WorldWideScience

Sample records for calcite crystal orientation

  1. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  2. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  3. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  4. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  5. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  6. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  7. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  8. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    Science.gov (United States)

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  9. Effect of Mica and Hematite (001 Surfaces on the Precipitation of Calcite

    Directory of Open Access Journals (Sweden)

    Huifang Xu

    2018-01-01

    Full Text Available The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM, X-ray diffraction (XRD, and electron backscatter diffraction (EBSD methods. On mica, we found, in the absence of Mg2+, the substrates’ (001 surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D structure can affect the orientation of calcite nucleation with calcite (001 ~// mica (001 and calcite (010 ~// mica (010 to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001 surface also leads to the observed calcite (001 twinning. A second and less common orientation between calcite {104} and mica (001 was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

  10. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2014-08-28

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial

  11. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw

    2014-01-01

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  12. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking

  13. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    Science.gov (United States)

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  14. Sea urchin tooth mineralization: calcite present early in the aboral plumula.

    Science.gov (United States)

    Stock, Stuart R; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D; Dorvee, Jason R

    2012-11-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  16. Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence

    Science.gov (United States)

    Sánchez-Pastor, N.; Oehlerich, Markus; Astilleros, José Manuel; Kaliwoda, Melanie; Mayr, Christoph C.; Fernández-Díaz, Lurdes; Schmahl, Wolfgang W.

    2016-02-01

    Ikaite (CaCO3·6H2O) is a metastable phase that crystallizes in nature from alkaline waters with high phosphate concentrations at temperatures close to 0 °C. This mineral transforms into anhydrous calcium carbonate polymorphs when temperatures rise or when exposed to atmospheric conditions. During the transformation in some cases the shape of the original ikaite crystal is preserved as a pseudomorph. Pseudomorphs after ikaite are considered as a valuable paleoclimatic indicator. In this work we conducted ikaite crystal growth experiments at near-freezing temperatures using the single diffusion silica gel technique, prepared with a natural aqueous solution from the polymictic lake Laguna Potrok Aike (51°57‧S, 70°23‧W) in Patagonia, Argentina. The ikaite crystals were recovered from the gels and the transformation reactions were monitored by in situ Raman spectroscopy at two different temperatures. The first spectra collected showed the characteristic features of ikaite. In successive spectra new bands at 1072, 1081 and 1086 cm-1 and changes in the intensity of bands corresponding to the OH modes were observed. These changes in the Raman spectra were interpreted as corresponding to intermediate stages of the transformation of ikaite into calcite and/or vaterite. After a few hours, the characteristics of the Raman spectrum were consistent with those of calcite. While ikaite directly transforms into calcite at 10 °C in contact with air, at 20 °C this transformation involves the formation of intermediate, metastable vaterite. During the whole process the external shape of ikaite crystals was preserved. Therefore, this transformation showed the typical characteristics of a pseudomorphic mineral replacement, involving the generation of a large amount of porosity to account for the large difference in molar volumes between ikaite and calcite. A mechanism involving the coupled dissolution of ikaite and crystallization of calcite/vaterite is proposed for this

  17. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

    OpenAIRE

    Huifang Xu; Mo Zhou; Yihang Fang; H. Henry Teng

    2018-01-01

    The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the m...

  18. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    Science.gov (United States)

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    Science.gov (United States)

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.

  1. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    Science.gov (United States)

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  2. Crystal orientations in nacreous layers of organic-inorganic biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Woo, E-mail: jacklee@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, KAIST, Daejeon (Korea, Republic of)

    2009-09-15

    Abalone shell comprises a bio-composite material, combining the properties of inorganic calcite intergrown with organic nacre. This paper reports about the microstructure of this composite. By examining the Kikuchi patterns obtained for nacre (Haliotis discus hannai) using transmission electron microscopy, we have shown that the tiles within nacre have specific orientations. The stereographic projection spheres for the tiles of nacre can be divided into two main types, namely a right oriented region and a left oriented region with respect to the c axis as a reference plane (001). The cluster character of nacre can be explained in terms of the growth mechanism of the 'Christmas tree' pattern. The orientation of the c-axis in the nacreous layer is elucidated for the first time. We demonstrate the use of the soluble protein obtained from the tiles of nacre in in vitro calcium carbonate crystallization.

  3. Crystal orientations in nacreous layers of organic-inorganic biocomposites

    International Nuclear Information System (INIS)

    Lee, Seung Woo

    2009-01-01

    Abalone shell comprises a bio-composite material, combining the properties of inorganic calcite intergrown with organic nacre. This paper reports about the microstructure of this composite. By examining the Kikuchi patterns obtained for nacre (Haliotis discus hannai) using transmission electron microscopy, we have shown that the tiles within nacre have specific orientations. The stereographic projection spheres for the tiles of nacre can be divided into two main types, namely a right oriented region and a left oriented region with respect to the c axis as a reference plane (001). The cluster character of nacre can be explained in terms of the growth mechanism of the 'Christmas tree' pattern. The orientation of the c-axis in the nacreous layer is elucidated for the first time. We demonstrate the use of the soluble protein obtained from the tiles of nacre in in vitro calcium carbonate crystallization.

  4. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  6. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  7. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  8. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evolution and the Calcite Eye Lens

    OpenAIRE

    Williams, Vernon L.

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  10. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  11. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  12. Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Gyeung Ho [Nano-Materials Reserch Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Choi, Cheong Song [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul (Korea, Republic of)], E-mail: cschoi@sogang.ac.kr

    2008-03-10

    The thin sheets of calcite, termed folia, that make up much of the shell of an oyster are composed of foliated lath. Folia of the giant Pacific oyster (Crassostrea gigas) were examined using TEM (transmission electron microscopy) and tested using microindentation and nanoindentation techniques. Analysis of the Kikuchi patterns obtained from the folia showed that there are two types (type I and type II) of preferred orientation, with an angle of around 70{sup o} between them. Nanoindentation tests showed that the folia exhibit a hardness of about 3 GPa and elastic modulus of about 73 GPa. Microcracks were generated using a microindenter in order to study the fracture mechanisms of the folia. Following on from these investigations, fracture mechanisms are discussed in conjunction with the correlation between preferred orientation and structural characteristics during cracking of the folia. Comparing the morphology and the polymorphism with nacre (also known as mother of pearl), the advantages of the relatively fast crystal growth and less amount of organic matrix in folia may have interesting implications for the development of sophisticated synthetic materials.

  13. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  14. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM).

    Science.gov (United States)

    Kobler, Aaron; Kübel, Christian

    2018-01-01

    To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.

  15. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    International Nuclear Information System (INIS)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O.; Karhu, J.; Loefman, J.; Pitkaenen, P.; Ruotsalainen, P.

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO 3 ). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  16. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O. [Kivitieto Oy (Finland); Karhu, J. [Helsinki Univ. (Finland); Loefman, J. [VTT Processes, Espoo (Finland); Pitkaenen, P. [VTT Building and Transport, Espoo (Finland); Ruotsalainen, P. [TUKES, Helsinki (Finland)

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO{sub 3}). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  17. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    International Nuclear Information System (INIS)

    Ramakrishna, Chilakala; Thenepalli, Thriveni; Ahn, Ji Whan

    2017-01-01

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO 2 flow rate, Ca (OH) 2 concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH) 2 concentration and increasing the CO 2 flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  18. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    International Nuclear Information System (INIS)

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-01-01

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 μm was observed at angles of incidence on a calcite crystal of 4.8° and 18.2°, under SRS pumping at a wavelength of 0.532 μm. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  19. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, Chilakala [Hanil Cement Corporation, Danyang (Korea, Republic of); Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of)

    2017-06-15

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO{sub 2} flow rate, Ca (OH){sub 2} concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH){sub 2} concentration and increasing the CO{sub 2} flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  20. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  1. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  2. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite

    Science.gov (United States)

    Jansen, J. H. F.; Woensdregt, C. F.; Kooistra, M. J.; van der Gaast, S. J.

    1987-03-01

    Translucent brown aggregates of calcium-carbonate crystals have been found in cores from the Zaire deep-sea fan (west equatorial Africa). The aggregates are well preserved but very friable. Upon storage they become yellowish white and cloudy and release water. Chemical, mineralogical (XRD), petrographical, crystal-morphological, and stable-isotope data demonstrate that the crystals have passed through three phases: (1) an authigenic carbonate phase, probably calcium carbonate, which is represented by the external habit of the present crystals; (2) a translucent brown ikaite phase (CaCO3·6H2O), unstable at temperatures above 5 °C; and (3) a phase consisting of calcite microcrystals that are poorly cemented and form a porous mass within the crystal form of the morphologically unchanged first phase. The transformation from the first phase into ikaite was probably a kinetic replacement. The transformation from ikaite into the third phase occurred because of storage at room temperature. The presence of ikaite is indicative of a low-temperature, anaerobic, organic-carbon-rich marine environment. Ikaite is probably the precursor of a great number of porous calcite pseudomorphs, and possibly also of many marine authigenic microcrystalline carbonate nodules.

  3. Control of liquid crystal molecular orientation using ultrasound vibration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Satoki [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Koyama, Daisuke; Matsukawa, Mami [Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Shimizu, Yuki; Emoto, Akira [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  4. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature

  5. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  6. Model study of initial adsorption of SO2 on calcite and dolomite

    International Nuclear Information System (INIS)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-01

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO 2 . Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO 2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO 3 (s) and dolomite Ca x Mg 1-x CO 3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO 2 diffusion. The subsequent formation of gypsum under such conditions will not require SO 4 2- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO 2 coverage. Rather, upon oxidation, SO 4 2- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals

  7. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  8. Kinetics of oriented crystallization of polymers in the linear stress-orientation range in the series expansion approach

    Directory of Open Access Journals (Sweden)

    L. Jarecki

    2018-04-01

    Full Text Available An analytical formula is derived for the oriented crystallization coefficient governing kinetics of oriented crystallization under uniaxial amorphous orientation in the entire temperature range. A series expansion approach is applied to the free energy of crystallization in the Hoffman-Lauritzen kinetic model of crystallization at accounting for the entropy of orientation of the amorphous chains. The series expansion coefficients are calculated for systems of Gaussian chains in linear stress-orientation range. Oriented crystallization rate functions are determined basing on the ‘proportional expansion’ approach proposed by Ziabicki in the steady-state limit. Crystallization kinetics controlled by separate predetermined and sporadic primary nucleation is considered, as well as the kinetics involving both nucleation mechanisms potentially present in oriented systems. The involvement of sporadic nucleation in the transformation kinetics is predicted to increase with increasing amorphous orientation. Example computations illustrate the dependence of the calculated functions on temperature and amorphous orientation, as well as qualitative agreement of the calculations with experimental results.

  9. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement.

    Science.gov (United States)

    Veis, Arthur; Stock, Stuart R; Alvares, Keith; Lux, Elizabeth

    2011-01-01

    Sea urchin teeth grow continuously and develop a complex mineralized structure consisting of spatially separate but crystallographically aligned first stage calcitic elements of high Mg content (5-15 mol% mineral). These become cemented together by epitaxially oriented second stage very high Mg calcite (30-40 mol% mineral). In the tooth plumula, ingressing preodontoblasts create layered cellular syncytia. Mineral deposits develop within membrane-bound compartments between cellular syncytial layers. We seek to understand how this complex tooth architecture is developed, how individual crystalline calcitic elements become crystallographically aligned, and how their Mg composition is regulated. Synchrotron microbeam X-ray scattering was performed on live, freshly dissected teeth. We observed that the initial diffracting crystals lie within independent syncytial spaces in the plumula. These diffraction patterns match those of mature tooth calcite. Thus, the spatially separate crystallites grow with the same crystallographic orientation seen in the mature tooth. Mineral-related proteins from regions with differing Mg contents were isolated, sequenced, and characterized. A tooth cDNA library was constructed, and selected matrix-related proteins were cloned. Antibodies were prepared and used for immunolocaliztion. Matrix-related proteins are acidic, phosphorylated, and associated with the syncytial membranes. Time-of-flight secondary ion mass spectroscopy of various crystal elements shows unique amino acid, Mg, and Ca ion distributions. High and very high Mg calcites differ in Asp content. Matrix-related proteins are phosphorylated. Very high Mg calcite is associated with Asp-rich protein, and it is restricted to the second stage mineral. Thus, the composition at each part of the tooth is related to architecture and function. Copyright © 2011 S. Karger AG, Basel.

  10. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  11. Immobilization of nanoparticles by occlusion into microbial calcite

    DEFF Research Database (Denmark)

    Skuce, Rebecca L.; Tobler, Dominique Jeanette; MacLaren, Ian

    2017-01-01

    systems. In this study, the ureolytic bacteria Sporosarcina pasteurii was used to induce calcium carbonate precipitation in the presence of organo-metallic manufactured nanoparticles. As calcite crystals grew the nanoparticles in the solution became trapped inside these crystals. Capture of NPs within...

  12. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  13. Rearrangement of porous CaO aggregates during calcite decomposition in vacuum

    International Nuclear Information System (INIS)

    Beruto, D.; Barco, L.; Searcy, A.W.

    1983-01-01

    High-resolution SEM photographs, N 2 adsorption isotherms, Hg porosimetry, and micrometer measurements were used to characterize CaO particle shapes and pore-size distributions that result when calcite crystals are decomposed in vacuum at 686 0 C. The surface area of the CaO produced from large calcite crystals is constant at 116 + or - 4 m 2 /g independent of the extent of reaction. The volume occupied by a CaO aggregate is approx. = 98 + or - 2% that of the original calcite crystal. The approx. = 54% total porosity is comprised of 42% pores of approx. = 5 nm cross section and 12% pores of approx. = 10 μm cross section. The duplex pore structure is formed by a diffusionless repacking of CaO particles that initially form with a more uniform distribution of particles and pores

  14. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    Science.gov (United States)

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  15. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat

    2015-01-01

    . Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite...... surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond...... with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface....

  16. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  17. Standard test method for determining the orientation of a metal crystal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the back-reflection Laue procedure for determining the orientation of a metal crystal. The back-reflection Laue method for determining crystal orientation (1, 2) may be applied to macrograins (3) (0.5-mm diameter or larger) within polycrystalline aggregates, as well as to single crystals of any size. The method is described with reference to cubic crystals; it can be applied equally well to hexagonal, tetragonal, or orthorhombic crystals. 1.2 Most natural crystals have well developed external faces, and the orientation of such crystals can usually be determined from inspection. The orientation of a crystal having poorly developed faces, or no faces at all (for example, a metal crystal prepared in the laboratory) must be determined by more elaborate methods. The most convenient and accurate of these involves the use of X-ray diffraction. The “orientation of a metal crystal” is known when the positions in space of the crystallographic axes of the unit cell have been located with...

  18. Model study of initial adsorption of SO{sub 2} on calcite and dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-30

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO{sub 2}. Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO{sub 2} catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO{sub 3} (s) and dolomite Ca{sub x}Mg{sub 1-x}CO{sub 3} (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO{sub 2} diffusion. The subsequent formation of gypsum under such conditions will not require SO{sub 4}{sup 2-} (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO{sub 2} coverage. Rather, upon oxidation, SO{sub 4}{sup 2-} (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals.

  19. Interactions of U(VI), Nd, and Th(IV) at the Calcite-solution interface

    International Nuclear Information System (INIS)

    Carroll, S.A.; Dran, J.C.

    1992-01-01

    The interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface at controlled pCO 2 (g) have been investigated by Rutherford backscattering (RBS), scanning electron microscopy (SEM) and energy dispersive (EDS) analyses of reacted calcite. Uranium precipitation at the calcite-solution interface was observed only for those experiments in which the initial [U(VI)] was greater than the solubility of rutherfordine, UO 2 CO 3 (s). At pH 8.0, flat radial uranium and calcium zoned precipitates form at the mineral-solution interface. At pH 4.3, uranium forms an anastomosing precipitate throughout the calcite surface. RBS analyses confirmed the SEM analyses showing that uranium forms a solid phase within the calcite surface, but formation of an uranium-calcium solid solution at depth is limited. In sharp contrast to U(VI), Nd is concentrated in the solid phase as individual neodymium-calcium carbonate crystals. Calcite and pure orthorhombic neodymium carbonate crystals dissolve at the expense of the formation of a more stable neodymium-calcium solid solution. In the presence of calcite, a thorium-calcium solid solution forms by exchanging Th for Ca in the calcite structure. Thorium precipitates in two linear trends which intersect each other at approximately 105deg C and 75deg C, parallel to calcite rhombohedral cleavage faces. (orig.)

  20. Shear induced orientation of edible fat and chocolate crystals

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  1. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  2. Synthesis of sub-millimeter calcite from aqueous solution

    Science.gov (United States)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  3. Mineralogical-Chemical Characteristics of Calcite from Zletovo, Sasa and Buchim Deposits

    International Nuclear Information System (INIS)

    Shijakova-lvanova, Tena; Paneva-Zajkova, Vesna; Donova, Ilinka

    2006-01-01

    The paper presents mineralogical-chemical characteristics, dependence between some elements and concentration of some calcite elements of Zletovo, Sasa and Buchim deposits. Calcite from Sasa, Zletovo and Buchim occurs in rhombohedral crystals of different size. The colour is white, but in Buchim it is white, pink, and yellow. Their twinning is very common. Chemical composition of calcite was determined by AES-ICP. Results show that in calcite from Buchim the concentration of Ba is much higher in pink calcite from than in white or yellow. The concentration of Zn and Ph is the lowest in white calcite. The calcite from Zletovo contains much higher concentrations of Pb, Zn, Sr, but calcite of Buchim which is pink contains higher amounts of Ba and Co. The concentrations of CaO, MgO, and MnO in all calcite simples are approximately equal. Concentration of all other elements in calcite of Sasa, Zletovo and Buchim is approximately equal. TG and DTA curves out on all simples were recorded.The decompositions of the samples of calcite starts at different temperature and it is not finish until 1000 o C. (Author)

  4. Tuning hardness in calcite by incorporation of amino acids.

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  5. Oriented growing and anisotropy of emission properties of lanthanum hexaboride single crystals

    International Nuclear Information System (INIS)

    Lazorenko, V.I.; Lotsko, D.V.; Platonov, V.F.; Kovalev, A.V.; Galasun, A.P.; Matvienko, A.A.; Klinkov, A.E.

    1987-01-01

    Single crystals of lanthanum hexaboride with preset crystallographic orientation are grown by the method of crucible-free zone melting. It is shown that oriented growing of single crystals of the given compound is possible only when using seed crystals of the required orientation because no predominant orientation of the LaB 6 growth is found in case of spontaneous crystallization. Orientation of spontaneously growing LaB 6 crystals does not depend on their growth rate, degree of the melt diffusion annealing, purity of the inital powder. Anisotropy of the electronic work function for single crystal lanthanum hexaboride is confirmed. Its value grows as (100)<(110)<(111). Conditions of the preliminary thermovacuum purification of the surface are shown to affect the measured work function

  6. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  7. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  8. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at fourth depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid ratios: most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at open-quotes 100 degrees Cclose quotes. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  9. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at ''<100 degrees C''. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  10. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  11. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  12. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  13. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  14. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  15. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.

    Science.gov (United States)

    Liu, Chien-Liang; Chen, Hsin-Lung

    2018-06-18

    The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.

  16. Terahertz spectroscopic analysis of crystal orientation in polymers

    Science.gov (United States)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  17. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  18. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul

    2016-11-10

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  20. Scratching experiments on quartz crystals: Orientation effects in chipping

    Science.gov (United States)

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  1. Two-stage magnetic orientation of uric acid crystals as gout initiators

    Science.gov (United States)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  2. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  3. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  4. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  5. Tutorial: Crystal orientations and EBSD — Or which way is up?

    International Nuclear Information System (INIS)

    Britton, T.B.; Jiang, J.; Guo, Y.; Vilalta-Clemente, A.; Wallis, D.; Hansen, L.N.; Winkelmann, A.; Wilkinson, A.J.

    2016-01-01

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader

  6. Tutorial: Crystal orientations and EBSD — Or which way is up?

    Energy Technology Data Exchange (ETDEWEB)

    Britton, T.B., E-mail: b.britton@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, SW7 2AZ (United Kingdom); Jiang, J. [Department of Materials, Imperial College London, Prince Consort Road, SW7 2AZ (United Kingdom); Guo, Y.; Vilalta-Clemente, A. [Department of Materials, University of Oxford, Parks Road, OX1 3PH (United Kingdom); Wallis, D.; Hansen, L.N. [Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN (United Kingdom); Winkelmann, A. [Bruker Nano GmbH, Am Studio 2D, 12489 Berlin (Germany); Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, OX1 3PH (United Kingdom)

    2016-07-15

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.

  7. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  8. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  9. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  10. Hydrothermal replacement of calcite by Mg-carbonates

    Science.gov (United States)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product

  11. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  12. Orientation of crystals in alanine dosimeter assessed by DRS, as seen in EPR spectra evaluation

    International Nuclear Information System (INIS)

    Grazyna Przybytniak; Zagorski, Z.P.

    1996-01-01

    The alanine dosimeter made for evaluation by diffuse light reflection spectrophotometry (ALA/DRS) does not show the effect of orientation of crystals. Supposed deviation from random orientation has been investigated by EPR spectroscopy. EPR investigation shows that in spite of the very fine size of L-alanine crystals, they are oriented in thin layers of the polyethylene matrix. Specially prepared films with deliberately well oriented crystals have confirmed this observation. Our ALA/DRS dosimeter can be evaluated by the EPR method for the concentration of free radicals, providing that the dominating crystal orientation in the dosimetric film is indicated on it as an arrow, and the sample is inserted into the magnetic cavity always in the same orientation as has been done during the calibration operation. (author). 6 refs., 2 figs

  13. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    International Nuclear Information System (INIS)

    Li, W; Coulson, J; Marrow, P; Smith, R J; Clark, M; Sharples, S D; Lainé, S J

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112-bar0) or towards (101-bar0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated. (paper)

  14. Crystal orientation mapping applied to the Y-TZP/WC composite

    CERN Document Server

    Faryna, M; Sztwiertnia, K

    2002-01-01

    Crystal orientation measurements made by electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM) and microscopic observations provided the basis for a quantitative investigation of microstructure in an yttria stabilized, tetragonal zirconia-based (Y-TZP) composite. Automatic crystal orientation mapping (ACOM) in a SEM can be preferable to transmission electron microscopy (TEM) for microstructural characterization, since no sample thinning is required, extensive crystal data is already available, and the analysis area is greatly increased. A composite with a 20 vol.% tungsten carbide (WC) content was chosen since it revealed crystal relationships between the matrix and carbide phase already established by TEM analysis. However, this composite was difficult to investigate in the EBSD/ SEM since it is non-conductive, the Y-TZP grain size is of the order of the system resolution, and the sample surface, though carefully prepared, reveals a distinctive microtopography. In this paper, so...

