WorldWideScience

Sample records for calcium sulfate

  1. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  2. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    Ambroise, J.; Pera, J.

    2008-01-01

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  3. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  5. Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones.

    Directory of Open Access Journals (Sweden)

    Allen Rodgers

    Full Text Available Urinary sulfate (SO4(2- and thiosulfate (S2O3(2- can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa and on supersaturation (SS of calcium oxalate (CaOx and calcium phosphate (CaP, and measured their in vitro effects on iCa and the upper limit of stability (ULM of these salts.Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1. A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS (Model 2. The Joint Expert Speciation System (JESS was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations.Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect.Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.

  6. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  7. Biocompatibility and setting time of CPM-MTA and white Portland cement clinker with or without calcium sulfate.

    Science.gov (United States)

    Bramante, Clovis Monteiro; Kato, Marcia Magro; Assis, Gerson Francisco de; Duarte, Marco Antonio Hungaro; Bernardineli, Norberti; Moraes, Ivaldo Gomes de; Garcia, Roberto Brandão; Ordinola-Zapata, Ronald; Bramante, Alexandre Silva

    2013-01-01

    To evaluate the biocompatibility and the setting time of Portland cement clinker with or without 2% or 5% calcium sulfate and MTA-CPM. Twenty-four mice (Rattus norvegicus) received subcutaneously polyethylene tubes filled with Portland cement clinker with or without 2% or 5% calcium sulfate and MTA. After 15, 30 and 60 days of implantation, the animals were killed and specimens were prepared for microscopic analysis. For evaluation of the setting time, each material was analyzed using Gilmore needles weighing 113.5 g and 456.5 g, according to the ASTM specification Number C266-08 guideline. Data were analyzed by ANOVA and Tukey's test for setting time and Kruskal-Wallis and Dunn test for biocompatibility at 5% significance level. Histologic observation showed no statistically significant difference of biocompatibility (p>0.05) among the materials in the subcutaneous tissues. For the setting time, clinker without calcium sulfate showed the shortest initial and final setting times (6.18 s/21.48 s), followed by clinker with 2% calcium sulfate (9.22 s/25.33 s), clinker with 5% calcium sulfate (10.06 s/42.46 s) and MTA (15.01 s/42.46 s). All the tested materials showed biocompatibility and the calcium sulfate absence shortened the initial and final setting times of the white Portland cement clinker.

  8. Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wang

    2016-07-01

    Conclusion: Calcium sulfate hydroxyapatite bone substitute can be used as a carrier for antibiotics or other drugs, without adverse reaction due to the fast resorption of the calcium sulfate. No bone formation was seen despite treating the bone substitute with autologous bone marrow.

  9. Pre-harvest calcium sulfate application improves postharvest quality ...

    African Journals Online (AJOL)

    The quality of cut rose flowers at the postharvest stage is affected by pre-harvest conditions. The present study was conducted to examine the possible involvement of calcium sulfate (CaSO4) in regulation of rose flower senescence. Roses (Rosa hybrida L.) cultivars 'Cool Water' and 'Pretty Blinda', were treated with either ...

  10. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Calcium sulfate nanorods, nanowires, nanobelts and sheets had been synthesized via a facile solution reaction of CaCl2 and H2SO4 in mixed solvents of ethanol/, -dimethylformamide and deionized water at 35°C. The results indicated that well-crystallized CaSO4 nanomaterials with different morphology were obtained ...

  11. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    International Nuclear Information System (INIS)

    Li, Xuerun; Zhang, Yu; Shen, Xiaodong; Wang, Qianqian; Pan, Zhigang

    2014-01-01

    The formation kinetics of tricalcium aluminate (C 3 A) and calcium sulfate yielding calcium sulfoaluminate (C 4 A 3 $) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C 3 A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca 3 Al 2 O 6 + CaSO 4 → Ca 4 Al 6 O 12 (SO 4 ) + 6CaO was the primary reaction 4 Al 6 O 12 (SO 4 ) + 10CaO → 6Ca 3 Al 2 O 6 + 2SO 2 ↑ + O 2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C 4 A 3 $ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C 4 A 3 $ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca 2+ and SO 4 2− were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C 3 A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion

  12. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  13. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  14. Preparation of ammonium sulfate, calcium oxide and rare earth concentrate from phospho-gypsum

    International Nuclear Information System (INIS)

    Andrianov, A.M.; Rusin, N.F.; Dejneka, G.F.; Zinchenko, T.A.; Burova, T.I.

    1978-01-01

    A technological scheme is proposed which gives ammonium sulfate, purified (from admixtures of silicon, iron, titanium, aluminium) calcium oxide with direct yield of calcium 91% and rare-earth concentrate, containing 5.6% of Ln 2 O 3 with direct yield of 99.5%

  15. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    Science.gov (United States)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  16. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    Directory of Open Access Journals (Sweden)

    Mitra Asadi-Eydivand

    Full Text Available The ability of inkjet-based 3D printing (3DP to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat

  17. Controlling the selective formation of calcium sulfate polymorphs at room temperature.

    Science.gov (United States)

    Tritschler, Ulrich; Van Driessche, Alexander E S; Kempter, Andreas; Kellermeier, Matthias; Cölfen, Helmut

    2015-03-23

    Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  19. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    International Nuclear Information System (INIS)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Lian, Xiaojie; Guo, Zhongwu; Jiang, Hong-Jiang; Cui, Fu-Zhai

    2013-01-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  20. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    International Nuclear Information System (INIS)

    Chen, Yirong; Zhou, Yilin; Yang, Shenyu; Li, Jiao Jiao; Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng; Zeng, Rong; Tu, Mei; Yu, Bin

    2016-01-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  1. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yirong; Zhou, Yilin [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Shenyu [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Li, Jiao Jiao [Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006 (Australia); Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Zeng, Rong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei, E-mail: tumei@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Yu, Bin, E-mail: yubinol@163.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2016-09-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  2. Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts: a review of four cases.

    Science.gov (United States)

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided.

  3. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  4. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  5. Calcium Sulfate Characterized by Chemcam/Curiousity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. M.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material occur. ChemCam analysis demonstrates that those fracture fills consist of calcium sulfates.[

  6. Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate

    Directory of Open Access Journals (Sweden)

    H. Yu

    2018-04-01

    Full Text Available The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement (CSA, ordinary Portland cement (OPC, and calcium sulfate (CS to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength (UCS, splitting tensile strength (STS, and volume change of fiber-added expansive mixtures were determined at different time periods (i.e. the strengths on the 28th day, and the volume changes on the 1st, 7th, 14th, 21st, and 28th days. The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to 50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and 16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion. Keywords: Shotcrete, Restrained expansion, Fibers, Calcium sulfoaluminate cement (CSA, Ordinary Portland cement (OPC, Calcium sulfate (CS

  7. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics

    International Nuclear Information System (INIS)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-01-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement. (paper)

  8. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics.

    Science.gov (United States)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-08-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement.

  9. Design of environmentally friendly calcium sulfate-based building materials : towards an improved indoor air quality

    NARCIS (Netherlands)

    Yu, Q.

    2012-01-01

    This thesis addresses the performance based design and development of an environmentally friendly calcium sulfate-based indoor building product towards an improved indoor air quality. Here "environmental friendly" is referred to the environment related subjects including: (1) the selection of raw

  10. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    Science.gov (United States)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  11. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    Science.gov (United States)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  12. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  13. Surface Corrosion and Microstructure Degradation of Calcium Sulfoaluminate Cement Subjected to Wet-Dry Cycles in Sulfate Solution

    Directory of Open Access Journals (Sweden)

    Wuman Zhang

    2017-01-01

    Full Text Available The hydration products of calcium sulfoaluminate (CSA cement are different from those of Portland cement. The degradation of CSA cement subjected to wet-dry cycles in sulfate solution was studied in this paper. The surface corrosion was recorded and the microstructures were examined by scanning electron microscopy (SEM. The results show that SO42-, Na+, Mg2+, and Cl− have an effect on the stability of ettringite. In the initial period of sulfate attack, salt crystallization is the main factor leading to the degradation of CSA cement specimens. The decomposition and the carbonation of ettringite will cause long-term degradation of CSA cement specimens under wet-dry cycles in sulfate solution. The surface spalling and microstructure degradation increase significantly with the increase of wet-dry cycles, sulfate concentration, and water to cement ratio. Magnesium sulfate and sodium chloride reduce the degradation when the concentration of sulfate ions is a constant value.

  14. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2004-01-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  15. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2003-04-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  16. Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    QIN Xiao-su

    2018-03-01

    Full Text Available The calcium sulfate/strontium-doped β-tricalcium phosphate composite spherical pellets was fabricated, using the calcium sulfate/strontium-doped β-TCP as raw material, and through the stirring spray drying method, and then composite spherical pellets were combined with silica gel, porous silica gel/calcium sulfate/strontium-doped β-tricalcium phosphate scaffold was obtained by stacking aggregation method in the mould. The XRD, SEM and FT-IR, etc are employed to examine the chemical composition, composite morphology and structure characteristics, and the degradability, porosity, mechanical properties and cytotoxicity of the scaffolds materials were studied. The results reveal that the composite porous scaffolds have irregular pore structure with pore size between 0.2-1.0mm, and they have a large number of micropores on each of the composite spherical pellets, with the aperture between 50-200μm. Moreover, the porosity of the composite scaffolds is about 62%, which can meet the requirements of scaffolds for bone tissue engineering in porosity; the cytotoxicity tests show the composite scaffolds have no cytotoxic effect and it has good degradation. Therefore, it has good application prospect in bone tissue engineering of the bone defect repair of non-bearing site.

  17. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    Science.gov (United States)

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  18. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng; Wang, Chien-Wen; Hsueh, Nai-Shuo; Ding, Shinn-Jyh

    2014-01-01

    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  19. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Wang Miao; Lu Peng; Tan Jin [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2010-08-30

    Sulfated polysaccharide (LPS) extracted from alga Laminaria japonica was degraded by hydrogen peroxide (H{sub 2}O{sub 2}). The average molecular weight of LPS was apparently decreased from 172,000 to 9550 after degradation, while the proportion of sulfate groups (-OSO{sub 3}{sup -}) and carboxylic groups (-COO{sup -}) in the molecular chains of LPS were slightly decreased from 4.5% and 5.20% to 3.9% and 4.64%, respectively. The effects of degraded and natural LPS on formation of calcium oxalate (CaOxa) crystals were investigated in vitro using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta-potential, and atomic absorption spectroscopy. LPS could increase the concentration of soluble Ca{sup 2+} ions in the solution, decrease the weight of precipitated CaOxa, and increase the negative value of zeta-potential of CaOxa crystals. LPS also inhibits the formation of thermodynamically stable calcium oxalate monohydrate (COM) crystals, while inducing and stabilizing metastable calcium oxalate dihydrate (COD) crystals. These results suggested that both degraded and natural LPS could decrease CaOxa crystallization, but the inhibition efficiency of the degraded LPS was clearly superior to that of the natural LPS. We expected this investigation would provide encouragement for further exploration into new drugs for the prevention and treatment of urolithiasis.

  20. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    Science.gov (United States)

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  1. Elution of Clindamycin and Enrofloxacin From Calcium Sulfate Hemihydrate Beads In Vitro.

    Science.gov (United States)

    Phillips, Heidi; Boothe, Dawn M; Bennett, R Avery

    2015-11-01

    To compare the in vitro elution characteristics of clindamycin and enrofloxacin from calcium sulfate hemihydrate beads containing a single antibiotic, both antibiotics, and each antibiotic incubated in the same eluent well. Experimental in vitro study. Calcium sulfate hemihydrate beads were formed by mixing with clindamycin and/or enrofloxacin to create 4 study groups: (1) 160 mg clindamycin/10 beads; (2) 160 mg enrofloxacin/10 beads; (3) 160 mg clindamycin + 160 mg enrofloxacin/10 beads; and (4) 160 mg clindamycin/5 beads and 160 mg enrofloxacin/5 beads. Chains of beads were formed in triplicate and placed in 5 mL phosphate buffered saline (PBS; pH 7.4 and room temperature) with constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1 hour to 30 days. Clindamycin and enrofloxacin concentrations in PBS were determined using high-performance liquid chromatography. Eluent concentrations from clindamycin-impregnated beads failed to remain sufficiently above minimum inhibitory concentration (MIC) for common infecting bacteria over the study period. Enrofloxacin eluent concentrations remained sufficiently above MIC for common wound pathogens of dogs and cats and demonstrated an atypical biphasic release pattern. No significant differences in elution occurred as a result of copolymerization of the antibiotics into a single bead or from individual beads co-eluting in the same eluent well. Clindamycin-impregnated beads cannot be recommended for treatment of infection at the studied doses; however, use of enrofloxacin-impregnated beads may be justified when susceptible bacteria are cultured. © Copyright 2015 by The American College of Veterinary Surgeons.

  2. The study of calcium sulfate decomposition by experiments under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [HangZhou Dianzi Univ. (China). School of Science; Zhou, H.; Cen, K.F. [State Key Laboratory of Clean Energy Utilization, HangZhou (China); Liu, Y.H.; Stanger, R.; Elliot, L.; Wall, T. [Newcastle Univ. (Australia). Chemical Engineering

    2013-07-01

    Sulphur emission and the effect on ash properties and boiler- tube corrosion in oxy-fuel combustion have received increasing attention in the recent years. Early investigation about calcium- based desulphurization in oxy-fuel, addressed the advantage to reduce the SO{sub 2} emission. This paper, the decomposition of calcium sulphate was characterized by thermogravimetric analyzer. The results showed that the decomposition inhibited by increasing O{sub 2} concentration and SO{sub 2} concentration resulted from recycled flue gas. And CO{sub 2} concentration had the negative effect, which can be solved by changing O{sub 2} concentration through appropriately adjusting recycled flue gas ratio. The kinetics mechanism of calcium sulfate-decomposition in oxy-fuel combustion was further analyzed. Compared with conventional atmosphere, the reaction activation energy was heightened in oxy-fuel conditions, and the difference increased with rising temperature. So it can further confirm the advantage of calcium utilization rate under high temperature in oxy-fuel condition.

  3. Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite.

    Science.gov (United States)

    Hokkanen, Sanna; Bhatnagar, Amit; Koistinen, Ari; Kangas, Teija; Lassi, Ulla; Sillanpää, Mika

    2018-04-01

    In the present study, the adsorption of sulfates of sodium sulfate (Na 2 SO 4 ) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na 2 SO 4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g -1 for sulfates of SLS and 7.35 mg g -1 for sulfates of Na 2 SO 4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich-Peterson isotherm models using five different error functions.

  4. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    Science.gov (United States)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  5. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    Science.gov (United States)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  6. Controlling Sulfate Attack in Mississippi Department of Transportation Structures

    Science.gov (United States)

    2010-08-01

    such as calcium aluminates and calcium hydroxide , can influence the degree of damage observed. In all cases, the deterioration observed appears to be...high levels of sulfate showed mineralogical evidence that calcium alumino-sulfate minerals such as ettringite were present in significant quantities...investigation, the Caltrans test was modified to adapt it to the available equipment. A description of the modified test procedure is given in Appendix B. A

  7. Dual roles of borax in kinetics of calcium sulfate dihydrate formation.

    Science.gov (United States)

    Jiang, Wenge; Pan, Haihua; Tao, Jinhui; Xu, Xurong; Tang, Ruikang

    2007-04-24

    An additive is not exclusively retardant or promoter for a crystallization system. The kinetic studies of calcium sulfate dihydrate (CSD) crystal growth demonstrated that borax played dual roles in the reaction, which accelerated CSD formations at the low concentration levels but inhibited the crystal growth at the high ones. In situ atomic force microscopy studies revealed that borax modulated the CSD crystallization via two different pathways: promoted the secondary nucleation to increase the step density on the growing crystal faces but simultaneously retarded the spread of these growth steps by the Langmuir adsorption. These two contradictory factors were incorporated in the crystallization, and their balance was regulated by the borax concentration. Both the macroscopic and microscopic experimental data nicely displayed the crystallization model of birth and spread that was able to account for the behaviors of borax in CSD formations.

  8. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  9. Synthesis, characterization and in vitro study of magnetic biphasic calcium sulfate-bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Akram, Muhammad; Alshemary, Ammar Z. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta' zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta' zim (Malaysia)

    2015-08-01

    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol–gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV–vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeO{sub x} oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment. - Highlights: • Biphasic calcium sulphate-bioactive glass containing iron was prepared. • Composite bioglass was superparamagnetic in nature. • All samples promoted the growth of apatite layer with Ca/P close to 1.67.

  10. Levels of ammonium, sulfate, chloride, calcium, and sodium in snow and ice from southern Greenland

    International Nuclear Information System (INIS)

    Busenberg, E.; Langway, C.C. Jr.

    1979-01-01

    Chemical analysis of surface snows and dated ice core samples from Dye 3, Greenland, suggests that the ammonium cation is a major constituent in all samples and that the annual ammonium levels present in the south Greenland samples have varied from 3.3 to 26.3 μg/kg between the seventeenth century and the present time. The annual range of 1974--1975 surface samples was between 3.8 and 8.8 μg/kg, while the mean was 5.7 +- 1.8 μ/kg. The recent large-scale uses of fixed nitrogen fertilizers and industrial pollution have apparently not affected the levels of ammonia reaching southern Greenland. The sodium and chloride present are predominantly derived from ocean spray, while more than 90% of the calcium is of continental origin. The levels of these three elements have not apparently been affected by human activity since the industrial revolution. Sulfate levels have increased dramatically since the industrial revolution, suggesting that sulfate of anthropogenic origin is the most important source of sulfate in modern snows from southern Greenland. The amount of the sulfuric acid neutralized by the ammonium cations was approximately 100% in the seventeenth and eighteenth centuries, dropping to approximately 20% in the 1974--1975 samples. These figures imply that there has been in increase in the acidity of precipitation in southern Greenland since the end of the eighteenth ce

  11. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    Science.gov (United States)

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (pprinted constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  13. Hydrothermal Formation Of Hemi-hydrate Calcium Sulfate Whiskers In The Presence Of Additives

    International Nuclear Information System (INIS)

    Luo, K. B.; Li, C. M.; Li, H. P.; Ning, P.; Xiang, L.

