible changes occurred in transpulmonary pressure due to intra-abdominal pressure. Driving pressures calculated from airway pressures alone (plateau airway pressure--positive end-expiratory pressure) did not equate to those computed from transpulmonary pressure (tidal changes in transpulmonary pressure). Increasing positive end-expiratory pressure shifted the predominantly negative end-expiratory transpulmonary pressure at positive end-expiratory pressure 1 cm H2O (mean -3.5 ± 0.4 cm H2O) into the positive range at positive end-expiratory pressure 10 cm H2O (mean 0.58 ± 1.2 cm H2O). Despite its insensitivity to changes in functional residual capacity, measuring transpulmonary pressure may be helpful in explaining how different levels of positive end-expiratory pressure influence recruitment and collapse during tidal ventilation in the presence of increased intra-abdominal pressure and in

  18. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  19. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  20. New developments in near-field acoustic holography

    NARCIS (Netherlands)

    Roozen, N.B.; Geerlings, A.C.; Verhaar, B.T.; Vliegenthart, T.

    2007-01-01

    In the field of noise-control engineering, information about the individual strength, andlocation, of the most dominant sources is of vital importance. This information allows theacoustic engineer to take effective measures in his effort to reduce the emitted acoustic noiselevels. Near-field

  1. Near-field levitated quantum optomechanics with nanodiamonds

    Science.gov (United States)

    Juan, M. L.; Molina-Terriza, G.; Volz, T.; Romero-Isart, O.

    2016-08-01

    We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere, thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields. In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber and coupled to a high-finesse microsphere cavity.

  2. Near field optics and nanoscopy

    CERN Document Server

    Fillard, J P

    1996-01-01

    This book contains the most recent information on optical nanoscopy. Far-Field and Near-Field properties on e.m. waves are presented which illustrate how optical images can be obtained from sub-micron objects. Scanning Probe techniques and computer processing are covered here. An explanation is given on how propagating photons or evanescent waves can behave over distances shorter than the wavelength, taking into account the presence of small objects. Quantum tunneling of photons is explained comparatively with the electron mechanism. Technical details are given on photon tunneling microscopes.

  3. Calculation of propellant gas pressure by simple extended corresponding state principle

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-04-01

    Full Text Available The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle (SE-CSP is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second virial coefficient expression was extrapolated based on the virial coefficients experimental temperature, and the second virial coefficients obtained are in good agreement with the experimental data at a low temperature and the theoretical values at high temperature. The maximum pressure in the closed bomb test was calculated with modified SE-CSP virial coefficient expressions with the calculated error of less than 2%, and the error was smaller than the result calculated with the reported values under the same calculation conditions. The modified SE-CSP virial coefficient expression provides a convenient and efficient method for practical virial coefficient calculation without resorting to complicated molecular model design and integral calculation.

  4. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  5. Water pressure and ground vibrations induced by water guns near Bandon Road Lock and Dam and Lemont, Illinois

    Science.gov (United States)

    Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.

    2018-02-13

    Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water

  6. Diverse Radiofrequency Sensitivity and Radiofrequency Effects of Mobile or Cordless Phone near Fields Exposure in Drosophila melanogaster

    Science.gov (United States)

    Geronikolou, Styliani; Zimeras, Stelios; Davos, Constantinos H.; Michalopoulos, Ioannis; Tsitomeneas, Stephanos

    2014-01-01

    Introduction The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. Methods/Results Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations) and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. Conclusions/Significance Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects. PMID:25402465

  7. Diverse radiofrequency sensitivity and radiofrequency effects of mobile or cordless phone near fields exposure in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Styliani Geronikolou

    Full Text Available INTRODUCTION: The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. METHODS/RESULTS: Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. CONCLUSIONS/SIGNIFICANCE: Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects.

  8. Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, Ara N. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Kazarian, Narine [Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Millar, Alexander J.; Raffelt, Georg G., E-mail: ara.ioannisyan@cern.ch, E-mail: narinkaz@gmail.com, E-mail: millar@mpp.mpg.de, E-mail: raffelt@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-09-01

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.

  9. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  10. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  11. An ab-initio coupled mode theory for near field radiative thermal transfer.

    Science.gov (United States)

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  12. Some variations of the Kristallin-I near-field model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P A; Curti, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs.

  13. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs

  14. Monte Carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine

    International Nuclear Information System (INIS)

    Sewell, Thomas D.; Bennett, Carl M.

    2000-01-01

    Isothermal-isobaric Monte Carlo calculations were used to obtain predictions of the elastic coefficients and derived engineering moduli and Poisson ratios for crystalline hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The elastic coefficients were computed using the strain fluctuation formula due to Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)]. Calculations were performed as a function of temperature (218 K≤T≤333 K) and hydrostatic pressure (0 GPa≤p≤4 GPa). The predicted values of the moduli and Poisson ratios under ambient conditions are in accord with general expectations for molecular crystals and with a very recent, unpublished determination for RDX. The moduli exhibit a sensitive pressure dependence whereas the Poisson ratios are relatively independent of pressure. The temperature dependence of the moduli is comparable to the precision of the results. However, the crystal does exhibit thermal softening for most pressures. An additional product of the calculations is information about the pressure-volume-temperature (pVT) equation of state. We obtain near-quantitative agreement with experiment for the case of hydrostatic compression and reasonable, but not quantitative, correspondence for thermal expansion. The results indicate a significant dependence of the thermal expansion coefficients on hydrostatic pressure. (c) 2000 American Institute of Physics

  15. Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters

    International Nuclear Information System (INIS)

    Dryakhlushin, V F; Veiko, V P; Voznesenskii, N B

    2007-01-01

    A brief review of modern applications of scanning near-field optical (SNO) devices in microscopy, spectroscopy, and lithography is presented in the introduction. The problem of the development of SNO probes, as the most important elements of SNO devices determining their resolution and efficiency, is discussed. Based on the works of the authors, two different methods for fabricating SNO probes by using the adiabatic tapering of an optical fibre are considered: the laser-heated mechanical drawing and chemical etching. A nondestructive optical method for controlling the nanometre aperture of SNO probes is proposed, substantiated, and tested experimentally. The method is based on the reconstruction of a near-field source with the help of a theoretical algorithm of the inverse problem from the experimental far-filed intensity distribution. Some prospects for a further refinement of the construction and technology of SNO probes are discussed. (optical microscopy)

  16. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Peng-Robinson equations are readily available in the literature. The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.

  17. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  18. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    Science.gov (United States)

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  19. Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well

    International Nuclear Information System (INIS)

    Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2011-01-01

    We have calculated the intersubband transitions and the ground-state binding energies of a hydrogenic donor impurity in a quantum well in the presence of a high-frequency laser field and hydrostatic pressure. The calculations are performed within the effective mass approximation, using a variational method. We conclude that the laser field amplitude and the hydrostatic pressure provide an important effect on the electronic and optical properties of the quantum wells. According to the results obtained from the present work, it is deduced that (i) the binding energies of donor impurity decrease as the laser field increase, (ii) the binding energies of donor impurity increase as the hydrostatic pressure increase, (iii) the intersubband absorption coefficients shift toward lower energies as the hydrostatic pressure increases, (iv) the magnitude of absorption coefficients decrease and also shift toward higher energies as the laser field increase. It is hopeful that the obtained results will provide important improvements in device applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  1. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  2. Performance prediction and flow field calculation for airfoil fan with impeller inlet clearance

    International Nuclear Information System (INIS)

    Kang, Shin Hyoung; Cao, Renjing; Zhang, Yangjun

    2000-01-01

    The performance prediction of an airfoil fan using a commercial code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub

  3. Near Field Modeling for the Maule Tsunami from DART, GPS and Finite Fault Solutions (Invited)

    Science.gov (United States)

    Arcas, D.; Chamberlin, C.; Lagos, M.; Ramirez-Herrera, M.; Tang, L.; Wei, Y.

    2010-12-01

    The earthquake and tsunami of February, 27, 2010 in central Chile has rekindled an interest in developing techniques to predict the impact of near field tsunamis along the Chilean coastline. Following the earthquake, several initiatives were proposed to increase the density of seismic, pressure and motion sensors along the South American trench, in order to provide field data that could be used to estimate tsunami impact on the coast. However, the precise use of those data in the elaboration of a quantitative assessment of coastal tsunami damage has not been clarified. The present work makes use of seismic, Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems, and GPS measurements obtained during the Maule earthquake to initiate a number of tsunami inundation models along the rupture area by expressing different versions of the seismic crustal deformation in terms of NOAA’s tsunami unit source functions. Translation of all available real-time data into a feasible tsunami source is essential in near-field tsunami impact prediction in which an impact assessment must be generated under very stringent time constraints. Inundation results from each different source are then contrasted with field and tide gauge data by comparing arrival time, maximum wave height, maximum inundation and tsunami decay rate, using field data collected by the authors.

  4. Convergence analysis in near-field imaging

    International Nuclear Information System (INIS)

    Bao, Gang; Li, Peijun

    2014-01-01

    This paper is devoted to the mathematical analysis of the direct and inverse modeling of the diffraction by a perfectly conducting grating surface in the near-field regime. It is motivated by our effort to analyze recent significant numerical results, in order to solve a class of inverse rough surface scattering problems in near-field imaging. In a model problem, the diffractive grating surface is assumed to be a small and smooth deformation of a plane surface. On the basis of the variational method, the direct problem is shown to have a unique weak solution. An analytical solution is introduced as a convergent power series in the deformation parameter by using the transformed field and Fourier series expansions. A local uniqueness result is proved for the inverse problem where only a single incident field is needed. On the basis of the analytic solution of the direct problem, an explicit reconstruction formula is presented for recovering the grating surface function with resolution beyond the Rayleigh criterion. Error estimates for the reconstructed grating surface are established with fully revealed dependence on such quantities as the surface deformation parameter, measurement distance, noise level of the scattering data, and regularity of the exact grating surface function. (paper)

  5. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....