  15. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Science.gov (United States)

    Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.

    2017-03-01

    . Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.

  16. Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster.

    Science.gov (United States)

    Chen, Guowei; Luo, Hongyun; Luo, Shunfei; Lin, Zhenying; Ma, Yue

    2017-02-01

    Structural calcites, aragonites, and the bonding organic network decide the growth, structure and mechanical properties of the mollusk bivalvia shell. Here, it was found out that the calcite prisms together with the coated organics construct another kind of 'brick and mortar' structure similar to the aragonite tablets. The calcite layer can be divided into three sublayers and direct evidences show that the calcite prisms are produced by two methods: nucleation and growing in the first sublayer; or fusing from the aragonites, which is quite different from some previous reports. The crystallographic orientation, micro hardness and crack propagations were tested and observed by XRD, micro harness tester, SEM and TEM. Submicron twin crystals were observed in the immature aragonite tablets. The fracture processes and the micro deformation of the aragonite tablets are detected by acoustic emission (AE) in the tensile tests, which gave the interpretation of the dynamical fracture processes: plastic deformation and fracture of the organics, and friction of the minerals at the first two stages; wear and fracture of the minerals at the third stage. Calcites and aragonites are combined and working together, like two layers of vertical 'brick and mortar's, ensuring the stable mechanical properties of the whole shell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Orientational Phase Transition Around 274 K in C60 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    徐亚伯; 何丕模; 杨宏顺; 郑萍; 余朝文; 陈兆甲; 张宣嘉; 李文铸

    1994-01-01

    The electrical conductivity of a C60 single crystal around 274 K and the specific heat of C60 crystals from 150 to 340 K have been measured.The delta-like specific heat peak at about 251 K related to the first-order phase transition has been reported.The activation energy change around 274 K and the lambda-like specific heat peak beginning at 270 K and ending at 310 K show that there is an orientational phase transition in fcc C60 crystals above 251 K.By taking the symmetry into consideration and further analyzing lambda-like specific heat peak and the activation energy change around 274 K,the conclusion has been reached that this new phase transition is an orientational structure transition from the merohedral twinning fcc to the orientationally disordered fcc.The temperature of free rotation of C60 molecules is about 281 K.

  18. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  19. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  20. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  1. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  2. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  3. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  4. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Science.gov (United States)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  5. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun; Takata, Tsuyoshi; Katayama, Masao; Zhang, Fuxiang; Moriya, Yosuke; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  6. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  7. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2016-11-01

    Two active spring vent pools at Shiqiang (Yunnan Province, China) are characterized by a complex array of precipitates that coat the wall around the pool and the narrow ledges that surround the vent pool. These precipitates include arrays of aragonite crystals, calcite cone-dendrites, red spar calcite, unattached dodecahedral and rhombohedral calcite crystals, and late stage calcite that commonly coats and disguises the earlier formed precipitates. Some of the microbial mats that grow on the ledges around the pools have been partly mineralized by microspheres that are formed of Si and minor amounts of Fe. The calcite and aragonite that are interspersed with each other at all scales are both primary precipitates. Some laminae, for example, change laterally from aragonite to calcite over distances of only a few millimetres. The precipitates at Shiqiang are similar to precipitates found in and around the vent pools of other springs found in Yunnan Province, including those at Gongxiaoshe, Zhuyuan, Eryuan, and Jifei. In all cases, the δDwater and δ18Owater indicate that the spring water is of meteoric origin. These are thermogene springs with the carrier CO2 being derived largely from the mantle and reaction of the waters with bedrock. Variations in the δ13Ctravertine values indicate that the waters in these springs were mixed, to varying degrees, with cold groundwater and its soil-derived CO2. Calcite and aragonite precipitation took place once the spring waters had become supersaturated with respect to CaCO3, probably as a result of rapid CO2 degassing. These precipitates, which were not in isotopic equilibrium with the spring water, are characterized by their unusual crystal morphologies. The precipitation of calcite and aragonite, seemingly together, can probably be attributed to microscale variations in the saturation levels that are, in turn, attributable to microscale variations in the rate of CO2 degassing.

  8. Nano-structured calcite produced by micro-organisms in ancient and modern loess in Chinese Loess Plateau

    Science.gov (United States)

    Xu, H.; Chen, T.; Lu, H.; Wang, X.

    2005-12-01

    The results from transmission electron microscopy (TEM) and field emission gun scanning microscopy (FEG-SEM) investigation show that there are calcite nano-fibers (CNFs) formed during pedogenic process. The CNFs are widely distributed in the loess and red clay samples of Caoxian, Luochuan, Lingtai, Lantian, and Xifeng profiles as well as the samples of modern surface loess soils in Chinese Loess Plateau. Diameters of all the NFCs are about 40 nm, the length of the CNFs ranges from tens nanometer to several micrometers. Elongation direction of NFCs is unusual near parallel (105)* or (115)*. Crystals of NFCs arrange as bird net like and lattice-like frameworks. X-ray EDS spectra show the weak peaks of magnesium, phosphorous, and sulfur. Our investigation indicates that CNFs are in pore space of loess and paleosol and made up most of carbonate except for caliche nodular layers. Concentration of NFCs in the loess layers are significantly higher than those of paleosol layers because of leaching of carbonate in the paleosol forming environment (warn and wet paleoclimate). The "nanobacteria-like CNFs are well crystalline calcite single crystals with smoothes surfaces. The morphologies of CNFs are very unusual and different from the calcite single crystals observed in most geological environments. The CNFs are directly related to microbial activities in both ancient and modern loess. It is proposed that the intervention of organic compounds derived from microbial activities control the formation of the calcite nano-fibers. Both morphology and bulk composition of CNFs indicate that the formation of the CNFs involves bio-organics derived from microorganisms in loess deposit environment. Formation conditions of the calcite nano-fibers may information about paleoclimate, paleo-environment and paleoecology. So, the discovery of CNFs in loess-paloesol sequences can provide a new route for reconstruct paleoclimate by oxygen and carbon isotope from the CNFs.

  9. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    International Nuclear Information System (INIS)

    Lynden-Bell, R.M.; Michel, K.H.

    1994-01-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C 60

  10. Deep Space Detection of Oriented Ice Crystals

    Science.gov (United States)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  11. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  12. Assessment of the potential for dating secondary calcite and quartz in fault zones

    International Nuclear Information System (INIS)

    Morency, Maurice

    1982-03-01

    Calcite and quartz occur frequently as secondary minerals in faults. In many instances these minerals are not deformed. Calcite, for example, often exhibits an undisturbed fibrous habit or appears as euhedral crystals. Direct dating of euhedral crystals would provide a minimum age of the last movement along a fault, whereas dating of fibrous crystals would furnish the real age of the last movement. This information would be essential in the evaluation and selection of sites for both nuclear power reactors and nuclear waste disposal. In the Canadian context, to be successful, the technique should be able to date minerals as old as tens of millions of years. In this study both isotopic and radioactive damage techniques were considered. It was found that thermoluminescence, thermally stimulated current, and electron spin resonance offer possibilities. Recent electron spin resonance studies of ancient flints have yielded dates of several hundred million years. It is anticipated that in the near future a combination of the above techniques will be extensively used in the field of geochronology

  13. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  14. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    Science.gov (United States)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  15. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  16. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast

    International Nuclear Information System (INIS)

    Wang, Y C; Tang, Z M; Feng, Z Q; Xie, Z Y; Gu, Z Z

    2010-01-01

    Recently, there has been increasing interest in studying the interaction between mammalian cells and nanometer-sized structures. However, the effect of nanostructures on cell behavior, such as cell morphology and alignment, is still largely unknown. Inverse opal colloid crystal substrates, which can be stretched to produce nano-scale pore structures of different degrees of orientation, serve as a convenient model system to study the effect of nanotopography on cell morphology and cell alignment. In this work, we fabricated inverse opal colloidal crystal films that were either unstretched or stretched to three, four or six times their original length, producing pore structures of increasing degree of orientation. Human dermal fibroblast-fetal (HDF-f) cells were seeded and cultured on these four types of substrates. The results from fluorescence microscopy and scanning electron microscopy indicated that cells showed the highest degree of alignment when cultured on inverse opal colloid crystal films that were stretched the most (six times original length). The results also demonstrated that the orientation of nanostructures could affect both the morphology and growth direction of fibroblasts. The ability to control the direction of cell growth through the engineering of nanostructures could have important applications in tissue engineering, especially for tissues with anisotropic structures, such as cardiac muscle, blood vessel, tendon and ligament.

  18. Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y C; Tang, Z M; Feng, Z Q; Xie, Z Y; Gu, Z Z, E-mail: gu@seu.edu.c [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2010-06-01

    Recently, there has been increasing interest in studying the interaction between mammalian cells and nanometer-sized structures. However, the effect of nanostructures on cell behavior, such as cell morphology and alignment, is still largely unknown. Inverse opal colloid crystal substrates, which can be stretched to produce nano-scale pore structures of different degrees of orientation, serve as a convenient model system to study the effect of nanotopography on cell morphology and cell alignment. In this work, we fabricated inverse opal colloidal crystal films that were either unstretched or stretched to three, four or six times their original length, producing pore structures of increasing degree of orientation. Human dermal fibroblast-fetal (HDF-f) cells were seeded and cultured on these four types of substrates. The results from fluorescence microscopy and scanning electron microscopy indicated that cells showed the highest degree of alignment when cultured on inverse opal colloid crystal films that were stretched the most (six times original length). The results also demonstrated that the orientation of nanostructures could affect both the morphology and growth direction of fibroblasts. The ability to control the direction of cell growth through the engineering of nanostructures could have important applications in tissue engineering, especially for tissues with anisotropic structures, such as cardiac muscle, blood vessel, tendon and ligament.

  19. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  20. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  2. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry and household contamination (e.g. sewage sources from septic tanks. Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers. Keywords: calcite, calcium carbonate, phosphate, soluble reactive phosphate, dissolved

  3. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.

    2012-01-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy ...

  4. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  5. Automated determination of crystal orientations from electron backscattering patterns

    DEFF Research Database (Denmark)

    Lassen, Niels Christian Krieger

    1994-01-01

    of the position of the bands or the zone axes of EBSPs have existed for several years now. Until recently, however, the localization of either the bands or the zone axes of EBSPs has required the valuable time and attention of a human operator, thus obviously limiting the amounts of orientation data that can...... quantitatively is therefore described. Presently, little is known about the uncertainty of the lattice orientations which can be measuted from EBSPs. This subject will be discussed in detail in this thesis. With the application of newly developed statistical methods for analyzing orientation data...... it will be shown how the relative precision of lattice orientations measured from EBSPs can be described. By applying this methodology to a large number of EBSPs of varying quality it is demonstrated that the precision of automatically measured crystal orientations is comparable to the precision obtained, when...

  6. Properties of horizontally oriented ice crystals observed by polarization lidar over summit, Greenland

    Directory of Open Access Journals (Sweden)

    Neely Ryan R.

    2018-01-01

    Full Text Available A source of error in microphysical retrievals and model simulations is the assumption that clouds are composed of only randomly oriented ice crystals. This assumption is frequently not true, as evidenced by optical phenomena such as parhelia. Here, observations from the Cloud, Aerosol and Polarization Backscatter Lidar at Summit, Greenland are utilized along with other sensors and beam imaging to examine the properties of horizontally oriented ice crystals and the environment conditions in which they occur.

  7. Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite

    Science.gov (United States)

    Marsh, M. E.; Ridall, A. L.; Azadi, P.; Duke, P. J.

    2002-01-01

    The coccolithophores are valuable models for the design and synthesis of composite materials, because the cellular machinery controlling the nucleation, growth, and patterning of their calcitic scales (coccoliths) can be examined genetically. The coccoliths are formed within the Golgi complex and are the major CaCO(3) component in limestone sediments-particularly those of the Cretaceous period. In this study, we describe mutants lacking a sulfated galacturonomannan and show that this polysaccharide in conjunction with the Golgi-derived membrane is directly linked to the growth and shaping of coccolith calcite but not to the initial orientated nucleation of the mineral phase.

  8. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  9. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.

    Science.gov (United States)

    Yin, Xiaofei; Ziegler, Andreas; Kelm, Klemens; Hoffmann, Ramona; Watermeyer, Philipp; Alexa, Patrick; Villinger, Clarissa; Rupp, Ulrich; Schlüter, Lothar; Reusch, Thorsten B H; Griesshaber, Erika; Walther, Paul; Schmahl, Wolfgang W

    2018-02-01

    Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely

  10. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Banavoth, Murali; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid

  11. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  12. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Du Yang; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-07-15

    The potential of using mollusk shell powder in aragonite (razor clam shells, RCS) and calcite phase (oyster shells, OS) to remove Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from contaminated water was investigated. Both biogenic sorbents displayed very high sorption capacities for the three metals except for Cd on OS. XRD, SEM and XPS results demonstrated that surface precipitation leading to crystal growth took place during sorption. Calcite OS displayed a remarkably higher sorption capacity to Pb than aragonite RCS, while the opposite was observed for Cd. However, both sorbents displayed similar sorption capacities to Zn. These could be due to the different extent of matching in crystal lattice between the metal bearing precipitate and the substrates. The initial pH of the solution, sorbent's dosage and grain size affected the removal efficiency of the heavy meals significantly, while the organic matter in mollusk shells affected the removal efficiency to a lesser extent. - Highlights: > Mollusk shells display high removal efficiency to heavy metals in contaminated water. > Surface precipitation leading to crystal growth takes place during the sorption. > Crystal structure similarity between precipitates and substrates affects the sorption. > pH, sorbent dosage and grain size of adsorbent affects the removal efficiency. > Organic matter in mollusk shells affects the removal efficiency to a less extent. - Mollusk shells display high sorption ability to heavy metals and crystal structure similarity between precipitates and substrates affects the sorption.

  13. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...... = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts...... of polysaccharides and clay nanoparticles on the chalk surface....

  14. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  15. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  16. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  17. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Mullen, Jeffrey D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); University of Oregon, Eugene, OR 97403-1274 (United States); Parekh, Ruchi M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Suffolk County Community College, Selden, NY 11784 (United States); McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973 (United States); Sweet, Robert M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-09

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  18. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    International Nuclear Information System (INIS)

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-01-01

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies

  19. Correlation of the crystal orientation and electrical properties of silicon thin films on glass crystallized by line focus diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Huang, J.; Teal, A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Suntech R& D Australia, Botany, NSW 2019 (Australia); Varlamov, S.; Green, M.A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-06-30

    In this work, crystallographic orientation of polycrystalline silicon films on glass formed by continuous wave diode laser crystallization was studied. Most of the grain boundaries were coincidence lattice Σ3 twin boundaries and other types of boundaries such as, Σ6, Σ9, and Σ21 were also frequently observed. The highest photoluminescence signal and mobility were observed for a grain with (100) orientation in the normal direction. X-ray diffraction results showed the highest occupancies between 41 and 70% along the (110) orientation. However, the highest occupancies changed to (100) orientation when a 100 nm thick SiO{sub x} capping layer was applied. Suns-Voc measurement and photoluminescence showed that higher solar cell performance is obtained from the cell crystallized with the capping layer, which is suspected from increased occupancies of (100) orientation. - Highlights: • Linear grains parallel to the scan direction formed with high density. • Σ3 coincidence lattice (CSL) boundaries found inside a grain • Grain boundaries exhibit various CSL boundaries such as Σ9, Σ18, and Σ27. • Grain with < 100 > orientation in normal direction showed highest electrical properties. • Improved voltage observed when percentage of < 100 > normal orientation is increased.

  20. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A. N., E-mail: anz@psu.ru; Petrov, D. A. [Perm State National Research University (Russian Federation)

    2016-10-15

    We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

  1. How Short-Lived Ikaite Affects Calcite Crystallization

    OpenAIRE

    Besselink, R; Rodriguez-Blanco, JD; Stawski, TM; Benning, LG; Tobler, DJ

    2017-01-01

    The pathways of CaCO3 crystallization are manifold, often involving one or several metastable amorphous or nanocrystalline intermediate phases. The presence of such intermediates is often overlooked, because they are short-lived and/or occur at small molar fractions. However, their occurrence does not just impact the mechanisms and pathways of formation of the final stable CaCO3 phase, but also affects their crystal size, shape, and structure. Here we document the presence of a short-lived in...

  2. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M

    1988-04-01

    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  3. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    Science.gov (United States)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  4. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  5. Neutron single crystal diffraction studies of orientational glass state in the [Rbx(NH4)1-x]3H(SO4)2 mixed crystals

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Reehuis, M.; Loose, A.; Hohlwein, D.; Hoffmann, J.U.; Wozniak, K.; Dominiak, P.; Baranov, A.I.; Dolbinina, V.V.

    2005-01-01

    The [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystal with the concentration x=0.0 at room temperature crystallizes in a monoclinic C2/c with sp.gr. (space group), which is stabilized for x>0.09 down to low temperatures. This system is transformed in the orientational glass state below the freezing temperature T g =30 K. The differential Fourier maps for the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals show that if for x=0.0 and 0.11 at 293 K the obtained maps reflect different orientational positions of crystallographically independent NH 4 (1) and NH 4 (2) groups, then the differential Fourier maps for x=0.20 at 9 K in the orientational glass state are similar for both ammonium groups reflecting their static disorder. The existence of the modulated structure in the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals with x=0.11 at 2 K is discovered, while the modulated structure for x=0.20 at 2 K is absent. This observation supposes that there should be two different regions of the orientational glass state on x-T phase diagram of the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals

  6. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  7. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  8. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    Science.gov (United States)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14

  9. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  10. Coprecipitation of cadmium with calcite

    International Nuclear Information System (INIS)

    Fujino, Osamu; Kumagai, Tetsu; Shigematsu, Tsunenobu; Matsui, Masakazu

    1976-01-01

    The distribution of cadmium between precipitates of calcite and saturated aqueous solution was measured at 25 0 C to understand the distribution of cadmium in the bivalves. Calcite was precipitated from calcium bicarbonate solution by the gradual release of carbon dioxide. The cadmium ions were coprecipitated in calcite, obeying the logarithmic distribution law. The apparent distribution coefficient was decreased as α, α'-dipyridyl increased, but the true distribution coefficient was found to be an almost constant value, 560. This value is fairly close to the ratio of solubility product constants K sub(calcite)/K sub(CdCO 3 ), 890. This suggests that the deviation of the present solid solution from ideality is not very large. (auth.)

  11. Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite

    International Nuclear Information System (INIS)

    Arai, Takashi; Tsukahara, Hiroaki; Morikiyo, Toshiro

    2003-01-01

    The Nojima fault appeared on the surface in the northern part of Awaji Island, central Japan as a result of the Hyogo-ken Nanbu earthquake (1995, M=7.2). Active fault drilling was performed by the Disaster Prevention Research Institute (DPRI), Kyoto University, and core samples were retrieved from 1410 to 1710 m, which were composed of intact and fractured granodiorites. We obtained calcite samples and gas samples from the vein in marginal fracture and non-fracture zones. We analyzed the carbon and oxygen isotope ratios of calcite and carbon dioxide to investigate the characteristic isotope ratios of fluids in the active fault zone, to estimate the origins of fluids, and to determine the sealing process of fractures. The analyzed values of carbon and oxygen isotope ratios of calcite were -10.3 to -7.2 per mille, 18 to 23 per mille, respectively, and carbon isotope ratios of CO 2 were -21 to -17 per mille. If carbon isotope ratios of calcite were at equilibrium with those of CO 2 , the precipitation temperature of calcite is calculated to be 30 to 50 deg C. This temperature is consistent with the present temperature of the depth where drilling cores were retrieved. Oxygen isotope ratios of H 2 O that, precipitated calcite were calculated to be -1.8 to -5.5 per mille. These values indicate calcite were precipitated from mixed fluids of sea water and meteoric water. Therefore, the marginal fracture zone of the Nojima fault was sealed with calcite, which was generated from mixing of sea water and meteoric water in situ. (author)

  12. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    Science.gov (United States)

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  13. Calcite Twin Analysis in the Central Andes of Northern Argentina and Southern Bolivia

    Science.gov (United States)

    Hardesty, E.; Hindle, D.

    2005-12-01

    The use of calcite twinning to infer compression directions and strain axes patterns has been applied widely in both fold and thrust belts, and continental interiors. Calcite twinning is noted to be one of the most precise methods for determining the internal strain of deformed rocks. Until now, such data from the deformed plate boundary of the Central Andes were lacking. This study has examined twinning orientations along the deformed Andean foreland (southern Bolivia and northern Argentina) from -25 to -20 latitude. In the Central Andes, we find an abundance of calcite twins in intervals of the Cretaceous age Yacorite limestone. Twin samples were collected, measured for orientation and type (I and II can be best used for strain analysis), and processed using the Groshong method, to give resultant strain tensors. The orientations of the twin short axes trend mostly NE-SW, which is close to the plate convergence direction. However, in a limited number of samples from the north, adjacent to the southern culmination of the active Subandean fold thrust belt, they trend NW-SE. This difference may be related to the more active, or more recent, shortening of the southern portion of the Eastern Cordillera, south of the culmination of the Subandean belt. This implies that twin short axes vary consistently with respect to geographic location and local tectonic regime. NW-SE trends in the northern region match well with fault kinematic studies in rocks pre-dating the San Juan del Oro unconformity (9-10 Ma). NE-SW trends in the south could correspond to much younger (~1-3 Ma) fault kinematic trends. In the Eastern Cordillera, where there is present day tectonic activity, the plunges of the twin short axes are found to be almost horizontal. This suggests that the twins were formed after folding occurred.

  14. The Raman spectrum of CaCO{sub 3} polymorphs calcite and aragonite: A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    De La Pierre, Marco, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; Maschio, Lorenzo; Orlando, Roberto; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS (Nanostructured Interfaces and Surfaces) Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Carteret, Cédric, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; André, Erwan [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Université de Lorraine-CNRS, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France)

    2014-04-28

    Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a “hybrid” functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm{sup −1} for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all the fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to {sup 18}O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra.

  15. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  16. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  17. Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.

    Science.gov (United States)

    Rey, Rossend

    2008-01-17

    A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.

  18. Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals

    International Nuclear Information System (INIS)

    Um, Junshik; McFarquhar, Greg M.