    2010-01-01

    The influence of addictives on the hydrothermal formation of hemi-hydrate calcium sulfate (CaSO 4 ·0.5H 2 O) whiskers were discussed in this paper, using CaCl 2 and Na 2 SO 4 as the reactants. The presence of NaCl, CaCl 2 or Na 2 SO 4 increased the concentrations of Ca 2+ and SO 4 2- , leading to the formation of CaSO 4 ·0.5H 2 O whiskers with aspect ratio lower than 50. The one dimensional growth of CaSO 4 ·0.5H 2 O whiskers was enhanced in water with no additives owing to the low super-saturation, leading to the formation of uniform whiskers with a length of 200-2000 μm and an aspect ratio higher than 100.

  14. The Effect of Platelet-Rich Fibrin, Calcium Sulfate Hemihydrate, Platelet-Rich Plasma and Resorbable Collagen on Soft Tissue Closure of Extraction Sites

    Directory of Open Access Journals (Sweden)

    Lisa M. Yerke

    2017-05-01

    Full Text Available Rapid and complete soft tissue healing after tooth extraction minimizes surgical complications and facilitates subsequent implant placement. We used four treatment methods and assessed changes in soft tissue socket closure following tooth extraction in humans. The effects of platelet-rich fibrin-calcium sulfate hemihydrate (PRF-CSH, platelet-rich plasma-calcium sulfate hemihydrate (PRP-CSH, a resorbable collagen dressing (RCD, and no grafting material were compared in a randomized, controlled pilot study with a blinded parallel design (N = 23. Patients with a hopeless tooth scheduled for extraction were randomly assigned to one of the four treatment groups. Socket measurements were obtained immediately after extraction and treatment, as well as after 21 days. There was a significant decrease in the total epithelialized external surface area of the extraction sockets in each group at all time points. However, there were no significant differences in soft tissue closure (p > 0.05 at any time point and PRF-CSH or PRP-CSH did not provide any additional benefit to enhance the soft tissue closure of extraction sockets compared with either RCD or sites without graft.

  15. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  16. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    International Nuclear Information System (INIS)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P.; Esposito, Giovanni; Yeh, Daniel H.; Lens, Piet N.L.

    2014-01-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L −1 ) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L −1 did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems

  17. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  18. Sulfation diffusion model for SO{sub 2} capture on the T-T sorbent at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.R.; Yang, L.Z.; You, C.F.; Qi, H.Y. [Tsinghua University, Beijing (China)

    2009-07-15

    A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO{sub 2} concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO{sub 2} concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor.

  19. Total and ionized serum magnesium and calcium levels during magnesium sulfate administration for preterm labor

    Science.gov (United States)

    Kim, Won Hee; An, Yuna; Moon, Jong Ho; Noh, Eun Ji; Kim, Jong Woon

    2018-01-01

    Objective This study aimed to estimate the association between total and ionized magnesium, and the changes in serum magnesium and calcium levels in patients with preterm labor during magnesium sulfate (MgSO4) administration. Methods The study population included 64 women who were candidates for intravenous MgSO4 treatment for preterm labor. Serial blood samples were taken and measured total magnesium (T-Mg), ionized magnesium (I-Mg), total calcium (T-Ca), and ionized calcium (I-Ca) levels every one-week interval (1st, 2nd, 3rd). Results There was no significant difference in T-Mg and I-Mg levels during MgSO4 administration (P>0.05). There was no significant difference in T-Ca and I-Ca levels during MgSO4 administration (P>0.05). Compared before and after administration of MgSO4, T-Mg and I-Mg levels and T-Ca levels were changed allow statistically significant (P0.05). There was significant correlation between levels of I-Mg and T-Mg (I-Mg=0.395×T-Mg+0.144, P<0.01). Conclusion There were no significant differences in serum Mg and Ca levels during MgSO4 administration for preterm labor. Compared to the before and after administration of MgSO4, only I-Ca levels were not substantially changed. There are significant correlations between I-Mg and T-Mg levels during administration of MgSO4 and I-Mg level seemed to have more correlation with adverse effect than T-Mg. PMID:29372150

  20. Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete

    Science.gov (United States)

    Małaszkiewicz, Dorota; Chojnowski, Jacek

    2017-11-01

    The quality of the autoclaved aerated concrete (AAC) strongly depends on the chemical composition of the raw materials, as well as on the process of the hydrothermal reaction during autoclaving. Performance parameters depend on material structure: fine micron-scale matrix porosity generated by the packing of thin tobermorite plates and coarse aeration pores arising from the foaming of wet mix. In this study the binder varied in calcium sulfate dihydrate (CaSO4ṡ2H2O) content. Five series of AAC specimens were produced, with gypsum content 0; 0.55; 1.15; 2.3 and 3.5% of dry mass respectively. AAC units were produced in UNIPOL technology. The study presents experimental results of AAC moisture stabilization. The initial moisture content was determined directly after autoclaving. Slower drying process was observed for samples containing over 2% of gypsum. Whereas other performance parameters, compressive and tensile strength, as well as water absorption and capillary rise, were significantly better comparing to the reference AAC samples.

  1. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  2. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  3. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  4. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    Science.gov (United States)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  5. Calcium-based stabilizer induced heave in Oklahoma sulfate-bearing soils.

    Science.gov (United States)

    2011-06-01

    The addition of lime stabilizers can create problems in soils containing sulfates. In most cases, lime is mixed with expansive soils rendering them non-expansive; however, when a certain amount of sulfate is present naturally in expansive soils, the ...

  6. Methane mitigation with corn oil and calcium sulfate, responses on whole animal energy and nitrogen balance in dairy cattle consuming reduced-fat distillers grains plus solubles

    Science.gov (United States)

    Addition of fat and calcium sulfate to diets fed to ruminants has been shown to reduce methane production, but these factors have not shown effects on energy balance. A study using 16 multiparous (8 Holstein and 8 Jersey) (78 ± 15 DIM) (mean ± SD) lactating dairy cows was conducted to determine how ...

  7. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    International Nuclear Information System (INIS)

    Gu, Zhengrong; Wang, Sicheng; Weng, Weizong; Chen, Xiao; Cao, Liehu; Wei, Jie; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  8. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhengrong [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); The Department of Orthopaedics, Jing' an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing' An Branch), 200040 (China); Wang, Sicheng [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Department of Orthopaedics, Zhongye Hospital, Shanghai 200941 (China); Weng, Weizong; Chen, Xiao; Cao, Liehu [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Wei, Jie [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Shin, Jung-Woog [Department of Biomedical Engineering, Inje University, Gimhae, 621749 (Korea, Republic of); Su, Jiacan, E-mail: jiacansu@sina.com [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-06-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  9. Tunable Degradation Rate and Favorable Bioactivity of Porous Calcium Sulfate Scaffolds by Introducing Nano-Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Jianhua Zhou

    2016-12-01

    Full Text Available The bone scaffolds should possess suitable physicochemical properties and osteogenic activities. In this study, porous calcium sulfate (CaSO4 scaffolds were fabricated successfully via selected laser sintering (SLS. Nano-hydroxyapatite (nHAp, a bioactive material with a low degradation rate, was introduced into CaSO4 scaffolds to overcome the overquick absorption. The results demonstrated that nHAp could not only control the degradation rate of scaffolds by adjusting their content, but also improve the pH environment by alleviating the acidification progress during the degradation of CaSO4 scaffolds. Moreover, the improved scaffolds were covered completely with the apatite spherulites in simulated body fluid (SBF, showing their favorable bioactivity. In addition, the compression strength and fracture toughness were distinctly enhanced, which could be ascribed to large specific area of nHAp and the corresponding stress transfer.

  10. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  11. Enhancement of biodegradation and osseointegration of poly(ε-caprolactone)/calcium phosphate ceramic composite screws for osteofixation using calcium sulfate.

    Science.gov (United States)

    Wu, Chang-Chin; Hsu, Li-Ho; Tsai, Yuh-Feng; Sumi, Shoichiro; Yang, Kai-Chiang

    2016-04-04

    Internal fixation devices, which can stabilize and realign fractured bone, are widely used in fracture management. In this paper, a biodegradable composite fixator, composed of poly(ε-caprolactone), calcium phosphate ceramic and calcium sulfate (PCL/CPC/CS), is developed. The composition of CS, which has a high dissolution rate, was expected to create a porous structure to improve osteofixation to the composite fixator. PCL, PCL/CPC, and PCL/CPC/CS samples were prepared and their physical properties were characterized in vitro. In vivo performance of the composite screws was verified in the distal femurs of rabbits. Results showed that the PCL/CPC/CS composite had a higher compressive strength (28.55 ± 3.32 MPa) in comparison with that of PCL (20.64 ± 1.81 MPa) (p < 0.05). A larger amount of apatite was formed on PCL/CPC/CS than on PCL/CPC, while no apatite was found on PCL after simulated body fluid immersion. In addition, PCL/CPC/CS composites also had a faster in vitro degradation rate (13.05 ± 3.42% in weight loss) relative to PCL (1.79 ± 0.23%) and PCL/CPC (4.32 ± 2.18%) (p < 0.001). In animal studies, PCL/CPC/CS screws showed a greater volume loss than that of PCL or PCL/CPC at 24 weeks post-implantation. Under micro-computerized tomography observation, animals with PCL/CPC/CS implants had better osseointegration in terms of the structural parameters of the distal metaphysis, including trabecular number, trabecular spacing, and connectivity density, than the PCL screw. This study reveals that the addition of CS accelerates the biodegradation and enhanced apatite formation of the PCL/CPC composite screw. This osteoconductive PCL/CPC/CS is a good candidate material for internal fixation devices.

  12. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  14. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  15. Coprecipitation of rare earths in systems of three heterovalent ions with sulfates of alkali and alkaline-earth metals

    International Nuclear Information System (INIS)

    Bobrik, V.M.

    1977-01-01

    Co-precipitation of rare earth elements (REE) in milligram amounts (3x10 -3 -3x10 -1 M) with alkali earth (AEE) sulfates in presence of alkali metal ions has been studied, the AEE:REE ratios between the co-precipitator and a REE (up to 50:1) the latter can be co-precipitated quantitatively in presence of corresponding alkali metals linked with the AEE in the Periodic table by a diagonal, i.e. in presence of sodium in co-precipitation with calcium sulfate, potassium with strontium sulfate and rubidium with barium sulfate. Co-precipitation with sulfates of sodium and calcium occurs at temperatures above 85 deg C and presumably involves calcium semihydrate. In presence of an alkali metal REE co-precipitation with AEE becomes isomorphic, i.e. at different AEE:REE ratios the co-precipitation coefficient remains constant. In presence of corresponding alkali metals the decrease in effectiveness of co-precipitation with AEE in the La-Lu series is more pronounced

  16. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shanchuan Zhang

    2015-01-01

    Full Text Available Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property p<0.05. Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking p<0.05. Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs p<0.05. Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level p<0.05. Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering.

  17. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  18. Investigation of the formation of deposits of calcium sulfate on a metallic wall: detection and growth initiation

    International Nuclear Information System (INIS)

    Guillermin, Roger

    1970-01-01

    Whereas the formation of calcium sulfate deposits on walls of (water desalination) heat exchanger tubes increases the load loss and decreases the heat exchange coefficient, measuring the load loss or measuring heat transfer in an exchanger could be a method to determine whether scaling occurs. In this research thesis, the author aims at a computational assessing of the sensitivity of such methods in conditions easily obtained in laboratory and allowing, if possible, the identification of the different steps of deposit formation. Then, the author considers some discontinuous methods, possibly more sensitive but more difficult to adjust, but which are not interesting in an industrial point of view: methods based on weighing, on chemical dosing, on radioactive measurements (tracers, auto-radiography, beta backscattering), optical methods and electric methods (piezoelectric quartz, conductivity measurements)

  19. Observation on the role of osteoporotic vertebra augmented with calcium sulfate cement in vivo

    International Nuclear Information System (INIS)

    Zhu Xuesong; Shi Qin; Zhang Zhiming; Geng Dechun; Mao Haiqing; Chen Chunmao; Wang Genlin; Yang Huilin

    2010-01-01

    Objective: To observe the biomechanical and histological performance of calcium sulfate cement (CSC) in osteoporotic vertebral bodies. Methods: Bone voids were created in L 2 ∼ L 5 vertebras of twelve female osteoporotic mature sheep. CSC and polymethylmethacrylate (PMMA) were injected into one bone voids randomly, L 1 and L 6 vertebrae served as the normal control. Six sheep were sacrificed at the 2nd week and the 24th week after operation respectively. Overall observation,biomechanical test and undecalcified bone histology analyses were performed. Results: Biomechanical analysis showed that the vertebrae could be augmented by CSC and PMMA. The biomechanical properties of the vertebrae augmented with CSC were weakened more than that in the PMMA and normal group at the 2nd week, increased significantly at the 24th week. Histological observation showed that CSC was mostly absorbed at the 24th week, mature bone trabecula was seen in the defect area. Conclusion: The osteoporotic vertebrae can be augmented instantly by CSC. As time goes on, CSC can promote bone remodeling, and enhance the vertebrae. It is an alternation for vertebroplasty and kyphoplasty. (authors)

  20. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    International Nuclear Information System (INIS)

    Fiskum, S.K.; Kurath, D.E.; Rapko, B.M.

    2000-01-01

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO 3 mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO 3 . Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO 4 mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO 4 . Initial bulk carbonate removal was required for successful follow-on barium sulfate precipitation. A ge 1:1 mole ratio of Ca:CO 3 was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO 4 resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO 3 /241-AN-107 slurry was found to lose fluidity upon standing for le 2 days. Metathesis with BaCO 3 at ambient temperature was also evaluated using batch contacts at various BaCO 3 :SO 4 mole ratios with no measurable success

  1. Tailored sequential drug release from bilayered calcium sulfate composites

    International Nuclear Information System (INIS)

    Orellana, Bryan R.; Puleo, David A.

    2014-01-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  2. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  3. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  4. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... less than 0.3% - was observed to be significantly promoted by higher SO2 concentrations and lower CO2 concentrations, whereas 02 showed negligible influence. A mathematical model for the sulfation of limestone involving chemical reaction at calcite grain surfaces and solid-state diffusion of carbonate...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  5. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    SK Fiskum; DE Kurath; BM Rapko

    2000-08-16

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO{sub 3} mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO{sub 3}. Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO{sub 4} mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO{sub 4}. Initial bulk carbonate removal was required for successful follow-on barium sulfate precipitation. A {ge} 1:1 mole ratio of Ca:CO{sub 3} was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO{sub 4} resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO{sub 3}/241-AN-107 slurry was found to lose fluidity upon standing for {le} 2 days. Metathesis with BaCO{sub 3} at ambient temperature was also evaluated using batch contacts at various BaCO{sub 3}:SO{sub 4} mole ratios with no measurable success.

  6. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  7. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  8. Sulfates removal by the GYP-CIX process following lime treatment

    International Nuclear Information System (INIS)

    Robertson, A.M.; Everett, D.J.; Plessis, N.J. Du

    1994-01-01

    The treatment of acid mine drainage by limiting results in the discharge of water saturated in gypsum and containing residual metal concentrations. These waters may exceed drinking and irrigation water standards for TDS, sulfates and some metals. The scaling nature of the saturated gypsum solution makes it unsuitable for industrial use and makes further processing difficult and costly. This paper discusses a novel ion exchange process that is suitable to desalinate large volumes of mine and industrial waters with a TDS of up to 6,500 mg/l which is also high in calcium and sulfates, to meet effluent discharge specifications. The GYP-CIX process is a continuous fluidized bed ion-exchange process that effectively removes calcium sulfate from gypsum saturated waters. It uses low cost chemicals such as lime and sulfuric acid for resin regeneration. The only waste product is gypsum and the treated water produced meets standards for reuse or discharge. This process consists of a two stage operation. The first is the removal of cations in a multistage continuous loading train, using cation exchange resin. The second operation is the removal of anions, again in a multistage continuous loading train using anion exchange resin

  9. Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process

    International Nuclear Information System (INIS)

    Guan Baohong; Ye Qingqing; Zhang Jiali; Lou Wenbin; Wu Zhongbiao

    2010-01-01

    Superplasticizers (SPs), namely sulfonated melamine formaldehyde (SMF) and polycarboxylate (PC), were independently admixed with α-calcium sulfate hemihydrate based plaster to improve the material's performance. SMF and PC gave, respectively, 38% and 25% increases in the 2 h bending strength at the optimum dosages of 0.5 wt.% and 0.3 wt.%, which are determined essentially by the maximum water-reducing efficiency. The peak shift of binding energy of Ca2p 3/2 detected by X-ray photoelectron spectroscopy (XPS) suggests that SPs are chemically adsorbed on gypsum surface. A careful examination of the strength development of set plaster allowed the hydration and hardening process to be divided roughly into five stages. SMF accelerates early hydration, while PC decelerates it. Both SPs allowed similar maximum water reductions, giving a more compact structure and a decrease in total pore volume and average pore diameter, and thus leading to higher strengths in the hardened plasters with SPs.

  10. Clinical and histologic outcomes of calcium sulfate in the treatment of postextraction sockets.

    Science.gov (United States)

    Ruga, Emanuele; Gallesio, Cesare; Chiusa, Luigi; Boffano, Paolo

    2011-03-01

    The aim of this prospective study was to assess the clinical and histologic outcomes obtained with calcium sulfate (CS) used as a filler material in fresh premolar and molar postextraction sockets. Sixty premolar or molar postextraction sockets were filled with CS. Among the 60 grafted sockets, after 3 months, 50 underwent implant placement and clinical assessment. The removal of a sample core of newly generated intrasocket tissue was performed in 19 sockets. Collected samples were sent for histologic examination. The percentage of vital bone, nonvital bone, residual CS, amorphous material, and connective areas in every sample was calculated and recorded. Fifty postextraction regenerated sockets that underwent implant placement 3 months after tooth removal were included in this study.A partial postoperative exposition of the graft was observed in 12 of 50 sockets. At the surgical reentry, the augmented extraction sockets were completely filled by a hard material with an adequate alveolar crest in 41 cases. Histologic examination of the cores revealed that 63.16% of the intrasocket tissue was new vital bone, 2.1% was nonvital bone, 4.74% was fibrous tissue, and 30% was amorphous material. No residual CS was identified in bone cores. This study confirmed that CS is an ideal grafting material. The clinical adequacy aspect of filled sockets at surgical reentry seemed to be indicative of a qualitatively better bone regeneration. Postoperative exposition of graft material after a first intervention seemed to constitute an important risk factor for a worse bone regeneration.