  6. Short-period strain (0.1-105 s): Near-source strain field for an earthquake (M L 3.2) near San Juan Bautista, California

    Science.gov (United States)

    Johnston, M. J. S.; Borcherdt, R. D.; Linde, A. T.

    1986-10-01

    Measurements of dilational earth strain in the frequency band 25-10-5 Hz have been made on a deep borehole strainmeter installed near the San Andreas fault. These data are used to determine seismic radiation fields during nuclear explosions, teleseisms, local earthquakes, and ground noise during seismically quiet times. Strains of less than 10-10 on these instruments can be clearly resolved at short periods (< 10 s) and are recorded with wide dynamic range digital recorders. This permits measurement of the static and dynamic strain variations in the near field of local earthquakes. Noise spectra for earth strain referenced to 1 (strain)2/Hz show that strain resolution decreases at about 10 dB per decade of frequency from -150 dB at 10-4 Hz to -223 dB at 10 Hz. Exact expressions are derived to relate the volumetric strain and displacement field for a homogeneous P wave in a general viscoelastic solid as observed on colocated dilatometers and seismometers. A rare near-field recording of strain and seismic velocity was obtained on May 26, 1984, from an earthquake (ML 3.2) at a hypocentral distance of 3.2 km near the San Andreas fault at San Juan Bautista, California. While the data indicate no precursory strain release at the 5 × 10-11 strain level, a coseismic strain release of 1.86 nanostrain was observed. This change in strain is consistent with that calculated from a simple dislocation model of the event. Ground displacement spectra, determined from the downhole strain data and instrument-corrected surface seismic data, suggest that source parameters estimated from surface recordings may be contaminated by amplification effects in near-surface low-velocity materials.

  7. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  8. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    Science.gov (United States)

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  9. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  10. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  11. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  12. Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources

    Science.gov (United States)

    Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.

    2017-11-01

    The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.

  13. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  15. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  16. Calculating Production Rate of each Branch of a Multilateral Well Using Multi-Segment Well Model: Field Example

    Directory of Open Access Journals (Sweden)

    Mohammed S. Al-Jawad

    2017-11-01

    Full Text Available Multilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily. This paper states the way to calculate production rate of each branch of a multilateral well-using multi-segment well model. The pressure behaviour of each branch is simulated dependent on knowing its production rate. This model has divided a multi-lateral well into an arbitrary number of segments depending on the required degree of accuracy and run time of the simulator. The model implemented on a field example (multi-lateral well HF-65ML in Halfaya Oil Field/Mishrif formation. The production rate and pressure behaviour of each branch are simulated during the producing interval of the multilateral well. The conclusion is that production rate of the main branch is slightly larger than a lateral branch.

  17. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  18. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  19. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  20. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  1. Entropy squeezing of the field interacting with a nearly degenerate V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    Zhou Qing-Chun; Zhu Shi-Ning

    2005-01-01

    The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.

  2. Experimental study and calculations of the near critical behavior of a synthetic fluid in nitrogen injection

    International Nuclear Information System (INIS)

    Coronado Parra, Carlos Alberto; Escobar Remolina, Juan Carlos M

    2005-01-01

    In recent years, the use of nitrogen has increased as gas injection to recover oil fluids near the critical point. The behavior of hydrocarbon mixture phases in the critical region shows very interesting complex phenomena when facing a recovery project with nitrogen. Therefore, it is important to have experimental information of the PVTx thermodynamic variable, often scarce, for this type of critical phenomena. This paper reports the experimental measures of the volumetric behavior and phases of synthetic fluid in a nitrogen injection process. The experiment was performed at laboratory scale, and it obtained variations on the saturation pressure, gas oil ratio, density and composition of the hydrocarbon phase when nitrogen was injected at molars of 10,20,30 and 40% on different volumetric portions of the mother sample. In addition, the data obtained experimentally was used to demonstrate the capacity of tune to compositional models. The data provided represents a valuable contribution to the understanding of phenomena associated with retrograde and near critical regions, as well as their use in tuning and developing more elaborate models such as Cubic Equations of State (EOS). It is worth highlighting the importance of this data in the potential processes of nitrogen, CO 2 , and lean gas injection, which require knowledge of the gas-oil ratio, saturation pressures, density and composition of the fluid in current production. The identification of the phenomena shown, represent a potential application to the modeling of displacements and maintaining the pressure in the improved recovery when scaling up the laboratory data to the field / reservoir conditions

  3. Novel and Efficient Methods for Calculating Pressure in Polymer Lattice Models

    Science.gov (United States)

    Zhang, Pengfei; Wang, Qiang

    2014-03-01

    Pressure calculation in polymer lattice models is an important but nontrivial subject. The three existing methods - thermodynamic integration, repulsive wall, and sedimentation equilibrium methods - all have their limitations and cannot be used to accurately calculate the pressure at all polymer volume fractions φ. Here we propose two novel methods. In the first method, we combine Monte Carlo simulation in an expanded grand-canonical ensemble with the Wang-Landau - Optimized Ensemble (WL-OE) simulation to calculate the pressure as a function of polymer volume fraction, which is very efficient at low to intermediate φ and exhibits negligible finite-size effects. In the second method, we introduce a repulsive plane with bridging bonds, which is similar to the repulsive wall method but eliminates its confinement effects, and estimate the two-dimensional density of states (in terms of the number of bridging bonds and the contact number) using the 1/ t version of Wang-Landau algorithm. This works well at all φ, especially at high φ where all the methods involving chain insertion trial moves fail.

  4. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  5. Near field communication recent developments and library implications

    CERN Document Server

    McHugh, Sheli

    2014-01-01

    Near Field Communication is a radio frequency technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. This report on the progress of Near Field Communication reviews the features and functionality of the technology and summarizes the broad spectrum of its current and anticipated applications. We explore the development of NFC technology in recent years, introduce the major stakeholders in the NFC ecosystem, and project its movement toward mainstream adoption. Several examples of early implementation of NFC

  6. MP.EXE, a Calculation Program for Pressure Reciprocity Calibration of Microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    A computer program is described which calculates the pressure sensitivity of microphones based on measurements of the electrical transfer impedance in a reciprocity calibration set-up. The calculations are performed according to the International Standard IEC 6194-2. In addition a number of options...

  7. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-01-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  8. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  9. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  10. Methods for magnetostatic field calculation

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.

    1984-01-01

    Two methods for magnetostatic field calculation: differential and integrat are considered. Both approaches are shown to have certain merits and drawbacks, choice of the method depend on the type of the solved problem. An opportunity of combination of these tWo methods in one algorithm (hybrid method) is considered

  11. Automatic Calculation of Hydrostatic Pressure Gradient in Patients with Head Injury: A Pilot Study.

    Science.gov (United States)

    Moss, Laura; Shaw, Martin; Piper, Ian; Arvind, D K; Hawthorne, Christopher

    2016-01-01

    The non-surgical management of patients with traumatic brain injury is the treatment and prevention of secondary insults, such as low cerebral perfusion pressure (CPP). Most clinical pressure monitoring systems measure pressure relative to atmospheric pressure. If a patient is managed with their head tilted up, relative to their arterial pressure transducer, then a hydrostatic pressure gradient (HPG) can act against arterial pressure and cause significant errors in calculated CPP.To correct for HPG, the arterial pressure transducer should be placed level with the intracranial pressure transducer. However, this is not always achieved. In this chapter, we describe a pilot study investigating the application of speckled computing (or "specks") for the automatic monitoring of the patient's head tilt and subsequent automatic calculation of HPG. In future applications this will allow us to automatically correct CPP to take into account any HPG.

  12. Near field communications handbook

    CERN Document Server

    Ahson, Syed A; Furht, Borko

    2011-01-01

    Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of

  13. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Calculation of pressure drop and flow redistribution in the LMFBR core

    International Nuclear Information System (INIS)

    Morgado, O.J.

    1984-01-01

    The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt

  15. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E. [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Rensmo, Håkan; Hahlin, Maria [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Åhlund, John; Edwards, Mårten O.M. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Payne, David J., E-mail: d.payne@imperial.ac.uk [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-15

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  16. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    International Nuclear Information System (INIS)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J.; Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E.; Eriksson, Susanna K.; Rensmo, Håkan; Hahlin, Maria; Åhlund, John; Edwards, Mårten O.M.; Payne, David J.

    2015-01-01

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  17. Generalized monitor unit calculation for the Varian enhanced dynamic wedge field

    International Nuclear Information System (INIS)

    Liu Chihray; Kim, Siyong; Kahler, Darren L.; Palta, Jatinder R.

    2003-01-01

    The generalized monitor unit (MU) calculation equation for the Varian enhanced dynamic wedge (EDW) is derived. The assumption of this MU calculation method is that the wedge factor of the EDW at the center of the field is a function of field size, the position of the center of the field in the wedge direction, and the final position of the moving jaw. The wedge factors at the center of the field in both symmetric and asymmetric fields are examined. The difference between calculated and measured wedge factors is within 1.0%. The method developed here is easy to implement. The only datum required in addition to the standard set of conventional physical wedge implementation data is the off-axis output factor for the open field in the reference condition. The off-center point calculation is also examined. For the off-center point calculation, the dose profile in the wedge direction for the largest EDW field is used to obtain the relative off-center ratio in any smaller wedge field. The accuracy of the off-center point calculation decreases when the point of calculation is too close to the field edge

  18. Exciton states in GaAs δ-doped systems under magnetic fields and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)

    2013-04-15

    Excitons in GaAs n-type δ-doped quantum wells are studied taking into account the effects of externally applied magnetic fields as well as of hydrostatic pressure. The one-dimensional potential profile in both the conduction and valence bands is described including Hartree effects via a Thomas–Fermi-based local density approximation. The allowed uncorrelated energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions and a variational method is used to obtain the exciton states. The results are presented as functions of the two-dimensional doping concentration and the magnetic field strength for zero and finite values of the hydrostatic pressure. In general, it is found that the exciton binding energy is a decreasing function of the doping-density and an increasing function of the magnetic field intensity. A comparison with recent experiments on exciton-related photoluminescence in n-type δ-doped GaAs is made.