    2013-01-01

    The optimal orientation averaging scheme (regular lattice grid scheme or quasi Monte Carlo (QMC) method), the minimum number of orientations, and the corresponding computing time required to calculate the average single-scattering properties (i.e., asymmetry parameter (g), single-scattering albedo (ω o ), extinction efficiency (Q ext ), scattering efficiency (Q sca ), absorption efficiency (Q abs ), and scattering phase function at scattering angles of 90° (P 11 (90°)), and 180° (P 11 (180°))) within a predefined accuracy level (i.e., 1.0%) were determined for four different nonspherical atmospheric ice crystal models (Gaussian random sphere, droxtal, budding Bucky ball, and column) with maximum dimension D=10μm using the Amsterdam discrete dipole approximation at λ=0.55, 3.78, and 11.0μm. The QMC required fewer orientations and less computing time than the lattice grid. The calculations of P 11 (90°) and P 11 (180°) required more orientations than the calculations of integrated scattering properties (i.e., g, ω o , Q ext , Q sca , and Q abs ) regardless of the orientation average scheme. The fewest orientations were required for calculating g and ω o . The minimum number of orientations and the corresponding computing time for single-scattering calculations decreased with an increase of wavelength, whereas they increased with the surface-area ratio that defines particle nonsphericity. -- Highlights: •The number of orientations required to calculate the average single-scattering properties of nonspherical ice crystals is investigated. •Single-scattering properties of ice crystals are calculated using ADDA. •Quasi Monte Carlo method is more efficient than lattice grid method for scattering calculations. •Single-scattering properties of ice crystals depend on a newly defined parameter called surface area ratio

  19. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    International Nuclear Information System (INIS)

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-01-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4 ' -cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 μm are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface π-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network

  20. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.

    Science.gov (United States)

    Corkery, Robert W; Tyrode, Eric C

    2017-08-06

    Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular

  1. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  2. Role of orientation of nucleus of crystal during the process of synthesis of fine crystalline oxides at high temperatures and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panasyuk, G P; Belan, V N; Voroshilov, I L; Shabalin, D G [IGIC RAS, N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (Russian Federation)], E-mail: Panasyuk@igic.ras.ru

    2008-07-15

    The structural transformations of hydrargillite Al(OH){sub 3} and boehmite AlOOH were studied on thermovaporous autoclaving and on heat treatment. A special attention was paid to the morphology of initial flocculated and loose hydrargillite crystals, of the again segregating flocculi boehmite intermediate phase, and to the morphology of the end product - corundum single - or polycrystals. It is shown that on thermovaporous autoclaving the intraflocculi orientation of the boehmite crystals is decisive in the corundum single crystals formation. The degree of identity of the boehmite crystals orientation qualifies the sizes of the growing corundum crystals. It is shown, that after heat treatment in air at <1200 deg. C alpha-alumina forms, the habitus of the initial crystals remains unchanged, but at 1400-1500 deg. C in vacuum it alters, and equally oriented alumina grains sinter. Influence of the mutual crystals orientation at different stages of structural transformations is explored. Keywords: autoclaving, hydrargillite, boehmite, corundum.

  3. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  4. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  5. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the

  6. Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model

    International Nuclear Information System (INIS)

    Xiong, Kai; Liu, Xiaohui; Gu, Jianfeng

    2014-01-01

    The anisotropic mechanical behavior of γ-TiAl alloys has been observed and repeatedly reported, but the effect of crystallographic orientations on the crystal instability of γ-TiAl is still unclear. In this paper, the orientation-dependent crystal instability of γ-TiAl single crystals was investigated by performing nanoindentation on different crystal surfaces. All the nanoindentations are simulated using an interatomic potential finite-element model (IPFEM). Simulation results show that the load–displacement curves, critical indentation depth and critical load for crystal instability as well as indentation modulus, are all associated with surface orientations. The active slip systems and the location of crystal instability in five typical nanoindentations are analyzed in detail, i.e. the (0 0 1), (1 0 0), (1 0 1), (1 1 0) and (1 1 1) crystal surfaces. The predicted crystal instability sites and the activated slipping systems in the IPFEM simulations are in good agreement with the dislocation nucleation in molecular dynamics simulations. (paper)

  7. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies

    Directory of Open Access Journals (Sweden)

    Silvia Frisia

    2015-01-01

    Full Text Available The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

  8. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  9. Origin of calcite in the glacigenic Virttaankangas complex

    Directory of Open Access Journals (Sweden)

    Nina M. Kortelainen

    2007-01-01

    Full Text Available Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 % in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite.

  10. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    International Nuclear Information System (INIS)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E.; Lakshtanov, L.Z.; Baker, J.A.

    2006-01-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10 -4 , which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10 -4 mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am 3+ and Cm 3+ , will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as solution conditions

  11. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    Science.gov (United States)

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  12. Designs of Plasmonic Metamasks for Photopatterning Molecular Orientations in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yubing Guo

    2016-12-01

    Full Text Available Aligning liquid crystal (LC molecules into spatially non-uniform orientation patterns is central to the functionalities of many emerging LC devices. Recently, we developed a new projection photopatterning technique by using plasmonic metamasks (PMMs, and demonstrated high-resolution and high-throughput patterning of molecular orientations into arbitrary patterns. Here we present comparisons between two different types of metamask designs: one based on curvilinear nanoslits in metal films; the other based on rectangular nanoapertures in metal films. By using numerical simulations and experimental studies, we show that the PMMs based on curvilinear nanoslits exhibit advantages in their broadband and high optical transmission, while face challenges in mask designing for arbitrary molecular orientations. In contrast, the PMMs based on nanoapertures, though limited in optical transmission, present the great advantage of allowing for patterning arbitrary molecular orientation fields.

  13. Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance

    Directory of Open Access Journals (Sweden)

    Pablo Docampo

    2014-08-01

    Full Text Available Perovskite solar cells are emerging as serious candidates for thin film photovoltaics with power conversion efficiencies already exceeding 16%. Devices based on a planar heterojunction architecture, where the MAPbI3 perovskite film is simply sandwiched between two charge selective extraction contacts, can be processed at low temperatures (<150 °C, making them particularly attractive for tandem and flexible applications. However, in this configuration, the perovskite crystals formed are more or less randomly oriented on the surface. Our results show that by increasing the conversion step temperature from room temperature to 60 °C, the perovskite crystal orientation on the substrate can be controlled. We find that films with a preferential orientation of the long axis of the tetragonal unit cell parallel to the substrate achieve the highest short circuit currents and correspondingly the highest photovoltaic performance.

  14. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    Science.gov (United States)

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of crystal orientation on magnetostriction waveform in grain orientated electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, Gou, E-mail: g-kijima@jfe-steel.co.jp [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, 210-0855 (Japan); Yamaguchi, Hiroi; Senda, Kunihiro; Hayakawa, Yasuyuki [Steel Research Laboratory, JFE Steel Corporation, Kurashiki, 712-8511 (Japan)

    2014-08-01

    Aiming to gain insight into the mechanisms of grain-oriented electrical steel sheet magnetostriction waveforms, we investigated the influence of crystal orientations. An increase in the β angle results in an increase in the amplitude of magnetostriction waveform, but does not affect the waveform itself. By slanting the excitation direction to simulate the change of the α angle, change in the magnetostriction waveform and a constriction–extension transition point in the steel plate was observed. The amplitude, however, was not significantly affected. We explained the nature of constriction–extension transition point in the magnetostriction waveform by considering the magnetization rotation. We speculated that the change of waveform resulting from the increase in the coating tensile stress can be attributed to the phenomenon of the magnetization rotation becoming hard to be generated due to the increase of magnetic anisotropy toward [001] axis. - Highlights: • β angle is related with the amplitude of magnetostriction waveform. • α angle is related with the magnetostriction waveform itself. • The effect of α angle can be controlled by the effect of coating tensile stress.

  16. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  17. Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation

    Science.gov (United States)

    Delev, V. A.; Krekhov, A. P.

    2017-12-01

    The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving "abnormal" rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.

  18. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  19. Influence of crystal shapes on radiative fluxes in visible wavelength: ice crystals randomly oriented in space

    Directory of Open Access Journals (Sweden)

    P. Chervet

    1996-08-01

    Full Text Available Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes, sizes and various concentrations. We considered ice particles randomly oriented in space (3D case and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.

  20. Coccolith calcite time capsules preserve a molecule-specific record of pCO2

    Science.gov (United States)

    McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.

    2017-12-01

    Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6

  1. From nanometer aggregates to micrometer crystals

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas; Dideriksen, Knud; Lakshtanov, Leonid

    2014-01-01

    Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid-solid interactions...... and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of sediments to rock during geological time. We investigated coarsening of pure, synthetic calcite powder of sub-micrometer diameter crystals and aged...... it in saturated solutions at 23, 100, and 200 °C for up to 261 days. Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis showed rapid coarsening at 100 and 200 °C. Evidence of particle growth at 23 °C was not visible by SEM, but high resolution X-ray diffraction (XRD) data...

  2. Orientation dependence of shape memory and super elastic effects in Ti-30% Ni-20% Cu single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Yu.I.; Kireeva, I.V.

    1999-01-01

    Single crystals of Ti-30% Ni-20% Cu (at.%) alloy experiencing B2-B19 martensitic transformation are used to study the dependence of deforming stress σ cr , shape memory effect and super elasticity on test temperature, crystal orientation and the sign of tension/compression stresses. It is shown that experimental values of shape memory effect and super elasticity as well as their dependences on orientation and loading regime are described within the frameworks of the model taking into account lattice distortions only. The orientation dependence and axial stress asymmetry in the temperature range of stress-induced martensite formation are determined by the dependence of lattice distortion during B2-B19 martensitic transformations on the orientation and the sign of applied stresses [ru

  3. Rationale of a quick adjustment method for crystal orientation in oscillation photography

    International Nuclear Information System (INIS)

    Suh, I.H.; Suh, J.M.; Ko, T.S.

    1988-01-01

    The rationale for a convenient crystal orientation method for oscillation photography is presented. The method involves the measurement of the deviations of reflection spots from the equator. These deviations are added or subtracted to give the horizontal and vertical arc corrections. (orig.)

  4. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Science.gov (United States)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-05-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global

  5. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  6. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  7. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  8. Geochemical and isotope aspects of calcite deposits and calcitic marbles hosts mineralizations, Serra do Carumbe, Vale do Ribeira, Parana state, Brazil

    International Nuclear Information System (INIS)

    Venusso, Gerson Caetano; Andrade e Silva, Antonio C. Gondim de

    2011-01-01

    The calcite deposits and the calcitic marbles hosts occur in Serra do Carumbe, in the Vale do Ribeira region, Parana State, were studied in their geochemical and isotopic aspects viewing the gathering of information about their genesis and economical use. The calcite deposits are constituted by veins and lenses, being three of them concordant and one discordant in relation to the S_0 from the hosting marbles. In these deposits four main types of calcite were recognized: rombohedrical, fibrous, banded and microcrystalline. The calcite reveal themselves having high purity, with CaO concentration above 55.30% and MgO below 0.42%. The lithogeochemical study of the marbles sequence was conducted in various suites revealing an uniformity in their composition, with high values of CaO (above 46.92%) in relation to the MgO values (below 3,37%), what favors their use for cement manufacture, except in sectors that suffered fault influences, where the marbles are impure (siliceous, magnesian, ferruginous and aluminous). Regarding their trace elements content, the hosting calcitic marbles have higher concentrations than the calcite, in the elements Sr, B, Ba and Mg, what makes evident their different formation environments. The δ"1"3C values from calcite range from –9,02 to –12,24 ‰ , referring to PDB, while the values δ"1"8O range from 24,48 to 25,23 ‰, referring to SMOW; meanwhile, for the calcitic marbles, the δ"1"3C values range from –4,03 to 1,42‰ and of δ"1"8O range from 20,71 to 23,00 ‰. The high δ"1"8O values would indicate enrichment referring to the interaction of the calcite's generator fluid with the carbonatic host rock. The δ"1"3C values indicate origin from hydrothermal solution for the calcite, although they would not allow to conclude if their sources would be superficial or profound. As for the hosting calcitic marbles, the isotopic values indicate genesis from pre-cambrian marine limestone. (author)

  9. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  10. Occurrences of ikaite and pseudomorphs after ikaite in Patagonian lakes - crystal morphologies and stable isotope composition

    Science.gov (United States)

    Oehlerich, Markus; Mayr, Christoph; Griesshaber, Erika; Ohlendorf, Christian; Zolitschka, Bernd; Sánchez-Pastor, Nuria; Kremer, Barbara; Lücke, Andreas; Oeckler, Oliver; Schmahl, Wolfgang

    2010-05-01

    Ikaite (CaCO3•6H2O), a hydrated calcium carbonate mineral occasionally found in marine sediments, has so far rarely been reported from non-marine sites. Modern ikaite and calcitic pseudomorphs after ikaite were recently discovered in Patagonian Argentina at the polymictic lakes of Laguna Potrok Aike (51°57´S, 70°23´W) and Laguna Cháltel (49°57´S, 71°07´W), respectively. Both lakes are of volcanic origin and have phosphorous-rich, alkaline waters, but differ in altitude (790 m asl and 110 m asl for Laguna Cháltel and Laguna Potrok Aike, respectively) and water temperature. The aim of this study is (1) to investigate conditions for the formation of ikaite and its transformation to more stable, water-free carbonate pseudomorphs after ikaite and (2) to assess the potential of ikaite and calcite pseudomorphs after ikaite as a paleoenvironmental tool in freshwater lakes. Crystallographic, morphological and isotopic characteristics of the pseudomorphs were investigated. Ikaite crystals were found (in September 2008) primarily on aquatic macrophytes and cyanobacteria colonies at Laguna Potrok Aike. Ikaite crystals transformed quickly to calcite pseudomorphs after ikaite after recovery from the cool lake water (4°C). The crystal structure of ikaite was investigated with single crystal X-ray diffraction on samples that were permanently kept cold (in the lake water). At Laguna Cháltel calcite pseudomorphs after ikaite were discovered in littoral sediment cores from 25 m water depth. The mm-sized, porous, polycrystalline calcium carbonate aggregates from the 104 cm long sediment core of Laguna Cháltel are morphologically pseudomorphs after ikaite. SEM and XRD analyses highlight that these pseudomorphs consist of several µm-small calcite crystals in a calcitic matrix. The shape of these micro-crystals changes from rounded to fibrous with increasing sediment depth. Some specimens show casts of cyanobacteria trichomes. The oxygen isotopic composition of calcite

  11. Mechanisms of metasomatism in the calcite-pitchblende system: 2. Replacement of pitchblende by calcite

    International Nuclear Information System (INIS)

    Dymkov, Yu.M.

    1996-01-01

    The principal mechanisms of the nasturan replacement by calcite -intrametasomatism, frontal metasomatism, dispersive metasomatism, and transformative metasomatism - are discussed in terms of G.L. Pospelov's (1973) concept. The main chemical condition required by the process is an oxidized environment, in which the tetravalent uranium of pitchblende or transitional reduced phases (coffinite) oxidizes to yield readily soluble uranyl compounds. The latter are replaced by calcite

  12. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  13. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...

  14. High-Magnesian Calcite Mesocrystals : A Coordination Chemistry Approach

    NARCIS (Netherlands)

    Lenders, Jos J. M.; Dey, Archan; Bomans, Paul H. H.; Spielmann, Jan; Hendrix, Marco M. R. M.; de With, Gijsbertus; Meldrum, Fiona C.; Harder, Sjoerd; Sommerdijk, Nico A. J. M.

    2012-01-01

    While biogenic calcites frequently contain appreciable levels of magnesium, the pathways leading to such high concentrations remain unclear. The production of high-magnesian calcites in vitro is highly challenging, because Mg-free aragonite, rather than calcite, is the favored product in the

  15. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of

  16. A low-temperature sample orienting device for single crystal spectroscopy at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Sherline, T E; Solomon, L; Roberts, C K II; Bruce, D; Gaulin, B; Granroth, G E, E-mail: sherlinete@ornl.gov

    2010-11-01

    A low temperature sample orientation device providing three axes of rotation has been successfully built and is in testing for use on several spectrometers at the spallation neutron source (SNS). Sample rotation about the vertical ({omega}) axis of nearly 360 deg. and out of plane tilts ({phi} and v) of from -3.4 deg. to 4.4 deg. and from -2.8 deg. to 3.5 deg., respectively, are possible. An off-the-shelf closed cycle refrigerator (CCR) is mounted on a room temperature sealed rotary flange providing {omega} rotations of the sample. Out-of-plane tilts are made possible by piezoelectric actuated angular positioning devices mounted on the low temperature head of the CCR. Novel encoding devices based on magnetoresistive sensors have been developed to measure the tilt stage angles. This combination facilitates single crystal investigations from room temperature to 3.1 K. Commissioning experiments of the rotating CCR for both powder and single crystal samples have been performed on the ARCS spectrometer at the SNS. For the powder sample this device was used to continuously rotate the sample and thus average out any partial orientation of the powder. The powder rings observed in S(Q) are presented. For the single crystal sample, the rotation was used to probe different regions of momentum transfer (Q-space). Laue patterns obtained from a single crystal sample at two rotation angles are presented.

  17. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  18. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  19. Using neutron diffraction to examine the onset of mechanical twinning in calcite rocks

    Science.gov (United States)

    Covey-Crump, S. J.; Schofield, P. F.; Oliver, E. C.

    2017-07-01

    Experimental calibration of the calcite twin piezometer is complicated by the difficulty of establishing the stresses at which the twins observed in the final deformation microstructures actually formed. In principle, this difficulty may be circumvented if the deformation experiments are performed in a polychromatic neutron beam-line because this allows the elastic strain (and hence stress) in differently oriented grains to be simultaneously monitored from diffraction patterns collected as the experiment is proceeding. To test this idea small strain (marble (grain size 150 μm) and Solnhofen limestone (5 μm) at temperatures of 20°-600 °C using the ENGIN-X instrument at the ISIS neutron facility, UK. At the lowest temperatures (25 °C Carrara; 200 °C Solnhofen) the deformation response was purely elastic up to the greatest stresses applied (60 MPa Carrara; 175 MPa Solnhofen). The sign of the calcite elastic stiffness component c14 is confirmed to be positive when the obverse setting of the calcite rhombohedral lattice in hexagonal axes is used. In the Carrara marble samples deformed at higher temperatures, elastic twinning was initiated at small stresses (<15 MPa) in grains oriented such that the Schmid factor for twinning was positive on more than one e-twin system. At greater stresses (65 MPa at 200 °C decreasing to 41 MPa at 500 °C) there was an abrupt onset of permanent twinning in grains with large Schmid factors for twinning on any one e-twin system. No twinning was observed in the Solnhofen limestone samples deformed at 200° or 400 °C at applied stresses of <180 MPa. These results highlight the potential of this approach for detecting the onset of twinning and provide, through experiments on samples with different microstructures, a strategy for systematically investigating the effects of microstructural variables on crystallographically-controlled inelastic processes.

  20. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  1. Orientational behavior of a nematic liquid crystal filled with inorganic oxide nanoparticles

    International Nuclear Information System (INIS)

    Gavrilko, T.; Kovalchuk, O.; Nazarenko, V.; Hauser, A.; Kresse, H.

    2004-01-01

    We report the results of dielectric spectroscopy, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies performed on the nematic liquid crystal (LC) mixture Merck ZLI-1132 filled with TiO 2 (rutile and anatase) and SiO 2 nanoparticles. The observed static dielectric permittivities are interpreted in terms of orientation of the LC with respect to the measuring electric field. Adding of SiO 2 particles mainly induces a statistical orientation of LC molecules, whereas TiO 2 particles promote the perpendicular orientation. The dynamics of LC molecules in all systems is very similar. The reason for the slightly faster reorientation observed in the mixtures may be connected with a disturbed nematic order near the surface of solid particles

  2. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  3. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis

    International Nuclear Information System (INIS)

    Yoshiko Fujita; George D. Redden; Jani C. Ingram; Marnie M. Cortez; Robert W. Smith

    2004-01-01

    Strontium incorporation into calcite generated by bacterial ureolysis was investigated as part of an assessment of a proposed remediation approach for 90Sr contamination in groundwater. Urea hydrolysis produces ammonium and carbonate and elevates pH, resulting in the promotion of calcium carbonate precipitation. Urea hydrolysis by the bacterium Bacillus pasteurii in a medium designed to mimic the chemistry of the Snake River Plain Aquifer in Idaho resulted in a pH rise from 7.5 to 9.1. Measured average distribution coefficients (DEX) for Sr in the calcite produced by ureolysis (0.5) were up to an order of magnitude higher than values reported in the literature for natural and synthetic calcites (0.02-0.4). They were also higher than values for calcite produced abiotically by ammonium carbonate addition (0.3). The precipitation of calcite in these experiments was verified by X-ray diffraction. Time-of-flight secondary ion mass spectrometry (ToF SIMS) depth profiling (up to 350 nm) suggested that the Sr was not merely sorbed on the surface, but was present at depth within the particles. X-ray absorption near edge spectra showed that Sr was present in the calcite samples as a solid solution. The extent of Sr incorporation appeared to be driven primarily by the overall rate of calcite precipitation, where faster precipitation was associated with greater Sr uptake into the solid. The presence of bacterial surfaces as potential nucleation sites in the ammonium carbonate precipitation treatment did not enhance overall precipitation or the Sr distribution coefficient. Because bacterial ureolysis can generate high rates of calcite precipitation, the application of this approach is promising for remediation of 90Sr contamination in environments where calcite is stable over the long term

  4. An investigation of the heterogeneous nucleation of calcite

    International Nuclear Information System (INIS)

    House, W.A.; Tutton, J.A.

    1982-01-01

    The heterogeneous precipitation kinetics of calcite from dilute calcium bicarbonate solutions onto pyrex glass seeds is investigated by using a modified form of the Davies and Jones equation. The rate constant is evaluated from experiments using calcite seeds and it is demonstrated that the growth rate does not increase in proportion to the increase in surface area accompanying precipitation. The number of heteronucleated particles is estimated by assuming a constant density of growth sites on the different calcite surfaces. A comparison is made between the specific surface areas of calcite obtained by the calcium-45 isotopic exchange method and other values. (orig.)

  5. arXiv Strong reduction of the effective radiation length in an oriented PWO scintillator crystal

    CERN Document Server

    Bandiera, L.; Romagnoni, M.; Argiolas, N.; Bagli, E.; Ballerini, G.; Berra, A.; Brizzolani, C.; Camattari, R.; De Salvador, D.; Haurylavets, V.; Mascagna, V.; Mazzolari, A.; Prest, M.; Soldani, M.; Sytov, A.; Vallazza, E.

    We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline electromagnetic field. The data collected at the external lines of CERN SPS were critically compared to Monte Carlo simulations based on the Baier Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of five in case of beam alignment with the [001] crystal axes. The observed effect opens the way to the realization of compact electromagnetic calorimeters/detectors based on oriented scintillator crystals in which the amount of material can be strongly reduced with respect to the state of the art. These devices could have relevant applications in fixed-target experiments as well as in satellite-borne gamma-telescopes.