  11. Role of calcium-enriched mixture in endodontics

    Directory of Open Access Journals (Sweden)

    Pradeep Kabbinale

    2015-01-01

    Full Text Available Calcium-enriched mixture (CEM has been recently introduced as a hydrophilic tooth-colored cement. The CEM cement powder is composed of calcium oxide, calcium sulfate, phosphorus oxide, and silica as major elements. CEM is alkaline cement (pH~11 that releases calcium hydroxide (CH during and after setting. The physical properties of CEM, such as flow, film thickness, and primary setting time are favorable. This cement is biocompatible and induces formation of cementum, dentin, bone and periodontal tissues. This novel cement has an antibacterial effect comparable to CH and superior to mineral trioxide aggregate (MTA and sealing ability similar to MTA. Its clinical applications include pulp capping, pulpotomy, root-end filling and perforation repair. This review describes the composition, properties and clinical applications of CEM in endodontics.

  12. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering

    International Nuclear Information System (INIS)

    García-García, J M; Boccaccini, A R; Garrido, L; Quijada-Garrido, I; Kaschta, J; Schubert, D W

    2012-01-01

    Three different poly(hydroxyalkanoates) (PHAs), copolymers of poly(3-hydroxybutyrate) (P3HB), have been used to make composites using two different fillers, bioactive glass (type 45S5 Bioglass®) and calcium sulfate dihydrate. The PHAs used were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBHV] and two copolymers of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [PHBHHx]. The aim of the study was the fabrication and characterization of the new composites and the assessment of the influence of the particular filler combination on the physical properties and bioactivity of the films. The thermal behaviour was studied using differential scanning calorimetry while mechanical properties were evaluated using dynamic mechanic thermal analysis and tensile strength test. The mechanical and thermal properties were affected by particles addition. The distribution of the particles in the polymer matrix, observed by scanning electron microscopy, was directly related to the mechanical properties. The surface characteristics were investigated by contact angle measurements and Raman spectroscopy. The extent of formation of hydroxyapatite (HA) upon immersion in simulated body fluid (SBF) depended on the polymer used, the amount of fillers employed and the time of immersion in SBF. Bioactivity was enhanced in the composites with a rise of hydrophilicity. The HA formation was controllable with time in the case of PHBHHx composites. (paper)

  13. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rapid field detection of sulfate and organic content in soils : technical report.

    Science.gov (United States)

    2011-06-01

    In recent years, the Texas Department of Transportation (TxDOT) has experienced problems chemically : stabilizing moderate to high plasticity clay soils with calcium-based additives. Many of the problems are the : result of soluble sulfate minerals i...

  15. Effect of fly ash composition on the sulfate resistance of concrete[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, R.D.; Thomas, M.D.A. [New Brunswick Univ., Fredericton, NB (Canada); Folliard, K.J.; Drimalas, T. [Texas Univ., Austin, TX (United States)

    2009-07-01

    Studies have shown that low-calcium Class F fly ashes obtained from burning coal in power stations can increase the sulfate resistance of Portland cement concrete. In many cases the sulfate resistance of concrete containing high-calcium Class C fly ash can be reduced compared to concrete without fly ash, due to the presence of crystalline C3A in the fly ash and calcium aluminate in the glass. This study investigated the differences in the glass composition and sulfate resistance of fly ashes with a range of calcium contents. The objective was to determine whether the behaviour of high-calcium fly ashes could be improved by blending with low-calcium fly ash. The sulfate resistance of cementitious systems consisting of a Type I Portland cement blended with Class F and Class C fly ashes of varying composition was evaluated by monitoring the length change of mortar bars stored in 5 per cent sodium sulfate solution. Scanning electron microscopy and electron dispersive X-ray analysis were used to characterize the glass phases of the fly ashes. The position occupied by the glass when plotted on a CaO-SiO{sub 2}-Al{sub 2}O{sub 3} ternary was identified as belonging to one of the fields occupied by the mineral phases mullite, anorthosite or gehlenite. The glass showed a transition from alumino-silicate in Class F fly ash to a calcium alumino-silicate or mixed calcium-aluminate/alumino-silicate in Class C fly ashes with higher calcium contents. Fly ashes with high amounts of calcium-aluminate glass had reduced sulfate resistance when tested in mortars. Blends of Class C and Class F fly ashes had better sulfate resistance than mixes made with only Class C fly ash. A relationship was established between the calcium oxide content of the blended fly ash and sulfate resistance of mortar. 8 refs., 5 tabs., 10 figs.

  16. Calcium oxide doped sorbents for CO{sub 2} uptake in the presence of SO{sub 2} at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.; Smirniotis, P.G. [University of Cincinnati, Cincinnati, OH (United States)

    2009-06-15

    There is an urgent need to understand sorbent tolerance for capturing carbon dioxide (CO{sub 2}) in the presence of sulfur dioxide (SO{sub 2}). Sulfur oxide is emitted together with CO{sub 2} from various combustion systems and can cause severe air pollution. In this study, the behavior of different dopants on the performance of calcium oxide (CaO) sorbent for capturing CO{sub 2} in the presence of SO{sub 2} was investigated. Three main sets of experiments were carried out to study carbonation and sulfation both separately and simultaneously using a thermogravimetric analyzer (TGA). The results show that SO{sub 2} reduced the capability of the sorbents for capturing CO{sub 2} because of the competition between carbonation and sulfation reactions. Formation of calcium carbonate (CaCO{sub 3}) and calcium sulfate (CaSO{sub 4}) took place upon carbonation and sulfation, respectively. Our TGA and X-ray photoelectron spectroscopy (XPS) results indicate that the carbonation is totally reversible, while this is not the case with the sulfation. The permanent residual weight gained by the sorbents during the course of sulfation is attributed to the irreversible formation of sulfate species, which is confirmed by both the TGA and XPS results. The Ce promoted CaO sorbent exhibits the best performance for CO{sub 2} capture and is the most SO{sub 2} tolerant sorbent. On the other hand, the Mn doped dopant has the strongest affinity for SO{sub 2}.

  17. Study on the Effect of Calcium and Potassium Spray on Date Bunch Fading Disorder

    Directory of Open Access Journals (Sweden)

    Hosein Shekofteh

    2017-09-01

    Full Text Available Introduction: Date bunch fading disorder has been one of the most important problems, which caused economic damage to date plantation area of Iran. It has been first reported on Mozafti cultivar in Kahnuj area, Kerman province. It has often been observed on soft and mid ripening cultivars such as Mozafti, Mordaseng and Kalote. Furthermore, it usually appears on Mozafti cultivar when fruits change from Khalal to Rutab stage. The most important symptoms of this disorder are sudden wilting of fruits and necrotic strips on the upper surface of the main bunch stalk. Incidence and development of these symptoms increase by high temperature, low relative humidity, and hot and dry wind. Several research studies have been carried out on this disorder so far, but the only research about the effect of nutrition on disorder was performed by Rosta (2003. The aim of the present study was to investigate the effect of calcium and potassium spray on date bunch fading and some traits of date fruit in Rigan region, Kerman province. Materials and Methods: The experiment was conducted based on randomized complete block designs with three replicates in Rigan located in east south of Kerman province, Iran, in 2012. Treatments were: T1: control, T2: spray of calcium nitrate at the concentration of 5 ppm, T3: spray of potassium sulfate at the concentration of 5 ppm, and T4: combined spray of calcium nitrate and potassium sulfate at the concentration of 5 ppm. Treatments were applied at Kimri, Hobabok and Khalal stages. Sampling was performed from 3 date palms (3 bunches from each date palm were selected randomly at the second date harvest. Totally, the traits of 200 fruits were measured in each date palm. The traits measured in the present study were: fruit length, fruit diameter, fruit weight, stone weight, stone diameter, and bunch fading percentage. Results and Discussions: According to the data of variance analysis, treatments had a significant effect on wet fruit

  18. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    Science.gov (United States)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  19. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion.

    Science.gov (United States)

    Jiang, Guangming; Li, Junxi; Nie, Yunliang; Zhang, Sen; Dong, Fan; Guan, Baohong; Lv, Xiaoshu

    2016-07-19

    This work report a facile approach to efficiently separate surfactant-stabilized water (droplet diameter of around 2.0 μm) from water-in-oil emulsion via converting liquid water into solid crystal water followed by removal with centrifugation. The liquid-solid conversion is achieved through the solid-to-solid phase transition of calcium sulfate hemihydrate (CaSO4. 0.5H2O, HH) to dihydrate (CaSO4·2H2O, DH), which could immobilize the water into crystal lattice of DH. For emulsion of 10 mg mL(-1) water, the immobilization-separation process using polycrystalline HH nanoellipsoids could remove 95.87 wt % water at room temperature. The separation efficiency can be further improved to 99.85 wt % by optimizing the HH dosage, temperature, HH size and crystalline structure. Property examination of the recycled oil confirms that our method has neglectable side-effect on oil quality. The byproduct DH was recycled to alpha-HH (a valuable cemetitious material widely used in construction and binding field), which minimizes the risk of secondary pollution and promotes the practicality of our method. With the high separation efficiency, the "green" feature and the recyclability of DH byproduct, the HH-based immobilization-separation approach is highly promising in purifying oil with undesired water contamination.

  20. Influence of calcium and silicon supplementation into Pleurotus ostreatus substrates on quality of fresh and canned mushrooms.

    Science.gov (United States)

    Thongsook, T; Kongbangkerd, T

    2011-08-01

    Supplements of gypsum (calcium source), pumice (silicon source) and pumice sulfate (silicon and calcium source) into substrates for oyster mushrooms (Pleurotus ostreatus) were searched for their effects on production as well as qualities of fresh and canned mushrooms. The addition of pumice up to 30% had no effect on total yield, size distribution and cap diameters. The supplementation of gypsum at 10% decreased the total yield; and although gypsum at 5% did not affect total yield, the treatment increased the proportion of large-sized caps. High content (>10%) of pumice sulfate resulted in the lower yield. Calcium and silicon contents in the fruit bodies were not influenced by supplementations. The centrifugal drip loss values and solid content of fresh mushrooms, and the percentage of weight gained and firmness of canned mushrooms, cultivated in substrates supplemented with gypsum, pumice and pumice sulfate were significantly (p≤0.05) higher than those of the control. Scanning electron micrographs revealed the more compacted hyphae of mushroom stalks supplemented with silicon and/or calcium after heat treatment, compared to the control. Supplementation of P. ostreatus substrates with 20% pumice was the most practical treatment because it showed no effect on yield and the most cost-effective.

  1. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    Science.gov (United States)

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  2. Recycling of ferrous sulfate by the synthesis of a new super oxidant material 'Referox'

    Energy Technology Data Exchange (ETDEWEB)

    Evrard, O. [Universite Henri Poincare, Vandoeuvre (France); Dupre, B.; Jeannot, C.; Kanari, N.; Gaballah, I.; Ninane, L.; Verstraete, W.; Denomme, S.; Belsue, M.

    2001-07-01

    This European Union-sponsored project was initiated to develop a process to recycle industrial ferrous sulfate by the synthesis of a superoxidant containing hexavalent (FeVI) iron. Hexavalent iron, also called ferrates, can be used in decontamination of industrial effluents, decolorisation and purification of effluents from the textile and tanning industries, oxidation of cyanide to cyanates, soil remediation, water treatment and in a variety of other processes. Dry synthesis of potassium ferrate, using calcium hypochlorite as the oxidizing agent, was successful. By using chlorine instead of calcium hypochlorite and by partially substituting sodium hydroxide for potassium hydroxide the cost of the synthesis was significantly reduced. Recycling of ferrous sulfate at room temperature by the synthesis of potassium ferrate (FeVI) using gaseous chlorine instead of solid calcium hypochlorite was also successful. The yield of the synthesis was about 65 per cent for the used industrial ferrous sulfate samples. Large scale experimentation of the potassium ferrate synthesis was also carried out, obtaining potassium ferrate that remained stable for several months. The ferrates were used in the treatment of drinking water, wastewater, soil remediation, and effluent decontamination. Encouraging results were obtained. An additional benefit found was that use of the ferrates as bactericide for water treatment instead of chlorine gas eliminates the generation of halo-organic compounds which are suspected to be carcinogenic. 2 figs.

  3. Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly(lactic-co-glycolic acid) cements for monitoring in vivo degradation.

    Science.gov (United States)

    Hoekstra, Jan Willem M; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Bronkhorst, Ewald M; Meijer, Gert J; Jansen, John A

    2014-01-01

    Monitoring the degradation of calcium phosphate-based bone substitute materials in vivo by means of noninvasive techniques (e.g., radiography) is often a problem due to the chemical resemblance of those substitutes with the mineral phase of bone. In the view of that, the present study aimed at enhancing the radiopacity of calcium phosphate cement enriched with poly(lactic-co-glycolic acid) (CPC-PLGA) microspheres, by adding tantalum oxide (Ta2O5) or the more traditional radiopacifier barium sulfate (BaSO4). The radiopacifying capacity of these radiopacifiers was first evaluated in vitro by microcomputed tomography (μCT). Thereafter, both radiopacifiers were tested in vivo using a distal femoral condyle model in rabbits, with subsequent ex vivo μCT analysis in parallel with histomorphometry. Addition of either one of the radiopacifiers proved to enhance radiopacity of CPC-PLGA in vitro. The in vivo experiment showed that both radiopacifiers did not induce alterations in biological performance compared to plain CPC-PLGA, hence both radiopacifiers can be considered safe and biocompatible. The histomorphometrical assessment of cement degradation and bone formation showed similar values for the three experimental groups. Interestingly, μCT analysis showed that monitoring cement degradation becomes feasible upon incorporation of either type of radiopacifier, albeit that BaSO4 showed more accuracy compared to Ta2O5. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. A Comparative Performance Evaluation of Some Novel “Green” and Traditional Antiscalants in Calcium Sulfate Scaling

    Directory of Open Access Journals (Sweden)

    Konstantin Popov

    2016-01-01

    Full Text Available A relative ability of industrial samples of four phosphorus-free polymers (polyaspartate (PASP; polyepoxysuccinate (PESA; polyacrylic acid sodium salt (PAAS; copolymer of maleic and acrylic acid (MA-AA and of three phosphonates (aminotris(methylenephosphonic acid, ATMP; 1-hydroxyethane-1,1-bis(phosphonic acid, HEDP; phosphonobutane-1,2,4-tricarboxylic acid, PBTC to inhibit calcium sulfate precipitation is studied following the NACE Standard along with dynamic light scattering (DLS, scanning electron microscopy (SEM, and X-ray diffraction (XRD technique. For the 0.5 mg·dm−3 dosage, the following efficiency ranking was found: MA-AA~ATMP>PESA (400–1500 Da>PASP (1000–5000 Da ≫ PAAS (3000–5000 Da~PBTC~HEDP. The isolated crystals are identified as gypsum. SEM images for PESA, PASP, PAAS, and HEDP and for a blank sample indicated the needle-like crystal morphology. Surprisingly, the least effective reagent PBTC revealed quite a different behavior, changing the morphology of gypsum crystals to an irregular shape. The DLS experiments exhibited a formation of 300 to 700 nm diameter particles with negative ζ-potential around −2 mV for all reagents. Although such ζ-potential values are not capable of providing colloidal stability, all three phosphonates demonstrate significant gypsum particles stabilization relative to a blank experiment.

  5. Comprehensive sulfation model verified for T-T sorbent clusters during flue gas desulfurization at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yuran Li; Haiying Qi; Changfu You; Lizhai Yang [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

    2010-08-15

    An empirical sulfation model for T-T sorbent clusters was developed based on amassed experimental results under moderate temperatures (300-800{sup o}C). In the model, the reaction rate is a function of clusters mass, SO{sub 2} concentration, CO{sub 2} concentration, calcium conversion and temperature. The smaller pore volume partly results in a lower reaction rate at lower temperatures. The exponent on SO{sub 2} concentration is 0.88 in the rapid reaction stage and then decreases gradually as reaction progresses. The exponent on the fraction of the unreacted calcium is 1/3 in the first stage and then increases significantly in the second stage. The CO{sub 2} concentration has a negative influence on SO{sub 2} removal, especially for the temperature range of 400-650{sup o}C, which should be avoided to achieve a high effective calcium conversion. The sulfation model has been verified for the T-T sorbent clusters and has also been applied to CaO particles. Over extensive reaction conditions, the predictions agree well with experimental data. 17 refs., 10 figs., 2 tabs.

  6. The confused world of sulfate attack on concrete

    International Nuclear Information System (INIS)

    Neville, Adam

    2004-01-01

    External sulfate attack is not completely understood. Part I identifies the issues involved, pointing out disagreements, and distinguishes between the mere occurrence of chemical reactions of sulfates with hydrated cement paste and the damage or deterioration of concrete; only the latter are taken to represent sulfate attack. Furthermore, sulfate attack is defined as deleterious action involving sulfate ions; if the reaction is physical, then, it is physical sulfate attack that takes place. The discussion of the two forms of sulfate attack leads to a recommendation for distinct nomenclature. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems to be disproportionately large. The mechanisms of attack by different sulfates--sodium, calcium, and magnesium--are discussed, including the issue of topochemical and through-solution reactions. The specific aspects of the action of magnesium sulfate are discussed, and the differences between laboratory conditions and field exposure are pointed out. Part II discusses the progress of sulfate attack and its manifestations. This is followed by a discussion of making sulfate-resisting concrete. One of the measures is to use Type V cement, and this topic is extensively discussed. Likewise, the influence of w/c on sulfate resistance is considered. The two parameters are not independent of one another. Moreover, the cation in the sulfate salt has a strong bearing on the efficiency of the Type V cement. Recent interpretations of the Bureau of Reclamation tests, both long term and accelerated, are evaluated, and it appears that they need reworking. Part III reviews the standards and guides for the classification of the severity of exposure of structures to sulfates and points out the lack of calibration of the various classes of exposure. A particular problem is the classification of soils because much depends on the extraction ratio of sulfate in the soil: there is a

  7. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    Science.gov (United States)

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  8. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    Science.gov (United States)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  9. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  10. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    Directory of Open Access Journals (Sweden)

    Tan H

    2015-07-01

    Full Text Available Honglue Tan,1 Shengbing Yang,2 Pengyi Dai,1 Wuyin Li,1 Bing Yue2 1Luoyang Orthopedics and Traumatology Institution, Luoyang Orthopedic-Traumatological Hospital, Luoyang, 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Abstract: As a commonly used implant material, calcium sulfate cement (CSC, has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio, CSC-10S (10% mass ratio, and CSC-20S (20% mass ratio, respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing

  11. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings.