  19. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  20. Quantification of source-term profiles from near-field geochemical models

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-01-01

    A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs

  1. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  2. Calculation of vapour pressures over mixed carbide fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Mathews, C.K.

    1988-01-01

    Vapour pressure over the uranium-plutonium mixed carbide (Usub(l-p) Pusub(p C) was calculated in the temperature range of 1300-9000 for various compositions (p=0.1 to 0.7). Effects of variation of the sesquicarbide content were also studied. The principle of corresponding states was applied to UC and mixed carbides to obtain the equation of state. (author)

  3. Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition

    Science.gov (United States)

    Zaman, Mohammad Asif; Padhy, Punnag; Hansen, Paul C.; Hesselink, Lambertus

    2018-02-01

    The non-conservative nature of the force field generated by a near-field optical trap is analyzed. A plasmonic C-shaped engraving on a gold film is considered as the trap. The force field is calculated using the Maxwell stress tensor method. The Helmholtz-Hodge decomposition is used to extract the conservative and the non-conservative component of the force. Due to the non-negligible non-conservative component, it is found that the conventional approach of extracting the potential by direct integration of the force is not accurate. Despite the non-conservative nature of the force field, it is found that the statistical properties of a trapped nanoparticle can be estimated from the conservative component of the force field alone. Experimental and numerical results are presented to support the claims.

  4. Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Teisseyre, Henryk, E-mail: teiss@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of High Pressure, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); Kaminska, Agata; Suchocki, Andrzej; Kozanecki, Adrian [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Birner, Stefan [nextnano GmbH, Südmährenstr. 21, 85586 Poing (Germany); Young, Toby D. [Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego, 5b, 02-106 Warsaw (Poland)

    2016-06-07

    We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gap pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.

  5. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  6. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    coefficients for the Peng–Robinson equations are readily available in the literature.The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.

  7. Proportional counter with uniform electric field with Penning's mixture

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Marzec, J.; Zaremba, K.

    1984-01-01

    Some calculations are given and the design of proportional counters with a homogeneous electric field filled with Penning's mixtures, which ensure the best energy resolution is described. The counters with mixtures of Ne+Ar, Ne+CH 4 , Ne+CO 2 and Ar+C 2 H 2 have been checked. The admixtures (Ar, CH 4 , CO 2 , C 2 H 2 ) constitute from 0.1 to 2%, with pressure from 125 Tr to 760 Torr. The best energy resolution has been obtained for the mixture of Ne+1%CH 4 at the pressure of 190 Torr

  8. Studies of solar magnetic fields. V. The true average field strengths near the poles

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown, but the most likely possibility is that the true average field strengths are about twice the measured values (0-2 G), with an absolute upper limit on the underestimation of the field strengths of about a factor 5. The measurements refer to latitudes below about 80/sup 0/.

  9. Unidirectional wireless power transfer using near-field plates

    International Nuclear Information System (INIS)

    Imani, Mohammadreza F.; Grbic, Anthony

    2015-01-01

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency

  10. Unidirectional wireless power transfer using near-field plates

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-05-14

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.

  11. Cementitious Near-Field Sorption Data Base for Performance Assessment of an ILW Repository in Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Van Loon, L. R

    2003-08-01

    The present report describes a cement sorption database (SDB) for the safety-relevant radionuclides to be disposed of in the planned Swiss repository for long-lived intermediate-level radioactive wastes (ILW). This report is an update on earlier SDBs, which were compiled for the cementitious near field of a repository for low- and intermediate-level radioactive wastes (L/ILW) by BRADBURY + SAROTT (1995) and BRADBURY + VAN LOON (1998). The radionuclide inventories are determined by the waste streams to be disposed of in the ILW repository. A list of the safety-relevant radionuclides was provided based on the currently available information on ILW inventories. The compositions of the cement porewaters in the near fields of the L/ILW and ILW repositories, which had been calculated using well-established codes for modelling cement degradation, were compared to identify any differences in the near-field conditions and to assess their influence on radionuclide sorption. Sorption values were selected based on the previously reported SDBs for the near field of the L/ILW repository. Sorption values were revised if new information and/or data were available which allowed changes to or re-appraisals of the data to be made. The sorption values recommended in this report were either selected on the basis of data from in-house experimental studies or from literature data. For some key radioelements, i.e., Cs(l), Sr(II), Ni(II), Eu(lll), Th(IV) and Sn(IV), new data were available from in-house measurements. These elements had been selected for experimental studies due to their relevance to safety assessment and/or their importance as appropriate chemical analogues. Degradation products of bitumen and cellulose, concrete admixtures and cement-derived near-field colloids were taken into account as the main potential perturbations, which could reduce radionuclide sorption in the near field. Possible impacts of the perturbing factors on radionuclide mobility were considered and

  12. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  13. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  14. The inside–outside duality for inverse scattering problems with near field data

    International Nuclear Information System (INIS)

    Lechleiter, Armin; Peters, Stefan

    2015-01-01

    We derive an inside–outside duality for near field scattering data generated by time-harmonic scattering of acoustic point sources from a sound-soft scatterer. This duality in particular rigorously characterizes interior Dirichlet eigenvalues of the scattering object by near field operators for an interval of wave numbers. As a crucial new concept to prove this duality we exploit the numerical ranges of certain modifications of these near field operators. We also show that our theoretical results can be numerically used to approximate interior Dirichlet eigenvalues from multi-frequency near field measurements. (paper)

  15. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  16. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  17. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  18. arXiv Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    CERN Document Server

    Ioannisian, Ara N.; Millar, Alexander J.; Raffelt, Georg G.

    2017-09-05

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ("Garibian wave function") and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unpertu...

  19. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  20. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  1. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  2. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  3. Ultrahigh Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.

    Science.gov (United States)

    Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang

    2018-05-31

    High sensitivity pressure sensors are crucial for the ultra-sensitive touch technology and E-skin, especially at the tiny pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to two hundred kPa -1 , and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 by using short channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels, and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny pressure range including LED switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

  4. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    Science.gov (United States)

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  5. The near-field acoustic levitation of high-mass rotors

    International Nuclear Information System (INIS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-01-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope

  6. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  7. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  8. Near-field scanning optical microscopy based nanostructuring of glass

    International Nuclear Information System (INIS)

    Chimmalgi, A; Hwang, D J; Grigoropoulos, C P

    2007-01-01

    Nanofabrication, at lateral resolutions beyond the capability of conventional optical lithography techniques, is demonstrated here. Femtosecond laser was used in conjunction with Near-field Scanning Optical Microscopes (NSOMs) to nanostructure thin metal films. Also, the possibility of using these nanostructured metal films as masks to effectively transfer the pattern to the underlying substrate by wet etching process is shown. Two different optical nearfiled processing schemes were studied for near-field nanostructuring. In the first scheme, local field enhancement in the near-field of a scanning probe microscope (SPM) probe tip irradiated with femtosecond laser pulses was utilized (apertureless NSOM mode) and as a second approach, femtosecond laser beam was spatially confined by cantilevered NSOM fiber tip (apertured NOSM mode). The minimized heat- and shock-affected areas introduced during ultrafast laser based machining process, allows processing of even high conductivity thin metal films with minimized formation of any interfacial compounds between the metal films and the underlying substrate. Potential applications of this method may be in the fields of nanolithography, nanofluidics, nanoscale chemical and gas sensors, high-density data storage, nano-opto-electronics, as well as biotechnology related applications

  9. Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems

    International Nuclear Information System (INIS)

    Tuszynski, J.A.; Dixon, J.M.; Grundland, A.M.

    1994-01-01

    This review article outlines a number of efforts made over the past several decades to understand the physics of near critical many-body systems. Beginning with the phenomenological theories of Landau and Ginzburg the paper discusses the two main routes adopted in the past. The first approach is based on statistical calculations while the second investigates the underlying nonlinear field equations. In the last part of the paper we outline a generalisation of these methods which combines classical and quantum properties of the many-body systems studied. (orig.)

  10. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    Science.gov (United States)

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  11. Calculation of passive earth pressure of cohesive soil based on Culmann's method

    Directory of Open Access Journals (Sweden)

    Hai-feng Lu

    2011-03-01

    Full Text Available Based on the sliding plane hypothesis of Coulumb earth pressure theory, a new method for calculation of the passive earth pressure of cohesive soil was constructed with Culmann's graphical construction. The influences of the cohesive force, adhesive force, and the fill surface form were considered in this method. In order to obtain the passive earth pressure and sliding plane angle, a program based on the sliding surface assumption was developed with the VB.NET programming language. The calculated results from this method were basically the same as those from the Rankine theory and Coulumb theory formulas. This method is conceptually clear, and the corresponding formulas given in this paper are simple and convenient for application when the fill surface form is complex.