  6. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    Science.gov (United States)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  7. Thermoluminescence from natural calcites

    International Nuclear Information System (INIS)

    Calderon, T.; Jaque, F.; Coy-yll, R.

    1984-01-01

    Thermoluminescence (TL) as well as absorption and EPR spectra of x-irradiated natural calcites have been obtained. Irradiation produces UV absorption bands and a decrease of the Mn 2+ EPR spectrum. A correlation of each TL peak with the bleaching steps of UV absorption bands and the recovering in intensity of the Mn 2+ EPR spectrum has been found. These experimental results support a new model for the radiation damage and thermoluminescence process in calcites. The main point in this model is that holes become trapped at impurities, and the electrons are trapped at dislocations in the form of CO 3 3- . (author)

  8. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  9. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation.

    Science.gov (United States)

    Gao, Yuesheng; Gao, Zhiyong; Sun, Wei; Yin, Zhigang; Wang, Jianjun; Hu, Yuehua

    2018-02-15

    The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H 2 PO 4 - /HPO 4 2- and Ca 2+ ) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO 4 2- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The surface destabilization effect of nitrate on the calcite (104). Water interface and yttrium(III) sorption thereon

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E.; Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Stubbs, J.E.; Eng, P.J. [Chicago Univ., IL (United States). Center for Advanced Radiation Sources; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2016-07-01

    Calcite, as a most abundant mineral on earth, was studied with X-ray reflectivity under the influence of NaNO{sub 3} [1]. The calcite (104) surface undergoes significant destabilization effects in the presence of NaNO{sub 3}, which occurs as partial dissolution and the formation of an amorphous layer at the interface. The disordering of the surface reaches more than 15 Aa into the crystal bulk. Furthermore, this surface modification has also an effect on the sorption behavior of the rare earth element Y. Without NaNO{sub 3} Y{sup 3+} adsorbs as both inner and outer sphere complexes, this was verified with resonant anomalous X-ray reflectivity (RAXR). If NaNO{sub 3} is present, both species desorbs from the surface completely.

  11. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  12. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  13. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  14. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    Science.gov (United States)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock

  15. Geochemical signatures of fluid paleo-transfer in fracture filling calcite from low permeability rock masses: examples taken from Bure's and Tournemire's site in France and northern Switzerland; Signatures geochimiques de paleocirculations aqueuses dans la calcite de remplissage de fracture de massifs argileux peu permeables et de leurs encaissants: exemples pris sur les sites de Bure, Tournemire et Suisse du nord

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, D

    2002-12-15

    Fractures in rock masses represent preferential path for fluid transfer and, as such, are the most efficient way for migration of radionuclides at a regional scale. The impact of fracturing on hydrogeological system is a major challenge for underground radioactive waste storage projects. In this context, geochemistry of fracture-filling calcite is used to better understand physical and chemical properties of palaeo-fluids. A new methodology has been developed to analyze Mg, Mn, Fe, Sr and Rare Earth Elements REE (La, Ce, Nd, Sm, Eu, Dy and Yb) in calcite by Secondary Ion Mass Spectrometry. Analyses of calcite crystals have been performed in fractures from Jurassic clays and limestones in France (Bure and Tournemire sites) and northern Switzerland (Mt Terri's tunnel and deep borehole). On each case, several geochemical signatures are observed, according to REE partitioning and Mn and Fe concentrations. In the Bure site, a dependence of calcite geochemistry from fracture host rock has been evidenced. On the other hand, speciation of REE in solution equilibrated with clayey or calcareous rocks at circum-neutral pH (7 to 8) is not significantly influenced by the media: speciation is dominated by carbonate species in both cases and phosphate complexes can modify heavy REE availability in relatively to light REE. These results point out that in fractures in clays, calcite crystallizes at equilibrium with a fluid expulsed during diagenesis from clay minerals, recording the effect of clays and accessory phases. In limestone fractures, calcite records a later event related to the past functioning of the present aquifer, and the fluid has reached equilibrium with the rock minerals. In secondary filling calcite from Toarcian Argilites faults close to Tournemire's tunnel, three successive generations of calcite are observed in an extensive fault, and a fourth in a compressive one. In Aalenian Opalinus Clays veins, comparison between existing isotopic data and Mn, Fe

  16. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  17. Atom-resolved AFM imaging of calcite nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hirotake; Kimura, Kenjiro [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan); Onishi, Hiroshi, E-mail: oni@kobe-u.ac.jp [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite.

  18. Atom-resolved AFM imaging of calcite nanoparticles in water

    International Nuclear Information System (INIS)

    Imada, Hirotake; Kimura, Kenjiro; Onishi, Hiroshi

    2013-01-01

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite

  19. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  20. Manganese-calcium intermixing facilitates heteroepitaxial growth at the 101¯4 calcite-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; Du, Yingge; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Qafoku, Odeta; Kerisit, Sebastien

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display a 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.

  1. Precise adjustment of the orientation of a crystal mounted on a goniometric head; Reglage precis de l'orientation d'un cristal monte sur une tete goniometrique

    Energy Technology Data Exchange (ETDEWEB)

    Tournarie, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Curien, H [Laboratoire de Mineralogie-Cristallographie, Sorbonne, 75 - Paris (France)

    1959-07-01

    Trigonometric calculus required to give the orientation of a crystal with a good accuracy, is presented in order to show the use of an E 101 computer. (author) [French] Les calculs trigonometriques necessaires pour orienter d'une maniere precise un cristal sont presentes en vue de leur execution sur une machine E 101. (auteur)

  2. Effect of loading orientations on the microstructure and property of Al−Cu single crystal during stress aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiqiang [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Chen, Zhiguo, E-mail: zgchen@mail.csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Hunan University of Humanities, Science and Technology, Loudi 417000 (China); Deng, Yunlai [School of Material Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083 (China); Guo, Xiaobin; Ren, Jieke [School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-15

    The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and therefore provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.

  3. Study of reverse flotation of calcite from scheelite in acidic media

    Science.gov (United States)

    Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong

    2018-05-01

    A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.

  4. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  5. Crystal orientation and sample preparation effects on sputtering and lattice damage in 100 keV self-irradiated copper

    International Nuclear Information System (INIS)

    Sprague, J.A.; Malmberg, P.R.; Reynolds, G.W.; Lambert, J.M.; Treado, P.A.; Vincenz, A.M.

    1987-01-01

    Sputtering yields and angular distributions have been measured as functions of sample preparation techniques and incident ion-beam orientation with respect to the crystal axes for 100 keV Cu-ion beams on Cu crystals and polycrystalline samples. The angular distributions have structure requiring an nth order cosine with two Gaussians superimposed to fit the data; strong peaking is observed near the backscatter direction. The yield is dependent on the beam to crystal and beam to polycrystalline-rod axis orientation, on the grain size of the polycrystals and on sample-preparation techniques. Yield measurements vary by as much as a factor of 4. Lattice-damage differences, measured with alpha particle channeling, are much smaller and seem to be saturated by fluences of the order of 1x10 16 /cm 2 . (orig.)

  6. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  7. A new crystal growth form of vaterite, CaCO3

    International Nuclear Information System (INIS)

    Shaikh, A.M.

    1990-01-01

    Microcrystalline vaterite, CaCO 3 , has been synthesized by decomposition of ikaite, CaCO 3 .6H 2 O, crystals at room temperature. Scanning electron micrographs show that vaterite occurs as arborescent aggregates ≅30 to 40 μm in size. This growth form has not been described before. It is of interest that the overall morphology of the vaterite is reminiscent of some dendritic calcite tufas, although on a smaller scale. This similarity opens up the possibility that the calcitic tufas such as that associated with the Quaternary Lake Lahonton, Nevada, may have been deposited as vaterite that changed to calcite, while preserving the original growth form. (orig.)

  8. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  9. Aging characteristics of 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} single crystals with different crystal orientations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou (China); Chinese Academy of Sciences, Key Laboratory of Inorganic Function Material and Device, Shanghai (China); Wu, Dun; Fang, Bijun [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou (China); Ding, Jianning [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou (China); Jiangsu University, School of Material Science and Engineering, Zhenjiang (China); Li, Xiaobing; Zhao, Xiangyong; Luo, Haosu [Chinese Academy of Sciences, Key Laboratory of Inorganic Function Material and Device, Shanghai (China); Ko, Jae-Hyeon [Hallym University, Department of Physics, Chuncheon (Korea, Republic of); Ahn, Chang Won [University of Ulsan, Department of Physics and EHSRC, Ulsan (Korea, Republic of)

    2015-06-15

    In this work, the time and temperature dependence of the piezoelectric and ferroelectric properties of the 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} (0.7PMN-0.3PT) single crystals were investigated in order to search for an effective method to improve their properties further. The piezoelectric properties of the [001]-, [110]- and [111]-oriented 0.7PMN-0.3PT single crystals exhibit excellent time stability during the 2-month room-temperature aging process. The re-poling process leads to the improvement of piezoelectric constant d{sub 33} for the [001]-, [110]- and [111]-oriented 0.7PMN-0.3PT single crystals, while the values of electromechanical coupling coefficient k{sub t} change little. During the thermal aging, the values of the measured d{sub 33}, calculated converse piezoelectric constant d{sub 33}{sup *}, maximum strain S{sub max}% and longitudinal electrostrictive coefficient Q of the [001]-, [110]- and [111]-oriented crystal plates increase gradually before the ferroelectric phase transition temperatures (T{sub FPT}, T{sub R-M}, T{sub R-O} and T{sub R-T}) and then decline continuously. The increase in these values before the T{sub FPT} is a result of the phase instability. In general, the [001]- and [110]-oriented 0.7PMN-0.3PT single crystals exhibit large piezoelectricity, excellent time stability and relatively high thermal stability between 20 and 80 C, which is favorable to the piezoelectric applications. (orig.)

  10. Role of Fungi in the Biomineralization of Calcite

    Directory of Open Access Journals (Sweden)

    Saskia Bindschedler

    2016-05-01

    Full Text Available In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C and calcium (Ca. It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is

  11. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile

    2012-01-01

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful...... for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [ Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S.Palentology 2004, 43 (Part 3), 725...... dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...

  12. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.

    Science.gov (United States)

    Dahms, Sven O; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E

    2013-02-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  13. Vanadium K XANES of synthetic olivine: Valence determinations and crystal orientation effects

    International Nuclear Information System (INIS)

    Sutton, S.R.; Newville, M.

    2005-01-01

    Vanadium can exist in a large number of valence states in nature (2+?, 3+, 4+ and 5+) and determinations of V valence is therefore valuable in defining the oxidation states of earth and planetary materials over a large redox range. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy is well-suited for measurements of V valence with ∼micrometer spatial resolution and ∼ppm elemental sensitivity. Applications of microXANES have been demonstrated for basaltic glasses. Applications to minerals are feasible but complicated by orientation effects (e.g. due to polarization of the synchrotron x-ray beam) and some results for spinel have been reported. Here we report initial results for olivine from laboratory crystallization ex-periments. The goal is to define the valence partition-ing between olivine and melt and quantify the magnitude of orientation effects, the latter tested by measuring grains at a variety of orientations in the same charge.

  14. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  15. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  16. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.

    Science.gov (United States)

    Jeong, Jin-Hoon; Jo, Yoon-Soo; Park, Chang-Seon; Kang, Chang-Ho; So, Jae-Seong

    2017-07-28

    In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

  17. Peculiar orientational disorder in 4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP) leading to bipolar crystals.

    Science.gov (United States)

    Burgener, Matthias; Aboulfadl, Hanane; Labat, Gaël Charles; Bonin, Michel; Sommer, Martin; Sankolli, Ravish; Wübbenhorst, Michael; Hulliger, Jürg

    2016-05-01

    180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP)] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals. The spatial inhomogeneous distribution of polarity was investigated by scanning pyroelectric microscopy (SPEM), phase-sensitive second harmonic microscopy (PS-SHM) and selected volume X-ray diffraction (SVXD). As a result, the acceptor groups (NO2 or CN) are predominantly present at crystal surfaces. However, the stochastic process of polarity formation can be influenced by adding a symmetrical biphenyl to a growing system. For this case, Monte Carlo simulations predict an inverted net polarity compared with the growth of pure BNBP and BCNBP. SPEM results clearly demonstrate that 4,4'-dibromobiphenyl (DBBP) can invert the polarity for both crystals. Phenomena reported in this paper belong to the most striking processes seen for molecular crystals, demonstrated by a stochastic process giving rise to symmetry breaking. We encounter here further examples supporting the general thesis that monodomain polar molecular crystals for fundamental reasons cannot exist.

  18. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies

    International Nuclear Information System (INIS)

    Reeder, R.J.; Nugent, M.; Lamble, G.M.; Tait, C.D.; Morris, D.E.

    2000-01-01

    X-ray absorption, luminescence, and Raman spectroscopic studies of U(VI)-containing calcite and aragonite show that the UO 2 2+ ion, the dominant and mobile form of dissolved uranium in near-surface waters, has a disordered and apparently less stable coordination environment when incorporated into calcite in comparison to aragonite, both common polymorphs of CaCO 3 . Their findings suggest that calcite, a widely distributed authigenic mineral in soils and near-surface sediments and a principal weathering product of concrete-based containment structures, is not likely to be a suitable host for the long-term sequestration of U(VI). The more stable coordination provided by aragonite suggests that its long-term retention should be favored in this phase, until it inverts to calcite. Consequently, future remobilization of U(VI) coprecipitated with calcium carbonate minerals should not be ruled out in assessments of contaminated sites. Their observation of a similar equatorial coordination of UO 2 2+ in aragonite and the dominant aqueous species [UO 2 (CO 3 ) 3 4- ] but a different coordination in calcite indicates that a change in UO 2 2+ coordination is required for its incorporation into calcite. This may explain the observed preferential uptake of U(VI) by aragonite relative to calcite

  19. Structural incorporation of Neptunyl(V) into Calcite: Interfacial Reactions and Kinetics

    OpenAIRE

    Heberling, Frank

    2010-01-01

    In this experimental work the calcite-water interface is characterized by means of zetapotential and surface diffraction measurements. Based on the experimental results a new Basic Stern Surface Complexation model for calcite is developed. Neptunyl(V) adsorption at the calcite surface and incorporation into the calcite structure is studied by batch type adsorption- and mixed flow reactor experiments. Adsorption and incorporation species of Neptunyl are investigated by EXAFS spectroscopy.

  20. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  1. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    International Nuclear Information System (INIS)

    Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.

    2013-01-01

    A new approach is presented that allows the efficient localization and orientation of heavy-atom cluster compounds used in experimental phasing by a molecular replacement procedure. This permits the calculation of meaningful phases up to the highest resolution of the diffraction data. Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome

  2. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  3. The effect of annealing atmosphere on the thermoluminescence of synthetic calcite

    International Nuclear Information System (INIS)

    Pagonis, Vasilis

    1998-01-01

    Samples of high purity calcite powder were annealed in air, nitrogen and carbon dioxide atmospheres in the temperature range 300-700 deg. C and in atmospheric pressure. The samples were subsequently irradiated and the effect of the annealing atmosphere and temperature on the thermoluminescence (TL) of the samples was studied. Our results show that both carbonate and oxygen ions play an important part in the TL of calcite annealed in this temperature range. The intensities of the TL signal in the nitrogen and carbon dioxide anneals rise continuously with the annealing temperature. For all annealing temperatures it was found that the carbon dioxide atmosphere caused an increase in the observed TL signal as compared with anneals in an inert nitrogen atmosphere, while the shape of the TL glow curves remained the same. This increase in the observed TL signal is explained via the surface adsorption of carbonate ions. The shape and location of the TL peaks suggest that samples annealed in air exhibit a different type of TL center than samples annealed in nitrogen and carbon dioxide atmospheres. A possible mechanism for the role of oxygen ions involves a surface adsorption process and a subsequent diffusion of oxygen ions in the bulk of the crystal. Annealing of the samples in air at temperatures T>600 deg. C causes a collapse of the TL signal, in agreement with previous studies of calcite powders. No such collapse of the TL signal is observed for the nitrogen and carbon dioxide anneals, suggesting that a different type of TL center and/or recombination center is involved in air anneals. Arrhenius plots for the air anneals yield an activation energy E=0.45±0.05 eV, while the carbon dioxide and nitrogen anneals yield a lower activation energy E=0.28±0.04 eV

  4. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  5. Examination of TL and optical absorption in calcite's mineral

    International Nuclear Information System (INIS)

    Sabikoglu, I.; Can, N.

    2009-01-01

    Calcite which is a form of crystalline of the calcium carbonate composes parent material of chalk stone (limestone) and marble. Calcite which presents in various colors also in our country consists of yellow, blue, transparent and green colors. In this study, green calcite mineral which is taken from the region of Ayvalik, was examined of its thermoluminescence (TL) and optical absorption features in different doses. It has been obtained a large TL peak in 179 degree C and absorption peak in 550 mm.

  6. Physical principles underlying the experimental methods for studying the orientational order of liquid crystals

    International Nuclear Information System (INIS)

    Limmer, S.

    1989-01-01

    The basic physical principles underlying different experimental methods frequently used for the determination of orientational order parameters of liquid crystals are reviewed. The methods that are dealt with here include the anisotropy of the diamagnetic susceptibility, birefringence, linear dichroism, Raman scattering, fluorescence depolarization, electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR). The fundamental assertions that can be obtained by the different methods as well as their advantages, drawbacks and limitations are inspected. Typical sources of uncertainties and inaccuracies are discussed. To quantitatively evaluate the experimental data with reference to the orientational order the general tensor formalism developed by Schmiedel was employed throughout according to which the order matrix comprises 25 real elements yet. Within this context the interplay of orientational ordering and molecular conformation is scrutinized. (author)

  7. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2016-02-01

    Full Text Available A traverse across the Stone Church syncline in the Ordovician Martinsburg turbidites reveals an axial planar cleavage (N40°E, SE dips in regional thrust-related folds (N40°E, shallow plunges and five phases of sparry calcite. Calcite fillings are bedding-parallel, cleavage-parallel, and one vein set cross-cuts both earlier phases; the youngest calcite filling is a bedding-parallel fault gouge that crosscuts the cleavage and preserves top-down-to-the-southeast normal fault kinematics. Calcite veins unique to disharmonically-folded calcareous siltstones (Maxwell, 1962 were also analyzed. Stable isotopic analysis (O, C of all of the calcite phases indicates a uniform fluid source (δ13C −2.0, δ18O −13.3 VPDB and, potentially, a similar precipitation and mechanical twinning age. The twinning strains (n = 1341; average Δσ = −32 MPa; average ε1 = −2.9% in the calcite suite are consistent with SE-NW thrust shortening, and sub-horizontal shortening perpendicular to evolving axial planar cleavage planes in the Stone Church syncline. Calcareous siltstone layers within the Martinsburg Fm. turbidites share concordant bedding planes and are unique, chemically (XRF, but folded and cleaved differently than the surrounding clay-rich Martinsburg turbidites. Neither sediment type yielded detrital zircons. Electron backscatter X-ray diffraction (EBSD and calcite twinning results in a folded calcareous siltstone layer preserving a layer-normal SE-NW shortening strain and Lattice Preferred Orientation (LPO. Shortening axes for the five-phase calcite suite trends ~N40°W, consistent with tectonic transport associated with crystalline nappe emplacement of the Reading Prong within the Piedmont province.

  8. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  9. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell

    International Nuclear Information System (INIS)

    Heredia, A.; Aguilar-Franco, M.; Magana, C.; Flores, C.; Pina, C.; Velazquez, R.; Schaeffer, T.E.; Bucio, L.; Basiuk, V.A.

    2007-01-01

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous α-chitin matrix. We studied mechanisms of interaction of amorphous α-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of α-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 μm in diameter). Our models of crystal-biopolymer interaction found high affinity of CO 3 2- anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca 2+ cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering

  10. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  11. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    Science.gov (United States)

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  12. Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing

    International Nuclear Information System (INIS)

    Han, W.Z.; Zhang, Z.F.; Wu, S.D.; Li, S.X.

    2007-01-01

    The influences of crystallographic orientations on the evolution of dislocation structures and the refinement process of sub-grains in Al single crystals processed by one-pass equal-channel angular pressing (ECAP) were systematically investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Three single crystals with different orientations, denoted as crystal I, crystal II and crystal III, were specially designed according to the shape of the ECAP die. For crystal I, its insert direction is parallel to [1 1 0] and its extrusion direction is parallel to [1-bar11]. For crystal II, the (1-bar11) plane is located parallel to the intersection plane of the ECAP die, and the [1 1 0] direction is along the general shear direction on the intersection plane. For crystal III, the (1-bar11) plane is laid on the plane perpendicular to the intersection of the ECAP die, and the [1 1 0] direction is vertical to the general shear direction. For crystal I, abundant cell block structures with multi-slip characters were formed, and they should be induced by four symmetric slip systems, while for crystal II, there are two sets of sub-grain structures with higher misorientation, making an angle of ∼70 deg., which can be attributed to the interactions of the two asymmetric primary slip planes, whereas for crystal III, only one set of ribbon structures was parallel to the traces of (1-bar11) with the lowest misorientation angle among the three single crystals, which should result from the homogeneous slip on the primary slip plane. The different microstructural features of the three single crystals provide clear experimental evidence that the microstructures and misorientation evolution are strongly affected by the crystallographic orientation or by the interaction between shear deformation imposed by the ECAP die and the intrinsic slip deformation of the single crystals. Based on the experimental results and the

  13. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2017-11-01

    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  14. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  15. A new crystal growth form of vaterite, CaCO sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, A M [Kuwait Univ., Safat (Kuwait). Dept. of Geology

    1990-08-01

    Microcrystalline vaterite, CaCO{sub 3}, has been synthesized by decomposition of ikaite, CaCO{sub 3}.6H{sub 2}O, crystals at room temperature. Scanning electron micrographs show that vaterite occurs as arborescent aggregates {approx equal}30 to 40 {mu}m in size. This growth form has not been described before. It is of interest that the overall morphology of the vaterite is reminiscent of some dendritic calcite tufas, although on a smaller scale. This similarity opens up the possibility that the calcitic tufas such as that associated with the Quaternary Lake Lahonton, Nevada, may have been deposited as vaterite that changed to calcite, while preserving the original growth form. (orig.).