    Science.gov (United States)

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; García-Godoy, Franklin; Moldauer, Bertram Ivan; Gagliardi Minotti, Paloma; Tercília Grizzo, Larissa; Duarte, Marco Antonio Hungaro

    2015-07-01

    The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm-infected dentin in comparison to the other pastes (P Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. © 2015 Wiley Periodicals, Inc.

  12. Effect of zinc supplements on the intestinal absorption of calcium

    International Nuclear Information System (INIS)

    Spencer, H.; Rubio, N.; Kramer, L.; Norris, C.; Osis, D.

    1987-01-01

    Pharmacologic doses of zinc are widely used as zinc supplements. As calcium and zinc may compete for common absorption sites, a study was carried out on the effect of a pharmacologic dose of zinc on the intestinal absorption of calcium in adult males. The analyzed dietary zinc intake in the control studies was normal, averaging 14.6 mg/day. During the high zinc study, 140 mg zinc as the sulfate was added daily for time periods ranging from 17 to 71 days. The studies were carried out during both a low calcium intake averaging 230 mg/day and during a normal calcium intake of 800 mg/day. Calcium absorption studies were carried out during the normal and high zinc intake by using an oral tracer dose of Ca-47 and determining plasma levels and urinary and fecal excretions of Ca-47. The study has shown that, during zinc supplementation, the intestinal absorption of calcium was significantly lower during a low calcium intake than in the control study, 39.3% vs 61% respectively, p less than 0.001. However, during a normal calcium intake of 800 mg/day, the high zinc intake had no significant effect on the intestinal absorption of calcium. These studies have shown that the high zinc intake decreased the intestinal absorption of calcium during a low calcium intake but not during a normal calcium intake

  13. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, Fabio [Dipartimento di Chimica - Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant' Angelo, 80126 Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  14. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    International Nuclear Information System (INIS)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E; Valle, L J; Poeata, I

    2010-01-01

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/α-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/α-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and α-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/α-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  15. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  16. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  17. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    Directory of Open Access Journals (Sweden)

    S. Vaitheeswari

    2015-06-01

    Full Text Available ABSTRACTPurpose:Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model.Materials and Methods:The antilithiatic activity of sodium hydrogen sulfide (NaSH, sodium thiosulfate (Na2S2O3 and sodium sulfate (Na2SO4 on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques.Results:The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4.Conclusion:Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O32-and SO42- moiety produced by the test compounds.

  18. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  19. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models

    OpenAIRE

    Rivera-Huerta, Marisol; Liz?rraga-Grimes, Vania Lorena; Castro-Torres, Ibrahim Guillermo; Tinoco-M?ndez, Mabel; Mac?as-Rosales, Luc?a; S?nchez-Bart?z, Francisco; Tapia-P?rez, Graciela Guadalupe; Romero-Romero, Laura; Gracia-Mora, Mar?a Isabel

    2017-01-01

    Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin “Synergy 1®” and inulin from Mexican agave “Metlin®” in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon c...

  20. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  1. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  2. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  3. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  4. Decontamination Using a Desiccant with Air Powder Abrasion Followed by Biphasic Calcium Sulfate Grafting: A New Treatment for Peri-Implantitis

    Directory of Open Access Journals (Sweden)

    Giorgio Lombardo

    2015-01-01

    Full Text Available Peri-implantitis is characterized by inflammation and crestal bone loss in the tissues surrounding implants. Contamination by deleterious bacteria in the peri-implant microenvironment is believed to be a major factor in the etiology of peri-implantitis. Prior to any therapeutic regenerative treatment, adequate decontamination of the peri-implant microenvironment must occur. Herein we present a novel approach to the treatment of peri-implantitis that incorporates the use of a topical desiccant (HYBENX, along with air powder abrasives as a means of decontamination, followed by the application of biphasic calcium sulfate combined with inorganic bovine bone material to augment the intrabony defect. We highlight the case of a 62-year-old man presenting peri-implantitis at two neighboring implants in positions 12 and 13, who underwent access flap surgery, followed by our procedure. After an uneventful 2-year healing period, both implants showed an absence of bleeding on probing, near complete regeneration of the missing bone, probing pocket depth reduction, and clinical attachment gain. While we observed a slight mucosal recession, there was no reduction in keratinized tissue. Based on the results described within, we conclude that the use of HYBENX and air powder abrasives, followed by bone defect grafting, represents a viable option in the treatment of peri-implantitis.

  5. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  6. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    Science.gov (United States)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of 860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  7. Interactions of calcium sulfite with soils and plants

    International Nuclear Information System (INIS)

    Ritchey, K.D.; Kinraide, T.B.; Wendell, R.R.

    1995-01-01

    CaSO 3 is a by-product formed by several of the processes used for scrubbing SO 2 from flue gas produced by coal-burning power generators. Using CaSO 3 to improve the calcium status of acid soils would be a beneficial alternative to disposal in landfills. CaSO 3 has biocidal properties and is used as disinfectant and food and drink preservative. It is important to evaluate under what conditions application to soils would not harm plant growth. Laboratory experiments confirmed that two transformations of CaSO 3 occurred in soil systems: (1) decomposition to produce SO 2 gas, and (2) oxidation to calcium suflate. Conversion to SO 2 occurred in solution and soil at low pH, and acid soils treated with CaSO 3 were initially toxic to seedling root growth. The degree of toxicity was time-dependent, with reduction in toxicity occurring as CaSO 3 oxidized to calcium sulfate. Soil reaction also influenced toxicity, and at soil pH levels above 6, little seeding toxicity was evident

  8. The Effect of Heat Treatment on Physical, Chemical and Structural Properties of Calcium Sulfate Based Scaffolds

    Directory of Open Access Journals (Sweden)

    Hakan OFLAZ

    2017-03-01

    Full Text Available 3D printed calcium sulfate (CS is a promising material for on custom bone substitutes. Since it dissolves easily in body fluids, manufactured samples require to being improved to reduce solubility.  The main aim of this study was reducing the dissolubility of CS based samples by using sintering and investigating the effect of heat treatment on their physical, chemical and structural properties. To observe the effect of heat treatment on samples, contact angles were measured, X-Ray diffraction analysis (XRD was performed, and scanning electron microscope (SEM micrographs were captured before and after the sintering process, and the results were compared. Furthermore, sintered and non-sintered samples were soaked in phosphate buffered saline (PBS to observe the impact of sintering on the solubility of the material. Also, three different pore sized scaffolds were manufactured to test the limits of the 3D printer for manufacturing of scaffolds with open pores. Sintering process results in a volume reduction and according to SEM results, CS grains were fused together after heat treatment. Although non-sintered CS sample starts to dissolve in high rate and nearly 1/3 of the sample was at the bottom of the glass in a matter of minutes, sintering creates more rigid structure and there were not visible dissolution in PBS at the end of a week. The contact angle of samples cannot be measured, so it can be concluded that 3D printed material showed a super-hydrophilic property. XRD diagram suggested that there is not any new phase created in the printing and sintering processes except related hydrates of CS. As a result of the 3D printing, 500 µm, 750 µm and 1000 µm pore sized scaffolds were manufactured, successfully. However, it was seen that 500 µm pores could not be open by using depowdering after the printing process.

  9. Fast and simple method for semiquantitative determination of calcium propionate in bread samples.

    Science.gov (United States)

    Phechkrajang, Chutima Matayatsuk; Yooyong, Surin

    2017-04-01

    Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red-brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC) method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method. Copyright © 2016. Published by Elsevier B.V.

  10. Fast and simple method for semiquantitative determination of calcium propionate in bread samples

    Directory of Open Access Journals (Sweden)

    Chutima Matayatsuk Phechkrajang

    2017-04-01

    Full Text Available Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red–brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method.

  11. The effect of intraosseous injection of calcium sulfate on microstructure and biomechanics of osteoporotic lumbar vertebrae in sheep

    Directory of Open Access Journals (Sweden)

    Da LIU

    2014-10-01

    Full Text Available Objective To investigate the effect of calcium sulfate (CS on improvement of microstructure and biomechanical performance of osteoporotic lumbar vertebrae in sheep. Methods Osteoporosis model was reproduced in 8 female sheep by bilateral ovariectomy and methylprednisolone administration. Then the lumbar vertebrae (L1-L4 in each sheep were randomly divided into CS group and blank group (2 vertebrae in each sheep. CS was injected into the vertebral bodies through the pedicle in CS group, and no treatment was given in blank group. All of the animals were sacrificed 3 months later, and vertebrae L1-L4 were harvested. The microstructure and biomechanical performance of vertebral bodies were assessed by micro-CT scanning, histological observation and biomechanical test. Results After ovariectomy and methylprednisolone administration, the mean bone mineral density of the lumbar vertebrae in the sheep was significantly decreased (>25% compared with that before induction (P<0.05, demonstrating a successful reproduction of osteoporosis model. Three months after injection, it was shown that CS was completely degraded without any remnant in the bone tissue. The quality of the bone tissue (trabecular number and tissue mineral density in CS group was significantly better than that in blank group (P<0.05, and the biomechanical performance in CS group was significantly superior to that in blank group (P<0.05. Conclusions  Local injection of CS could significantly improve the microstructure and biomechanical performance of osteoporotic vertebrae, and it may decrease the risk of fracture of patients with osteoporosis. DOI: 10.11855/j.issn.0577-7402.2014.09.02

  12. Spectrographic determination of dysprosium in doped crystals of calcium sulfate used for dosimetric material

    International Nuclear Information System (INIS)

    Grigoletto, T.; Lordello, A.R.

    1984-01-01

    A spectrographic method is described for the quantitative determination of dysprosium in doped crystals of calcium sulphate. The consequences of the changes in some parameters of the excitation conditions, such as arc current, electrode type and total or partial burning of sample, in the analytical results are discussed. Matrix effects are investigated. Variations in the intensity of the spectral lines are verified by recording the spectrum in distinct photographic plates. The role of internal standard in analytical reproducibility and in counterbalance of the variations in the arc current and in the weight of sample is studied. Accuracy is estimated by comparative analysis of two calcium sulphate samples by X-Ray Fluorescence, Neutron Activation and Inductive Coupled Plasma Emission Spectroscopy. (M.A.C.) [pt

  13. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  14. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  15. The chemical transformation of calcium in Shenhua coal during combustion in a muffle furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sida [North China Electric Power Univ., Beijing (China). School of Energy, Power and Mechanical Engineering; Ministry of Education, Beijing (China). Key Lab. of Condition Monitoring and Control for Power Plant Equipment; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering; Shu, Xinqian [China Univ. of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2013-07-01

    The chemical reaction characteristics of calcium in three samples of Shenhua coal, i.e. raw sample, hydrochloric acid washed sample and hydrochloric acid washed light fraction, during combustion in a muffle furnace have been investigated in this paper. Ca is bound by calcite and organic matter in Shenhua coal. X ray diffraction (XRD) phase analysis has been conducted to these samples' combustion products obtained by heating at different temperatures. It has been found that the organically-bound calcium could easily react with clays and transform into gehlenite and anorthite partially if combusted under 815 C, whilst the excluded minerals promoted the conversion of gehlenite to anorthite. Calcite in Shenhua coal decomposed into calcium oxide and partially transformed into calcium sulfate under 815 C, and formed gehlenite and anorthite under 1,050 C. Calcite and other HCl-dissolved minerals in Shenhua coal were responsible mainly for the characteristic that the clay minerals in Shenhua coal hardly became mullite during combustion.

  16. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  17. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  18. Calcium-deficiency assessment and biomarker identification by an integrated urinary metabonomics analysis

    Science.gov (United States)

    2013-01-01

    Background Calcium deficiency is a global public-health problem. Although the initial stage of calcium deficiency can lead to metabolic alterations or potential pathological changes, calcium deficiency is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of calcium deficiency remain somewhat elusive. To accurately assess and provide appropriate nutritional intervention, we carried out a global analysis of metabolic alterations in response to calcium deficiency. Methods The metabolic alterations associated with calcium deficiency were first investigated in a rat model, using urinary metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Correlations between dietary calcium intake and the biomarkers identified from the rat model were further analyzed to confirm the potential application of these biomarkers in humans. Results Urinary metabolic-profiling analysis could preliminarily distinguish between calcium-deficient and non-deficient rats after a 2-week low-calcium diet. We established an integrated metabonomics strategy for identifying reliable biomarkers of calcium deficiency using a time-course analysis of discriminating metabolites in a low-calcium diet experiment, repeating the low-calcium diet experiment and performing a calcium-supplement experiment. In total, 27 biomarkers were identified, including glycine, oxoglutaric acid, pyrophosphoric acid, sebacic acid, pseudouridine, indoxyl sulfate, taurine, and phenylacetylglycine. The integrated urinary metabonomics analysis, which combined biomarkers with regular trends of change (types A, B, and C), could accurately assess calcium-deficient rats at different stages and clarify the dynamic pathophysiological changes and molecular mechanism of calcium deficiency in detail. Significant correlations between calcium intake and two biomarkers, pseudouridine (Pearson

  19. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.

  20. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  1. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  2. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  3. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  4. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  5. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  6. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  7. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    Science.gov (United States)

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  8. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  9. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  10. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    -belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.

  11. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  12. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  13. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  14. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.

  15. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  16. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids.

    Science.gov (United States)

    Mannowetz, Nadja; Miller, Melissa R; Lishko, Polina V

    2017-05-30

    The calcium channel of sperm (CatSper) is essential for sperm hyperactivated motility and fertility. The steroid hormone progesterone activates CatSper of human sperm via binding to the serine hydrolase ABHD2. However, steroid specificity of ABHD2 has not been evaluated. Here, we explored whether steroid hormones to which human spermatozoa are exposed in the male and female genital tract influence CatSper activation via modulation of ABHD2. The results show that testosterone, estrogen, and hydrocortisone did not alter basal CatSper currents, whereas the neurosteroid pregnenolone sulfate exerted similar effects as progesterone, likely binding to the same site. However, physiological concentrations of testosterone and hydrocortisone inhibited CatSper activation by progesterone. Additionally, testosterone antagonized the effect of pregnenolone sulfate. We have also explored whether steroid-like molecules, such as the plant triterpenoids pristimerin and lupeol, affect sperm fertility. Interestingly, both compounds competed with progesterone and pregnenolone sulfate and significantly reduced CatSper activation by either steroid. Furthermore, pristimerin and lupeol considerably diminished hyperactivation of capacitated spermatozoa. These results indicate that ( i ) pregnenolone sulfate together with progesterone are the main steroids that activate CatSper and ( ii ) pristimerin and lupeol can act as contraceptive compounds by averting sperm hyperactivation, thus preventing fertilization.

  18. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  19. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  20. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  1. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  2. Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae).

    Science.gov (United States)

    He, Honghua; Bleby, Timothy M; Veneklaas, Erik J; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory.

  3. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  4. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  5. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  6. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  7. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  8. Investigation of Calcium Sulfate’s Contribution to Chemical Off Flavor in Baked Items

    Science.gov (United States)

    2013-09-30

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing and...studies if any calcium additive is needed . If shelf life and texture are not adversely effected it may prove to be a cost savings to eliminate...point Quality scale to assess the overall aroma and flavor quality. The 9-point Quality scale is based on the Hedonic scale developed by David Peryam and

  9. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  10. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  11. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  12. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  13. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  14. Magnesium-enriched hydroxyapatite compared to calcium sulfate in the healing of human extraction sockets: radiographic and histomorphometric evaluation at 3 months.

    Science.gov (United States)

    Crespi, Roberto; Capparè, Paolo; Gherlone, Enrico

    2009-02-01

    Reduction of alveolar height and width after tooth extraction may present problems for implant placement, especially in the anterior maxilla where bone volume is important for biologic and esthetic reasons. Different graft materials have been proposed to minimize the reduction in ridge volume. The aim of this study was to compare radiographic and histomorphometric results of magnesium-enriched hydroxyapatite (MHA) and calcium sulfate (CS) grafts in fresh sockets after tooth extractions. Forty-five fresh extraction sockets with three bone walls were selected in 15 patients. A split-mouth design was used: 15 sockets on the right side of the jaw received MHA, 15 sockets on the left side received CS, and 15 random unfilled sockets were considered the control (C) group. Intraoral digital radiographs were taken at baseline and at 3 months after graft material placement. At 3 months, cylinder bone samples were obtained for histology and histomorphometry analysis. The difference in mean radiographic vertical bone level from baseline to 3 months was -2.48 +/- 0.65 mm in the CS group, -0.48 +/- 0.21 mm in the MHA group, and -3.75 +/- 0.63 mm in the unfilled C group. Statistically significant differences (P sockets showed 13.9% +/- 3.4% residual implant material, whereas the MHA-treated sockets showed 20.2% +/- 3.2% residual material. The difference between the groups was statistically significant (P <0.05). Radiographs revealed a greater reduction of alveolar ridge in the CS group than in the MHA group. Histologic examination showed more bone formation and faster resorption in the CS group and more residual implant material in the MHA group.

  15. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Schneiders, Wolfgang; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan

    2012-01-01

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: ► The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. ► CS leads to a significant increase of osteogenetic differentiation of hMSCs. ► In small animal investigation CS seems to enhance osteogenesis in bone healing.