  12. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    Science.gov (United States)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  13. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  14. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    Science.gov (United States)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  15. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    Science.gov (United States)

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  16. Superconducting Material - A study on the near field of a superconducting antenna

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Chil; Lee, Seung Chul; Doe, Joong Hoe; Hoe, Mi Ra [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The pulse spectroscopy in combination with piezoelectric resonance makes an ideal non-disturbing tool for the measurement of electric field near an antenna. This new field sensing technique was used to investigate the field of a ring antenna the near field of which is widely used such as the plasma generation and NMR. The superconducting wire also have the dominant capacitive AC field in near regions, meaning that the net charge on the ring surface is not due to the ohm`s law as in DC. 23 refs., 8 figs. (author)

  17. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    Science.gov (United States)

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  18. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  19. Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope

    Science.gov (United States)

    Chui, S. T.; Chen, Xinzhong; Liu, Mengkun; Lin, Zhifang; Zi, Jian

    2018-02-01

    We study the response of a conical metallic surface to an external electromagnetic (em) field by representing the fields in basis functions containing the integrable singularity at the tip of the cone. A fast analytical solution is obtained by the conformal mapping between the cone and a round disk. We apply our calculation to the scattering-type scanning near-field optical microscope (s-SNOM) and successfully quantify the elastic light scattering from a vibrating metallic tip over a uniform sample. We find that the field-induced charge distribution consists of localized terms at the tip and the base and an extended bulk term along the body of the cone far away from the tip. In recent s-SNOM experiments at the visible and infrared range (600 nm to 1 μ m ) the fundamental of the demodulated near-field signal is found to be much larger than the higher harmonics whereas at THz range (100 μ m to 3 mm) the fundamental becomes comparable to the higher harmonics. We find that the localized tip charge dominates the contribution to the higher harmonics and becomes larger for the THz experiments, thus providing an intuitive understanding of the origin of the near-field signals. We demonstrate the application of our method by extracting a two-dimensional effective dielectric constant map from the s-SNOM image of a finite metallic disk, where the variation comes from the charge density induced by the em field.

  20. Examples of 3-D field calculations using GFUN

    International Nuclear Information System (INIS)

    Lari, R.J.

    1981-01-01

    Magnets are described that were calculated using GFUN. A four-step procedure is used to calculate magnets using GFUN. First, the interactive TSO system is used to draw the geometry of the magnet on a Tektronix 4012 graphic display unit. When the geometry is correct, it is stored on a disc file that is shared by the batch computers 3033 and 195. A file JCL and data can be created on TSO and submitted to the batch computers to calculate the magnetization of the steel tetrahedron elements. The results of this approx. 1 hour batch job are stored on disc. In the same job, or in a separate one, the fields can be calculated at desired points and stored on a shared disc. The fourth step is to plot these fields interactively in TSO

  1. MP.EXE Microphone pressure sensitivity calibration calculation program

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1999-01-01

    MP.EXE is a program which calculates the pressure sensitivity of LS1 microphones as defined in IEC 61094-1, based on measurement results performed as laid down in IEC 61094-2.A very early program was developed and written by K. Rasmussen. The code of the present heavily extended version is writte...... by E.S. Olsen.The present manual is written by K.Rasmussen and E.S. Olsen....

  2. TORT application in reactor pressure vessel neutron flux calculations

    International Nuclear Information System (INIS)

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1994-01-01

    The neutron flux values onto reactor pressure vessel for WWER-1000 and WWER-440 reactors, at the places important for metal embrittlement surveillance have been calculated by 3 dimensional code TORT and synthesis method. The comparison of the results received by both methods confirms their good consistency. (authors). 13 refs., 4 tabs

  3. Photoluminescence energy transitions in GaAs-Ga1-xAlxAs double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Mora-Ramos, M.E.; Duque, C.A.

    2009-01-01

    The photoluminescence energy transitions in GaAs-Ga 1-x Al x As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  4. THz near-field imaging of biological tissues employing synchrotron radiation

    International Nuclear Information System (INIS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2004-01-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin

  5. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  6. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  7. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    Science.gov (United States)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  8. Calculating Casimir energies in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Milton, Kimball A.

    2003-01-01

    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges were studied by several authors. Quite recently, Graham et al. have reexamined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well known that in two space dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general spatial dimension D not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for curved boundaries. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in D and in three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations

  9. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.

    2017-01-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve

  10. Comparison of different dose calculation methods for irregular photon fields

    International Nuclear Information System (INIS)

    Zakaria, G.A.; Schuette, W.

    2000-01-01

    In this work, 4 calculation methods (Wrede method, Clarskon method of sector integration, beam-zone method of Quast and pencil-beam method of Ahnesjoe) are introduced to calculate point doses in different irregular photon fields. The calculations cover a typical mantle field, an inverted Y-field and different blocked fields for 4 and 10 MV photon energies. The results are compared to those of measurements in a water phantom. The Clarkson and the pencil-beam method have been proved to be the methods of equal standard in relation to accuracy. Both of these methods are being distinguished by minimum deviations and applied in our clinical routine work. The Wrede and beam-zone methods deliver useful results to central beam and yet provide larger deviations in calculating points beyond the central axis. (orig.) [de

  11. Chemical and microbiological effects in the near field: current status

    International Nuclear Information System (INIS)

    Ewart, F.T.; Pugh, S.Y.R.; Wisbey, S.J.; Woodwark, D.R.

    1988-12-01

    The radionuclide inventory of a radioactive waste repository, influenced by the chemical conditions in the near-field, determines the source term for radionuclides entering the geosphere. The research described in this report is focussed on providing the information necessary to quantify this source term. The processes which interact to determine near field behaviour over a long period of time are complex and a simplified representation is required for radiological assessment modelling. The assumptions made in formulating the near field assessment methodology are discussed and justified in this report. The techniques for acquiring the necessary large body of data for a wide range of relevant radionuclides are also described and the values used in the CASCADE I exercise are given. (author)

  12. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  13. On a role of the Bsub(z) component of interplanetary magnetic field in a force balance in the day time magnetopause

    International Nuclear Information System (INIS)

    Kuznetsova, T.V.

    1980-01-01

    The role of interplanetary magnetic field (IMF) in the force balance in the day time magnetopause is discussed. The effect of the circular DR-current on the balance of pressures in the magnetopause is taken into account in the calculations. It is shown that IMF plays a significant role in the balance of forces in the day time magnetopause. The ratio of magnetic pressure to the thermal pressure of solar wind in subsolar point is k=0.5. The field observed in magnetosphere near the neutral line is lower by the value of transition region field. All the conclusions are obtained for Bsub(z) [ru

  14. Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan

    Science.gov (United States)

    Baba, T.; Hirata, K.; Kaneda, Y.

    2003-12-01

    \\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is

  15. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  16. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  17. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium.

    Science.gov (United States)

    Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng

    2015-01-26

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.

  18. Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc

    International Nuclear Information System (INIS)

    Nemchinsky, Valerian

    2012-01-01

    The motion of an evaporated atom of the cathode material in a near-cathode plasma is considered. It is shown that the evaporated atom is ionized almost instantly. The created ion, under the influence of a strong electric field existing in the cathode proximity, has a high probability of returning to the cathode. A small fraction of evaporated atoms are able to diffuse away from the cathode to the region where they are involved in plasma flow and lose their chance to return to the cathode. The fraction of the total evaporated atoms, which do not return to the cathode, the escape factor, determines the net erosion rate. In order to calculate this factor, the distributions of the plasma parameters in the near-cathode plasma were considered. Calculations showed that the escape factor is on the order of a few per cent. Using experimental data on the plasma and cathode temperatures, we calculated the net erosion rate for a free-burning 200 A argon arc with a thoriated tungsten cathode. The calculated erosion rate is close to 1 µg s -1 , which is in agreement with available experimental data. (paper)

  19. Water pressure and ground vibrations induced by water guns at a backwater pond on the Illinois River near Morris, Illinois

    Science.gov (United States)

    Koebel, Carolyn M.; Egly, Rachel M.

    2016-09-27

    Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth

  20. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    International Nuclear Information System (INIS)

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality

  1. Microscopic calculations of β-decay characteristics near the A = 130 r-process peak

    International Nuclear Information System (INIS)

    Borzov, I.N.; Goriely, S.; Pearson, J.M.

    1997-01-01

    The β-decay half-lives of r-process nuclides near Z=50, N=82 shell closures are calculated within the finite Fermi-system theory. To describe the ground state properties, the ETFSI approximation has been used. Comparison is made with exact self-consistent calculations, previous large-scale predictions and experimental data. (orig.)

  2. Plane-stress fields for sharp notches in pressure-sensitive materials

    International Nuclear Information System (INIS)

    Al-Abduljabbar, Abdulhamid

    2003-01-01

    The effect of pressure sensitive yield on materials toughness can be determined by investigating stress fields around cracks and notches. In this work, fully-developed plastic stress fields around sharp wedge-shaped notches of perfectly-plastic pressure-sensitive materials are investigated for plane-stress case and Mode 1 loading condition. The pressure-sensitive yielding behavior is represented using the Drucker-Prager criterion. Using equilibrium equations, boundary conditions, and the yield criterion, closed-form expressions for stress fields are derived. The analysis covers the gradual change in the notch angle and compares it with the limiting case of a pure horizontal crack. Effects of notch geometry and pressure sensitivity on stress fields are examined by considering different specimen geometries, as well as different levels of pressure sensitivity. Results indicate that while the stress values directly ahead of the notch-tip are not affected, the extent of stress sector at notch front is reduced, thereby causing increase in the radial stress value around the notch. As the pressure sensitivity increases the reduction of the stress sector directly ahead of the notch tip is more evident. Also, for high pressure sensitivity values, introduction of the notch angle reduces the variation of the stress levels. Results are useful for design of structural components. (author)

  3. Geochemical evolution of the L/ILW near-field

    International Nuclear Information System (INIS)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-01

    The deep geological repository for low- and intermediate-level radioactive waste (L/ILW) contains large amounts of cement based materials used for waste conditioning, tunnel support and the backfill of cavities. The waste inventory is composed of a wide range of organic and inorganic materials. This study describes the spatial and temporal geochemical evolution of the cementitious near-field, and the interactions with the technical barriers and the surrounding host rock. This evolution is governed by several coupled processes, an important one being the development of saturation by groundwater ingress from the host rock. Saturation of the near-field is controlled by the inflow of water from the host rock, by the transport of dissolved gases from the near-field into the host rock and in the engineered gas transport system, and by the transport of humidity in the gas phase. The production of gas by anoxic corrosion of metals and by microbial degradation of organic wastes consumes water. The mineral reactions which give rise to concrete degradation, such as carbonation or alkali-silica-aggregate reactions may also consume or produce water. The first phase of cementitious near-field degradation, which persists only for a short period of time, is related to the hydration of cement minerals. The pore water has a pH of 13 or even higher because of the high content of dissolved alkali hydroxides. A constant pH of 12.5 determines the second phase of the cement degradation. The alkali concentration is reduced by mineral reactions and/or solute transport. This phase persists for a long time. In the third phase the portlandite is completely dissolved due to the reaction with silicates/aluminates present in the near-field and carbonate in the groundwater of the host rock or associated with reactive waste materials. The pore water is in equilibrium with calcium-silicate-hydrates (C-S-H) which gives rise to a pH value near 11 or lower. The Ca/Si ratio of C-S-H changes towards