  16. Interaction mechanisms of europium and nickel with calcite

    International Nuclear Information System (INIS)

    Sabau, Andrea

    2015-01-01

    In the context of the safety assessment of an underground repository for nuclear waste, sorption reactions are one of the main processes to take into account to predict the migration of the radionuclides which might be transferred from the waste canisters to underground waters over geological time scales. Sorption of aqueous species on minerals can include adsorption processes, surface (co)-precipitation, and even incorporation in the bulk of the material, which can lead to the irreversibility of some sorption reactions. This work is focused on two elements: Eu(III) as an analogue of trivalent actinides and Ni(II) as activation product. Calcite was chosen as adsorbent due to its presence in Callovian-Oxfordian clay rocks. Our study combines batch experiments with spectroscopic techniques (TRLFS, RBS and SEM-EDXS) to elucidate the mechanisms occurring at Eu(III)/Ni(II) calcite interface. To obtain a better understanding on the systems, before starting sorption experiments, aqueous chemistry of Eu(III) and Ni(II) was carefully investigated. Macroscopic results showed a strong retention of Eu(III) on calcite, no matter the initial concentration, contact time and CO 2 partial pressure. Ni(II) was also readily sorbed by calcite, but the retention was influenced by contact time and concentration. Time-dependent sorption experiments showed a marked and slow increase of retention upon a long time range (up to 4 months).Desorption results indicated a partly reversible sorption for Ni(II). TRLFS highlighted the influence of initial concentration and contact time on the interaction of Eu(III) with calcite. With the help of RBS and SEM-EDXS, it enabled to discriminate between different mechanisms like surface precipitation, inner-sphere complexation and incorporation. RBS showed incorporation of Eu(III) into calcite up to 250 nm, contrary to Ni(II) which was located at the surface. (author) [fr

  17. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    Science.gov (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  18. Graphite edge controlled registration of monolayer MoS{sub 2} crystal orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-I; Butler, Christopher John; Yang, Hung-Hsiang; Chu, Yu-Hsun; Luo, Chi-Hung; Sun, Yung-Che; Hsu, Shih-Hao; Yang, Kui-Hong Ou [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Jing-Kai; Hsing, Cheng-Rong; Wei, Ching-Ming, E-mail: cmw@phys.sinica.edu.tw; Li, Lain-Jong, E-mail: lanceli@gate.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2015-05-04

    Transition metal dichalcogenides such as the semiconductor MoS{sub 2} are a class of two-dimensional crystals. The surface morphology and quality of MoS{sub 2} grown by chemical vapor deposition are examined using atomic force and scanning tunneling microscopy techniques. By analyzing the moiré patterns from several triangular MoS{sub 2} islands, we find that there exist at least five different superstructures and that the relative rotational angles between the MoS{sub 2} adlayer and graphite substrate lattices are typically less than 3°. We conclude that since MoS{sub 2} grows at graphite step-edges, it is the edge structure which controls the orientation of the islands, with those growing from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge.

  19. Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16 to 86 GPa

    OpenAIRE

    Kanel, G. I.; Nellis, W. J.; Savinykh, A. S.; Razorenov, S. V.; Rajendran, A. M.

    2009-01-01

    Shock-wave profiles of sapphire (single-crystal Al2O3) with seven crystallographic orientations were measured with time-resolved VISAR interferometry at shock stresses in the range 16 to 86 GPa. Shock propagation was normal to the surface of each cut. The angle between the c-axis of the hexagonal crystal structure and the direction of shock propagation varied from 0 for c-cut up to 90 degrees for m-cut in the basal plane. Based on published shock-induced transparencies, shock-induced optical ...

  20. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  1. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  2. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  3. Peculiar orientational disorder in 4-bromo-4′-nitrobiphenyl (BNBP and 4-bromo-4′-cyanobiphenyl (BCNBP leading to bipolar crystals

    Directory of Open Access Journals (Sweden)

    Matthias Burgener

    2016-05-01

    Full Text Available 180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4′-nitrobiphenyl (BNBP and 4-bromo-4′-cyanobiphenyl (BCNBP] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals. The spatial inhomogeneous distribution of polarity was investigated by scanning pyroelectric microscopy (SPEM, phase-sensitive second harmonic microscopy (PS-SHM and selected volume X-ray diffraction (SVXD. As a result, the acceptor groups (NO2 or CN are predominantly present at crystal surfaces. However, the stochastic process of polarity formation can be influenced by adding a symmetrical biphenyl to a growing system. For this case, Monte Carlo simulations predict an inverted net polarity compared with the growth of pure BNBP and BCNBP. SPEM results clearly demonstrate that 4,4′-dibromobiphenyl (DBBP can invert the polarity for both crystals. Phenomena reported in this paper belong to the most striking processes seen for molecular crystals, demonstrated by a stochastic process giving rise to symmetry breaking. We encounter here further examples supporting the general thesis that monodomain polar molecular crystals for fundamental reasons cannot exist.

  4. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule

    Directory of Open Access Journals (Sweden)

    Zhiyong Gao

    2016-10-01

    Full Text Available Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little information on the separation is available. In this study, a novel reagent schedule using citric acid (CA as the depressant, sodium fluoride (NaF as the regulator and sulfoleic acid (SOA as the collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new reagent schedule on the flotation of calcite. The results from both microflotation and bench scale flotation demonstrated a great potential for industrial application using this novel reagent schedule to upgrade fluorite ore.

  5. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  6. Effect of dissolution kinetics on flotation response of calcite with oleate

    Directory of Open Access Journals (Sweden)

    D. G. Horta

    Full Text Available Abstract Phosphate flotation performance can be influenced by the dissolution kinetics of the minerals that compose the ore. The purpose of this work was to investigate the effect of dissolution kinetics on flotation response with oleate (collector of calcites from different origins and genesis. The calcite samples were first purified and characterized by x-ray Fluorescence (XRF and the Rietveld method applied to x-ray Diffractometry data (RXD. Experiments of calcite dissolution and microflotationwere performed at pH 8 and pH 10.The pH effect on the calcite dissolution and flotation indicates the possible influence of the carbonate/bicarbonate ions provided by the CO2 present in the air. In addition, the flotation response is greater as the dissolution increases, making more Ca2+ ions available to interact with collector molecules. This result corroborates the surface precipitation mechanism proposed foroleate adsorption on the calcite surface.

  7. The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Woo; Suzuki, Toshimasa [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama, 345-8501 (Japan); Aida, Hideo [NAMIKI Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511 (Japan)

    2004-09-01

    The effect of a slight mis-orientation of c-plane sapphire substrate on the surface morphology and crystal quality of GaN thin films grown by MOCVD has been investigated. The mis-orientation angle of vicinal c-plane sapphire substrate was changed within the range of 0.00(zero)-1.00(one) degree, and the experimental results were compared with those on just angle (zero degree) c-plane sapphire substrate. The surface morphology and crystal quality were found to be very sensitive to mis-orientation angle. Consequently, the mis-orientation angle was optimized to be 0.15 . (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Sorption and catalytic oxidation of Fe(II) at the surface of calcite

    NARCIS (Netherlands)

    Mettler, S.; Wolthers, M.; Charlet, L.; Von Gunten, U.

    The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps:

  9. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    International Nuclear Information System (INIS)

    Zavašnik, J

    2016-01-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS 2 ) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe 1−x S), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe 1-x S phase, where x is about 0.1 and is equivalent to Fe 9 S 10 . The pyrite-pyrrhotite coexistence allows us a construction of fO 2 -pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation. (paper)

  10. The effect of heat treatment on the thermoluminescence of naturally-occurring calcites and their use as a gamma-ray dosimeter

    International Nuclear Information System (INIS)

    Engin, Birol; Gueven, Olgun

    2000-01-01

    The feasibility of using naturally-occurring calcite for gamma-ray dosimetry was investigated. Anneal treatment above 350 deg. C increased the sensitivity of all radiation-induced TL peaks except the glow peaks above 300 deg. C. On the other hand, annealing in air, at a temperature of 700 deg. C caused a collapse in the TL sensitivity. The increase in TL efficiency was found to depend on the annealing temperature and time. Heating at 600 deg. C for 5 h and quenching in ambient air are the optimum conditions for TL sensitivity enhancement in the calcite materials investigated. These results are explained using the energy scheme of the pre-dose model of and in terms of the impurity rearrangements in the crystal lattice induced by heating. It was found that the values of the kinetic parameters E, s and b for TL glow peaks remained unchanged for annealed samples. The TL dose-response curves for stable dosimetric peaks of annealed and unannealed calcite samples could be fitted to the same linear mathematical function. This implies that the annealing process probably does not change the nature of the trapping centers except the low temperature TL peaks at 125 and 160 deg. C of flowstone. The TL dosimetric parameters of calcite samples annealed, including glow curves, fading characteristics, dose-responses, dose-rate responses and energy responses, have also been studied in detail. The response to gamma-rays of annealed calcite samples was found to be linear from 0.05 to 10 4 Gy. The lower limit of observable doses for each calcite sample was about 0.05 Gy. This offers the possibility of applying the investigated materials for gamma-ray dosimetry within this useful range. These dosimeters can be used in various applications, such as, in industries related to chemical technology (polymerization), food processing and in determining the dose received by the patient during medical examination and treatment

  11. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle

    Science.gov (United States)

    Merlini, M.; Hanfland, M.; Crichton, W. A.

    2012-06-01

    Calcite, CaCO3, undergoes several high pressure phase transitions. We report here the crystal structure determination of the CaCO3-III and CaCO3-VI high-pressure polymorphs obtained by single-crystal synchrotron X-ray diffraction. This new technical development at synchrotron beamlines currently affords the possibility of collecting single-crystal data suitable for structure determination in-situ at non-ambient conditions, even after multiphase transitions. CaCO3-III, observed in the pressure range 2.5-15 GPa, is triclinic, and it presents two closely related structural modifications, one, CaCO3-III, with 50 atoms in the unit cell [a=6.281(1) Å, b=7.507(2) Å, c=12.516(3) Å, α=93.76(2)°, β=98.95(2)°, γ=106.49(2)°, V=555.26(20) Å3 at 2.8 GPa], the second, CaCO3-IIIb, with 20 atoms [a=6.144(3) Å, b=6.3715(14) Å, c=6.3759(15) Å, α= 93.84(2)°, β=107.34(3)°, γ=107.16(3)°, V=224.33(13) Å3 at 3.1 GPa]. Different pressure-time experimental paths can stabilise one or the other polymorph. Both structures are characterised by the presence of non-coplanar CO3 groups. The densities of CaCO3-III (2.99 g/cm3 at 2.8 GPa) and CaCO3-IIIb (2.96 g/cm3 at 3.1 GPa) are lower than aragonite, in agreement with the currently accepted view of aragonite as the thermodynamically stable Ca-carbonate phase at these pressures. The presence of different cation sites, with variable volume and coordination number (7-9), suggests however that these structures have the potential to accommodate cations with different sizes without introducing major structural strain. Indeed, this structure can be adopted by natural Ca-rich carbonates, which often exhibit compositions deviating from pure calcite. Mg-calcites are found both in nature (Frezzotti et al., 2011) and in experimental syntheses at conditions corresponding to deep subduction environments (Poli et al., 2009). At these conditions, the low pressure rhombohedral calcite structure is most unlikely to be stable, and, at the same

  12. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    Directory of Open Access Journals (Sweden)

    M. Raitzsch

    2010-03-01

    Full Text Available We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (Ω on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing and Ammonia tepida (low-Mg calcite, symbiont-barren were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite/(TE/Caseawater. The culturing study shows that DMg of A. tepida significantly decreases with increasing Ω at a gradient of −4.3×10−5 per Ω unit. The DSr value of A. tepida does not change with Ω, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing Ω, while DSr increases considerably with Ω at a gradient of 0.009 per Ω unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50–100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep

  13. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  14. The oxygen isotope composition of baddeleyite and a test of crystal orientation effects during SIMS analysis

    Science.gov (United States)

    Ibanez-Mejia, M.; DesOrmeau, J. W.; Eddy, M. P.; Kitajima, K.; Valley, J. W.

    2017-12-01

    Baddeleyite, the monoclinic polymorph of ZrO2, is a relatively common accessory phase in undersaturated and alkaline igneous rocks that is rapidly developing into a widely-used tool for studying the age and initial 176Hf/177Hf composition of many terrestrial and planetary rocks that typically lack zircon. The prospect of combining U-Pb-Hf data from baddeleyite with δ18O information, as regularly done with zircon, could prove a very powerful addition to the `analytical toolbox' of the igneous petrologist and for studies of crust and mantle evolution. However, the oxygen isotope systematics of this mineral remain poorly explored, as are the potential analytical hurdles involved in obtaining accurate spatially-resolved δ18O data by SIMS. Here, we report laser fluorination δ18O measurements from two baddeleyite megacrysts from Kovdor (δ18O = 0.24 ± 0.11 ‰) and Phalaborwa (4.58 ± 0.11 ‰), which were subsequently analyzed by SIMS to explore their compositional homogeneity and potential as reference materials for correcting instrumental mass fractionation (IMF). Randomly oriented grain fragments analyzed by SIMS were subsequently mapped using high-resolution EBSD, such that the incidence angle of the Cs+ primary ion beam relative to the baddeleyite crystallographic axes could be determined for each spot. We found that: a) δ18O values for both crystals reproduce fairly well, but several apparent outliers (ca. 10% of all data) were measured with no evident correlation to orientation, cracks or inclusions, suggesting these might not be ideal standards; b) there is a systematic difference in mean measured IMFs of ca. 0.6 ‰ between the two baddeleyite crystals; c) mean 16OH/16O values for Phalaborwa (2.5x10-4) are significantly higher than those of Kovdor (2.9x10-6), suggesting that different degrees of radiation damage affect IMF; and d) there is no statistically significant correlation in our dataset (n= 96 spot analyses) between IMF and crystallographic

  15. Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    International Nuclear Information System (INIS)

    Coppersmith, S N; Gilbert, P U P A; Metzler, R A

    2009-01-01

    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12 deg. from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate

  16. Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    Science.gov (United States)

    Coppersmith, S N; Gilbert, P U P A; Metzler, R A

    2009-03-01

    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12° from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.

  17. Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, S N; Gilbert, P U P A; Metzler, R A [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2009-03-27

    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within {+-}12 deg. from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.

  18. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  19. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  20. Ferroelectric domain structures in -oriented K0.15Na0.85NbO3 lead-free single crystal

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-03-01

    Full Text Available In this work, ferroelectric domain structures of -oriented K0.15Na0.85NbO3 single crystal are characterized. Transmission electron microscopy (TEM observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1 2 { eeo } and 1 2 { ooe } in electron diffraction patterns are observed in the crystal, revealing the a+a+c− tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K0.15Na0.85NbO3 crystal are observed by piezoresponse force microscopy (PFM, and the results assure its good ferroelectric properties.

  1. Classical kinetic equations for orientational effects with account for the two-particle correlation function of a crystal

    International Nuclear Information System (INIS)

    Ol'khovskij, I.I.; Sadykov, N.M.

    1980-01-01

    The paper deals with the development of classical-statistical approach to the orientational effect theory with account of the influence of the two-particle correlation function of a crystal on diffusion processes. Peculiarities of fast particle movement in the crystal moving at small angles to crystallographic axes and planes are caused by a great number of correlated collisions of the beam particle with the crystal atoms during which the particle slightly deviates in each collision from the direction of its movement before the collision. Obtained is the kinetic equation for the distribution function over coordinates and velocities describing the movement of these particles in the crystal. Lacking the particle deceleration the equation describing movement of the beam particles in the averaged potential and their diffusion by velocities is also obtained. The main peculiarity of these equations is the fact that they take into account strong spatial non-uniformity in the crystal atom distribution [ru

  2. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  3. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  4. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    Science.gov (United States)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  5. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  6. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2015-09-01

    Full Text Available Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1 widespread deposition of amorphous calcium carbonate (ACC, (2 ACC transformation into crystalline calcite aggregates, (3 formation of larger calcite crystal units and (4 rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  7. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    Science.gov (United States)

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  8. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  9. The coprecipitation of Sr2+ with calcite at 250C and 1 atm

    International Nuclear Information System (INIS)

    Pingitore, N.E. Jr.; Eastman, M.P.

    1986-01-01

    The incorporation of Sr 2+ into calcite at earth surface aqueous conditions is affected by the absolute concentration of Sr 2+ , the presence of Ba 2+ and NaCl in the solution and the rate of precipitation. At solution ratios (molar) of Sr 2+ to Ca 2+ in the low 10 -3 range, which yield calcites with several hundred ppm Sr 2+ , kappasub(calcite) sup(Sr) typically assumes a value between 0.10 and 0.20. Above these concentrations the value of kappasub(calcite) sup(Sr) drops to approximately 0.06. Furthermore, if minor amounts of Ba 2+ or large amounts of Na + (0.48 M) are added to a dilute Sr 2+ solution, a value around 0.06 for kappasub(calcite)sup(Sr) is found. This 'strontium concentration effect' and the associated 'competitive cation effect' suggest that small amounts of Sr 2+ may be incorporated into a limited number of nonlattice sites in calcite. Incorporation of Sr 2+ into these sites, presumably defects, noticeably affects kappasub(calcite)sup(Sr) only at low Sr 2+ concentrations and in the absence of competition from other large cations. An increase in kappasub(calcite)sup(Sr) with rate of precipitation, qualitatively similar to that found in other studies, was observed only when precipitation times were decreased from days to hours. For many geologic settings a partition coefficient for Sr 2+ into calcite of 0.06 appears appropriate, but there are situations - very low Sr 2+ concentrations, the presence of Mg 2+ , and fast precipitation rates - in which a larger value might better approximate natural partitioning. (author)

  10. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  11. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  12. Molecular ordering of ethanol at the calcite surface.

    Science.gov (United States)

    Pasarín, I S; Yang, M; Bovet, N; Glyvradal, M; Nielsen, M M; Bohr, J; Feidenhans'l, R; Stipp, S L S

    2012-02-07

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems.

  13. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  14. Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence

    OpenAIRE

    Sánchez-Pastor, Nuria; Oehlerich, Markus; Astilleros, José Manuel; Kaliwoda, Melanie; Mayr, Christoph C.; Fernández Díaz, Lurdes; Schmahl, Wolfgang W.

    2015-01-01

    Ikaite (CaCO3·6H2O) is a metastable phase that crystallizes in nature from alkaline waters with high phosphate concentrations at temperatures close to 0 °C. This mineral transforms into anhydrous calcium carbonate polymorphs when temperatures rise or when exposed to atmospheric conditions. During the transformation in some cases the shape of the original ikaite crystal is preserved as a pseudomorph. Pseudomorphs after ikaite are considered as a valuable paleoclimatic indicator. In this work w...

  15. Orientation correlation in tensile deformed [0 1 1] Cu single crystals

    International Nuclear Information System (INIS)

    Borbely, Andras; Szabo, Peter J.; Groma, Istvan

    2005-01-01

    Local crystallographic orientation of tensile deformed copper single crystals was investigated by the electron backscattering technique. Statistical evaluation of the data reveals the presence of an increased crystallographic correlation at the transition point between stages II and III of work-hardening. The transition state has the lowest probability of finding geometrically necessary dislocations in circular regions of radius smaller than 8 μm. According to the present results and other data showing that the relative fluctuation of the dislocation density has a maximum at the transition point, we conclude that the transition from stages II to III of work-hardening is similar to a second-order phase transformation of the statistical dislocation system

  16. Speciation of As in calcite by micro-XAFS: Implications for remediation of As contamination in groundwater

    International Nuclear Information System (INIS)

    Yokoyama, Y; Takahashi, Y; Iwatsuki, T; Terada, Y

    2013-01-01

    To evaluate the role of calcite as a host phase of arsenic (As) in As-contaminated groundwater, distribution behavior of Asbetween natural calcite and groundwater in deep underground was investigated based on As oxidation state. Speciation analyses of As in natural calcite by μ-XRF-XAFS analyses showed (i) preferentialarsenate uptake by calcite, and (ii) promptness of arsenate uptake by minor iron (Fe) carbonate minerals coprecipitated with calcite. These findings suggest that the effect of calcite on As remediation of the As-contamination systems stronglydepends on arsenite to arsenate ratio (i.e., redox condition) in groundwater, and maybe governed bythe amount of Fe coprecipitated with calcite.

  17. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Y.; Panchenko, E.; Kireeva, I.; Karaman, I.; Sehitoglu, H.; Maier, H.J.; Tverdokhlebova, A.; Ovsyannikov, A.

    2008-01-01

    In the present study the effects of crystal axis orientation, stress state (tension/compression) and test temperature on shape memory effect and superelasticity of Ni 54 Fe 19 Ga 27 (I), Co 40 Ni 33 Al 27 (II), Co 49 Ni 21 Ga 30 (III) (numbers indicate at.%) single crystals were investigated. The shape memory effect, the start temperature of superelasticity T 1 and the mechanical hysteresis Δσ were found to be dependent on crystal axis orientation and stress state. Superelasticity was observed at T 1 = A f (A f , reverse transformation-finish temperature) in tension/compression for [0 0 1]-oriented Ni-Fe-Ga crystals and in compression for [0 0 1]-oriented Co-Ni-Ga crystals, which all displayed a small mechanical hysteresis (Δσ ≤ 30 MPa). An increase in Δσ of up to 90 MPa in the Co-Ni-Al and the Co-Ni-Ga crystals lead to stabilization of the stress-induced martensite, and an increase in to T 1 = A f + Δ. The maximal value of Δ (75 K) was found in [0 0 1]-oriented Co-Ni-Al crystals in tension. A thermodynamic criterion describing the dependencies of the start temperature of superelasticity T 1 on crystal axis orientation, stress state and the magnitude of mechanical hysteresis is discussed

  18. An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis

    Science.gov (United States)

    Perito, B.; Romanelli, M.; Buccianti, A.; Passaponti, M.; Montegrossi, G.; Di Benedetto, F.

    2018-05-01

    We report in this study the first XRPD and EPR spectroscopy characterisation of a biogenic calcite, obtained from the activity of the bacterium Bacillus subtilis. Microcrystalline calcite powders obtained from bacterial culture in a suitable precipitation liquid medium were analysed without further manipulation. Both techniques reveal unusual parameters, closely related to the biological source of the mineral, i.e., to the bioprecipitation process and in particular to the organic matrix observed inside calcite. In detail, XRPD analysis revealed that bacterial calcite has slightly higher c/a lattice parameters ratio than abiotic calcite. This correlation was already noticed in microcrystalline calcite samples grown by bio-mineralisation processes, but it had never been previously verified for bacterial biocalcites. EPR spectroscopy evidenced an anomalously large value of W 6, a parameter that can be linked to occupation by different chemical species in the next nearest neighbouring sites. This parameter allows to clearly distinguish bacterial and abiotic calcite. This latter achievement was obtained after having reduced the parameters space into an unbiased Euclidean one, through an isometric log-ratio transformation. We conclude that this approach enables the coupled use of XRPD and EPR for identifying the traces of bacterial activity in fossil carbonate deposits.

  19. Application-oriented Crystallization of Pharmaceutical Products

    DEFF Research Database (Denmark)

    Bruun Hansen, Thomas

    The purpose of this PhD thesis is to investigate various options for controlling the crystallization process of pharmaceutical products, both with regards to polymorphic control and crystal morphology. During this process, several model compounds were used, depending on the goal of the studies...