  16. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    Science.gov (United States)

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh

  17. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  19. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  20. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  2. Environ: E00181 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00181 Exsiccated gypsum (JP17) Crude drug Calcium sulfate hemihydrate [CPD:C17258...] ... Same as: D06820 Natural calcium sulfate (heated at 110~120 degrees) Major component: Calcium sulfate hemihydrate [CPD:C17258] ...

  3. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    Science.gov (United States)

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  4. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  5. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  6. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  7. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  8. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  9. The electrical and thermal properties of sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide

    International Nuclear Information System (INIS)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1986-01-01

    Sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide was prepared. The thermal and electrical properties of its phases were investigated. The Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 SiO 2 samples are similar to the Na 2 SO 4 -I phase (a high temperature phase), which is appreciably effective for Na + ionic conduction. Phase transformation was considerably suppressed by mixing. Electromotive force (EMF) was measured, using Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 -SiO 2 as a solid electrolyte, by constructing an SO 2 gas concentration cell. The measured EMF's at 823 and 773 K were in fairly good accordance with the calculated EMF's for inlet SO 2 gas concentration between 30 ppm and 1%, and 500 ppm and 0.5% respectively

  10. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  11. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  12. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  13. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  14. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  15. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  16. Physical and chemical properties of fish and chicken bones as calcium source for mineral supplements

    Directory of Open Access Journals (Sweden)

    Worapot Suntornsuk

    2006-03-01

    Full Text Available Physical and chemical properties of two bones of two species of fish, hoki (Macruronus novaezelandiae and giant seaperch (Lates calcarifer Bloch., were compared with chicken bone to evaluate their composition for use as natural calcium supplement. The information could be useful for waste utilization in the food and pharmaceutical industries. Physical testing and chemical analyses were performed according to the USP 24 and BP 1998 standards under calcium carbonate monograph. Loss on drying found in hoki, giant seaperch and chicken bones was 12.4, 11.3 and 5.9 % w/w, calculated on dried basis, respectively. Total calcium determined by complexometric titration was 31.8, 28.1 and 32.2% w/w in hoki, giant seaperch and chicken bones, respectively. All samples contained carbonate and phosphate anion residues but gluconate, acetate and citrate were absent. The presence of calcium carbonate was confirmed by thermogravimetry. Results from all bones showed that limit tests for heavy metals, arsenic and iron complied with the USP standard, whereas barium, chloride and sulfate conformed to the BP standard. The magnesium and alkali metals in giant seaperch bone were within the BP limit (1.5%, but those of hoki and chicken bone exceeded the limit.

  17. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  18. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  19. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  20. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  1. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  2. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  3. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  4. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  5. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  6. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  7. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  8. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  9. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  10. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  11. Calcium Sulfoaluminate, Geopolymeric, and Cementitious Mortars for Structural Applications

    Directory of Open Access Journals (Sweden)

    Alessandra Mobili

    2017-09-01

    Full Text Available This paper deals with the study of calcium sulfoaluminate (CSA and geopolymeric (GEO binders as alternatives to ordinary Portland cement (OPC for the production of more environmentally-friendly construction materials. For this reason, three types of mortar with the same mechanical strength class (R3 ≥ 25 MPa, according to EN 1504-3 were tested and compared; they were based on CSA cement, an alkaline activated coal fly ash, and OPC. Firstly, binder pastes were prepared and their hydration was studied by means of X-ray diffraction (XRD and differential thermal-thermogravimetric (DT-TG analyses. Afterwards, mortars were compared in terms of workability, dynamic modulus of elasticity, adhesion to red clay bricks, free and restrained drying shrinkage, water vapor permeability, capillary water absorption, and resistance to sulfate attack. DT-TG and XRD analyses evidenced the main reactive phases of the investigated binders involved in the hydration reactions. Moreover, the sulfoaluminate mortar showed the smallest free shrinkage and the highest restrained shrinkage, mainly due to its high dynamic modulus of elasticity. The pore size distribution of geopolymeric mortar was responsible for the lowest capillary water absorption at short times and for the highest permeability to water vapor and the greatest resistance to sulfate attack.

  12. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  14. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  15. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  16. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  17. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  18. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, Wolfgang, E-mail: schneidersw@gmx.de; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan

    2012-10-01

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: Black-Right-Pointing-Pointer The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. Black-Right-Pointing-Pointer CS leads to a significant increase of osteogenetic differentiation of hMSCs. Black-Right-Pointing-Pointer In small animal investigation CS seems to enhance osteogenesis in bone healing.

  19. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  20. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    International Nuclear Information System (INIS)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H.

    1982-01-01

    The authors have prepared a new substrate, o-β-D-sulfo-galactosyl-(1-4)-β-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-[1- 3 H]galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides. (Auth.)

  1. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  2. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    Science.gov (United States)

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  3. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  4. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  5. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  6. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  7. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  8. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  9. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  10. Radioisotope 45Ca labeling four calcium chemical compounds and tracing calcium bioavailability

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Niu Huisheng; Li Huaifen

    2004-01-01

    Objective: To build up a new method of the radioisotope 45 Ca labeling four calcium chemical compounds, observe and tracing bioavailability change of calcium labeled with radioisotope 45 Ca. Methods: The calcium gluconate (Ca-Glu), calcium citrate (Ca-Cit), calcium carbonate (Ca-Car) and calcium L-threonate (Ca-Thr)were labeled by radioisotope 45 Ca. Four calcium chemical compounds of 45 Ca labeling were used of calcium content 200 mg/kg in the rats and measure the absorption content and bioavailability of calcium in tissue of heart, lever spleen, stomach, kidney, brain, intestine, whole blood, urine, faeces. Results: 1) Radioisotope 45 Ca labeling calcium chemical compound has high radio intensity, more steady standard curve and recover rate. 2) The absorption of organic calcium chemical compounds is higher than the inorganic calcium chemical compound in the study of calcium bioavailability. Conclusion: The method of tracing with radioisotope 45 Ca labeling calcium chemical compounds has the characteristic of the sensitive, objective, accurate and steady in the study of calcium bioavailability

  11. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  12. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  13. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  14. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    Science.gov (United States)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  15. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  16. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  17. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  18. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  19. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  20. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models.

    Science.gov (United States)

    Rivera-Huerta, Marisol; Lizárraga-Grimes, Vania Lorena; Castro-Torres, Ibrahim Guillermo; Tinoco-Méndez, Mabel; Macías-Rosales, Lucía; Sánchez-Bartéz, Francisco; Tapia-Pérez, Graciela Guadalupe; Romero-Romero, Laura; Gracia-Mora, María Isabel

    2017-01-01

    Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin "Synergy 1®" and inulin from Mexican agave "Metlin®" in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra) in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.

  1. Functional Effects of Prebiotic Fructans in Colon Cancer and Calcium Metabolism in Animal Models

    Directory of Open Access Journals (Sweden)

    Marisol Rivera-Huerta

    2017-01-01

    Full Text Available Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin “Synergy 1®” and inulin from Mexican agave “Metlin®” in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.

  2. Development and validation of an alternative titration method for the determination of sulfate ion in indinavir sulfate

    Directory of Open Access Journals (Sweden)

    Breno de Carvalho e Silva

    2005-02-01

    Full Text Available A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.

  3. Inhibitory effect of MgSO4 on calcium overload after radiation-induced brain injuries

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Yuying; Wang Lili

    2005-01-01

    Objective: To explore the neuroprotective effect of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: A total of 60 mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental therapy group. The whole brain of SD rats of experimental control group and experimental therapy group was irradiated to a dose of 20 Gy using 6 MeV electrons. Magnesium sulfate was injected intraperitoneally into the rats of experimental therapy group before and after irradiation for five times. At different time points (24 h, 7 days, 14 days, 30 days after irradiation), the brain tissue was taken. Plasma direct reading spectrography was used to measure the contents of Ca 2+ , Mg 2+ in brain tissue, and the percentage of brain water content was calculated with the wet-dry weight formula. Results: Compared with the blank control group, the percentage of brain water and content of Ca 2+ in brain of the experimental control group increased markedly (P 2+ decreased significantly (P 2+ in brain of the experimental therapy group were significantly lower than those of the experimental control group (P<0.05). Conclusion: Magnesium sulfate used in the early stage after irradiation can inhibit the calcium overload in rat brain , and attenuate brain edema and injuries. (authors)

  4. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  5. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits.

    Science.gov (United States)

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel

    2017-01-05

    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.

  6. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  7. Absorbability of calcium from calcium-bound phosphoryl oligosaccharides in comparison with that from various calcium compounds in the rat ligated jejunum loop.

    Science.gov (United States)

    To-o, Kenji; Kamasaka, Hiroshi; Nishimura, Takahisa; Kuriki, Takashi; Saeki, Shigeru; Nakabou, Yukihiro

    2003-08-01

    Calcium-bound phosphoryl oligosaccharides (POs-Ca) were prepared from potato starch. Their solubility and in situ absorbability as a calcium source were investigated by comparing with the soluble calcium compounds, calcium chloride and calcium lactate, or insoluble calcium compounds, calcium carbonate and dibasic calcium phosphate. The solubility of POs-Ca was as high as that of calcium chloride and about 3-fold higher than that of calcium lactate. An in situ experiment showed that the intestinal calcium absorption rate of POs-Ca was almost comparable with that of the soluble calcium compounds, and was significantly higher (pcalcium groups. Moreover, the total absorption rate of a 1:1 mixture of the calcium from POs-Ca and a whey mineral complex (WMC) was significantly higher (psoluble calcium source with relatively high absorption in the intestinal tract.

  8. Percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate pellets for unicameral bone cysts in children: a new minimally invasive technique.

    Science.gov (United States)

    Dormans, John P; Sankar, Wudbhav N; Moroz, Leslie; Erol, Bülent

    2005-01-01

    Several treatment options exist for unicameral bone cysts (UBCs), including observation, steroid injection, bone marrow injection, and curettage and bone grafting. These are all associated with high recurrence rates, persistence, and occasional complications. Newer techniques have been described, most with variable success and only short follow-up reported. Because of these factors, a new minimally invasive percutaneous technique was developed for the treatment of UBCs in children. Twenty-eight children with UBCs who underwent percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate (MGCS) pellets by the senior author (J.P.D.) between April 2000 and April 2003 were analyzed as part of a pediatric musculoskeletal tumor registry at a large tertiary children's hospital. Four patients were lost to follow-up, and the remaining 24 patients had an average follow-up of 21.9 months (range 4-48 months). Twelve patients were followed for at least 24 months. Six of the 24 children had received previous treatment of their UBC, most often at an outside institution. Follow-up was performed through clinical evaluation and radiographic review. Postoperative radiographs at most recent follow-up showed complete healing, defined as more than 95% opacification, in 22 of 24 patients (91.7%). One patient (4.2%) demonstrated partial healing, defined as 80% to 95% opacification. One patient had less than 80% radiographic healing (4.2%). All 24 patients returned to full activities and were asymptomatic at most recent follow-up. The only complication noted was a superficial suture abscess that occurred in one patient; this resolved with local treatment measures. The new minimally invasive technique of percutaneous intramedullary decompression, curettage, and grafting with MGCS pellets demonstrates favorable results with low complication and recurrence rates compared with conventional techniques. The role of intramedullary decompression as a part

  9. Effect of metakaolin on external sulfate attack

    Energy Technology Data Exchange (ETDEWEB)

    Ramlochan, T.; Thomas, M. [Toronto Univ., Dept. of Civil Engineering, ON (Canada)

    2000-07-01

    The effect of high reactivity metakaolin (HRM) on the sulfate resistance of mortars was studied. Mortar bars with three cements of varying C{sub 3}A content were used for the experiment. After a six month exposure to a 5 per cent solution of sodium sulfate, mortar bars incorporating any level of HRM as a partial replacement for a high-C{sub 3}A was considered 'moderately sulfate resistant'; mortar bars with HRM and a moderate or low C{sub 3}A content as 'high sulfate resistant'. It was also determined that for long term sulfate resistance 15 per cent HRM or more may be required, depending on the C{sub 3}A content. The performance of HRM was found to be significantly influenced by the water-cementitious material ratio, and in turn, by permeability, suggesting that HRM might increase sulfate resistance more by lowering the permeability of the concrete than by any chemical action. 7 refs., 4 tabs., 7 figs.

  10. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  11. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  12. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  14. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions

    NARCIS (Netherlands)

    Sugar, T.; Wassenhove-McCarthy, D.J.; Orr, A.W.; Green, J.; Kuppevelt, T.H. van; McCarthy, K.J.

    2016-01-01

    Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this

  15. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  16. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  17. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-01-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested 47 Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D [1,25-(OH)2D; 43.8% increase; P = 0.003], and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation

  18. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    Science.gov (United States)

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300

  19. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  20. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  1. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  2. Mencegah Pembentukan Kalsium Sulfat pada Desalinasi Air Laut

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2007-06-01

    Full Text Available Resin penukar-anion, Relite MG 1/P, dapat digunakan untuk memisahkan sulfat dalam air laut guna mencegah pembentukan kerak kalsium sulfat pada heat exchanger. Resin tersebut menunjukkan selektivitas sulfat yang tinggi dalam air laut sintetis. Resin yang telah dipakai dapat diregenerasi menggunakan air asin yang dipekatkan dengan asam hingga mencapai pH 4. Untuk waktu pemakaian dan regenerasi yang sama, faktor konsentrasi desalinasi (misalnya 2 hingga 4 menaikkan konsentrasi klorida dalam air asin yang diblowdown. Dengan faktor konsentrasi yang tetap, kenaikan laju alir (pengurangan waktu pemakaian dan regenerasi memperendah efisiensi regenerasi dan menaikkan pemisahan sulfat. Akibat kelarutan kalsium sulfat yang bersifat terbalik tersebut, temperatur air asin yang tinggi memerlukan pemisahan sulfat yang lebih banyak, yang dapat dicapai dengan mengurangi laju alir air laut. Pengurangan laju alir tersebut membutuhkan peralatan yang lebih besar dan resin yang lebih banyak, sehingga biaya modal bertambah. Untuk pabrik desalinasi dengan kapasitas produksi 1 juta gallon per hari dan faktor konsentrasi sebesar 2, biaya pemisahan sulfat meliputi biaya resin dan biaya peralatan. Biaya tersebut bervariasi dari $0.246 hingga $0.356/kgalon (per ribu galon air yang diproduksi karena temperatur maksimum air asin berubah dari 140°C menjadi 180°C. Keywords: desalinasi air laut, ion exchange, kalsium sulfat, kerak; mechanical vapor compression (MVC, pemisahan sulfat, resin penukar-anion basa lemah

  3. Considerations on the mechanical behavior and hydration process supersulphated cement (CSS) formulated with phosphogypsum; Consideracoes sobre a resistencia mecanica e o processo de hidratacao de cimentos supersulfatados (CSS) formulados com fosfogesso

    Energy Technology Data Exchange (ETDEWEB)

    Gracioli, Bruna; Varela, Maxwell Vinicius Favero; Beutler, Cheila Sirlene; Frare, Andreza; Luz, Caroline Angulski da; Pereira Filho, Jose Ilo, E-mail: maxwell@alunos.utfpr.edu.br, E-mail: cheila.beutler@gmail.com, E-mail: andreza2694@hotmail.com, E-mail: ilofilho@yahoo.com.br, E-mail: angulski@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil)

    2017-01-15

    Supersulfated Cements (SSC) are composed from blast furnace slag (90%), calcium sulfate (10-20%) and a small amount of alkali activator (up 5%). Gypsum is a conventional source of calcium sulfate, however, it can be replaced by phosphogypsum (PG), a byproduct from the production of phosphoric acid (H{sub 3}PO{sub 4}) with similar chemical and mineralogical composition of the gypsum. In Brazil, the production of this material is about 4.5 million tons per year. Because the SSC contains a higher calcium sulfate content (20%) in relation to Portland cement, a higher consumption of phosphogypsum is possible. The goal of this study was to investigate the phosphogypsum (PG) as an alternative source of calcium sulfate in order to obtain CSS. In addition to use of PG, the effects of both calcium sulfate and alkali activator content on the process of hydration were investigated. The results showed that SSC made with phosphogypsum met the minimum compressive strength required by the European standard for SSC (EN 15743/2010). Low heat of hydration rates mainly influenced by the low alkali activator content was observed. The excess of alkali activator (KOH) had different influences according to calcium sulfate content. In pastes made with low content (10%), 0.8% of KOH reduced the compressive strength, while in those with a high calcium sulfate content (20%) the high alkaline content resulted in the instability of ettringite. (author)

  4. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  5. Influence of dietary calcium on bone calcium utilization

    International Nuclear Information System (INIS)

    Farmer, M.; Roland, D.A. Sr.; Clark, A.J.

    1986-01-01

    In Experiment 1, 10 microCi 45 Ca/day were administered to 125 hens for 10 days. Hens were then allocated to five treatments with calcium levels ranging from .08 to 3.75% of the diet. In Experiment 2, hens with morning oviposition times were randomly allocated to 11 treatments that were periods of time postoviposition ranging from 6 hr to 24 hr, in 2-hr increments (Experiment 2). At the end of each 2-hr period, eggs from 25 hens were removed from the uterus. The 18-, 20-, and 22-hr treatments were replicated three times. In Experiment 3, hens were fed either ad libitum or feed was withheld the last 5 or 6 hr before oviposition. In Experiment 4, hens were fed 10 microCi of 45 Ca for 15 days to label skeletal calcium. Hens were divided into two groups and fed a .08 or 3.75% calcium diet for 2 days. On the second day, 25 hens fed the 3.75% calcium diet were intubated with 7 g of the same diet containing .5 g calcium at 1700, 2100, 0100, 0500, and 0700 hr. The measurements used were egg weight, shell weight, and 45 Ca content of the egg shell. Results indicated a significant linear or quadratic regression of dietary calcium levels on 45 Ca accumulation in eggshells and eggshell weight (Experiment 1). As the calcium level of the diet increased, eggshell weight increased and 45 Ca recovery decreased. Utilization of skeletal calcium for shell formation ranged from 28 to 96%. In Experiment 2, the rate of shell calcification was not constant throughout the calcification process but varied significantly

  6. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  7. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  8. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  9. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  10. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply

    NARCIS (Netherlands)

    Koralewska, Aleksandra; Buchner, Peter; Stuiver, C. Elisabeth E.; Posthumus, Freek S.; Kopriva, Stanislav; Hawkesford, Malcolm J.; De Kok, Luit J.