  4. Geochemical evolution of the L/ILW near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-15

    The deep geological repository for low- and intermediate-level radioactive waste (L/ILW) contains large amounts of cement based materials used for waste conditioning, tunnel support and the backfill of cavities. The waste inventory is composed of a wide range of organic and inorganic materials. This study describes the spatial and temporal geochemical evolution of the cementitious near-field, and the interactions with the technical barriers and the surrounding host rock. This evolution is governed by several coupled processes, an important one being the development of saturation by groundwater ingress from the host rock. Saturation of the near-field is controlled by the inflow of water from the host rock, by the transport of dissolved gases from the near-field into the host rock and in the engineered gas transport system, and by the transport of humidity in the gas phase. The production of gas by anoxic corrosion of metals and by microbial degradation of organic wastes consumes water. The mineral reactions which give rise to concrete degradation, such as carbonation or alkali-silica-aggregate reactions may also consume or produce water. The first phase of cementitious near-field degradation, which persists only for a short period of time, is related to the hydration of cement minerals. The pore water has a pH of 13 or even higher because of the high content of dissolved alkali hydroxides. A constant pH of 12.5 determines the second phase of the cement degradation. The alkali concentration is reduced by mineral reactions and/or solute transport. This phase persists for a long time. In the third phase the portlandite is completely dissolved due to the reaction with silicates/aluminates present in the near-field and carbonate in the groundwater of the host rock or associated with reactive waste materials. The pore water is in equilibrium with calcium-silicate-hydrates (C-S-H) which gives rise to a pH value near 11 or lower. The Ca/Si ratio of C-S-H changes towards

  5. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    channeled to the battery or power plant. Figure 2. WPT System Block Diagram for Battery Charging. Source : [2]. Wireless power transfer has gained...EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION by Sean X. Hong September 2016 Thesis Advisor: David Jenn Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE PHASED ARRAY EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION 5

  6. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  7. Resistance calculation of un-fully developed two-phase flow through high differential pressure regulating valves

    International Nuclear Information System (INIS)

    Xu Mingyang; Wang Wenran; Wang Jiaying

    1999-01-01

    To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test

  8. Analysis of transient pressure response near a horizontal well - a coupled diffusion-deformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Wong, R. K. C. [Calgary Univ., AB (Canada); Yeung, K. C. [Suncor Energy Inc., Calgary, AB (Canada)

    1998-12-31

    Results of an analysis of transient pressure near a horizontal well using a coupled diffusion-deformation method are discussed. The results are compared with those obtained from the single diffusivity equation. Implications for practical applications such as well testing are addressed. Results indicate that the diffusion-deformation behaviour of porous material affects the transient pressure response near a horizontal well. Evaluation by conventional well testing, based as it is on the single diffusion equation, would likely result in an overestimate of the permeability value. Comparison of results between the coupled diffusion-deformation approach and the single diffusion equation suggests that a better prediction of pressure response could be derived from total compressibility than by using only fluid compressibility. 6 refs., 9 figs.

  9. Nonperturbative calculation of symmetry breaking in quantum field theory

    OpenAIRE

    Bender, Carl M.; Milton, Kimball A.

    1996-01-01

    A new version of the delta expansion is presented, which, unlike the conventional delta expansion, can be used to do nonperturbative calculations in a self-interacting scalar quantum field theory having broken symmetry. We calculate the expectation value of the scalar field to first order in delta, where delta is a measure of the degree of nonlinearity in the interaction term.

  10. Contribution to a neutronic calculation scheme for pressurized water reactors

    International Nuclear Information System (INIS)

    Martin Del Campo, C.

    1987-01-01

    This research thesis aims at developing and validating the set of data and codes which build up the neutron computation scheme of pressurized water reactors. More precisely, it focuses on the improvement of the precision of calculation of command clusters (absorbing components which can be inserted into the core to control the reactivity), and on the modelling of reflector representation (material placed around the core and reflecting back the escaping neutrons). For the first case, a precise calculation is performed, based on the transport theory. For the second case, diffusion constants obtained in the previous case and simplified equations are used to reduce the calculation cost

  11. About reliability of WWER pressure vessel neutron fluence calculation

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, S; Ilieva, K; Antonov, S [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    This reliability study was carried out under a Research Contracts F111 and TH-324 of the Bulgarian Ministry of Higher Education and the IAEA. The effect of geometry approximation and the choice of neutron cross-sections on the calculation model is estimated. The neutron flux onto reactor pressure vessel at locations, important for metal embrittlement surveillance, has been calculated using the codes TORT and DORT. The flux values calculated for both WWER-440 and WWER-1000 show good consistency within the limits of solution accuracy. It is concluded that the synthesis method (DORT) can be used for calculations at a reasonable cost whenever metal embrittlement surveillance is considered. Using an iron sphere benchmark measurement, a comparison of an experimental leakage spectrum with spectrum calculated using multigroup neutron cross-sections based on ENDF/B-4 and ENDF/B-6 data is performed. In the energy region above 1 MeV the best agreement with the experiment is achieved for ENDF/B-6 in VITAMIN-E group structure. 7 refs., 1 fig., 4 tabs.

  12. About reliability of WWER pressure vessel neutron fluence calculation

    International Nuclear Information System (INIS)

    Belousov, S.; Ilieva, K.; Antonov, S.

    1995-01-01

    This reliability study was carried out under a Research Contracts F111 and TH-324 of the Bulgarian Ministry of Higher Education and the IAEA. The effect of geometry approximation and the choice of neutron cross-sections on the calculation model is estimated. The neutron flux onto reactor pressure vessel at locations, important for metal embrittlement surveillance, has been calculated using the codes TORT and DORT. The flux values calculated for both WWER-440 and WWER-1000 show good consistency within the limits of solution accuracy. It is concluded that the synthesis method (DORT) can be used for calculations at a reasonable cost whenever metal embrittlement surveillance is considered. Using an iron sphere benchmark measurement, a comparison of an experimental leakage spectrum with spectrum calculated using multigroup neutron cross-sections based on ENDF/B-4 and ENDF/B-6 data is performed. In the energy region above 1 MeV the best agreement with the experiment is achieved for ENDF/B-6 in VITAMIN-E group structure. 7 refs., 1 fig., 4 tabs

  13. Nanohybrids Near-Field Optical Microscopy: From Image Shift to Biosensor Application

    Directory of Open Access Journals (Sweden)

    Nayla El-Kork

    2016-01-01

    Full Text Available Near-Field Optical Microscopy is a valuable tool for the optical and topographic study of objects at a nanometric scale. Nanoparticles constitute important candidates for such type of investigations, as they bear an important weight for medical, biomedical, and biosensing applications. One, however, has to be careful as artifacts can be easily reproduced. In this study, we examined hybrid nanoparticles (or nanohybrids in the near-field, while in solution and attached to gold nanoplots. We found out that they can be used for wavelength modulable near-field biosensors within conditions of artifact free imaging. In detail, we refer to the use of topographic/optical image shift and the imaging of Local Surface Plasmon hot spots to validate the genuineness of the obtained images. In summary, this study demonstrates a new way of using simple easily achievable comparative methods to prove the authenticity of near-field images and presents nanohybrid biosensors as an application.

  14. Calculated dependence of FePt damping on external field magnitude and direction

    Directory of Open Access Journals (Sweden)

    N. A. Natekar

    2017-05-01

    Full Text Available Near the Curie temperature (Tc, magnetic parameters including magnetization, anisotropy, and damping depend strongly on both temperature and length scale. This manifestation of renormalization theory is most readily seen in the case of magnetization where the magnitude of the atomic spin is largely unaffected by temperature, but the bulk magnetization vanishes at Tc. It has been previously argued that the Landau-Lifshitz-Gilbert damping parameter alpha exhibits a similar effect owing to its dependence on both atomic effects and magnon-magnon scattering, the latter having a strong length dependence. Here, we calculate, using an anisotropic exchange description of L10 FePt (Tc = 705 K, the damping (and other magnetic properties dependence on temperature for FePt at length scales around 1.0 nm as appropriate for high temperature micromagnetic simulation. While the damping reduces as the applied field along the easy direction increases, it tends to increase as the field direction is changed to in-plane. The renormalized parameters are also calculated for higher and lower Tc (770K and 630K by invoking the linear relationship between the exchange stiffness parameter and Curie temperature. This corresponds to doped and/or non-stoichiometric FePt and allows better understanding of the effects of varying anisotropy to exchange ratio.

  15. Near-field photometry for organic light-emitting diodes

    Science.gov (United States)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  16. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  17. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  18. Vacuum polarization of the electromagnetic field near a rotating black hole

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-01-01

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE

  19. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  20. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  1. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav

    2016-05-31

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  2. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav; AlTheyab, Abdullah; Tarhini, Ahmad; Hanafy, Sherif; Schuster, Gerard T.

    2016-01-01

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  3. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    Science.gov (United States)

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity.

  4. Magnetic Field Exposure Estimates Based on Power Lines Near Homes (invited paper)

    International Nuclear Information System (INIS)

    Ahlbom, A.; Feychting, M.