  20. Pedogenic calcite as evidence for an early Holocene dry period in the San Francisco Bay area, California

    Science.gov (United States)

    Borchardt, G.; Lienkaemper, J.J.

    1999-01-01

    Rainfall at the site of Union City, California, during early Holocene time appears to have been about half that of today, 470 mm/yr. We base this conclusion on detailed descriptions and particle-size analyses of 12 soil profiles and 1:20 scale logs of the fluvial stratigraphy in two 100-m-long, 5-m-deep excavations dug perpendicular to the axis of an alluvial fan along the Hayward fault. Subsidence and right-lateral movement along the fault allowed an offset stream to produce a nearly continuous alluvial record documented by 35 14C ages on detrital charcoal. Bk (calcitic) horizons in paleosols developed in the fan suggest that a relatively dry climatic period occurred from 10 to 7 ka (calendar-corrected ages). The pedogenic calcite exists primarily as vertically oriented filaments and fine, cavernous nodules formed at ped intersections. Soils and paleosols formed before 10 ka or since 7 ka did not have Bk horizons. Bk horizons that were buried suddenly at 7 ka were overlain by leached zones averaging 41 ?? 3 cm thick - about half the current depth of leaching.

  1. A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water

    International Nuclear Information System (INIS)

    Yokoyama, Yuka; Takahashi, Yoshio; Mitsunobu, Satoshi; Tanaka, Kazuya; Itai, Takaaki

    2009-01-01

    It was found that the amount of arsenite incorporated into calcite is much less than that of arsenate. The result suggests that the sequestration of arsenic by coprecipitation with calcite cannot be an important chemical process under reducing conditions such as in groundwater where arsenite is the dominant arsenic species. (author)

  2. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  3. Photo-orientation at liquid crystal–polymer interfaces

    Indian Academy of Sciences (India)

    affected by the phase of the liquid crystal covering the polymer. Photo-orientation is significantly more efficient when the liquid crystal is in the isotropic phase than when it exhibits orientational order. The observations are interpreted by assuming that in the smectic and nematic phases the liquid crystal stabilises to a large ...

  4. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  5. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  6. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  7. Diagenetic alteration in low-Mg calcite from macrofossils

    DEFF Research Database (Denmark)

    Ullmann, Clemens Vinzenz; Korte, Christoph

    2015-01-01

    microscopy) and chemical (trace element abundances, isotopic ratios) screening techniques used to assess the alteration degree of low-Mg calcite macrofossils and summarize the findings on diagenetic trends observed for elemental and isotopic systems in such materials. For a robust evaluation...... of the preservation state of biogenic calcite, it is advisable to combine a set of complementary techniques. Absolute limiting values of element and isotope ratios for discarding diagenetically altered materials cannot be universally applied, but should rather be evaluated on a case to case basis. The evaluation can...

  8. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  9. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  10. Interactions between cadmium and calcite

    NARCIS (Netherlands)

    van der Weijden, R.D.

    1995-01-01

    The thesis is composed of five chapters, some of which have been published or have been accepted for publication. The contents in some of the chapters may therefore slightly overlap, also because the subjects are closely related. The first two chapters focus mostly on the sorption of Cd on calcite,

  11. Preliminary observations of the effect of solutal convection on crystal morphology

    Science.gov (United States)

    Broom, M. Beth H.; Witherow, William K.; Snyder, Robert S.; Carter, Daniel C.

    1988-01-01

    Studies to examine the effect of solutal convection on crystal morphology using sucrose as a model system were initiated. Aspect ratios, defined as the width of the 100-plane-oriented face over the width of the 001-plane-oriented face, were determined for oriented crystals which were grown with either the 001-oriented or the 100-oriented face perpendicular to the convective flow. The dependence of the crystal morphology on orientation is much greater for crystals grown with one face occluded than for crystals grown suspended in solution. Many factors appear to interact in a complex fashion to influence crystal morphology.

  12. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, B.; Moscati, R.

    2000-01-01

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from ∼ 40 to ∼ 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits

  13. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  14. Highly oriented poly(di-n-alkylsilylene) films on oriented PTFE substrates

    NARCIS (Netherlands)

    Frey, H.H.; Frey, Holger; Sheiko, Sergej; Sheiko, S.; Moller, M.; Möller, Martin; Wittmann, Jean-Claude; Lot, Bernard

    1993-01-01

    Highly oriented polysilylene layers have potential applications in electrophotography, nonlinear optics, display fabrication, and microlithography. The preparation of such layers by crystallization on a highly oriented PTFE substrate is reported, and their assessment by optical birefringence,

  15. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  16. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.

    Science.gov (United States)

    Renard, François; Putnis, Christine V; Montes-Hernandez, German; King, Helen E; Breedveld, Gijs D; Okkenhaug, Gudny

    2018-01-02

    Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell. Time-resolved imaging allowed following the coupled process of calcite dissolution, nucleation of precipitates at the calcite surface and growth of these precipitates. Sb(V) forms a precipitate, whereas Sb(III) needs to be oxidized to Sb(V) before being incorporated in the new phase. Scanning-electron microscopy and Raman spectroscopy allowed identification of the precipitates as two different calcium-antimony phases (Ca 2 Sb 2 O 7 ). This coupled dissolution-precipitation process that occurs in a boundary layer at the calcite surface can sequester Sb as a solid phase on calcite, which has environmental implications as it may reduce the mobility of this hazardous compound in soils and groundwaters.

  17. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and

  18. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  19. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  20. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  1. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    Science.gov (United States)

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133

  2. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    OpenAIRE

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the ...

  3. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  4. Discovery of room-temperature spin-glass behaviors in two-dimensional oriented attached single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ji; Chen, Kezheng, E-mail: kchen@qust.edu.cn

    2016-05-15

    In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe{sub 2}O{sub 3}) and iron phosphate hydroxide hydrate (Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O) single crystals. Remarkably, their coercivity (H{sub C}) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) “islands” isolated by spin glass (SG)-like “bridges”. A spin-glass model was then proposed to demonstrate the spin frustration within these “bridges”, which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these “bridges”, the SPM “islands” were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these “islands” would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like “bridges” to yield pronounced exchange bias (EB) effect. - Highlights: • Room-temperature spin-glass state was found in 2D oriented attached single crystals. • Coercivity values were found to be almost invariable at different temperatures. • The spin topographic map was assumed as SPM “islands” isolated by SG-like “bridges”.

  5. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    Science.gov (United States)

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  6. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent...... the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from −6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution...

  7. Crystallization and demineralization phenomena in washed-rind cheese.

    Science.gov (United States)

    Tansman, Gil F; Kindstedt, Paul S; Hughes, John M

    2017-11-01

    This report documents an observational study of a high-moisture washed-rind cheese. Three batches of cheese were sampled on a weekly basis for 6 wk and again at wk 10. Center, under-rind, rind, and smear samples were tested for pH, moisture, and selected mineral elements. Powder x-ray diffractometry and petrographic microscopy were applied to identify and image the crystal phases. The pH of the rind increased by over 2 pH units by wk 10. The pH of the under-rind increased but remained below the rind pH, whereas the center pH decreased for most of aging and only began to rise after wk 5. Diffractograms of smear material revealed the presence of 4 crystal phases: brushite, calcite, ikaite, and struvite. The phases nucleated in succession over the course of aging, with calcite and ikaite appearing around the same time. A very small amount of brushite appeared sporadically in center and under-rind samples, but otherwise no other crystallization was observed beneath the rind. Micrographs revealed that crystals in the smear grew to over 250 μm in length by wk 10, and at least 2 different crystal phases, probably ikaite and struvite, could be differentiated by their different optical properties. The surface crystallization was accompanied by a mineral diffusion phenomenon that resulted, on average, in a 217, 95.7, and 149% increase in calcium, phosphorus, and magnesium, respectively, in the rind by wk 10. The diffusion phenomenon caused calcium, phosphorus, and magnesium to decrease, on average, by 55.0, 21.5, and 36.3%, respectively, in the center by wk 10. The present study represents the first observation of crystallization and demineralization phenomena in washed-rind cheese. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  8. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  9. Magnetic small-angle scattering of subthermal neutrons by internal stress fields in work-hardened nickel single crystals oriented for multiple glide

    International Nuclear Information System (INIS)

    Vorbrugg, W.; Schaerpf, O.

    1975-01-01

    The small-angle scattering of Ni single crystals with (111) and (100) axis orientation is measured by a photographic method in the work-hardened state after tensile deformation. Parameters are the external magnetic field H parallel to the axis (600 2 ]<=8,8), and the elastic stress tausub(el)(0<=tausub(el)<=tausub(pl)) applied to the deformed crystals during the experiments. The scattering is found to be anisotropic and characteristic for the chosen orientation. The quantitative photometric analysis shows that the parameters mentioned above only influence the intensity but not the distribution of the scattered neutrons. The scattering increases with the elastic stress and decreases with the magnetic field. In particular, in the unloaded state there is a linear relation between the scattered intensity and the plastic shear stress. (author)

  10. Crystal structure and phase transition in (NH4)3WO2F5: from dynamic to static orientational disorder.

    Science.gov (United States)

    Udovenko, Anatoly; Laptash, Natalia

    2015-08-01

    Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.

  11. Paleohydrogeological implications from fracture calcites and sulfides in a major hydrogeological zone HZ19 at Olkiluoto

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.; Rinne, K.

    2009-08-01

    30 samples of fracture mineral fillings in or near water conducting fractures at Olkiluoto were collected from 10 drill cores for fracture mineral studies. The aim of the study was to obtain information about past hydrogeochemical conditions at Olkiluoto using the calcite morphology, the chemical characteristics and the isotopic composition of carbon and oxygen in calcite. The chemical composition of fracture calcites at Olkiluoto is nearly stoichiometric CaCO 3 . Most variation in the composition of calcite is due to differences in the Mn content, which could indicate variations in groundwater redox conditions. Meaningful REE patterns were obtained for the calcites. REE patterns showed generally negative Eu anomalies, but one fracture calcite specimen had a distinct positive Eu anomaly. This positive anomaly could be related to ancient hydrothermal conditions, although derivation of the anomaly from the host rock cannot be excluded. Preliminary results for calcite U-Th dating of fracture calcites are reported. The isotopic composition of U and Th were analysed by a new multiple collector LA-ICPMS instrument. U and Th concentrations in fracture calcites are generally 18 O values of calcite range from -17 to -7 per mille. Most of the calcites may have been precipitated in the presence of waters with oxygen isotope ratios similar to those in the present-day groundwaters at Olkiluoto. Two samples with an oxygen isotopic composition highly depleted in 18 O were interpreted to have been precipitated at elevated temperatures. The δ 13 C values of calcite showed a wide range of values from -26 to +35 per mille. Multiple sources for carbon are implied. The highest δ 13 C values indicate methanic conditions in the fracture at the time of calcite precipitation. It appears that the methanic environment has earlier extended to shallower depths compared to the location of the methanic environment in the present-day fracture system (> 300 m). Ten pyrite samples were analysed

  12. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  13. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.

    Science.gov (United States)

    Heidari Nonakaran, Siamak; Pazhouhandeh, Maghsoud; Keyvani, Abdullah; Abdollahipour, Fatemeh Zahra; Shirzad, Akbar

    2015-12-01

    Biomineralization is a process by which living organisms produce minerals. The extracellular production of these biominerals by microbes has potential for various bioengineering applications. For example, crack remediation and improvement of durability of concrete is an important goal for engineers and biomineral-producing microbes could be a useful tool in achieving this goal. Here we report the isolation, biochemical characterization and molecular identification of Pseudomonas azotoformans, a microbe that produces calcite and which potentially be used to repair cracks in concrete structures. Initially, 38 bacterial isolates were isolated from soil and cements. As a first test, the isolates were screened using a urease assay followed by biochemical tests for the rate of urea hydrolysis, calcite production and the insolubility of calcite. Molecular amplification and sequencing of a 16S rRNA fragment of selected isolates permitted us to identify P. azotoformans as a good candidate for preparation of biotechnological concrete. This species was isolated from soil and the results show that among the tested isolates it had the highest rate of urea hydrolysis, produced the highest amount of calcite, which, furthermore was the most adhesive and insoluble. This species is thus of interest as an agent with the potential ability to repair cracks in concrete.

  14. Interactions of Ni and Ca at the calcite-solution interface

    International Nuclear Information System (INIS)

    Carlsson, T.; Aalto, H.

    1996-10-01

    The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63 Ni and 45 Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)

  15. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  16. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  17. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    International Nuclear Information System (INIS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei

    2015-01-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points

  18. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  19. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    Science.gov (United States)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  20. High (1 1 1) orientation poly-Ge film fabricated by Al induced crystallization without the introduction of AlOx interlayer

    International Nuclear Information System (INIS)

    Wang, Peng; Li, Xin; Liu, Hanhui; Lai, Shumei; Chen, Yuye; Xu, Yihong; Chen, Songyan; Li, Cheng; Huang, Wei; Tang, Dingliang

    2015-01-01

    High (1 1 1) orientation poly-Ge film was fabricated by Al induced crystallization (AIC), where Al and amorphous Ge (a-Ge) layers were continuously deposited by magnetron sputtering, avoiding the deliberate introduction of an AlO x interlayer. To improve the quality of poly-Ge film, the ratio of thicknesses of Al and a-Ge was adjusted. Electron backscattered diffraction (EBSD) results revealed that the (1 1 1) fraction of poly-Ge film reached 97% and the average crystal grain size surpassed 100 μm.

  1. Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; J.J.P., Zijlstra

    1997-01-01

    and differences in the degree of early diagenesis. Cemented layers and hardgrounds are the result of differential early marine calcite cementation. In these limestones early calcite cementation cannot be explained by the supply of cementing materials from saturated seawater, An alternative model for early marine......The Campanian-Maastrichtian limestones in the south of the Netherlands are well-sorted fine-grained mudstones and silt- to fine sand-sized bioclastic grainstones. These limestones show a distinct lithological cyclicity manifested by fining-upward grain-size cycles with calcite-cemented layers...... calcite cementation is proposed, in which early calcite cementation occurred within the sediment at some distance below the seafloor as a result of organic matter degradation and internal redistribution of bioclastic carbonate. Bacterial organic matter degradation caused dissolution of relatively unstable...

  2. Index of refraction enhancement of calcite particles coated with zinc carbonate

    Science.gov (United States)

    Lattaud, Kathleen; Vilminot, Serge; Hirlimann, Charles; Parant, Hubert; Schoelkopf, Joachim; Gane, Patrick

    2006-10-01

    ZnCO 3 coating on calcite particles has been developed in order to enhance the index of refraction of this mineral that is used as a charge in paper, paint and polymer industries. Chemical reaction between calcite particles in an aqueous suspension with zinc chloride promotes the formation of a ZnCO 3 coating consisting of two layers with different interactions with the calcite particle. The refraction index of the resulting composite particles increases with the Zn/Ca ratio. A model allows to evaluate the coating thickness. The value of the scattering S and diffusion K coefficients of sheets coated with the ZnCO 3 coated particles reveal a dependence on the preparation conditions with a 15% increase for the best samples.

  3. Preferred orientation of ettringite in concrete fractures

    KAUST Repository

    Wenk, Hans-Rudolf

    2009-05-15

    Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca6Al2(OH)12(SO4) 3·26H2O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates. © 2009 International Union of Crystallography.

  4. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  5. Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite

    International Nuclear Information System (INIS)

    Sahlstedt, Elina; Karhu, Juha A.; Pitkänen, Petteri; Whitehouse, Martin

    2016-01-01

    Variation in 13 C/ 12 C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13 C/ 12 C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ 13 C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ 34 S values indicative of bacterial sulfate reduction. The δ 13 C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ 13 C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ 13 C values of Group 3 calcite. The δ 13 C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ 13 C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ 13 C values indicative of degradation of surface derived organic matter, with δ 13 C values ranging from −30.3‰ to −5.5‰. The intermediate depth of

  6. Rate of radiocarbon retention onto calcite by isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, Janne; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2016-11-01

    Radiocarbon ({sup 14}C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO{sub 3}) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of {sup 14}C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  7. Rate of radiocarbon retention onto calcite by isotope exchange

    International Nuclear Information System (INIS)

    Lempinen, Janne; Lehto, Jukka

    2016-01-01

    Radiocarbon ( 14 C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO 3 ) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of 14 C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  8. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    Science.gov (United States)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  10. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  11. The surface orientation dependence of the pre-exponential factors extracted from the segregation profiles of a Cu(111/110) bi-crystal

    CSIR Research Space (South Africa)

    Jafta, CJ

    2011-07-01

    Full Text Available Previous experimental investigations have only shown, without explanation, that the pre-exponential factor (D0), in the diffusion coefficient of Sb segregating in Cu, is dependent on the surface orientation of a crystal. In this study, the surface...

  12. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  13. Experimental studies of the deformation of carbonated rocks by dissolution crystallization under stress

    International Nuclear Information System (INIS)

    Zubtsov, Sergey

    2003-01-01

    The first part of this research thesis reports the experimental investigation and the modelling of the deformation of poly-mineral rocks under the influence of mechanism of dissolution-crystallization under stress. This mechanism has a significant role in the compaction of sedimentary rocks, in the folding process of the earth's crust. The author notably reports the results of the experimental deformation of calcite in presence of water (calcite is present in marls in which the deposit of nuclear wastes in planned in France). The second part deals with the fact that healing is possible between two grains of similar mineralogy, and slows down or even stops deformation

  14. Analysis of the β→α variant selection in a Zy-4 rod by means of specific crystal orientation maps

    International Nuclear Information System (INIS)

    Gey, N.; Humbert, M.; Gautier, E.; Bechade, J.L.

    2002-01-01

    A specific analysis of the α inherited crystal orientation map (COM) is proposed to study the β→α texture inheritance of a Zy-4 rod. In particular, it is shown that the α colonies inherited from each parent grain can systematically be identified on the α Map by considering the misorientations between pixels. Once identified, the orientations of these colonies are used to calculate the orientation of their common β grain. Finally, the orientation data of the parent phase can also be displayed as a COM. The β COM shows that at high temperature, the β grains were mainly oriented around the left angle 111 right angle //AD fibre. Moreover, the analysis of the parent and the inherited COM, makes clear that each β grain has preferentially transformed into different variants belonging each to the left angle 11.0 right angle //AD fibre. This variant selection is responsible for the sharp α texture of the Zy-4 rod after a treatment in the β field. (orig.)

  15. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  16. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  17. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  18. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  19. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.

    2014-07-01

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m 2 /s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E -6 to 1.6E -1 1 m 2 /s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m 2 /s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m 2 /s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl eq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl eq . The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions

  1. What concentration of actinides can be packed into calcite? Hints from rare earth element (REE) composition

    International Nuclear Information System (INIS)

    Christiansen, J.; Stipp, S.L.S.; Waight, T.; Baker, J.A.

    2005-01-01

    Full text of publication follows: For reliable modelling of actinide mobility in the event of spent fuel repository failure, we need data describing the uptake capacity of the minerals likely to find themselves in the transport path. Calcite (CaCO 3 ) is a common secondary mineral in fractures and pore fillings, especially downstream from degrading concrete facilities, so it is a likely candidate for incorporation. Investigations made under ACTAF, a 5. Framework EURATOM integrated project, as well as some other research studies, have shown that actinides are successfully incorporated as substituting ions within the calcite mineral structure. The question remaining, is how much can calcite take up. Geologists routinely use relative concentrations of rare Earth elements (REE's), the lanthanides, for interpreting rock genesis and history. One can also adopt them as analogues for the radioactive elements because their f-orbital electron configuration makes them behave very much like actinides. We collected and analysed a suite of 70 calcite samples from a great number of possible formation environments, geological ages and geographical locations, for the purpose of finding the range and maximum of total f-orbital substitution possible in calcite, under natural conditions. We analysed them using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The maximum concentration found was about 5 x 10 -3 mole/kg total REE in a sample that had a geological history of formation where REE fluids played a role. Over the whole suite, total REE ranged from less than 10 -4 moles/kg for limestone samples formed from biogenic calcite where REE-enriched fluids would have played a negligible role. Thus, in natural calcite, REE's are present and all evidence points to a structural incorporation within the mineral rather than as a separate REE-rich phase. These data compare favourably with mole fractions from calcite grown synthetically, where as much as 6 x 10 -3

  2. Pressure sensor using liquid crystals

    Science.gov (United States)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  3. A time-resolved laser fluorescence spectroscopy (TRLFS) study of the interaction of trivalent actinides (curium(III)) with calcite

    International Nuclear Information System (INIS)

    Stumpf, Th.; Fanghaenel, Th.

    2002-01-01

    Cm(III) interaction with calcite was investigated in the trace concentration range. Two different Cm(III)/calcite sorption species were found. The first Cm(III) sorption species consists of a curium ion that is bonded onto the calcite surface. The second Cm(III) sorption species has lost its complete hydration sphere and is incorporated into the calcite bulk structure /1/. (orig.)

  4. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    Science.gov (United States)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  5. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  6. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    Science.gov (United States)

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  7. Influence of water on clumped-isotope bond reordering kinetics in calcite

    Science.gov (United States)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external

  8. Magneto-optical properties of biogenic photonic crystals in algae

    International Nuclear Information System (INIS)

    Iwasaka, M.; Mizukawa, Y.

    2014-01-01

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror

  9. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    Ma Yufei; Qiao Li; Feng Qingling

    2012-01-01

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO 3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO 3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO 3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  10. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  11. Sealing of rock joints by induced calcite precipitation. A case study from Bergeforsen hydro power plant

    International Nuclear Information System (INIS)

    Hakami, E.; Qvarfort, U.; Ekstav, A.

    1991-01-01

    The possibilities of sealing rock fractures by injecting water saturated with calcite solution, and hereby inducing a calcite precipitation inside the fracture, is investigated. The way of reaction and the amount of calcite precipitation will depend on the saturation of calcium carbonate in the water, the temperature, the pH and the CO 2 -pressure. There is experience of lime-saturated water injection in the rock foundation below the dam at Bergeforsens power plant (1955-1968). It was observed that the consumption of injected lime water decreased with time. A possible reason to the decrease in lime water consumption is that calcite has precipitated such that the permeability of the rock in general is lowered. Another explanation to this could be that calcite precipitation is concentrated to the fractures surrounding the injection holes, thus preventing the lime water from penetrating further into the rock. It is recommended that further studies of the fracture fillings in drill cores from Bergeforsen is performed. The aim of such study should be to determine the extent of induced calcite precipitation and to investigate its chemical and physical properties. (authors)

  12. Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation

    International Nuclear Information System (INIS)

    Chen, Jiqiang; Chen, Zhiguo; Guo, Xiaobin; Deng, Yunlai

    2016-01-01

    The precipitation behavior of S′ phase in Al–Cu–Mg single crystals during stress-free and stress aging was investigated by transmission electron microscopy (TEM). Different compressive stress magnitudes and loading orientations were applied to determine their effects on the precipitation of S′ in Al–Cu–Mg alloy during stress aging. The results indicate that a noticeable preferential orientation of S′ is generated in the sample under applied compressive stress of 33 MPa loading along close to [001] Al , whilst no obviously preferential orientation of S′ can be observed in the sample loaded along close to [101] Al under the same applied stress or even larger applied stress. The precipitation distribution of S′ phase during stress aging can be changed by the loading orientation of the applied stress. Moreover, compressive stress aging may lead to S′ phase shorter in length, and the length of S′ phase shows a decreasing tendency with increasing applied stress, which are associated with the positive misfit between S′ and Al matrix.