    2009-01-01

    Both activity and expression of sulfate transporters and APS reductase in plants are modulated by the sulfur status of the plant. To examine the regulatory mechanisms in curly kale (Brossica olerracea L.), the sulfate supply was manipulated by the transfer of seedlings to sulfate-deprived

  11. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  12. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  13. Evaluation of Foliar Spraying of Zinc and Calcium Fertilizers on Yield and Physiological Traits of Safflower under Lead Stress

    Directory of Open Access Journals (Sweden)

    P Jamshidi

    2017-10-01

    Full Text Available Introduction In order to evaluate the effect of foliar spraying of zinc and calcium on yield and physiological traits of safflower under lead stress, a factorial experiment based on randomized complete block design was performed in Kerman agricultural and natural resource research and education center in 2014-2015 with three replications. The first factorial included three levels (control, and 0.5 and 1 μM lead spraying, whereas the second and third factorials were spraying zinc sulfate at three concentrations (zero, and 10 and 20 μM and spraying calcium chloride at two levels (zero and 20 μM, respectively. According to the results, grain yield, the 1000-grain weight, leaf dry weight, number of seeds per head, head weight and chlorophyll content decreased. On the other hand, a significant increase was observed in the activities of catalase and ascorbate peroxidase enzymes and amount of malondialdehyde in plants. Moreover, spraying zinc fertilizer in lead treatment resulted in a significant increase in activity of catalase enzyme, reduction of membrane lipid peroxidation, prevention of chlorophyll destruction and maintenance of grain yield. However, the effect of spraying calcium fertilize in lead treatment was only significant on chlorophyll content. According to the results of the research, it seems that spraying zinc fertilizer had more effects on improved growth of safflower under lead stress, compared to spraying calcium fertilizer. Therefore, in air pollution with heavy metals (lead, application of zinc sulfate fertilizer can be an effective approach to maintain the growth and production of plants. Among the various heavy metals, lead (Pb is a major anthropogenic pollutant that has been released to the environment since the industrial revolution and accumulated in different terrestrial and aquatic ecosystems These elements will transfer to leaves in polluted areas and will rapidly uptake and cause irreparable damages to the most

  14. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  15. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  16. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  17. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D.

    Science.gov (United States)

    Nieves, J W

    2013-03-01

    There is a need to understand the role of nutrition, beyond calcium and vitamin D, in the treatment and prevention of osteoporosis in adults. Results regarding soy compounds on bone density and bone turnover are inconclusive perhaps due to differences in dose and composition or in study population characteristics. The skeletal benefit of black cohosh and red clover are unknown. Dehydroepiandrosterone (DHEA) use may benefit elderly individuals with low serum dehydroepiandrosterone-sulfate levels, but even in this group, there are inconsistent benefits to bone density (BMD). Higher fruit and vegetable intakes may relate to higher BMD. The skeletal benefit of flavonoids, carotenoids, omega-3-fatty acids, and vitamins A, C, E and K are limited to observational data or a few clinical trials, in some cases investigating pharmacologic doses. Given limited data, it would be better to get these nutrients from fruits and vegetables. Potassium bicarbonate may improve calcium homeostasis but with little impact on bone loss. High homocysteine may relate to fracture risk, but the skeletal benefit of each B vitamin is unclear. Magnesium supplementation is likely only required in persons with low magnesium levels. Data are very limited for the role of nutritional levels of boron, strontium, silicon and phosphorus in bone health. A nutrient rich diet with adequate fruits and vegetables will generally meet skeletal needs in healthy individuals. For most healthy adults, supplementation with nutrients other than calcium and vitamin D may not be required, except in those with chronic disease and the frail elderly.

  18. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  19. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  20. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  1. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  2. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  3. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  4. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  5. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2016-04-01

    Full Text Available Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure.

  6. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  7. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  8. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  9. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  10. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  11. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  12. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  13. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2018-01-01

    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up...... to 8 in calcium citrate tetrahydrate. A critical hydrogencitrate concentration for formation of homogeneous solutions was found to depend linearly on dissolved calcium hydrogenphosphate: [HCitr2-] = 14[CaHPO4] - 0.05 at 25 °C. The lag phase for precipitation of calcium citrate tetrahydrate......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically...

  14. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  15. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  16. Calcium blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003477.htm Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  17. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  18. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  19. Incorporation of 35S-sulfate and 3H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    International Nuclear Information System (INIS)

    Blair, O.C.; Sartorelli, A.C.

    1984-01-01

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of 35 S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of 35 S-sulfate and 3 H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M

  20. A spectroscopic and surface microhardness study of enamel exposed to beverages supplemented with ferrous fumarate and ferrous sulfate. A randomized in vitro trial.

    Science.gov (United States)

    Xavier, Arun M; Rai, Kavita; Hegde, Amitha M; Shetty, Suchetha

    2016-06-01

    To compare the efficacy between supplementing ferrous fumarate and ferrous sulfate to carbonated beverages by recording the in vitro mineral loss and surface microhardness (SMH) changes in human enamel. 120 enamel blocks each (from primary and permanent teeth) were uniformly prepared and the initial SMH was recorded. These enamel specimens were equally divided (n = 60) for their respective beverage treatment in Group 1 (2 mmol/L ferrous sulfate) and Group 2 (2 mmol/L ferrous fumarate). Each group was further divided into three subgroups as Coca-Cola, Sprite and mineral water (n= 10). The specimens were subjected to three repetitive cycles of respective treatment for a 5-minute incubation period, equally interspaced by 5-minute storage in artificial saliva. The calcium and phosphate released after each cycle were analyzed spectrophotometrically and the final SMH recorded. The results were tested using student's t-test, one-way ANOVA and Wilcoxon signed rank test (P Coca-Cola (P < 0.005).

  1. Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins.

    Science.gov (United States)

    Krichen, Fatma; Volpi, Nicola; Sila, Assaâd; Maccari, Francesca; Mantovani, Veronica; Galeotti, Fabio; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2017-02-01

    Chondroitin sulfate/dermatan sulfate GAGs were extracted and purified from the skins of grey triggerfish (GTSG) and smooth hound (SHSG). The disaccharide composition produced by chondroitinase ABC treatment showed the presence of nonsulfated disaccharide, monosulfated disaccharides ΔDi6S and ΔDi4S, and disulfated disaccharides in different percentages. In particular, the nonsulfated disaccharide ΔDi0S of GTSG and SHSG were 3.5% and 5.5%, respectively, while monosulfated disaccharides ΔDi6S and ΔDi4S were evaluated to be 18.2%, 59% and 14.6%, 47.0%, respectively. Capillary elecrophoresis analysis of GTSG and SHSG contained 99.2% and 95.4% of chondroitin sulfate/dermatan sulfate, respectively. PAGE analysis showed a GTSG and SHSG having molecular masses with average values of 41.72KDa and 23.8KDa, respectively. HCT116 cell proliferation was inhibited (p<0.05) by 70.6% and 72.65% at 200μg/mL of GTSG and SHSG respectively. Both GTSG and SHSG demonstrated promising antiproliferative potential, which may be used as a novel, effective agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  3. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  4. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  5. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  6. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  7. Sulfates on Mars: TES Observations and Thermal Inertia Data

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  8. The effect of habitat geology on calcium intake and calcium status of wild rodents.

    Science.gov (United States)

    Shore, R F; Balment, R J; Yalden, D W

    1991-12-01

    Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.

  9. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    Science.gov (United States)

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.

  10. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-01-01

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  11. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  13. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  14. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  15. Why Calcium? How Calcium Became the Best Communicator.

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. INGESTIVE BEHAVIOR IN HEIFERS FED DIETS CONTAINING SUGARCANE TREATED OR NOT WITH CALCIUM OXIDE

    Directory of Open Access Journals (Sweden)

    Carlos Giovani Pancoti

    2011-12-01

    Full Text Available The objective was to evaluate the ingestive behavior of 18 Holstein-Zebu heifers with average initial live weight of 250 kg, confined in Tie Stall system with individual feeders and drinkers, divided in blocks, fed with sugarcane treated or not with 1% in natural matter of calcium oxide (CaO after 24 hours of hydrolysis, at different times of administration of the mixture of urea and ammonium sulfate (zero and 24 hours. The animals were observed every ten minutes during 24 hours to determine the time (minutes spent on feeding, water drinking, ruminating and idle. Differences between means were evaluated by SNK test at 5% significance. There was increased (P

  17. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  18. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  19. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells

    International Nuclear Information System (INIS)

    Borle, A.B.

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total call calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca 2+ compartmentalization, but the methods suffer from the possibility of Ca 2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45 Ca uptake or desaturation curves have been used to study the distribution of Ca 2+ among various kinetic pools in living cells and their rate of Ca 2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45 Ca uptake can detect instantaneous changes in calcium influx, while 45 Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. The best strategy to study cell calcium metabolism is to use several different methods that focus on a specific problem from widely different angles

  20. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  1. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  2. Pectin of Prunus domestica L. alters sulfated structure of cell-surface heparan sulfate in differentiated Caco-2 cells through stimulation of heparan sulfate 6-O-endosulfatase-2.

    Science.gov (United States)

    Nishida, Mitsutaka; Murata, Kazuma; Kanamaru, Yoshihiro; Yabe, Tomio

    2014-01-01

    Although previous reports have suggested that pectin induces morphological changes of the small intestine in vivo, the molecular mechanisms have not been elucidated. As heparan sulfate plays important roles in development of the small intestine, to verify the involvement of heparan sulfate (HS) in the pectin-induced morphological changes of the small intestine, the effects of pectin from Prunus domestica L. on cell-surface HS were investigated using differentiated Caco-2 cells. Disaccharide compositional analysis revealed that sulfated structures of HS were markedly changed by pectin administration. Real-time RT-PCR showed that pectin upregulated human HS 6-O-endosulfatase-2 (HSulf-2) expression and markedly inhibited HSulf-1 expression. Furthermore, inhibition analysis suggested that pretreatment with fibronectin III1C fragment, RGD peptide, and ERK1/2 inhibitor suppressed pectin-induced HSulf-2 expression. These observations indicate that pectin induced the expression of HSulf-2 through the interaction with fibronectin, α5β1 integrin, and ERK1/2, thereby regulating the sulfated structure of HS on differentiated Caco-2 cells.

  3. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  4. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  5. Heparan Sulfate and Chondroitin Sulfate Glycosaminoglycans Are Targeted by Bleomycin in Cancer Cells.

    Science.gov (United States)

    Li, Xiulian; Lan, Ying; He, Yanli; Liu, Yong; Luo, Heng; Yu, Haibo; Song, Ni; Ren, Sumei; Liu, Tianwei; Hao, Cui; Guo, Yunliang; Zhang, Lijuan

    2017-01-01

    Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  7. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of

  8. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  9. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  10. Ferrous Sulfate (Iron)

    Science.gov (United States)

    ... are allergic to ferrous sulfate, any other medications tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature and away from ...

  11. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  12. Sulfated glycosaminoglycans in human vocal fold lamina propria

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    Full Text Available Abstract Introduction: The distribution, concentration and function of glycosaminoglycans in the various vocal fold tissues are still unclear. Objective: To evaluate the distribution and concentration of sulfated glycosaminoglycans in different layers of the human vocal fold according to gender and age. Methods: We used 11 vocal folds obtained from cadavers (7 men and 4 women with no laryngeal lesion, less than 12 h after death, and aged between 35 and 98 years. The folds underwent glycosaminoglycans extraction from the cover and ligament, and post-electrophoresis analysis. Data were compared according to the layer, age and gender. Results: The concentration of dermatan sulfate was significantly higher in all layers. No differences were observed in the total concentrations of glycosaminoglycans in layers studied according to gender. It is significantly lower in the cover of individuals aged below 60 years. Conclusion: Dermatan sulfate, chondroitin sulfate, and heparan sulfate were observed in the human vocal folds cover and ligament of both genders, with the concentration of dermatan sulfate being significantly higher in all layers. Glycosaminoglycans concentration on the cover is significantly lower in individuals below 60 years compared with elderly.

  13. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  14. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  15. DHEA-sulfate test

    Science.gov (United States)

    ... DHEA sulfate may be due to: Adrenal gland disorders that produce lower than normal amounts of adrenal hormones, including adrenal insufficiency and Addison disease The pituitary gland not producing normal amounts of its hormones ( hypopituitarism ) ...

  16. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  17. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  18. Extraction of uranyl sulfate with primary amine

    International Nuclear Information System (INIS)

    Mrnka, M.; Bizek, V.; Nekovar, P.; Cizevska, S.; Schroetterova, D.

    1984-01-01

    PRIMENE JM-T was used for extraction. Its composition was found to approach the general formula C 21 H 43 NH 2 . It was found that the extraction of uranyl sulfate is lower in case of a higher steady-state concentration of sulfuric acid in the aqueous phase. Extraction is accompanied with coextraction of water. The results obtained showed that uranyl sulfate passes into the organic phase by two mechanisms: extraction with amine sulfate and extraction with free amine. A mathematical description of the process was made based on the obtained results. (E.S.)

  19. Study of calcium chloride and calcium nitrate purification on inorganic sorbents

    International Nuclear Information System (INIS)

    Vasil'eva, L.V.; Knyazeva, A.N.; Fakeev, A.A.; Belyaeva, N.A.; Morozov, V.I.; Kucherova, V.V.

    1986-01-01

    Purification of calcium chloride and calcium nitrate from iron, chromium, manganese and cobalt impurities by sorption on some inorganic collectors are considered in this article. Study was conducted by means of radioactive-tracer technique at concurrent use of several γ-radioactive isotopes. As a collectors were used hydrated aluminium and zirconium oxides. Dependence of effectiveness of precipitation by collectors on ph-value of medium, quantity of collector, nature and concentration of components is studied. Optimal parameters of purification of calcium chloride and calcium nitrate are defined.

  20. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  1. A food-grade process for isolation and partial purification of bacteriocins of lactic acid bacteria that uses diatomite calcium silicate.

    Science.gov (United States)

    Coventry, M J; Gordon, J B; Alexander, M; Hickey, M W; Wan, J

    1996-01-01

    Bacteriocins, including nisin, pediocin PO2, brevicin 286, and piscicolin 126, were extracted from fermentation media by adsorption onto Micro-Cel (a food-grade diatomite calcium silicate anticaking agent) and subsequent desorption. The optimal conditions for desorption of piscicolin 126 were determined and applied to other bacteriocins, and the relative purities of the desorbed preparations were compared. Piscicolin was not successfully desorbed from Micro-Cel at pH 1.0 to 12.0, with organic solvents, or by increase of ionic strength up to 1 M NaCl. However, 25 and 75% of the bacteriocin activity was desorbed by using 1% sodium deoxycholate and 1% sodium dodecyl sulfate (SDS), respectively. Higher levels (up to 100%) of desorption were achieved by repeated elution or by an increase in surfactant concentration. Desorption of piscicolin with 1/10 volume of SDS solution resulted in a preparation with 10 times concentration in activity, equivalent to that of ammonium sulfate preparations (409,600 to 819,200 activity units/ml). Determination of organic nitrogen (N) content revealed that the desorbed piscicolin preparations were substantially free of proteinaceous substances (approximately 92 to 99%) compared with original culture supernatants and ammonium sulfate preparations. Nisin, pediocin, and brevicin were also desorbed with 1% SDS with a similar level of purification. PMID:8633875

  2. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  4. Reduction of the non-specific binding of DNA to gamma-globulin in Farr radioimmunoassay by addition of dextran sulfate and calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Wakizaka, A; Okuhara, E [Akita Univ. (Japan)

    1979-01-23

    The effect of non-specific binding caused by the interaction between gamma-globulin and denatured DNA was markedly reduced by addition of dextran sulfate or CaCl/sub 2/ at alkaline pH. This method was shown to be applicable in the detection of anti-DNA antibodies in sera from cases of human systemic lupus erythematosus.

  5. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  6. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  7. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  8. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  9. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  10. CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M.

    2014-01-01

    X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ 2 goodness-of-fit metric improves from 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs

  11. Estimation of ionized calcium, total calcium and albumin corrected calcium for the diagnosis of hypocalcaemia of malignancy

    International Nuclear Information System (INIS)

    Ijaz, A.; Mehmood, T.; Qureshi, A.H.; Anwar, M.; Dilawar, M.; Hussain, I.; Khan, F.A.; Khan, D.A.; Hussain, S.; Khan, I.A.

    2006-01-01

    Objective: To measure levels of ionized calcium, total calcium and albumin corrected calcium in patients with different malignant disorders for the diagnosis of hypercalcaemia of malignancy. Design: A case control comparative study. Place and Duration of Study: The study was carried out in the Department of Pathology, Army Medical College Rawalpindi, Armed Forces Institute of Pathology and Department of Oncology CMH, Rawalpindi from March 2003 to December 2003. Subjects and Methods: Ninety-seven patients of various malignant disorders, admitted in the Department of Oncology, CMH, Rawalpindi, and 39 age and gender-matched disease-free persons (as control) were included in the study. Blood ionized calcium (Ca/sup ++/), pH, sodium (Na/sup +/) and potassium (K/sup +/) were analysed by Ion selective electrode (ISE) on Easylyte> auto analyser. Other related parameters were measured by colorimetric methods. Results: Blood Ca/sup ++/ levels in patients suffering from malignant disorders were found significantly high (mean +- j 1.30+017 mmoV/L) as compared to control subjects (mean +- 1.23+0.03 mmoV/L) (p<0.001). The number of patients with hypercalcaemia of malignancy detected by Ca/sup ++/ estimation was significantly higher (38%) as compared to total calcium (8.4%) and albumin corrected calcium ACC (10.6%) (p<0.001). There was no statistically significant difference in other parameters e.g. phosphate, urea, creatinine, pH, Na/sup +/ and K/sup +/ levels in study subjects and controls. Conclusion: Detection of hypercalcaemia can be markedly improved if ionized calcium estimation is used in patients with malignant disorders. (author)

  12. SR calcium handling and calcium after-transients in a rabbit model of heart failure

    NARCIS (Netherlands)

    Baartscheer, Antonius; Schumacher, Cees A.; Belterman, Charly N. W.; Coronel, Ruben; Fiolet, Jan W. T.