    1999-01-01

    Several epidemiological studies have based their estimates of magnetic field exposure on the proximity to power lines. This has been done in three principally different ways, which differ in the amount of information that is used. These are: (1) distance; (2) distance and configuration (wire code); and (3) distance, configuration, and load (calculated field). It is presumed that the more information that is used, the more accurate is the exposure estimate. All these three approaches suffer from the limitation that they only account for exposure that is generated by power lines. The influence on the in-home magnetic field from sources other than the power line are not considered, nor is exposure experienced at places other than the home. This raises the following question. What is the implication for the result of the epidemiological study of the exposure misclassification that is introduced by basing magnetic field exposure estimation on power lines near homes? Although the necessary information is only partly at hand the answers to this question will be discussed. The basis will be some general epidemiological principles combined with data from a Swedish study on residential exposure and cancer risk. (author)

  5. New test techniques to evaluate near field effects for supersonic store carriage and separation

    Science.gov (United States)

    Sawyer, Wallace C.; Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Blair, A. B., Jr.; Monta, William J.; Plentovich, Elizabeth B.

    1989-01-01

    Store separation and store carriage drag studies were conducted. A primary purpose is to develop new experimental methods to evaluate near field effects of store separation and levels of store carriage drag associated with a variety of carriage techniques for different store shapes and arrangements. Flow field measurements consisting of surface pressure distributions and vapor screen photographs are used to analyze the variations of the store separation characteristics with cavity geometry. Store carriage drag measurements representative of tangent, semi-submerged, and internal carriage installations are presented and discussed. Results are included from both fully metric models and models with only metric segments (metric pallets) and the relative merits of the two are discussed. Carriage drag measurements for store installations on an aircraft parent body are compared both with prediction methods and with installations on a generic parent body.

  6. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  7. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  8. Calculation of three-dimensional MHD equilibria with magnetic islands and chaotic field line trajectories

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.; Pomphrey, N.

    1993-01-01

    The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices

  9. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    International Nuclear Information System (INIS)

    Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

    2014-01-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

  10. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  11. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  12. Statistically optimized near field acoustic holography using an array of pressure-velocity probes

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Jaud, Virginie

    2007-01-01

    of a measurement aperture that extends well beyond the source can be relaxed. Both NAH and SONAH are based on the assumption that all sources are on one side of the measurement plane whereas the other side is source free. An extension of the SONAH procedure based on measurement with a double layer array...... of pressure microphones has been suggested. The double layer technique makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise coming from the “wrong” side. It has also recently been demonstrated that there are significant advantages...... in NAH based on an array of acoustic particle velocity transducers (in a single layer) compared with NAH based on an array of pressure microphones. This investigation combines the two ideas and examines SONAH based on an array of pressure-velocity intensity probes through computer simulations as well...

  13. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  14. A novel method for calculating the dynamic capillary force and correcting the pressure error in micro-tube experiment.

    Science.gov (United States)

    Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan

    2017-11-29

    Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.

  15. Safety Assessment of a Hypothetical Near Surface Disposal at PPTN Serpong Site: Near-Field Modeling

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2000-01-01

    The near field modeling of a hypothetical surface disposal at Serpong site has been performed. Considering a realistic downward water flux of 10 -1 0 m/s through the conditioned waste zone and the concrete barriers, transport of radionuclide by advection and dispersion below the bottom of the repository was calculated using PORFLOW computer code. The result shows that the highest fluxes were observed H-3, Cs-135, Nb-94 and Ni-59, all about 10 4 Bq/a/m 2 . Intermediate fluxes were obtained for Cs-137, I-129 and Co-60. Lowest were due to Ni-63 and C-14. The effect on radionuclide fluxes by having an unsaturated soil of 1.0-m depth below the bottom of the repository also was investigated. The results indicate that the highest fluxes are due to Cs-135, Nb-94 and Ni- 59, approximately 10 4 Bq/a/m 2 . The fluxes owing to H-3 has decreased to 10 -9 Bq/a/m 2 owing to decay. Radionuclides that are not absorbed onto lateritic clay soil, C-14 and I-129 are not decreased in flux. All other radionuclides has significantly smaller fluxes compared to the ones calculated at the bottom of the repository. This indicates that the lateric clay soil at Serpong site plays an important role in retarding and dispersing the radionuclide migration towards the ground water. (author)

  16. Room-temperature near-field reflection spectrocopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher; Madsen, Steen

    1999-01-01

    We investigate the properties of near-field reflection spectroscopy in different polarization and detection modes using uncoated fiber probes. The results show, that cross-polarized detection suppresses to a large extent far-field contributions. Using the fiber dithering as a modulation source fo...

  17. Calculation of pressure drop and flow redistribution in the core of LMFBR type reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.; Morgado, O.J.

    1985-01-01

    It is studied the flow redistribution through of fuel elements to the pressure drop calculation in the core of sodium cooled reactors. Using the quasi-static formulation of equations of the conservation of mass, energy and momentum, it was developed a computer program to flow redistribution calculations and pressure drop for different power levels and total flow simulating an arbitrary number of channels for sodium flowing . An optimization of the number of sufficient channels for calculations of this nature is done. The method is applied in studies of transients in the same reactor. (M.C.K.) [pt

  18. Pressure and temperature fields and water released by concrete submitted to high heat fluxes

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1982-01-01

    Inovations are introduced in the original program USINT considering thermal conductivity variations with the temperature. A subroutine - PLOTTI - is incorporate to the program aiming to obtain a graphic for results. The new program - USINTG - is used for calculating the field of pressure and temperature and the water released from the concrete structure during a simulation of sodium leak. The theoretical results obtained with USINTG are in good agreement with the experimental results previously obtained. (E.G.) [pt

  19. Mean-field theory of anyons near Bose statistics

    International Nuclear Information System (INIS)

    McCabe, J.; MacKenzie, R.

    1992-01-01

    The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs

  20. Preliminary analysis for evolution of redox conditions in the near field

    International Nuclear Information System (INIS)

    Chiba, Tamotsu; Miki, Takahito; Inagaki, Manabu; Sasamoto, Hiroshi; Yui, Mikazu

    1999-06-01

    It is planned that high level radioactive waste is going to be disposed under deep geological environment. It is believed that the chemical condition of deep groundwater is generally anoxic and reducing. However, during construction and operation phase of repository, oxygen will diffuse some distance into the surrounding rock mass, and diffused oxygen may remain in the surrounding rock mass even after repository closure. In such a case, the transitional redox condition around the drift is not preferable in view point of safety assessment for HLW disposal. Hence, it is very important to evaluate evolution of redox conditions in the near field. This report describes results of preliminary analysis for evolution of redox conditions in the near field rock mass and buffer after repository closure based on the model developed by Chiba et al. (1999). The results of preliminary analysis are summarized as follows: The decrease of oxygen in the near field rock mass and buffer are affected by pH of groundwater and surface area of iron-bearing minerals. The decrease of oxygen in the near field rock mass takes place at time scales lower than 500 years in considering the hypothetical reference groundwater pH range for H12 report. It is implicated that the redox conditions in the near field rock mass will recover to reducing conditions. The decrease of oxygen in the buffer takes place at time scales lower several tens years under neutral to weakly alkaline pH values of porewater in the buffer, even if it is assumed that residual oxygen in the near field rock mass after repository closure will diffuse into the buffer. On the other hand, under weakly acid pH values of porewater in the buffer, it may be presumed that oxygen remain in the buffer at time scale more than 500 years. (author)

  1. Calculation of cardiac pressures using left ventricular ejection fraction (LVEF) derived from radionuclide angiography

    International Nuclear Information System (INIS)

    Hommer, E.

    1981-01-01

    An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de

  2. Finite element simulation of pressure-loaded phase-field fractures

    NARCIS (Netherlands)

    Singh, N.; Verhoosel, C.V.; van Brummelen, E.H.

    2018-01-01

    A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary

  3. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  4. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  5. Plasmonic Devices for Near and Far-Field Applications

    KAUST Repository

    Alrasheed, Salma

    2017-11-30

    Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the

  6. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  7. Vortex rings and jets recent developments in near-field dynamics

    CERN Document Server

    Yu, Simon

    2015-01-01

    In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...

  8. Graphene-on-Silicon Near-Field Thermophotovoltaic Cell

    NARCIS (Netherlands)

    Svetovoy, V. B.; Palasantzas, G.

    2014-01-01

    A graphene layer on top of a dielectric can dramatically influence the ability of the material for radiative heat transfer. This property of graphene is used to improve the performance and reduce costs of near-field thermophotovoltaic cells. Instead of low-band-gap semiconductors it is proposed to

  9. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    Science.gov (United States)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  10. Analyzed method for calculating the distribution of electrostatic field

    International Nuclear Information System (INIS)

    Lai, W.

    1981-01-01

    An analyzed method for calculating the distribution of electrostatic field under any given axial gradient in tandem accelerators is described. This method possesses satisfactory accuracy compared with the results of numerical calculation

  11. Near field vorticity distributions from a sharp-edged rectangular jet

    International Nuclear Information System (INIS)

    Vouros, Alexandros P.; Panidis, Thrassos; Pollard, Andrew; Schwab, Rainer R.

    2015-01-01

    Highlights: • Axial mean vorticity equation terms are calculated from experimental data. • Appearance of ridges, dumbbell shape and saddleback velocity profiles is highlighted. • Explanations are provided using terms from the vorticity equation. - Abstract: Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Re h ∼ 23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet

  12. The superflow state of 3He-B at a diffusive wall. Quasiclassical calculations

    International Nuclear Information System (INIS)

    Kopnin, N.B.; Soininen, P.I.

    1992-01-01

    The authors report first computations considering effects of a rough wall on the counterflow state in superfluid 3 He-B for high flow velocities. Using the quasiclassical Green's-function formalism supplemented by the boundary conditions for a diffusive wall, they calculate the order-parameter field and the supercurrent near a container wall for various pressures and temperatures. One of the results is that the current density at the wall as a function of the flow has a maximum at the velocity which is about half of the pair breaking velocity

  13. Calculation of cooling tower plumes for high pressure wintry situations

    International Nuclear Information System (INIS)

    Gassmann, F.; Tinguely, M.; Haschke, D.