  13. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    Science.gov (United States)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  14. Observation of changing crystal orientations during grain coarsening

    International Nuclear Information System (INIS)

    Sharma, Hemant; Huizenga, Richard M.; Bytchkov, Aleksei; Sietsma, Jilt; Offerman, S. Erik

    2012-01-01

    Understanding the underlying mechanisms of grain coarsening is important in controlling the properties of metals, which strongly depend on the microstructure that forms during the production process or during use at high temperature. Grain coarsening of austenite at 1273 K in a binary Fe–2 wt.% Mn alloy was studied using synchrotron radiation. Evolution of the volume, average crystallographic orientation and mosaicity of more than 2000 individual austenite grains was tracked during annealing. It was found that an approximately linear relationship exists between grain size and mosaicity, which means that orientation gradients are present in the grains. The orientation gradients remain constant during coarsening and consequently the character of grain boundaries changes during coarsening, affecting the coarsening rate. Furthermore, changes in the average orientation of grains during coarsening were observed. The changes could be understood by taking the observed orientation gradients and anisotropic movement of grain boundaries into account. Five basic modes of grain coarsening were deduced from the measurements, which include: anisotropic (I) and isotropic (II) growth (or shrinkage); movement of grain boundaries resulting in no change in volume but a change in shape (III); movement of grain boundaries resulting in no change in volume and mosaicity, but a change in crystallographic orientation (IV); no movement of grain boundaries (V).

  15. Precipitation of Calcite during the Deposition of Paleogene Sangkarewang Oil Shale, Ombilin Basin, West Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Haris Widayat

    2015-09-01

    Full Text Available DOI: 10.17014/ijog.2.3.185-197Geochemical and petrographical analyses were carried out to investigate the occurrence of calcite in theformer Ombilin lacustrine lake. The study involves eight samples taken from a 56 m long drill core of Sangkarewangoil shale. Geochemical investigation showed that the samples consist of varied terrigenous input represented by Si, Al, K, and Ti, and autochthonous input represented by S, total organic carbon (TOC, and d13C of bulk organic matter. Along the drill core profile the abundance of autochthonous input decreases upwards, while that of terrigenous input oppositely increases upwards. Petrographical analysis revealed that calcite is a major mineral in the samples. In this study, the abundance of calcite could be represented by the abundance of Ca, as calcite is the only significant Ca containing mineral. Ca is abundant in the samples (8.4% in average and its concentration varies similarly with those of S, TOC, and d13C, suggesting that the element as well as calcite incorporates the autochthonous input. Thevariation of calcite abundance in the drill core profile is considered to be related with primary productivity changes during the development of the former lake. Higher primary productivity represented by more positive of d13C value(-24.8‰ during the deposition of the lower part of the drill core profile promoted the higher amount of deposited organic matter. In such environment, the supersaturation of carbonate ion in lake water was also reached and significant precipitation of authigenic calcite occurred. As the lake developed, the primary productivity decreased as indicated by more negative of d13C value (eventually -26.8‰. This condition led to the decreases of deposited organic matterand calcite in the lake sediments.

  16. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  17. Molecular dynamics simulation of the rotational order-disorder phase transition in calcite

    International Nuclear Information System (INIS)

    Kawano, Jun; Miyake, Akira; Shimobayashi, Norimasa; Kitamura, Masao

    2009-01-01

    Molecular dynamics (MD) simulation of calcite was carried out with the interatomic potential model based on ab initio calculations to elucidate the phase relations for calcite polymorphs and the mechanism of the rotational order-disorder transition of calcite at high temperature at the atomic scale. From runs of MD calculations with increasing temperature within a pressure range of 1 atm and 2 GPa, the transition of calcite with R3-barc symmetry into a high-temperature phase with R3-barm symmetry was reproduced. In the high-temperature R3-barm phase, CO 3 groups vibrate with large amplitudes either around the original positions in the R3-barc structure or around other positions rotated ± 60 deg., and their positions change continuously with time. Moreover, contrary to the suggestion of previous investigators, the motion of CO 3 groups is not two-dimensional. At 1 atm, the transition between R3-barc and R3-barm is first order in character. Upon increasing temperature at high pressure, however, first a first-order isosymmetric phase transition between the R3-barc phases occurs, which corresponds to the start of ± 120 deg. flipping of CO 3 groups. Then, at higher temperatures, the transition of R3-barc to R3-barm phases happens, which can be considered second order. This set of two types of transitions at elevated pressure can be characterized by the appearance of an 'intermediate' R3-barc phase between the stable region of calcite and the high-temperature R3-barm phase, which may correspond to the CaCO 3 -IV phase.

  18. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  19. Time-lapse 3D imaging of calcite precipitation in a microporous column

    Science.gov (United States)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  20. Revealing Layers of Pristine Oriented Crystals Embedded Within Deep Ice Clouds Using Differential Reflectivity and the Copolar Correlation Coefficient

    Science.gov (United States)

    Keat, W. J.; Westbrook, C. D.

    2017-11-01

    Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.

  1. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  2. Role of marble microstructure in near-infrared laser-induced damage during laser cleaning

    International Nuclear Information System (INIS)

    Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Elert, Kerstin; Sebastian, Eduardo

    2004-01-01

    When marble is cleaned by nanosecond neodymium yttrium-aluminum-garnet lasers (1064 nm), strongly absorbing surface contaminants are removed at fluences substantially below the damage threshold for the much less absorptive marble substrate. Recent studies have shown, however, that unacceptable roughening of the marble surface also may occur at low fluences due to removal of individual grains. In order to elucidate this effect, we have compared the low-fluence response of marbles with two different grain sizes and single-crystal calcite, in the fluence range 0.12-1.25 J cm-2. Damage was greater in fine-grained than coarse-grained marble, and did not occur in the single-crystal calcite at these fluences. The temperature rise following defect-mediated absorption triggers thermal plasma emission and generates shock waves; the concomitant surface damage depends on the size and crystallographic orientation of the crystals. Laser irradiation anneals the defects and increases ''crystallite size.'' The implications for the laser-assisted cleaning of marble artworks are outlined

  3. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants

    Directory of Open Access Journals (Sweden)

    Zijie Ren

    2017-02-01

    Full Text Available Fluorite, barite and calcite are important industry minerals. However, they often co-exist, presenting difficulty in selectively separating them due to their similar surface properties. In this study, valonea extract and sodium fluosilicate were used as depressants to selectively separate them by flotation, with sodium oleate as the collector. The single mineral flotation results showed that valonea extract displayed the strongest depression on calcite, while sodium fluosilicate displayed the strongest depression on barite. These two depressants allowed selective separation of the three minerals through sequential flotation. The flotation of mixed minerals showed that 94% of the calcite was successfully depressed by the valonea extract, and 95% recovery of the fluorite was achieved in the subsequent flotation with sodium fluosilicate depressing barite. The different depressant–mineral interactions were investigated via electro-kinetic studies and molecular dynamics (MD simulations using the Materials Studio 6.0 program. The valonea extract exhibited the strongest adsorption on the calcite surface, and sodium fluosilicate exhibited the strongest adsorption on the barite surface, which prevented oleate species from reacting with Ca2+ or Ba2+ surface sites. This study provides useful guidance for how to process fluorite, barite and calcite resources.

  4. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  5. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    Science.gov (United States)

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO 3 from industrial CaCO 3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  6. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  7. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  8. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  9. Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiqiang [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Chen, Zhiguo [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Hunan University of Humanities, Science and Technology, Loudi 417000 (China); Guo, Xiaobin [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Deng, Yunlai, E-mail: luckdeng@csu.edu.cn [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083 (China)

    2016-01-05

    The precipitation behavior of S′ phase in Al–Cu–Mg single crystals during stress-free and stress aging was investigated by transmission electron microscopy (TEM). Different compressive stress magnitudes and loading orientations were applied to determine their effects on the precipitation of S′ in Al–Cu–Mg alloy during stress aging. The results indicate that a noticeable preferential orientation of S′ is generated in the sample under applied compressive stress of 33 MPa loading along close to [001]{sub Al}, whilst no obviously preferential orientation of S′ can be observed in the sample loaded along close to [101]{sub Al} under the same applied stress or even larger applied stress. The precipitation distribution of S′ phase during stress aging can be changed by the loading orientation of the applied stress. Moreover, compressive stress aging may lead to S′ phase shorter in length, and the length of S′ phase shows a decreasing tendency with increasing applied stress, which are associated with the positive misfit between S′ and Al matrix.

  10. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    Science.gov (United States)

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  11. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  12. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  13. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  14. Crystal structure of importin-{alpha} complexed with a classic nuclear localization sequence obtained by oriented peptide library screening

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, A.A.S.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Yang, S.N.Y. [University of Melbourne, Melbourne (Australia); Harris, J.M. [Queensland University of Technology, Brisbane (Australia); Jans, D.A. [Monash University, Clayton (Australia); Kobe, B. [University of Queensland, Brisbane, QU (Australia)

    2012-07-01

    Full text: Importin-{alpha} (Imp{alpha}) plays a role in the classical nuclear import pathway, binding to cargo proteins with activities in the nucleus. Different Imp{alpha} paralogs responsible for specific cargos can be found in a single organism. The cargos contain nuclear localization sequences (NLSs), which are characterized by one or two clusters of basic amino acids (monopartite and bipartite NLSs, respectively). In this work we present the crystal structure of Imp{alpha} from M. musculus (residues 70-529, lacking the auto inhibitory domain) bound to a NLS peptide (pepTM). The peptide corresponds to the optimal sequence obtained by an oriented peptide library experiment designed to probe the specificity of the major NLS binding site. The peptide library used five degenerate positions and identified the sequence KKKRR as the optimal sequence for binding to this site for mouse Imp{alpha} (70-529). The protein was obtained using an E. coli expression system and purified by affinity chromatography followed by an ion exchange chromatography. A single crystal of Imp{alpha} -pepTM complex was grown by the hanging drop method. The data were collected using the Synchrotron Radiation Source LNLS, Brazil and processed to 2.3. Molecular replacement techniques were used to determine the crystal structure. Electron density corresponding to the peptide was present in both major and minor binding sites The peptide is bound to Imp{alpha} similar as the simian virus 40 (SV40) large tumour (T)-antigen NLS. Binding assays confirmed that the peptide bound to Imp{alpha} with low nM affinities. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-{alpha}; the results will contribute to understanding of the sequence determinants of classical NLSs, and may help identify as yet unidentified classical NLSs in novel proteins. (author)

  15. Magnetostriction of Tb-Dy-Fe crystals

    International Nuclear Information System (INIS)

    Mei Wu; Okane, T.; Umeda, T.

    1998-01-01

    left angle 111 right angle -oriented twin free Tb-Dy-Fe single crystals, left angle 112 right angle - and left angle 110 right angle -oriented twinned ''single'' Tb-Dy-Fe crystals were prepared using floating zone melting crystal growth methods. Magnetostrictive performances of the crystals were investigated. Better low-field properties were observed in the left angle 110 right angle twinned crystals than in the left angle 112 right angle crystals. The highest properties were achieved in the left angle 111 right angle twin free single crystals. Even though there were still oxidized particles in the present left angle 111 right angle single crystals, a large magnetostrictive jump of 1700 ppm and a very low saturation magnetic field of 500 Oe were obtained. To understand magnetization and magnetostriction of different Tb-Dy-Fe crystals, theoretical modeling was carried out based on a simplified domain rotation model. Magnetization moment rotation paths of different domains were simulated and hence the resultant magnetostriction was obtained, which could adequately account for the experimental results of different crystals. The limitation of the domain rotation model was also discussed. (orig.)

  16. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  17. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  18. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  19. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    Science.gov (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  20. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Paces, J.B.; Whelan, J.F.; Peterman, Z.E.; Marshall, B.D.

    2000-01-01

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  1. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Canevarolo, Sebastião V., E-mail: caneva@ufscar.br; Ravazzi, Camila; Silva, Jorge, E-mail: jorge.silva@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos Rod. Washington Luiz Km 235, 13565-905, SãoCarlos, SP - Brazil (Brazil); Elias, Marcelo [Motechfilm Produtos Plásticos, Estrada Municipal do Bonfim, 100, Pinhal, Cabreúva, SP - Brazil (Brazil)

    2016-03-09

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  2. Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design

    International Nuclear Information System (INIS)

    Huminicki, Danielle M.C.; Rimstidt, J. Donald

    2008-01-01

    Batch reactor (BR) experiments were conducted to measure the effect of hydrodynamics and gypsum coatings on calcite neutralization rates. A factorial array of BR experiments measured the H + concentration change by calcite dissolution over a pH range of 1.5-3.5 and Na 2 SO 4 concentrations of 0-1 M. The rate of H + concentration change with time was determined by numerical differentiation of H + concentration versus time. Regression modeling showed that for uncoated calcite, rates are only significantly affected by pH, r=-10 -2.32 a H + 0.76 . Whereas, for calcite coated with gypsum only time had a significant effect on calcite dissolution rates, r = -10 -1.96 t -0.53 . Because transport-limited dissolution rates for uncoated calcite are a function of the pH and Reynolds number, a model was developed to express the effects of these two variables on the rate of H + consumption for a solution with a Darcy velocity, q, through a porous medium with a particle radius, r p , such that r ' =1.08x10 -3 q 0.31 r p -0.69 m H + 0.87 . This equation was integrated via a numerical model to simulate the performance of an idealized anoxic limestone drain (ALD). This model predicts the pH and alkalinity change along the length of an ALD. The model shows that the efficiency of an ALD is greater when the Darcy velocity is low and the particle radius is small. In addition, the growth of gypsum coatings causes the rate of H + neutralization to decline as the square root of time as they form and block the H + transport to the calcite surface. Supersaturation with respect to gypsum, leading to coating formation, can be avoided by diluting the ALD feed solution or by replacing limestone with dolomite

  3. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  4. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  5. Reaction kinetics of dolomite rim growth

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  6. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  7. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    Science.gov (United States)

    Jin, Xiaobo; Liu, Chuanlian; Poulton, Alex J.; Dai, Minhan; Guo, Xianghui

    2016-08-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL-1 and 1508.3 pg C mL-1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).

  8. Temperature and orientation dependence of the short-term strength characteristics, Young's modulus, and linear expansion coefficient of ZhS6F alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Svetlov, I L; Sukhanov, N N; Krivko, A I; Roshchina, I N; Khatsinskaia, I M

    1987-01-01

    Experimental data are presented on the temperature dependence of the short- term strength characteristics, Young's modulus, and linear expansion coefficients of single crystals of a nickel alloy, ZhS6F, with crystallographic orientations along the 001, 111, 011, and 112 lines. It is found that the mechanical properties and Young's modulus of the alloy crystals exibit anisotropy in the temperature range 20-900 C. The linear thermal expansion coefficient is isotropic up to 900 C and equal to that of the equiaxed alloy. 10 references.

  9. Isostructural exclusion of elements between aragonite and calcite layers in the shell of the Pacific oyster Crassostrea gigas

    International Nuclear Information System (INIS)

    Markwitz, A.; Gauldie, R.W.; Trompetter, W.J.; Pithie, J.; Jamieson, D.N.; Sharma, S.K.

    1999-01-01

    Sections of the shell of the farmed Pacific oyster 'Crassostrea gigas' that are available commercially in Wellington, New Zealand, showed a distinct alternating pattern in the shell mineral when observed by reflected light. The layers were identified by Raman scattering as alternating bands of the calcite and aragonite mineral forms of calcium carbonate using the micro-Raman facility at the Hawaii Institute of Geophysics and Planetology. The differences in the unit cell structure of calcite and aragonite favour different trace elements in the two minerals. Aragonite is isostructural with Strontianite SrCO 3 , and calcite is isostructural with Smithsonite ZnCO 3 . As a result, Sr deposition should be favoured in the aragonite layer and is excluded from the calcite layer; and, conversely, Zn deposition should be favoured in the calcite layer and is excluded from the aragonite layer. However, up to today, significant differences in the pattern of Sr and Zn in microprobe scans are not discovered. By ion microprobe analysis, it was shown that differences in the unit cell structure of calcite and aragonite favor different trace elements in the two minerals

  10. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    International Nuclear Information System (INIS)

    Zhuang, Zhi; Yoshimura, Hideyuki; Aizawa, Mamoru

    2013-01-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel

  11. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: zhuang@meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: hyoshi@isc.meiji.ac.jp [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: mamorua@isc.meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2013-07-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  12. Influence of Teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate)

    DEFF Research Database (Denmark)

    Ning, Zhenbo; Nielsen, Ronnie Bo Højstrup; Zhao, Lifen

    2014-01-01

    for PBA beta crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after...... enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with alpha crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films....

  13. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    Science.gov (United States)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  14. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  15. Neutron-activation determination of the rare earths in natural calcites using a semiconductor detector

    International Nuclear Information System (INIS)

    Vaganov, N.A.; Bulnaev, A.I.; Mejer, V.A.; Ponomarev, V.S.

    1976-01-01

    The application of germanium semiconducting detector is described. The detector has an energy resolution about 1 KeV and makes it possible to determine the content of Ce, Nd, Eu, Gd, Tb, and Yb in natural calcites with high sensitivity. The region of soft γ-radiation of activated calcites is more favourable for measurements to be performed than the region of hard γ-rays. Semiconducting detectors of radiation type are relatively cheap; they can be stored at room temperature. The limit of determining rare earth elements in calcites is (g): Eu-1.5.10 -9 ; Tb-4.0.10 -9 ; Yb-7.0.10 -9 ; Ce-1.0.10 -7 ; Nd-5.0.10 -7 ; Gd-1.0.10 -6 . A relative error of concentration determination is 10-20%

  16. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    Science.gov (United States)

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  17. Utilization of calcite produced in Turkey for paper coating

    Directory of Open Access Journals (Sweden)

    Hüdaverdi Eroğlu

    2002-03-01

    Full Text Available Calcium carbonate is one of the coating pigments widely used in paper industry. Especially, in recent years calcium carbonate filler has gained high importance in alkaline pulping. In Turkey industry actually imports calcium carbonate; whereas, there are rich calcite reservoirs in the country. In this study two different types of domestic ground (GCC calcite samples were used. Physical and chemical properties of calcite samples were tested firstly. CaCO3 percentages of both samples were 97.3 % and 97.6 % (min. 95 % CaCO3. MgCO3 and Fe2O3 percentages were within the desired limits. Brightness values were 95.5 % and 94.5 % and yellowness 1.1 % and 1.5 % elrepho. These values also were within the requested limits. Under 2 microns particle size and over 10 microns particle size fractions were 95 % and 89 % (min. 80 and 1 % and 2 % (max. 2 respectively. Dry matter rates were between 40 %-65 %, for the pilot plant-coating machine. During the preparation of coating color calcium carbonate has been used together with kaolin. The ratios of calcium carbonate to kaolin were 30/70, 40/60, 50/50, 60/40, 70/30, 100/0. In coating color preparation latex was used as a binder because of its wide applications. Latex percentages were 11, 12, and 13 %. Coated papers were glossed and physically tested. As a result, both calcium carbonate samples were found suitable for using in coating color preparation. By the utilization of domestic calcium carbonate in coated paper production, there will be foreign currencies saving.

  18. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    Science.gov (United States)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  19. The effect of crystal symmetry on the maximum polarization of polycrystalline ferroelectric materials

    International Nuclear Information System (INIS)

    Jones, Jacob L.

    2010-01-01

    In polycrystalline ceramics, the degree of domain orientation in all possible crystal orientations contributes to the total realizable polarization. The extent to which domains are oriented towards an applied field can be described by a polarization distribution function. Such representations are calculated and presented in the present work for several different crystal systems including monoclinic symmetries that exhibit a polarization rotation mechanism. The relationship between the polarization distribution functions and the attainable macroscopic polarization is also developed for polycrystalline ceramics that are initially randomly oriented. In these cases, polarization rotation allows a significant degree of preferred orientation parallel to the electric field (>1000 multiples of a random distribution). However, the fraction of single crystal polarization that can be achieved (97.5%) is only marginally better than those of higher crystal symmetry.

  20. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    Science.gov (United States)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  1. Radiation-induced paramagnetic species in natural calcite speleothems

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1989-01-01

    The ESR natural spectrum of humic-free speleothem calcite single crytals in the region of g = 2.0000 is a composite of lines from 4 radiogenic species, in addition to Mn ++ lines. Laboratory irradiation causes appearrance of three more species. Use of isotropic F species (g = 2.0003) for dating is possible if specific cautions are followed. (author) [pt

  2. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  3. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  4. Subsolidus Evolution of the Magnetite-Spinel-UlvöSpinel Solid Solutions in the Kovdor Phoscorite-Carbonatite Complex, NW Russia

    Directory of Open Access Journals (Sweden)

    Gregory Yu. Ivanyuk

    2017-11-01

    Full Text Available The Kovdor phoscorite-carbonatite ore-pipe rocks form a natural series, where apatite and magnetite first gradually increase due to the presence of earlier crystallizing forsterite in the pipe marginal zone and then decrease as a result of carbonate development in the axial zone. In all lithologies, magnetite grains contain (oxyexsolution inclusions of comparatively earlier ilmenite group minerals and/or later spinel, and their relationship reflects the concentric zonation of the pipe. The temperature and oxygen fugacity of titanomagnetite oxy-exsolution decreases in the natural rock sequence from about 500 °C to about 300 °C and from NNO + 1 to NNO − 3 (NNO is Ni-NiO oxygen fugacity buffer, with a secondary positive maximum for vein calcite carbonatite. Exsolution spinel forms spherical grains, octahedral crystals, six-beam and eight-beam skeletal crystals co-oriented with host magnetite. The ilmenite group minerals occur as lamellae oriented along {111} and {100} planes of oxy-exsolved magnetite. The kinetics of inclusion growth depends mainly on the diffusivity of cations in magnetite: their comparatively low diffusivities in phoscorite and carbonatites of the ore-pipe internal part cause size-independent growth of exsolution inclusions; while higher diffusivities of cations in surrounding rocks, marginal forsterite-rich phoscorite and vein calcite carbonatite result in size-dependent growth of inclusions.