    2003-01-01

    Objective: After-depolarization associated arrhythmias are frequently observed in heart failure and associated with spontaneous calcium release from sarcoplasmic reticulum (SR), calcium after-transients. We hypothesize that disturbed SR calcium handling underlies calcium after-transients in heart

  13. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    Science.gov (United States)

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  14. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  15. Studies on sulfate attack: Mechanisms, test methods, and modeling

    Science.gov (United States)

    Santhanam, Manu

    The objective of this research study was to investigate various issues pertaining to the mechanism, testing methods, and modeling of sulfate attack in concrete. The study was divided into the following segments: (1) effect of gypsum formation on the expansion of mortars, (2) attack by the magnesium ion, (3) sulfate attack in the presence of chloride ions---differentiating seawater and groundwater attack, (4) use of admixtures to mitigate sulfate attack---entrained air, sodium citrate, silica fume, and metakaolin, (5) effects of temperature and concentration of the attack solution, (6) development of new test methods using concrete specimens, and (7) modeling of the sulfate attack phenomenon. Mortar specimens using portland cement (PC) and tricalcium silicate (C 3S), with or without mineral admixtures, were prepared and immersed in different sulfate solutions. In addition to this, portland cement concrete specimens were also prepared and subjected to complete and partial immersion in sulfate solutions. Physical measurements, chemical analyses and microstructural studies were performed periodically on the specimens. Gypsum formation was seen to cause expansion of the C3S mortar specimens. Statistical analyses of the data also indicated that the quantity of gypsum was the most significant factor controlling the expansion of mortar bars. The attack by magnesium ion was found to drive the reaction towards the formation of brucite. Decalcification of the C-S-H and its subsequent conversion to the non-cementitious M-S-H was identified as the mechanism of destruction in magnesium sulfate attack. Mineral admixtures were beneficial in combating sodium sulfate attack, while reducing the resistance to magnesium sulfate attack. Air entrainment did not change the measured physical properties, but reduced the visible distress of the mortars. Sodium citrate caused a substantial reduction in the rate of damage of the mortars due to its retarding effect. Temperature and

  16. Uptake of radiactive calcium by groundnut (Arachis hypogaea L. ) and efficiency of utilisation of applied calcium

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, S; Krishnamoorthy, K K [Tamil Nadu Agricultural Univ., Coimbatore (India). Dept. of Soil Science and Agricultural Chemistry

    1977-04-01

    A pot experiment was conducted with groundnut applying labelled calcium as its sulphate and carbonate at two levels namely 75 and 150 kg Ca per ha with varying levels of P, K and Mg. Plant samples were taken at different stages of crop growth and analysed for the content of radioactive calcium. Calcium sulphate treatment has resulted in larger uptake of calcium compared to calcium carbonate. An application of 150 kg Ca per ha has caused significantly higher uptake by groundnut plant than 75 kg Ca per ha. The percentage of utilisation of added calcium ranged from 2.2 to 5.4 Recovery of calcium by plants was more in calcium sulphate treatment rather than in calcium carbonate. The plants showed a preference for absorbing applied calcium rather than native calcium.

  17. Uptake of radiactive calcium by groundnut (Arachis hypogaea L.) and efficiency of utilisation of applied calcium

    International Nuclear Information System (INIS)

    Loganathan, S.; Krishnamoorthy, K.K.

    1977-01-01

    A pot experiment was conducted with groundnut applying labelled calcium as its sulphate and carbonate at two levels namely 75 and 150 kg Ca per ha with varying levels of P, K and Mg. Plant samples were taken at different stages of crop growth and analysed for the content of radioactive calcium. Calcium sulphate treatment has resulted in larger uptake of calcium compared to calcium carbonate. An application of 150 kg Ca per ha has caused significantly higher uptake by groundnut plant than 75 kg Ca per ha. The percentage of utilisation of added calcium ranged from 2.2 to 5.4 Recovery of calcium by plants was more in calcium sulphate treatment rather than in calcium carbonate. The plants showed a preference for absorbing applied calcium rather than native calcium

  18. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  19. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  20. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  1. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    Science.gov (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  3. Chlorate: a reversible inhibitor of proteoglycan sulfation

    International Nuclear Information System (INIS)

    Humphries, D.E.; Silbert, J.E.

    1988-01-01

    Bovine aorta endothelial cells were cultured in medium containing [ 3 H]glucosamine, [ 35 S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [ 3 H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation

  4. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  5. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    International Nuclear Information System (INIS)

    Rocha, Angela S.; Costa, Gustavo C.; Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B.

    2017-01-01

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N 2 adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH − surface group was replaced by a HSO 4 − . The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO 4 − species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb 2 O 5 ) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  6. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.

    Science.gov (United States)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    Science.gov (United States)

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  8. Sulfate reduction in an entrained-flow black liquor gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kymaelaeinen, M.; Janka, K. [Tampella Power, Tampere (Finland); Frederick, W.J.; Littau, M.; Sricharoenchaikul, V.; Jivakanun, N.; Waag, K. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering

    1995-12-31

    Sulfate reduction and carbon conversion during pyrolysis and gasification of black liquor particles were experimentally studied in a laminar entrained-flow reactor. A model was also developed to simulate an entrained-flow black liquor gasifier. Experimental results were then compared to model calculations. Results indicated that carbon must be present to get a high degree of sulfate reduction during gasification. It is therefore important to balance the rates of carbon conversion and sulfate reduction. High local temperatures in the reactor should be avoided so that carbon does not convert too rapidly, but temperatures of nearly 1000 degrees C are required to achieve good sulfate reduction. It was suggested that a new equation was needed to adequately predict sulfate reduction in an entrained-flow black liquor gasifier. 12 refs., 8 figs., 5 tabs.

  9. Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47

    International Nuclear Information System (INIS)

    Turner, C.W.; Smith, D.W.

    1998-01-01

    The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 ± 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface. (author)

  10. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  11. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial

    OpenAIRE

    Butterfield, Karen Chao; Conovaloff, Aaron W.; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhanc...

  12. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  13. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  14. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  15. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  16. Antenatal calcium intake in Malaysia.

    Science.gov (United States)

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  17. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  18. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  19. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  20. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  1. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.

    2006-11-01

    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  2. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  3. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  4. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela S., E-mail: angela.sanches.rocha@gmail.com [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Costa, Gustavo C. [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B. [Universidade Federal do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil)

    2017-01-15

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N{sub 2} adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH{sup −} surface group was replaced by a HSO{sub 4}{sup −}. The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO{sub 4}{sup −} species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb{sub 2}O{sub 5}) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  5. X-ray diffraction study of lithium hydrazinium sulfate and lithium ammonium sulfate crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Becker, R.A.; Klapper, H.

    1991-01-01

    X-ray diffraction studies are made on proton-conducting polar lithium hydrazinium sulfate and ferroelectric lithium ammonium sulfate. The X-ray rocking curves recorded with in situ electric field along the polar b axis of lithium hydrazinium sulfate (direction of proton conductivity) show a strong enhancement of the 0k0 diffraction intensity. The corresponding 0k0 X-ray topographs reveal extinction contrast consisting of striations parallel to the polar axis. They disappear when the electric field is switched off. The effect is very strong in 0k0 but invisible in h0l reflections. It is present only if the electric field is parallel to the polar axis b. This unusual X-ray topographic contrast is correlated with the proton conduction. It is supposed that, under electric field, an inhomogeneous charge distribution develops, distorting the crystal lattice. Similar experiments on lithium ammonium sulfate also show contrast variations, but of quite different behaviour than before. In this case they result from changes of the ferroelectric domain configuration under electric field. (orig.)

  6. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  7. Using Sulfate-Amended Sediment Slurry Batch Reactors to Evaluate Mercury Methylation

    International Nuclear Information System (INIS)

    Harmon, S.M.

    2003-01-01

    In the methylated form, mercury represents a concern to public health primarily through the consumption of contaminated fish tissue. Research conducted on the methylation of mercury strongly suggests the process is microbial in nature and facilitated principally by sulfate-reducing bacteria. This study addressed the potential for mercury methylation by varying sulfate treatments and wetland-based soil in microbial slurry reactors with available inorganic mercury. Under anoxic laboratory conditions conducive to growth of naturally occurring sulfate-reducing bacteria in the soil, it was possible to evaluate how various sulfate additions influenced the methylation of inorganic mercury added to overlying water. Treatments included sulfate amendments ranging FR-om 25 to 500 mg/L (0.26 to 5.2 mM) above the soil's natural sulfate level. This study also provided an assessment of mercury methylation relative to sulfate-reducing bacterial population growth and subsequent sulfide production. Mercury methylation in sulfate treatments did not exceed that of the non-amended control during a 35-day incubation. However, increases in methylmercury concentration were linked to bacterial growth and sulfate reduction. A time lag in methylation in the highest treatment correlated with an equivalent lag in bacterial growth

  8. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    OpenAIRE

    Zenei Taira, Zenei; Ueda,Yukari

    2013-01-01

    Yukari Ueda, Zenei TairaFaculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, JapanAbstract: We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 ...

  9. Evaluation of polymer efficiency on the inhibition of calcium carbonate scale in synthetic brines; Avaliacao da acao de polimeros sobre a inibicao de incrustacoes de carbonato de calcio em salmouras sinteticas

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Juliana M.; Rodrigues, Jessica S.; Loureiro, Tatiana S.; Lucas, Elizabete F.; Spinelli, Luciana S. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, RJ (Brazil)], e-mail: julianamatos@ima.ufrj.br

    2011-07-01

    The inorganic scale results in serious problems for oil production. This scale results from the incompatibility between the chemical compositions of formation water and injection, and the changes of thermodynamic system. These deposits consist mainly of calcium carbonate and barium sulfate. In order to prevent the formation of these deposits, the petroleum industry has made use of chemicals that act as scale inhibitors. The aim of this study was to test the ability of two types of polymeric inhibitors prevent the formation of calcium carbonate from brines of different compositions with high concentrations of calcium. The inhibitors were tested at varying concentrations and at fixed conditions of temperature, pH, pressure and time. The estimated effectiveness of each inhibitor was measured by complexometric titration. The inhibitor carboxylic acid-based (poly (maleic acid)) was more efficient at relatively low concentrations, which is important both economically and environmentally. (author)

  10. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  11. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    International Nuclear Information System (INIS)

    Hughes, Ashley J.; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-01-01

    Highlights: ► Zinc–heparan sulfate complex destabilises lysozyme, a model amyloid protein. ► Addition of zinc, without heparan sulfate, stabilises lysozyme. ► Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn–heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled β-rich amyloid by far UV circular dichroism (increased β-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 °C) by fluorescence shift assay. Secondary structure stability of the Zn–heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  12. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  13. Recoverable immobilization of transuranic elements in sulfate ash

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  14. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  15. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Science.gov (United States)

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  16. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition...... rate of aluminum. Under the boiler conditions of the present work, the simulation results suggested that the desirable temperature for the ferric sulfate injection was around 950-900oC, whereas for ammonium sulfate the preferable injection temperature was below 800oC....

  17. Synthesis of [2,4-3H] 17β-dihydroequilin sulfate

    International Nuclear Information System (INIS)

    Bhavnani, B.R.

    1994-01-01

    [2,4- 3 H] 17β-dihydroequilin-3-sulfate ammonium salt suitable for in vivo pharmacokinetic studies was synthesized from [2,4- 3 H] equilin. Sulfation of [2,4- 3 H] equilin with pyridine-chlorosulfonic acid mixture gave in high yields [2,4- 3 H] equilin sulfate, which was then reduced with sodium borohydride to yield [2,4- 3 H] 17β-dihydroequilin sulfate. The reduction was sterospecific and no 17α-reduced products were formed. (author)

  18. Biological sulfate removal from gypsum contaminated construction and demolition debris.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; van Hullebusch, Eric D; Lens, Piet N L

    2013-12-15

    Construction and demolition debris (CDD) contains high levels of sulfate that can cause detrimental environmental impacts when disposed without adequate treatment. In landfills, sulfate can be converted to hydrogen sulfide under anaerobic conditions. CDD can thus cause health impacts or odor problems to landfill employees and surrounding residents. Reduction of the sulfate content of CDD is an option to overcome these problems. This study aimed at developing a biological sulfate removal system to reduce the sulfate content of gypsum contaminated CDD in order to decrease the amount of solid waste, to improve the quality of CDD waste for recycling purposes and to recover sulfur from CDD. The treatment leached out the gypsum contained in CDD by water in a leaching column. The sulfate loaded leachate was then treated in a biological sulfate reducing Upflow Anaerobic Sludge Blanket (UASB) reactor to convert the sulfate to sulfide. The UASB reactor was operated at 23 ± 3 °C with a hydraulic retention time and upflow velocity of 15.5 h and 0.1 m h(-1), respectively while ethanol was added as electron donor at a final organic loading rate of 3.46 g COD L(-1) reactor d(-1). The CDD leachate had a pH of 8-9 and sulfate dissolution rates of 526.4 and 609.8 mg L(-1) d(-1) were achieved in CDD gypsum and CDD sand, respectively. Besides, it was observed that the gypsum dissolution was the rate limiting step for the biological treatment of CDD. The sulfate removal efficiency of the system stabilized at around 85%, enabling the reuse of the UASB effluent for the leaching step, proving the versatility of the bioreactor for practical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The influence of calcium-45 on the inhibitive effect of calcium hexameta-phosphate combination and the electrocapillary effect of calcium-45

    International Nuclear Information System (INIS)

    Subramanyan, N.; Venkatakrishna Iyer, S.; Kapali, V.

    1978-01-01

    Corrosion of steel in an aqueous chloride solution is significantly accelerated if calcium (NaHMP)-45 is substituted for ordinary calcium when calcium and sodium metaphosphate combination was investigated for inhibiting action. In this investigation it is seen that the anodic polarisation of steel is brought down when 45 Ca is present in the different solutions containing Ca, non radioactive calcium and (NaHMP) at pH 5.5, 7.5 and 9.0 except in one case when 45 Ca is present alone in the solution of pH 5.5. The uptake of 45 Ca is more at the positive potentials than at the negative. Electrocapillary measurements with calcium chloride solution show that the electrocapillary curve is lifted above that for the base solution particularly on the positive side of the electrocapillary maximum. These interesting observations are explained by the postulate that radioactive calcium behaves like an anion and the acceleration of corrosion is attributed essentially to radiolytically produced hydrogen peroxide. (author)

  20. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    James, W.P.T.; Branch, W.J.; Southgate, D.A.T.

    1978-01-01

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  1. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  2. Human platelet as an independent unit for sulfate conjugation

    International Nuclear Information System (INIS)

    Khoo, B.Y.; Sit, K.H.; Wong, K.P.

    1988-01-01

    The human platelets possess a full complement of enzymes capable of synthesizing N-acetyldopamine (NADA) 35 sulfate from ATP, Mg ++ and sodium 35 sulfate. The pH optimum for this three-step overall sulfate conjugation (comprising of the ATP sulfurylase, APS kinase and phenolsulfotransferase reactions) is 8.6 and the reactions proceeded progressively for several hours. Both ATP and Mg ++ ions, above their respective optimal concentrations of 5 and 7 mM, inhibited the sulfate conjugation of NADA. The apparent Km values for NADA as determined by the phenolsulfotransferase (PST) and overall reactions were similar in magnitude being 2.6 and 4.8 μM, respectively, while that for sodium 35 sulfate was 202 μM. A comparison of these two activities in 62 platelet preparations of normal subjects showed that the rate of the PST reaction was generally higher than the overall reaction even though the PST assay was carried out at suboptimal concentration of PAPS. There was a positive correlation (r=0.82) between the two sets of data, suggesting that the PST reaction probably has some control over the rate of overall sulfate conjugation

  3. Dengue and Calcium

    OpenAIRE

    Shivanthan, Mitrakrishnan C; Rajapakse, Senaka

    2014-01-01

    Dengue is potentially fatal unless managed appropriately. No specific treatment is available and the mainstay of treatment is fluid management with careful monitoring, organ support, and correction of metabolic derangement. Evidence with regards to the role of calcium homeostasis in dengue is limited. Low blood calcium levels have been demonstrated in dengue infection and hypocalcemia maybe more pronounced in more severe forms. The cause of hypocalcemia is likely to be multifactorial. Calcium...

  4. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  5. Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study

    International Nuclear Information System (INIS)

    Pham Minh, Doan; Lyczko, Nathalie; Sebei, Haroun; Nzihou, Ange; Sharrock, Patrick

    2012-01-01

    Highlights: ► Calcium hydroxyapatite was synthesized from CaCO 3 and four orthophosphates. ► Only H 3 PO 4 led to the complete precipitation of orthophosphate species. ► H 3 PO 4 was also the most efficient for calcium dissolution. ► Reaction pathway was dissolution-precipitation accompanied by agglomeration step. - Abstract: The synthesis of calcium hydroxyapatite (Ca-HA) starting from calcium carbonate and different orthophosphate sources, including orthophosphoric acid, potassium, sodium and ammonium dihydrogen orthophosphates, was investigated under ambient conditions. The reaction started with calcium carbonate dissolution in an acid medium, followed by rapid precipitation of calcium cations with orthophosphate species to form calcium phosphate based particles which were in the size range of 0.4–1 μm. These particles then agglomerated into much larger ones, up to 350 μm in diameter (aggregates). These aggregates possessed an unstable porous structure which was responsible for the porosity of the final products. The highest specific surface area and pore volume were obtained with potassium dihydrogen orthophosphate. On the other hand, orthophosphoric acid led to the highest dissolution of calcium carbonate and the complete precipitation of orthophosphate species. Under ambient conditions, calcium phosphate based solid products of low crystallinity were formed. Different intermediates were identified and a reaction pathway proposed.