    1982-12-01

    The diffusion of the plumes of the projected nuclear power plants at Kaiseraugst and Schwoerstadt, during high pressure wintry conditions, has been examined using a mathematical model to simulate the plumes. For these calculations, microaerological measurements were made in the proximity of Kaiseraugst and Schwoerstadt. These give a typical image of the weather during high pressure wintry conditions, which is normally associated with an inversion, sometimes strong, at a low height. Dry cooling towers with natural draught, which offer an alternative solution to the wet cooling towers proposed for Kasieraugst, are examined equally. (Auth./G.T.H.)

  14. The status of near-field modelling

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    The near-field of a high-level nuclear waste repository consists of the waste itself and of the man-made barriers engineered around it (Engineered Barrier System, EBS). The conceptual and mathematical models of repositories and EBS, and the state of the air of performance assessment of waste repositories with EBS are discussed at the meeting. 18 individual items have been indexed and abstracted for the INIS database. (R.P.)

  15. Inner-ear sound pressures near the base of the cochlea in chinchilla: Further investigation

    Science.gov (United States)

    Ravicz, Michael E.; Rosowski, John J.

    2013-01-01

    The middle-ear pressure gain GMEP, the ratio of sound pressure in the cochlear vestibule PV to sound pressure at the tympanic membrane PTM, is a descriptor of middle-ear sound transfer and the cochlear input for a given stimulus in the ear canal. GMEP and the cochlear partition differential pressure near the cochlear base ΔPCP, which determines the stimulus for cochlear partition motion and has been linked to hearing ability, were computed from simultaneous measurements of PV, PTM, and the sound pressure in scala tympani near the round window PST in chinchilla. GMEP magnitude was approximately 30 dB between 0.1 and 10 kHz and decreased sharply above 20 kHz, which is not consistent with an ideal transformer or a lossless transmission line. The GMEP phase was consistent with a roughly 50-μs delay between PV and PTM. GMEP was little affected by the inner-ear modifications necessary to measure PST. GMEP is a good predictor of ΔPCP at low and moderate frequencies where PV ⪢ PST but overestimates ΔPCP above a few kilohertz where PV ≈ PST. The ratio of PST to PV provides insight into the distribution of sound pressure within the cochlear scalae. PMID:23556590

  16. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    -nm-period lattices with different filling factors (0.76 and 0.82) and connected to access ridge waveguides. Using the near-field optical images we investigate the light propagation along PCWs for TM and TE polarization (the electric field is perpendicular/parallel to the sample surface). Efficient...

  17. Calculation of accelerating electric fields in the CO2 injector

    International Nuclear Information System (INIS)

    Baron, E.

    1999-01-01

    The accelerating structure in the injecting cyclotron for O.A.E. can be divided, if one takes the inflector exit as departure point, into the following two regions: 1. the relatively complex central zone comprising three accelerating gaps which is flanked by vertical pillars destined to increase the transit time factor and, at the same time, to reduce the influence of electric field vertical components; 2. the so-called 'large radius' subsequent zone where the gaps are no longer radially delimited. To study the behavior of the individual trajectories in these fields, the equations of motion must be integrated step by step (for instance by Runge-Kutta method) what implies the knowledge of field (or at least of potential) in every point. This is the method for the calculation of potential contour maps which is presented here; the potentials are static, and a sinusoidal time variation is subsequently applied to perform dynamical calculations. The paper has the following sections: 1. Introduction; 2. Potential and large radius field components; 2.1. Calculation of median plane potential; 2.2. Calculation of the off-median-plane potential and field; 3. Potential in the central region; 4. Further Developments

  18. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  19. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    Science.gov (United States)

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  1. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  2. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  3. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  4. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  5. Near-field interaction of colloid near wavy walls

    Science.gov (United States)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  6. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  7. On the Seismic Response of Protected and Unprotected Middle-Rise Steel Frames in Far-Field and Near-Field Areas

    Directory of Open Access Journals (Sweden)

    Dora Foti

    2014-01-01

    Full Text Available Several steel moment-resisting framed buildings were seriously damaged during Northridge (1994; Kobe (1995; Kocaeli, Turkey (1999, earthquakes. Indeed, for all these cases, the earthquake source was located under the urban area and most victims were in near-field areas. In fact near-field ground motions show velocity and displacement peaks higher than far-field ones. Therefore, the importance of considering near-field ground motion effects in the seismic design of structures is clear. This study analyzes the seismic response of five-story steel moment-resisting frames subjected to Loma Prieta (1989 earthquake—Gilroy (far-field register and Santa Cruz (near-field register. The design of the frames verifies all the resistance and stability Eurocodes’ requirements and the first mode has been determined from previous shaking-table tests. In the frames two diagonal braces are installed in different positions. Therefore, ten cases with different periods are considered. Also, friction dampers are installed in substitution of the braces. The behaviour of the braced models under the far-field and the near-field records is analysed. The responses of the aforementioned frames equipped with friction dampers and subjected to the same ground motions are discussed. The maximum response of the examined model structures with and without passive dampers is analysed in terms of damage indices, acceleration amplification, base shear, and interstory drifts.

  8. Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations

    Science.gov (United States)

    Stefanski, Philip L.

    2014-01-01

    A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.

  9. Near-field radiation between graphene-covered carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M., E-mail: zhuomin.zhang@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  10. Dose Measurement and Calculation of Asymmetric X-Ray Fields from Therapeutic Linac

    International Nuclear Information System (INIS)

    El-Attar, A. L.; Abdel-Wanees, M. E.; Hashem, M. A.

    2011-01-01

    Linear accelerators with x-ray collimators that move independently are becoming increasingly common for treatment with asymmetric fields. In this paper we present a simplified approach to the calculation of dose for asymmetric fields. A method is described for calculating the beam profiles, depth doses and output factors for asymmetric fields of radiation produced by linear accelerators (siemens mevatron M2) with independent jaws. Values are calculated from data measured for symmetric fields. Symmetric field data are modified using opened off-axis factors (OAFs) and primary off-centre ratios (POCRs) which are obtained from in air measurements of the largest possible opened field. Beam hardening occurring within the flattening filter is taken into account using of attenuation coefficients for opened field and used to generate the opened POCR at different depths. A full investigation to compare measured and calculated profiles demonstrates favorable agreement.

  11. Assessment of the Bordas-Carnot Losses within the diffuser of tidal turbines using far-field and near-field CFD models.

    Science.gov (United States)

    Hajaali, Arthur

    2017-04-01

    This project has for ambition to analyse and further the general understanding on cross-flows interactions and behaviours at the mouth of a mini/small tidal hydropower plant and a river. Although, the study of these interactions could benefit and find applications in multiple hydraulic problems, this project concentrates its focus on the influence of the transposed turbulences generated by the cross-flow into the diffuser. These eddies affect the overall performance and efficiency of the bulb-turbines by minimizing the pressure recovery. In the past, these turbulences were accounted with the implementation of the Bordas-Carnot losses coefficient for the design of tidal project using bulb-turbines. The bulb turbine technology has been the interest and subject of many scientific papers but most of them concentrate and narrow their focus on the design of the rotor, blades and combiner. This project wants to focus the design of the diffuser by performing an analysis on the development of eddies and the turbulences using computational fluid dynamic (CFD) models. The Severn estuary is endowed with one of the highest tidal range around the hemisphere. The first part of the research requires to select case studies sites such as Briton-Ferry to virtually design mini-tidal plant in 0-Dimentional (D), 2D and 3D modelling to study development and behaviour of turbulences within the diffuser. The far-field model represents the marine environment prior and after the structure where bulb turbines are located. The near-field modelling has allowed researcher to study at much higher resolution and precision the design of a single turbine feeding model with predetermined and fix boundary condition. For this reason, a near-field model is required to study in depth the behaviour and evolution of the turbulence with the diffuser. One of the main challenge and advancement of this research is to find a methodology and system to link the far-field and near-field modelling to produce an

  12. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  13. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    Science.gov (United States)

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  14. Magnetic field calculation of the Na-4 muon spectrometer

    International Nuclear Information System (INIS)

    Cvach, J.; Il'yushchenko, V.I.; Savin, I.A.; Vorozhtsov, S.B.

    1980-01-01

    A NA-4 muon spectrometer is described. Preliminary results of calculating a magnetic field in a toroidal magnetic detector are given. The spectrometer includes 10 similar supermodules each of which consists of 32 iron discs with 275 cm outer diameter magnetized up to saturation. Each module is an independent detector. The POISSON program is used for calculating magnetic field distribution in a toroidal spectrometer magnet. The results obtained show that a magnetic field of iron is a toroidal one and drops approximately according to the logarithmic law from 21.1 kGs on an inner magnet rig to 17.7 kGs on an outer. Magnet support gives approximately 2 % error

  15. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  16. Effects of magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-25.0Ni-4.0Cr alloy

    International Nuclear Information System (INIS)

    Kakeshita, T.; Saburi, T.; Shimizu, K.

    1995-01-01

    Effects of magnetic fields and hydrostatic pressures on the isothermal martensitic transformation, whose nose temperature is about 140K, in an Fe-25.0Ni-4.0Cr alloy (mass%) has been examined by applying magnetic fields up to 30MA/m and hydrostatic pressures up to 1.5GPa. The obtained results are the following: The martensitic transformation is induced instantaneously (less than 20μsec.) under pulsed magnetic fields higher than a critical field over a wide temperature range between 4.2 and 200K. The critical magnetic field increases with increasing temperature, and the relation between critical magnetic field and temperature is in good agreement with the one calculated by the equation previously derived by the authors. The T T T diagram under static magnetic field shows a lower nose temperature and a shorter incubation time than that under no external magnetic field, while the T T T diagram under hydrostatic pressure shows a higher nose temperature and a longer incubation time than that under no external hydrostatic pressure. These results are well explained by the new phenomenological theory, which gives a unified explanation on the isothermal and athermal kinetics of martensitic transformations previously constructed by the authors. (orig.)