  5. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation.

    Science.gov (United States)

    Sharma, T K; Alazhari, M; Heath, A; Paine, K; Cooper, R M

    2017-05-01

    Characterization of alkaliphilic Bacillus species for spore production and germination and calcite formation as a prelude to investigate their potential in microcrack remediation in concrete. Conditions, extent and timing of endospore production was determined by dark-field light microscopy; germination induction and kinetics were assessed by combining reduction in optical density with formation of refractile bodies by phase-contrast microscopy. Bacillus pseudofirmus was selected from several species as the most suitable isolate. Levels and timing of calcium carbonate precipitated in vitro by B. pseudofirmus were evaluated by atomic absorption spectroscopy and structural identity confirmed as calcite and aragonite by Raman spectroscopy and FTIR. The isolate produced copious spores that germinated rapidly in the presence of germinants l-alanine, inosine and NaCl. Bacterial cells produced CaCO 3 crystals in microcracks and the resulting occlusion markedly restricted water ingress. By virtue of rapid spore production and germination, calcium carbonate formation in vitro and in situ, leading to sealing of microcracks, B. pseudofirmus shows clear potential for remediation of concrete on a commercial scale. Microbial sealing of microcracks should become a practicable and sustainable means of increasing concrete durability. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  6. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    Science.gov (United States)

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  7. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  8. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  9. Inhibiting Effect of Additives on Pressure Solution of Calcite

    Science.gov (United States)

    Traskine, V.; Skvortsova, Z.; Badun, G.; Chernysheva, M.; Simonov, Ya.; Gazizullin, I.

    2018-05-01

    The task of protection of cultural heritage requires a better understanding of combined effects of mechanical and chemical factors involved in environmental deterioration of monuments. The present paper deals with extending some known physicochemical methods proposed for inhibiting the decay of unstressed materials to their study during water-assisted deformation. The tests have been carried out on natural limestone samples and calcite powders in CaCO3 saturated aqueous solutions under static loads causing measurable pressure solution creep. In the solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotriacetic acid, or ethylenediaminetetraacetic acid, the creep rate decreases considerably with increasing concentration of additives. The extent of creep deceleration has been found to be proportional to the independently estimated calcite surface area occupied by adsorbed species. This fact enables us to discriminate the adsorption-induced effect from other variables controlling the pressure solution rate and may be used in screening of compounds able to minimize the environmental impact on marble and limestone objects undergoing mechanical stresses.

  10. Inferences of paleoenvironment from petrographic, chemical and stable-isotope studies of calcretes and fracture calcites

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Whelan, J.F.

    1994-01-01

    Past research has indicated a genetic connection between calcite formed in calcretes at the surface of Yucca Mountain, Nevada, and calcites deposited in underlying fractures of the unsaturated zone. This common genesis suggests that paleoenvironmental information, as well as the timing and pathways of past recharge episodes, might be obtained from studies of the deposits in both the calcretes and the unsaturated fractures. Chemical and isotopic modification of calcite-precipitating fluids appears to begin at the surface, largely under the influence of plant roots and their decay products. Chemical characteristics of the deeper calcites are either initiated or largely defined within the first few meters of fluid migration into the unsaturated tuffs beneath the calcretes. However, petrographic and isotopic data indicate a very unique low-δ 13 C microenvironment that is localized at the upper surfaces of the calcretes. These surfaces form an interface in the soil horizon where infiltration may pond above the underlying carbonate ''plug.'' In order to decipher the chemistry and petrology of past recharge events, it is important to first understand microenvironments such as this that contribute to mineral precipitation/dissolution events in the pedogenic environment

  11. Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum

    Science.gov (United States)

    Chen, Long; Xu, Wang-Hua; Zhao, Ying-Guo; Kang, Yan; Liu, Shao-Hua; Zhang, Zai-Yong

    2012-12-01

    In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.

  12. Analysis on the anisotropic electromechanical properties of lead magnoniobate titanate single crystal for ring type ultrasonic motors

    Directory of Open Access Journals (Sweden)

    Xiang Shi

    2016-11-01

    Full Text Available This work discussed the optimized cut of single crystal lead magnoniobate titanate (PMNT for use of ring type travelling wave ultrasonic motors (USMs, according to anisotropic analysis on electromechanical properties. The selection criterion of crystal orientation relies on the circular uniformity of the induced travelling wave amplitude on the stator surface. By calculating the equivalent elastic coefficient c11 and lateral piezoelectric constant d31, the optimal crystal orientations were proposed for PMNT single crystals poled along different directions. For single crystal poled along c directions, the optimal orientation lies along [001]c with d31=-1335pC/N and k31=0.87. The crystallographic orientation [025]c is the optimized orientation for single crystals poled along c direction with d31=199pC/N and k31=0.55. The optimal orientation of 1R configuration is [332¯]c with a large enhancement of d31 = 1201 and k31=0.92.

  13. Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment

    International Nuclear Information System (INIS)

    Dong, Wenming; Ball, William P.; Liu, Chongxuan; Wang, Zheming; Stone, Alan T.; Bai, Jing; Zachara, John M.

    2005-01-01

    The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] ) 10-7-10-5 mol/L and final pH ) 6.0- 10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4 (0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3 0(aq) at pH<8.4 and that formation of Ca2UO2(CO3)3 0(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3 4- in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity

  14. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  16. Characteristics of a calcite "limestone"-marble from Macedonia, used as flux material

    Directory of Open Access Journals (Sweden)

    Hristova E.

    2003-01-01

    Full Text Available The phase characteristics of calcite "limestone"-marble from Banjany area village (near Skopje, Macedonia were examined by means of XRD, SEM microscope in polarizing and reflected lights, chemical, DT/TG-analyses. It was concluded as follows: - calcite (CaCO3 is a major mineral component (cca 80-90 % prevailing in the marble over the other minerals - dolomite is generally of minor importance (cca 10-20 % in the rock - quartz, micas graphite, pyrite represent typical accessories. As result of the mentioned phase characteristics, this raw materials was for a long time (more than 30 years used as flux in the iron and steel metallurgy in Macedonia.

  17. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    Science.gov (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    Magnesium isotopes are an emerging tool to study the geological processes recorded in carbonates. Calcite, due to its ubiquitous occurrence and the large Mg isotope fractionation associated with the mineral, has attracted great interests in applications of Mg isotope geochemistry. However, the fidelity of Mg isotopes in geological records of carbonate minerals (e.g., calcite and dolomite) against burial metamorphism remains poorly constrained. Here we report our investigation on the Mg isotope systematics of a dolomitized Middle Triassic Geshan carbonate section in eastern China. Magnesium isotope analysis was complemented by analyses of Sr-C-O isotopic compositions, major and trace element concentrations, and petrographic and mineralogical features. Multiple lines of evidence consistently indicated that post-depositional diagenesis of carbonate minerals occurred to the carbonate rocks. Magnesium isotope compositions of the carbonate rocks closely follow a mixing trend between a high δ26Mg dolomite end member and a low δ26Mg calcite end member, irrespective of sample positions in the section and calcite/dolomite ratio in the samples. By fitting the measured Mg isotope data using a two-end member mixing model, an inter-mineral Δ26Mgdolomite-calcite fractionation of 0.72‰ was obtained. Based on the experimentally derived Mg isotope fractionation factors for dolomite and calcite, a temperature of 150-190 °C was calculated to correspond to the 0.72‰ Δ26Mgdolomite-calcite fractionation. Such temperature range matches with the burial-thermal history of the local strata, making a successful case of Mg isotope geothermometry. Our results indicate that both calcite and dolomite had been re-equilibrated during burial metamorphism, and based on isotope mass balance of Mg, the system was buffered by dolomite in the section. Therefore, burial metamorphism may reset Mg isotope signature of calcite, and Mg isotope compositions in calcite should be dealt with caution in

  18. Electroerosion impulse effect on W single crystal structure

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Khvostikova, V.D.; Zolotykh, B.N.; Marchuk, A.I.

    1977-01-01

    The mechanism has been studied of brittle failure of single crystal tungsten on planes of crystallographic orientations [100], [110]; [111] in the process of electro-erosion machining by pulses of energies ranging from 1200 to 5000 μJ and of duration of 1 μs. It is shown that the electro-erosion machining of single crystal tungsten is characterized by the formation of a defect layer with a grid of microcracks which lie at a depth of approximately 80 μm. The appearance and the distribution of cracks on the surface of single crystals depends on the crystallogrpahic orientation

  19. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  20. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  1. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas

    2014-01-01

    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...

  2. Phase field modeling of twinning in indentation of transparent crystals

    International Nuclear Information System (INIS)

    Clayton, J D; Knap, J

    2011-01-01

    Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory

  3. Influence of deformation on dolomite rim growth kinetics

    Science.gov (United States)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted

  4. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  5. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian

    2016-03-02

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl2, and MgCl2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl2 and MgCl2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl2 and MgCl2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.

  6. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan Vivian, E-mail: yan.li@colostate.edu [Colorado State University, Department of Design and Merchandising (United States); Cathles, Lawrence M., E-mail: lmc19@cornell.edu [Cornell University, Earth and Atmospheric Sciences (United States)

    2016-03-15

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl{sub 2}, and MgCl{sub 2}) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl{sub 2} and MgCl{sub 2} solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl{sub 2} and MgCl{sub 2} solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract.

  7. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    International Nuclear Information System (INIS)

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl_2, and MgCl_2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl_2 and MgCl_2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl_2 and MgCl_2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract

  8. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  9. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid inte......We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...

  10. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  11. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  12. Development of remote controlled electron probe micro analyzer with crystal orientation analyzer

    International Nuclear Information System (INIS)

    Honda, Junichi; Matsui, Hiroki; Harada, Akio; Obata, Hiroki; Tomita, Takeshi

    2012-07-01

    The advanced utilization of Light Water Reactor (LWR) fuel is progressed in Japan to save the power generating cost and the volume of nuclear wastes. The electric power companies have continued the approach to the burnup extension and to rise up the thermal power increase of the commercial fuel. The government should be accumulating the detailed information on the newest technologies to make the regulations and guidelines for the safety of the advanced nuclear fuels. The remote controlled Electron Probe Micro Analyzer (EPMA) attached with crystal orientation analyzer has been developed in Japan Atomic Energy Agency (JAEA) to study the fuel behavior of the high burnup fuels under the accident condition. The effects of the cladding microstructure on the fuel behavior will be evaluated more conveniently and quantitatively by this EPMA. The commercial model of EPMA has been modified to have the performance of airtight and earthquake resistant in compliance with the safety regulation by the government for handling the high radioactive elements. This paper describes the specifications of EPMA which were specialised for post irradiation examination and the test results of the cold mock-up to confirm their performances and reliabilities. (author)

  13. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field,Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth

  14. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  15. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  16. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.

    Science.gov (United States)

    Coxall, Helen K; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Backman, Jan

    2005-01-06

    The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.

  17. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  18. Removal of trace elements from landfill leachate by calcite precipitation

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, Petr

    2006-01-01

    Roč. 88, 1-3 (2006), s. 28-31 ISSN 0375-6742 R&D Projects: GA AV ČR(CZ) KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : landfill leachate * calcite * scavenging Subject RIV: CA - Inorganic Chemistry Impact factor: 0.922, year: 2006

  19. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Guang Wang

    2017-07-01

    Full Text Available Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  20. Growth and Characterization of ZnTe Crystal

    International Nuclear Information System (INIS)

    Nann Thazin

    2011-12-01

    High quality ZnTe crystals have been synthesized by vapor Transport method. The grown crystals were p-type. The concentration and mobility were 2.5 x 10 16 cm-3 and 23 cm2/Vs at 300K, according to Hall effect measurements. Surface morphology of the crystal was investigated by scanning electron microscope (SEM). Crystal orientation and lattice parameters of the crystals were also analysed by XRD. From X-ray diffraction studies the structure of the grown crystals were found to be zinc-blende. The crystal emitted light in the visible range at room temperature.

  1. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes

    International Nuclear Information System (INIS)

    Kamohara, Toshihiro; Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Kuwano, Noriyuki

    2007-01-01

    Highly c-axis-oriented aluminum nitride (AlN) thin films have been prepared on titanium (Ti) bottom electrodes by using AlN interlayers. The AlN interlayers were deposited between Ti electrodes and silicon (Si) substrates, such as AlN/Ti/AlN/Si. The crystallinity and crystal orientation of the AlN films and Ti electrodes strongly depended on the thickness of the AlN interlayers. Although the sputtering conditions were the same, the X-ray diffraction intensity of AlN (0002) and Ti (0002) planes drastically increased, and the full-width at half-maximum (FWHM) of the X-ray rocking curves decreased from 5.1 o to 2.6 o and from 3.3 o to 2.0 o , respectively. Furthermore, the piezoelectric constant d 33 of the AlN films was significantly improved from - 0.2 to - 4.5 pC/N

  2. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    Garde, A.A.

    1979-01-01

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta 13 C and -9.9+-1.5 per 1000 delta 18 O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta 13 C and delta 18 O. Five 13 C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13 C and delta 18 O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  3. Molecular dynamics simulations of the calcite/solution interface as a means to explore surface modifications induced by nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Spijker, P. [Aalto Univ., Helsinki (Finland). Dept. of Applied Physics; Voitchovsky, K. [Durham Univ. (United Kingdom). Physics Dept.

    2016-07-01

    The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO{sub 3} severely affect calcite's (104) surface and its reactivity. Molecular dynamics (MD) simulations reveal density profiles of different ions near calcite's surface, with NO{sub 3}{sup -} able to reach closer to the surface than CO{sub 3}{sup 2-} and in higher concentrations. Additionally, incorporation of NO{sub 3}{sup -} into the surface significantly disturbs the water structure at the interface.

  4. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    Science.gov (United States)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  5. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012 planes of fish guanine crystals

    Directory of Open Access Journals (Sweden)

    T. Chikashige

    2018-05-01

    Full Text Available In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth’s gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ∼20-μm-long plates with respect to the Earth’s gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (01¯2¯ and (01¯2. In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  6. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  7. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    Science.gov (United States)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  8. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  9. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  10. Low-temperature nuclear orientation

    International Nuclear Information System (INIS)

    Stone, N.J.; Postma, H.

    1986-01-01

    This book comprehensively surveys the many aspects of the low temperature nuclear orientation method. The angular distribution of radioactive emissions from nuclei oriented by hyperfine interactions in solids, is treated experimentally and theoretically. A general introductory chapter is followed by formal development of the theory of the orientation process and the anisotropic emission of decay products from oriented nuclei, applied to radioactive decay and to reactions. Five chapters on applications to nuclear physics cover experimental studies of alpha, beta and gamma emission, nuclear moment measurement and level structure information. Nuclear orientation studies of parity non-conservation and time reversal asymmetry are fully described. Seven chapters cover aspects of hyperfine interactions, magnetic and electric, in metals, alloys and insulating crystals, including ordered systems. Relaxation phenomena and the combined technique of NMR detection using oriented nuclei are treated at length. Chapters on the major recent development of on-line facilities, giving access to short lived nuclei far from stability, on the use of nuclear orientation for thermometry below 1 Kelvin and on technical aspects of the method complete the main text. Extensive appendices, table of relevant parameters and over 1000 references are included to assist the design of future experiments. (Auth.)

  11. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  12. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression

    International Nuclear Information System (INIS)

    Ma, Duancheng; Eisenlohr, Philip; Epler, Eike; Volkert, Cynthia A.; Shanthraj, Pratheek; Diehl, Martin; Roters, Franz; Raabe, Dierk

    2016-01-01

    We present a study on the plastic deformation of single crystalline stochastic honeycombs under in-plane compression using a crystal plasticity constitutive description for face-centered cubic (fcc) materials, focusing on the very early stage of plastic deformation, and identifying the interplay between the crystallographic orientation and the cellular structure during plastic deformation. We observe that despite the stochastic structure, surprisingly, the slip system activations in the honeycombs are almost identical to their corresponding bulk single crystals at the early stage of the plastic deformation. On the other hand, however, the yield stresses of the honeycombs are nearly independent of their crystallographic orientations. Similar mechanical response is found in compression testing of nanoporous gold micro-pillars aligned with various crystallographic orientations. The macroscopic stress tensors of the honeycombs show the same anisotropy as their respective bulk single crystals. Locally, however, there is an appreciable fluctuation in the local stresses, which are even larger than for polycrystals. This explains why the Taylor/Schmid factor associated with the crystallographic orientation is less useful to estimate the yield stresses of the honeycombs than the bulk single crystals and polycrystals, and why the plastic deformation occurs at smaller strains in the honeycombs than their corresponding bulk single crystals. Besides these findings, the observations of the crystallographic reorientation suggest that conventional orientation analysis tools, such as inverse pole figure and related tools, would in general fail to study the plastic deformation mechanism of monocrystalline cellular materials.

  13. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    Science.gov (United States)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  14. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations

    Institute of Scientific and Technical Information of China (English)

    Fahamsyah H.Latief; Koji Kakehi; El-Sayed M.Sherif

    2014-01-01

    An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at 1100 1C. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.

  15. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  16. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  17. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  18. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  19. Origin of calcite in the glacigenic Virttaankangas complex

    OpenAIRE

    Nina M. Kortelainen; Petri J. Korkeakoski; Juha A. Karhu

    2007-01-01

    Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of...

  20. Simple, simultaneous gravimetric determination of calcite and dolomite in calcareous soils

    Science.gov (United States)

    Literature pertaining to determination of calcite and dolomite is not modern and describes slow methods that require expensive specialized apparatus. The objective of this paper was to describe a new method that requires no specialized equipment. Linear regressions and correlation coefficients for...

  1. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell...

  2. Protein crystal growth in low gravity

    Science.gov (United States)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  3. Single-Crystal Diffraction from Two-Dimensional Block Copolymer Arrays

    International Nuclear Information System (INIS)

    Stein, G. E.; Kramer, E. J.; Li, X.; Wang, J.

    2007-01-01

    The structure of oriented 2D block copolymer single crystals is characterized by grazing-incidence small-angle x-ray diffraction, demonstrating long-range sixfold orientational order. From line shape analysis of the higher-order Bragg diffraction peaks, we determine that translational order decays algebraically with a decay exponent η=0.2, consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young theory for a 2D crystal with a shear modulus μ=2x10 -4 N/m

  4. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  5. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    Science.gov (United States)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  6. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  7. Calcite production by coccolithophores in the south east Pacific Ocean

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2008-08-01

    Full Text Available BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG from the Marquesas archipelago to the Peru-Chile upwelling (PCU. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represented more than 30% of all the suspended calcite particles detected in the size range 0.1–46 μm (22% of PIC in term of calcite weight. These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production influence on calcification is mainly driven at the local scale (depth whereas the abiotic (carbonate chemistry plays its most important role at the regional (horizontal level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  8. Improvement Of The U-Th Method For Dating Of Impure Calcite Having A Large Amount Of Clay And Very Low Uranium Content

    Directory of Open Access Journals (Sweden)

    Samer Farkh

    2015-01-01

    Full Text Available Abstract The U-Th method also called series method of uranium is improved by a new experimental protocol and successfully applied to the impure calcite with uranium concentration 005 dpmg which was previously difficult to be dated accurately. Our experiments performed on 15 calcite samples taken from France and Morocco have highlighted the importance of this methodological improvement by enabling i the elimination of 100 of clay residues ii the reduction of calcite quantity necessary to the chemical manipulation from 20g to 5g iii the analysis of calcite samples poor in uranium and on the other hand rich with clay and iiii the reduction of the lower limit of the U-Th method from 10 Kyrs to 6 Kyrs. The optimization of U-Th method in this work provided a better dating of the accurate age of calcite. Thus this technique is important for the chemical analysis of stalagmite floors of different caves in the region of the Near East.

  9. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  10. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  11. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  12. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope (δ18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  13. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Li Feng; Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-06-04

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm{sup -2} is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work.

  14. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi; Li Feng; Liu Baoting

    2008-01-01

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm -2 is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work

  15. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  16. Anisotropy of hardness and laser damage threshold of unidirectional organic NLO crystal in relation to the internal structure

    International Nuclear Information System (INIS)

    Natarajan, V.; Arivanandhan, M.; Sankaranarayanan, K.; Hayakawa, Y.

    2011-01-01

    Highlights: · Growth rate of the unidirectional organic crystals were measured and the variation in the growth rate was explained based on the attachment energy model. · Anisotropic behaviors of hardness and laser damage threshold of the unidirectional materials were analyzed. · The obtained results were explained based on the crystal structure of the material. - Abstract: Unidirectional benzophenone crystals were grown along , and directions by uniaxially solution crystallization method at ambient temperature. The growth rate of the grown crystals was varied with orientation. The optical absorption coefficients of benzophenone were measured as a function of wavelength. The optical absorption study reveals that the benzophenone crystal has very low absorption in the wavelength range of interest. Moreover, the laser damage threshold and micro hardness for , and oriented unidirectional benzophenone crystals were measured using a Q-switched Nd:YAG laser operating at 1064 nm radiation and Vicker's micro hardness tester, respectively. The laser damage threshold is larger for the and oriented crystals compared to oriented crystal at 1064 nm wavelength. The result is consistent with the hardness variation observed for the three different crystallographic directions of benzophenone crystal. The relation between the laser damage profile and mechanical hardness anisotropy is discussed based on the crystal structure of benzophenone.

  17. Nanoscopic Manipulation and Imaging of Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, Charles S. [Case Western Reserve Univ., Cleveland, OH (United States)

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  18. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  19. Occurrence and genesis of Quaternary microbialitic tufa at Hammam Al Ali, Oman

    Science.gov (United States)

    Khalaf, Fikry I.

    2017-05-01

    Remnants of late Quaternary microbialitic tufa occurs within a shallow depression in the Hammam Al Ali hot spring area, which is located approximately 14.5 km to the southwest of Muscat, Oman. The tufa precipitated from hot spring water supersaturated with respect to calcium carbonate and is mostly of a porous phytogenic type, with occasional detrital and stromatolitic types. Microscopic and nanoscopic examination revealed that the tufa deposits developed through two successive processes of calcite precipitation, biotic and abiotic, preceded by limited precipitation of unstable aragonite. It is suggested that biologically mediated precipitation results in the construction of incomplete skeletal calcite crystals. The latter provide a base for classical physiochemical precipitation and, eventually, the development of complete sparry calcite crystals. The initiation of dendritic calcite crystals in the stromatolitic tufa as incomplete biogenic skeletal crystals and their characteristic growth pattern indicates that the tufa represents a clear example of hot spring calcitic microbialite.

  20. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.