  6. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had

  7. Calcium metabolism in birds.

    Science.gov (United States)

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  8. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  9. Cell-associated proteoheparan sulfate from bovine arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Schmidt, A.; Buddecke, E.

    1988-01-01

    Cell-associated proteoheparan sulfate has been isolated from bovine arterial smooth muscle cells preincubated with [ 35 S]sulfate or a combination of [ 3 H]glucosamine and [ 35 S]methionine. The purified proteoheparan sulfate had an apparent M r of 200,000 on calibrated Sepharose CL-2B columns. The glycosaminoglycan component (M r ∼30,000) was identified as heparan sulfate by its susceptibility to specific enzymatic and chemical degradation. After degradation of the proteoheparan sulfate by microbial heparitinase the resulting protein core had an apparent M r of 92,000 on SDS-polyacrylamide gels. Its mobility was similar in the absence and presence of reducing agents indicating that the protein core consists of a single polypeptide chain. Pulse-chase experiments revealed that about 40% of the cell layer-associated proteoheparan sulfate was released into the medium, while the remainder was internalized and converted to smaller species through a series of degradation steps. Initially there was a proteolytical cleavage of the protein core generating glycosaminoglycan peptide intermediates with polysaccharides chains similar in size to the original. The half-life of the native proteoheparan sulfate was found to be about 4 h

  10. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  11. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  12. Calcium Balance in Chronic Kidney Disease.

    Science.gov (United States)

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  13. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  14. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll

    2014-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum...... sulfate were obtained from experiments in a fast heating rate thermogravimetric analyzer. The yields of SO2 and SO3 from the decomposition were investigated in a tube reactor at 600–900 °C, revealing a constant distribution of about 15% SO2 and 85% SO3 from aluminum sulfate decomposition and a temperature...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...

  15. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  16. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    Science.gov (United States)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  17. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  18. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  19. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  20. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l -1 ) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m 2 in the late 1980s, well in line with experimental data

  1. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  2. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    Science.gov (United States)

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  3. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  4. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  5. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    Science.gov (United States)

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  6. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...

  7. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11.

    Science.gov (United States)

    van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G

    2016-03-01

    The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    International Nuclear Information System (INIS)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L.

    1991-01-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to [35S] MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either [3H]MNXS (label on the piperidine ring of MNXS) or [3H]minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with [35S]MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in [35S] MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by [35S]MNXS in intact RMA were components of smooth muscle cells

  9. Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nada Mahdi Fawzi

    2015-08-01

    Full Text Available One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate content is better than the total content of sulfates since the effect of sulfate in each constituent of concrete, depends on it's granular size .The smaller the particle size of the material the more effective is the sulfate in it. Therefore, it is recommended to follow the Iraqi specification for total effective sulfate content, because it gives more flexibility to the use of sand and gravel with higher sulfate content. The results of compressive strength at 90-days show that the effect of total effective SO3 content of ( 2.647% , 2.992% , 3.424% that correspond to total sulfate of ( 3.778%, 3.294%, 4.528% decrease the compressive strength by (7.53%, 11.44%, 14.59% respectively.

  10. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  11. Dietary Calcium Intake and Calcium Supplementation in Hungarian Patients with Osteoporosis

    Directory of Open Access Journals (Sweden)

    Gábor Speer

    2013-01-01

    Full Text Available Purpose. Adequate calcium intake is the basis of osteoporosis therapy—when this proves insufficient, even specific antiosteoporotic agents cannot exert their actions properly. Methods. Our representative survey analyzed the dietary intake and supplementation of calcium in 8033 Hungarian female and male (mean age: 68 years (68.01 (CI95: 67.81–68.21 patients with osteoporosis. Results. Mean intake from dietary sources was 665±7.9 mg (68.01 (CI95: 67.81–68.21 daily. A significant positive relationship could be detected between total dietary calcium intake and lumbar spine BMD (P=0.045, whereas such correlation could not be demonstrated with femoral T-score. Milk consumption positively correlated with femur (P=0.041, but not with lumbar BMD. The ingestion of one liter of milk daily increased the T-score by 0.133. Average intake from supplementation was 558±6.2 mg (68.01 (CI95: 67.81–68.21 daily. The cumulative dose of calcium—from both dietary intake and supplementation—was significantly associated with lumbar (r=0.024, P=0.049, but not with femur BMD (r=0.021, P=0.107. The currently recommended 1000–1500 mg total daily calcium intake was achieved in 34.5% of patients only. It was lower than recommended in 47.8% of the cases and substantially higher in 17.7% of subjects. Conclusions. We conclude that calcium intake in Hungarian osteoporotic patients is much lower than the current recommendation, while routinely applied calcium supplementation will result in inappropriately high calcium intake in numerous patients.

  12. Calcium oxalate stone and gout.

    Science.gov (United States)

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  13. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  14. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  15. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  16. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  17. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  18. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea......The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K...... and with reactant concentrations of 500–3000 ppm SO2, 1–20% O2, and 4–15% H2O. The degree of sulfation was monitored by measuring the formation of HCl. Analysis of the solid residue confirmed that the reaction proceeds according to a shrinking core model and showed the formation of an eutectic at higher...... temperatures. On the basis of the experimental results, a rate expression for the sulfation reaction was derived. The model compared well with literature data for sulfation of KCl and NaCl, and the results indicate that it may be applied at even higher SO2 concentrations and temperatures than those...

  19. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG; Zhang, Jianqin; Sun, Xun; Zhang, Qiang; Zhao, Xian; Zhang, Xixiang

    2013-01-01

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property

  20. Why Calcium? How Calcium Became the Best Communicator*

    OpenAIRE

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations,...

  1. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    Science.gov (United States)

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-01-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs were taken up by kidneys more avidly than was free [ 35 S]sulfate. These 35 S-GAGs were degraded and reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  3. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  4. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  5. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  6. Annual sulfate budgets for Dutch lowland peat polders

    NARCIS (Netherlands)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; Geest, van der Harm G.; Klein, de Jeroen J.M.; Kosten, Sarian; Smolders, Alfons J.P.; Verhoeven, Jos T.A.; Mes, Ron G.; Ouboter, Maarten

    2016-01-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species.

  7. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in...

  8. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  9. Calcium chromate process related investigations

    International Nuclear Information System (INIS)

    Dillard, B.M.

    1979-01-01

    A pilot plant for production of calcium chromate has been scaled up to a small production facility at the General Electric Neutron Devices Department. In preparation for this scale-up, the process and final product were studied in order to evaluate problems not considered previously. The variables and processes studied included: (1) the determination of optimum drying temperature and time for product analysis; (2) the effect of the grade of lime used as the precipitating agent on the purity of the calcium chromate; (3) product purity when calcium chromate is precipitated by the addition of ammonium chromate to slaked lime; (4) the reagents best suited for cleaning calcium chromate spills; and (5) methods for determining hydroxide ion concentration in calcium chromate. The optimum drying time for the product before analysis is four hours at 600 0 C. Gases evolved at various temperatures during the drying process were carbon dioxide and water vapor. Technical grade lime produced calcium chromate of the highest purity. Both nitric and acetic acids were efficient dissolvers of calcium chromate spills. Direct titration of hydroxide ion with sulfuric acid gave an average recovery of 93% for samples spiked with calcium hydroxide. 1 figure, 17 tables

  10. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    Science.gov (United States)

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatininecreatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  11. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  12. Modeling of Sulfate Double-Salt in Nuclear Wastes

    International Nuclear Information System (INIS)

    Toghiani, B.; Lindner, J.S.; Weber, C.F.; Hunt, R.D.

    2000-01-01

    The Environmental Simulation Program (ESP) continues to adequately predict the solubility of most key chemical systems in the Hanford tank waste. For example, the ESP predictions were in fair agreement with the solubility experiments for the fluoride-phosphate system, although ESP probably underestimates the aqueous amounts. Due to the importance of this system in the formation of pipeline plugs, additional experiments have been made at elevated temperatures, and improvements to the ESP database will be made. ESP encountered problems with sulfate systems because the Public database for ESP does not include anhydrous sodium sulfate in mixed solutions below 32.4 C. This limitation leads to convergence problems and to spurious predictions of solubility near the transition point with sodium sulfate decahydrate when other salts such as sodium nitrate are present. However, ESP was able to make reasonable solubility predictions with a corrected database, demonstrating the need to validate and document the various databases that can be used by ESP. Even though ESP does not include the sulfate-nitrate double salt, this omission does not appear to be a major problem. The solubility predictions with and without the sulfate-nitrate double salt are comparable. In sharp contrast, the sulfate-fluoride double salt is included, but ESP still underestimates solubility in some cases. This problem can misrepresent the ionic strength of the solution, which is an important factor in the formation of pipeline plugs. Solubility tests on the sulfate-fluoride system are planned to provide additional data at higher temperatures and in caustic solutions. These results will be used to improve the range and accuracy of ESP predictions. ESP will continue to provide important predictions for waste processing operations while being evaluated and improved. For example, ESP will be used to determine the amount of water for the saltcake dissolution efforts at Hanford. When ESP underestimates the

  13. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    Science.gov (United States)

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  15. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  16. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    Science.gov (United States)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  17. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  19. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  20. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  1. Calcium regulation and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Deepthi Rapaka

    2014-09-01

    Full Text Available Activation of the neuron induces transient fluctuations in [Ca2+]i. This transient rise in [Ca2+]i is dependent on calcium entry via calcium channels and release of calcium from intracellular stores, finally resulting in increase in calcium levels, which activates calcium regulatory proteins to restore the resting calcium levels by binding to the calcium-binding proteins, sequestration into the endoplasmic reticulum and the mitochondria, and finally extrusion of calcium spike potential from the cell by adenosine triphosphate-driven Ca2+ pumps and the Na+/Ca2+ exchanger. Improper regulation of calcium signaling, sequentially, likely contributes to synaptic dysfunction and excitotoxic and/or apoptotic death of the vulnerable neuronal populations. The cognitive decline associated with normal aging is not only due to neuronal loss, but is fairly the result of synaptic connectivity. Many evidences support that Ca2+ dyshomeostasis is implicated in normal brain aging. Thus the chief factor associated with Alzheimer’s disease was found to be increase in the levels of free intracellular calcium, demonstrating that the excessive levels might lead to cell death, which provides a key target for the calcium channel blockers might be used as the neuroprotective agents in Alzheimer’s disease.

  2. Uranyl Sulfate Nanotubules Templated by N-phenylglycine

    Directory of Open Access Journals (Sweden)

    Oleg I. Siidra

    2018-04-01

    Full Text Available The synthesis, structure, and infrared spectroscopy properties of the new organically templated uranyl sulfate Na(phgH+7[(UO26(SO410](H2O3.5 (1, obtained at room temperature by evaporation from aqueous solution, are reported. Its structure contains unique uranyl sulfate [(UO26(SO410]8− nanotubules templated by protonated N-phenylglycine (C6H5NH2CH2COOH+. Their internal diameter is 1.4 nm. Each of the nanotubules is built from uranyl sulfate rings sharing common SO4 tetrahedra. The template plays an important role in the formation of the complex structure of 1. The aromatic rings are stacked parallel to each other due to the effect of π–π interaction with their side chains extending into the gaps between the nanotubules.

  3. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei.

    Science.gov (United States)

    Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J

    2018-02-19

    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

  4. 21 CFR 184.1207 - Calcium lactate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium lactate. 184.1207 Section 184.1207 Food and... Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where x is any... calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals...

  5. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  6. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  7. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  8. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  9. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  10. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    International Nuclear Information System (INIS)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.; Lebrun, P.

    1991-01-01

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise in 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry

  11. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  12. The role of calcium utilization of intestinal flora on urinary calcium excretion

    International Nuclear Information System (INIS)

    Yurt Lambrecht, F.; Uenak, P.; Kavukcu, S.; Soylu, A.; Tuerkmen, M.; Kasap, B.; Yucesoy, M.; Esen, N.

    2005-01-01

    Aim: To investigate whether calcium utilization of intestinal flora has any effect on urinary calcium excretion, like oxalate degrading effect of Oxalobacter formigenes. Materials and Methods: The data of urinary calcium excretion examinations were evaluated. 0.1 g/ml of feces samples were implanted in broths. 5 μL of 45 Ca solution was added to the samples and they were incubated for 24 hours at 37 degree C. The amount of bacteriae in the samples was determined as colony forming unit (CFU). 200 μL of the samples were filtrated by 0.45 μm membrane and rinsed by 200 μL pure water. 45 Ca activity ( 45 Ca) of bacteria in the membrane was counted by GM detector for 100 seconds. Then, activity per CFU ( 45 Ca/CFU) was calculated and compared in hypercalciuric (calciuria >4; mg/kg/hour and/or calcium/creatinine ratio>0.21; Group I) and normocalciuric (Group II) patients. Results: Samples of 29 patients with a mean age of 7.50±4.28 (1.5-16) years were evaluated. 11 of them were female (M/F: 18/11). There were 14 patients in Group I and 15 patients in Group II, 45 Ca/CFU was not different for neither aerobic nor anaerobic bacteries between the two groups (p:0.983, p:0.601, respectively). 24-hour urine calcium levels were negatively but not significantly correlated to aerobic and anaerobic 45 Ca/CFU (p:0.079, r:-0.145; p:0.260, r:-0.420, respectively) in hypercalciuric patients. Besides, in normocalciuric patients, 24-hour urine calcium levels were correlated positively to aerobic and negatively to anaerobic 45 Ca/CFU again in an insignificant manner (p:0.509, r: 0.223; p:0623, r:-0.257, respectively). Conclusion: In this, study, similar 45 Ca/CFU levels in both hypercalciuric and normocalciuric patients imply that calcium utilization of intestinal flora does not have a distinct effect on urinary calcium excretion but, although not significant, there was a negative correlation between urine calcium levels and bacterial 45 Ca/CFU levels especially in hypercalciuric

  13. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  14. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  15. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  16. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  17. Movement of calcium signals and calcium-binding proteins: firewalls, traps and tunnels.

    Science.gov (United States)

    Barrow, S L; Sherwood, M W; Dolman, N J; Gerasimenko, O V; Voronina, S G; Tepikin, A V

    2006-06-01

    In the board game 'Snakes and Ladders', placed on the image of a pancreatic acinar cell, calcium ions have to move from release sites in the secretory region to the nucleus. There is another important contraflow - from calcium entry channels in the basal part of the cell to ER (endoplasmic reticulum) terminals in the secretory granule region. Both transport routes are perilous as the messenger can disappear in any place on the game board. It can be grabbed by calcium ATPases of the ER (masquerading as a snake but functioning like a ladder) and tunnelled through its low buffering environment, it can be lured into the whirlpools of mitochondria uniporters and forced to regulate the tricarboxylic acid cycle, and it can be permanently placed inside the matrix of secretory granules and released only outside the cell. The organelles could trade calcium (e.g. from the ER to mitochondria and vice versa) almost depriving this ion the light of the cytosol and noble company of cytosolic calcium buffers. Altogether it is a rich and colourful story.

  18. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  19. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  20. Controlling sulfate attack in Mississippi Department of Transportation structures

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with sp...

  1. Controlling sulfate attack in Mississippi Department of Transportation structures.

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with specif...

  2. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Sulfate cooling effects on climate through in-cloud oxidation of anthropogenic SO2

    International Nuclear Information System (INIS)

    Lelieveld, J.; Heintzenberg, J.

    1992-01-01

    Anthropogenic SO 2 emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. aqueous phase oxidation of SO 2 into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO 2 oxidation

  4. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Science.gov (United States)

    Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.

    2017-07-01

    The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  5. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  6. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    Science.gov (United States)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  7. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  8. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.

    Science.gov (United States)

    Müller, Michael; Öztürk, Ece; Arlov, Øystein; Gatenholm, Paul; Zenobi-Wong, Marcy

    2017-01-01

    One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.

  9. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  10. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue.

    Science.gov (United States)

    Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice

    2007-08-17

    Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.

  11. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  12. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  13. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Directory of Open Access Journals (Sweden)

    P. He

    2018-04-01

    Full Text Available Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42− collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m−3 with a mean of (141  ±  88 (1σ µg m−3, with SO42− representing 8–25 % of PM2.5 mass. The observed Δ17O(SO42− varied from 0.1 to 1.6 ‰ with a mean of (0.9  ±  0.3 ‰. Δ17O(SO42− increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75 µg m−3 of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet was estimated to contribute 41–54 % to total sulfate formation with a mean of (48  ±  5 %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV ( =  SO2 ⚫ H2O + HSO3−  +  SO32− oxidation by H2O2 in aerosol water accounted for 5–13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−. Heterogeneous sulfate production via S(IV oxidation by O3 was estimated to contribute 21–22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−, such as S(IV oxidation by NO2 in aerosol water and/or by O2 via a

  14. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  15. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  16. Calcium in Urine Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Calcium, Serum; Calcium and Phosphates, Urine; ...

  17. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-07

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  19. Determination of sulfate in thorium salts using gravimetric technique with previous thorium separation

    International Nuclear Information System (INIS)

    Silva, C.M. da; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A simple analytical method to analyze sulfates in thorium salt, is presented. The method is based on the thorium separation as hydroxide. The gravimetric technique is used to analyze the sulfate in the filtered as barium sulfate. Using this method, the sulfate separation from thorium has been reach 99,9% yield, and 0,1% precision. This method is applied to thorium salts specifically thorium sulfate, carbonate and nitrate. (author). 5 refs, 2 tabs

  20. Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells.

    Science.gov (United States)

    Anghileri, L J; Marcha, C; Crone-Escanyé, M C; Robert, J

    1985-08-01

    The effects of different concentrations of extracellular ion calcium on the transport of calcium by tumor cells have been studied by means of the uptake of radiocalcium. Tumor cells incubated at 45 degrees C take up 4-10 times the amount of radioactivity incorporated by cells incubated at 37 degrees C. The difference is still greater (up to 100 times) for the intracellular incorporation as assessed by elimination of the membrane-bound calcium by EGTA treatment. The possible mechanisms involved in this differential behavior are discussed.