  17. Topological study of magnetic field near a neutral point

    International Nuclear Information System (INIS)

    Fukao, Shoichiro; Ugai, Masayuki; Tsuda, Takao.

    1975-01-01

    Configuration of magnetic fields near a neutral point is re-examined by a topological analysis. The so-called X-and 0-type magnetic fields respectively occupy their own seat in our classified table. Then the existence of the spiral and node types of configuration will be shown by the analysis. (auth.)

  18. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  19. Calculation of pressure distribution in vacuum systems using a commercial finite element program

    International Nuclear Information System (INIS)

    Howell, J.; Wehrle, B.; Jostlein, H.

    1991-01-01

    The finite element method has proven to be a very useful tool for calculating pressure distributions in complex vacuum systems. A number of finite element programs have been developed for this specific task. For those who do not have access to one of these specialized programs and do not wish to develop their own program, another option is available. Any commercial finite element program with heat transfer analysis capabilities can be used to calculate pressure distributions. The approach uses an analogy between thermal conduction and gas conduction with the quantity temperature substituted for pressure. The thermal analogies for pumps, gas loads and tube conductances are described in detail. The method is illustrated for an example vacuum system. A listing of the ANSYS data input file for this example is included. 2 refs., 4 figs., 1 tab

  20. Modelling of water-flow, barrier degradation, chemistry and radionuclide transport in the near-field of a repository for L/ILW

    International Nuclear Information System (INIS)

    1989-11-01

    Performance assessment has been carried out for the near-field of a potential LLW/ILW repository in marl in Switzerland. The host rock is assumed to be characterised by a system with 'small fractures' and one with 'large fractures', the hydraulic conductivity ranges from 4.10 -10 -4.10 -9 [m.s -1 ] and the hydraulic gradient is 1 [m.m -1 ]. In the repository, low-and intermediate-level waste will be disposed. Waste in drums and concrete containers will be placed in concrete-lined caverns which will be filled with a porous backfill material. One option is to include an additional engineered hydraulic barrier in the repository system. Its effects on repository performance have been studied. The changes in physical and chemical properties of the barriers have been included in the assessment by calculating the leaching of mainly calcium from the concrete barriers. The hydraulic conductivities of the engineered barriers are assumed to vary between 10 -11 -10 -8 [m.s -1 ] after degradation. Radionuclide transport can be determined by both advection and diffusion, depending on the hydraulic conductivities in the near-field. The water flow rates within the barriers have been calculated. The results show that the water flow rates within the porous backfill may increase by more than one order of magnitude compared to the water flow rate in the undisturbed host rock. The water flow rate through the waste matrix is never significantly larger than that in the host rock because it has been assumed that the porous backfill always has higher hydraulic conductivity than the waste matrix. The water flow rates within the near-field have been used to calculate the fractional release rates of species with different sorption properties. (author) figs., tabs., 90 refs

  1. Biological applications of near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, Marco H.P.; Ruiter, A.G.T.; Jalocha, A.; Jalocha, Alain; van Hulst, N.F.

    1995-01-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on

  2. Electronic and optical properties of GaN under pressure: DFT calculations

    Science.gov (United States)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  3. Physical properties of granite relevant to near field conditions in a nuclear waste depository

    International Nuclear Information System (INIS)

    McLaren, J.R.; Titchell, I.

    1981-10-01

    This report presents results of the effects of heat and time at temperature on Young's modulus of granite pertinent to fission product heating in a depository for radioactive waste. In general, modulus remains constant at approximately 65 GPa to 60 to 80 0 C and then falls in nearly linear fashion to approximately 6 GPa at 550 0 C. This effect is ascribed to cracking due to differential thermal expansion between the constituent minerals or between differently oriented crystals of the same mineral. An attempt has been made to quantify the extent of cracking and hence calculate an increase in surface area exposed of between 10 2 and 10 3 m 2 .m -3 of rock by heating to 200 0 C. The effects of overburden pressure have not been studied. (author)

  4. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2009-12-15

    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  5. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    Science.gov (United States)

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  6. Simplified local density model for adsorption over large pressure ranges

    International Nuclear Information System (INIS)

    Rangarajan, B.; Lira, C.T.; Subramanian, R.

    1995-01-01

    Physical adsorption of high-pressure fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases; the separation and purification of lower hydrocarbons; solid-phase extractions; adsorbent regenerations using supercritical fluids; supercritical fluid chromatography; and critical point drying. A mean-field model is developed that superimposes the fluid-solid potential on a fluid equation of state to predict adsorption on a flat wall from vapor, liquid, and supercritical phases. A van der Waals-type equation of state is used to represent the fluid phase, and is simplified with a local density approximation for calculating the configurational energy of the inhomogeneous fluid. The simplified local density approximation makes the model tractable for routine calculations over wide pressure ranges. The model is capable of prediction of Type 2 and 3 subcritical isotherms for adsorption on a flat wall, and shows the characteristic cusplike behavior and crossovers seen experimentally near the fluid critical point

  7. Guide to precision calculations in Dyson close-quote s hierarchical scalar field theory

    International Nuclear Information System (INIS)

    Godina, J.J.; Meurice, Y.; Oktay, M.B.; Niermann, S.

    1998-01-01

    The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson close-quote s hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green close-quote s functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cutoff limit is obtained by letting β reach a critical value β c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (β c -β) -1 near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when β→β c , this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like [Ln(β c -β)] -1 when D=4. copyright 1998 The American Physical Society

  8. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  9. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.

    Science.gov (United States)

    Böckmann, Hannes; Gawinkowski, Sylwester; Waluk, Jacek; Raschke, Markus B; Wolf, Martin; Kumagai, Takashi

    2018-01-10

    Optical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level. In this Letter, we report the near-field enhanced tautomerization of porphycene on a Cu(111) surface in a scanning tunneling microscope (STM) junction. The light-induced tautomerization is mediated by photogenerated carriers in the Cu substrate. It is revealed that the reaction cross section is significantly enhanced in the presence of a Au tip compared to the far-field induced process. The strong enhancement occurs in the red and near-infrared spectral range for Au tips, whereas a W tip shows a much weaker enhancement, suggesting that excitation of the localized plasmon resonance contributes to the process. Additionally, using the precise tip-surface distance control of the STM, the near-field enhanced tautomerization is examined in and out of the tunneling regime. Our results suggest that the enhancement is attributed to the increased carrier generation rate via decay of the excited near-field in the STM junction. Additionally, optically excited tunneling electrons also contribute to the process in the tunneling regime.

  10. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  11. Direct subwavelength imaging and control of near-field localization in individual silver nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Svärd, Robin; Miranda, Miguel; Guo, Chen; Harth, Anne; Lorek, Eleonora; Mauritsson, Johan; Arnold, Cord L.; L' Huillier, Anne; Mikkelsen, Anders; Losquin, Arthur, E-mail: arthur.losquin@fysik.lth.se [Department of Physics, Lund University, PO Box 118, 221 00 Lund (Sweden); Xu, Hongxing [Department of Physics, Lund University, PO Box 118, 221 00 Lund (Sweden); School of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2015-11-16

    We demonstrate the control of near-field localization within individual silver nanocubes through photoemission electron microscopy combined with broadband, few-cycle laser pulses. We find that the near-field is concentrated at the corners of the cubes, and that it can be efficiently localized to different individual corners depending on the polarization of the incoming light. The experimental results are confirmed by finite-difference time-domain simulations, which also provide an intuitive picture of polarization dependent near-field localization in nanocubes.

  12. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  13. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  14. Near-Field Source Localization Using a Special Cumulant Matrix

    Science.gov (United States)

    Cui, Han; Wei, Gang

    A new near-field source localization algorithm based on a uniform linear array was proposed. The proposed algorithm estimates each parameter separately but does not need pairing parameters. It can be divided into two important steps. The first step is bearing-related electric angle estimation based on the ESPRIT algorithm by constructing a special cumulant matrix. The second step is the other electric angle estimation based on the 1-D MUSIC spectrum. It offers much lower computational complexity than the traditional near-field 2-D MUSIC algorithm and has better performance than the high-order ESPRIT algorithm. Simulation results demonstrate that the performance of the proposed algorithm is close to the Cramer-Rao Bound (CRB).

  15. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    Science.gov (United States)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API

  16. Simulation of ultra-long term behavior in HLW near-field by centrifugal model test. Part 1. Development of centrifugal equipment and centrifuge model test method

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2011-01-01

    The objective of this paper is to develop a centrifugal equipment which can continuously be run for a long time and a model test method in order to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the high level wastes geological disposal repository and the neighborhood (called 'near-field'). The centrifugal equipment of CRIEPI, 'CENTURY5000-THM', developed in the present study is able to run continuously up to six months. Therefore, a long term behavior in the near-field can be simulated in a short term, for instance, the behavior for 5000 equivalent years can be simulated in six months by centrifugalizing 100 G using a 1/100 size model. We carried out a test using a nylon specimen in a centrifugal force field of 30 G and confirmed the operations of CENTURY5000-THM, control and measurement for 11 days. As the results, it was able to control the stress in the pressure vessel and measure the values of strain, temperature and pressure. And, as a result of scanning the small model of near-field including the metal overpack, bentonite buffer and rock by a medical X-rays CT scanner, the internal structure of the model was able to be evaluated when the metal artifact was reduced. From these results, the evaluation for a long term behavior of a disposal repository by the method of centrifugal model test became possible. (author)

  17. Accurate Calculation of Fringe Fields in the LHC Main Dipoles

    CERN Document Server

    Kurz, S; Siegel, N

    2000-01-01

    The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed.

  18. Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy

    Science.gov (United States)

    Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.

    2008-03-01

    Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.

  19. Near Field Environment Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  20. NFAP calculation of pressure response of 1/6th scale model containment structure

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1988-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction