WorldWideScience

Sample records for caffeine suppress cyclin

  1. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  2. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  3. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    International Nuclear Information System (INIS)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J.

    1994-01-01

    The irradiation of cells results in delayed progression through the G 2 phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G 2 -phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G 2 -phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G 2 -phase arrest. In HeLa cells, the G 2 -phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G 2 -phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G 2 -phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs

  4. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells.

    Science.gov (United States)

    Hashimoto, Takashi; He, Zhiwei; Ma, Wei-Ya; Schmid, Patricia C; Bode, Ann M; Yang, Chung S; Dong, Zigang

    2004-05-01

    Caffeine is a major biologically active constituent in coffee and tea. Because caffeine has been reported to inhibit carcinogenesis in UVB-exposed mice, the cancer-preventing effect of caffeine has attracted considerable attention. In the present study, the effect of caffeine in quiescent (G0 phase) cells was investigated. Pretreatment with caffeine suppressed cell proliferation in a dose-dependent manner 36 h after addition of fetal bovine serum as a cell growth stimulator. Analysis by flow cytometry showed that caffeine suppressed cell cycle progression at the G0/G1 phase, i.e., 18 h after addition of fetal bovine serum, the percentages of cells in G0/G1 phase in 1 mM caffeine-treated cells and in caffeine-untreated cells were 61.7 and 29.0, respectively. The percentage of cells in G0/G1 phase at 0 h was 75.5. Caffeine inhibited phosphorylation of retinoblastoma protein at Ser780 and Ser807/Ser811, the sites where retinoblastoma protein has been reported to be phosphorylated by cyclin-dependent kinase 4 (cdk4). Furthermore, caffeine inhibited the activation of the cyclin D1-cdk4 complex in a dose-dependent manner. However this compound did not directly inhibit the activity of this complex. In addition, caffeine did not affect p16INK4 or p27Kip1 protein levels, but inhibited the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3beta. Our results showed that caffeine suppressed the progression of quiescent cells into the cell cycle. The inhibitory mechanism may be due to the inhibition of cell growth signal-induced activation of cdk4, which may be involved in the inhibition of carcinogenesis in vivo.

  5. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  6. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  7. Increased expression of cyclin B1 mRNA coincides with diminished G{sub 2}-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-12-01

    The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLa cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.

  8. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  9. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  10. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  11. Caffeine decreases phospho-Chk1 (Ser317) and increases mitotic cells with cyclin B1 and caspase 3 in tumors from UVB-treated mice.

    Science.gov (United States)

    Lu, Yao-Ping; Lou, You-Rong; Peng, Qing-Yun; Nghiem, Paul; Conney, Allan H

    2011-07-01

    Oral administration of caffeine to mice inhibits UVB-induced carcinogenesis, and these results are paralleled by epidemiology studies indicating that caffeinated coffee and tea intake (but not decaffeinated beverage intake) is associated with decreased incidence of nonmelanoma skin cancer. Topical applications of caffeine to the skin of SKH-1 mice that had previously been treated with UVB inhibited subsequent skin tumor development and stimulated apoptosis in tumors but not in nontumor areas of the epidermis. This study sought to determine the basis of these differential effects on tumor versus nontumor sites that can be induced by caffeine, long after all UVB treatment has ceased. The activation status of the ATR/Chk1 pathway in UVB-induced tumors and uninvolved skin was determined by quantitating phospho-Chk1 (Ser317) and induction of lethal mitosis in vivo in the presence and absence of topical caffeine treatment. In the absence of caffeine, we found that UVB-induced tumors often had islands of phospho-Chk1 (Ser317) staining cells that were not present in nontumor areas of the epidermis. Treatment of mice with topical caffeine significantly diminished phospho-Chk1 (Ser317) staining and increased the number of mitotic cells that expressed cyclin B1 and caspase 3 in tumors, consistent with caffeine-induced lethal mitosis selectively in tumors. We hypothesize that compared with adjacent uninvolved skin, UVB-induced skin tumors have elevated activation of, and dependence on, the ATR/Chk1 pathway long after UVB exposure has ceased and that caffeine can induce apoptosis selectively in tumors by inhibiting this pathway and promoting lethal mitosis.

  12. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  13. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  14. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    DEFF Research Database (Denmark)

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  15. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila.

    Science.gov (United States)

    Keebaugh, Erin S; Park, Jin Hong; Su, Chenchen; Yamada, Ryuichi; Ja, William W

    2017-11-01

    Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  18. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-01

    Highlights: ► Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. ► PCA enhanced transcriptional downregulation of cyclin D1 gene. ► PCA suppressed HDAC2 expression and activity. ► These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  19. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis

    Directory of Open Access Journals (Sweden)

    Allan H Conney

    2013-06-01

    Full Text Available Sunlight-induced nonmelanoma skin cancer is the most prevalent cancer in the United States with more than 2 million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on nonmelanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect.Mechanism studies indicate that caffeine has a sunscreen effect that inhibits UVB-induced formation of thymine dimers and sunburn lesions in the epidermis of mice. In addition, caffeine administration has a biological effect that enhances UVB-induced apoptosis thereby enhancing the elimination of damaged precancerous cells, and caffeine administration also enhances apoptosis in tumors. Caffeine administration enhances UVB-induced apoptosis by p53-dependent and p53-independent mechanisms. Exploration of the p53-independent effect indicated that caffeine administration enhanced UVB-induced apoptosis by inhibiting the UVB-induced increase in ATR-mediated formation of phospho-Chk1 (Ser345 and abolishing the UVB-induced decrease in cyclin B1 which resulted in caffeine-induced premature and lethal mitosis in mouse skin. In studies with cultured primary human keratinocytes, inhibition of ATR with siRNA against ATR inhibited Chk1 phosphorylation and enhanced UVB-induced apoptosis. Transgenic mice with decreased epidermal ATR function that were irradiated chronically with UVB had 69% fewer tumors at the end of the study compared with irradiated littermate controls with normal ATR function. These results, which indicate that genetic inhibition of ATR (like pharmacologic inhibition of ATR via caffeine inhibits UVB-induced carcinogenesis and supports the concept that ATR-mediated phosphorylation of Chk1 is an important target for caffeine’s inhibitory effect on UVB-induced carcinogenesis.

  20. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    Science.gov (United States)

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  1. SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication

    DEFF Research Database (Denmark)

    Walter, David; Hoffmann, Saskia; Komseli, Eirini-Stavroula

    2016-01-01

    interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCF(Cyclin F...

  2. Caffeine, coffee, and appetite control: a review.

    Science.gov (United States)

    Schubert, Matthew M; Irwin, Christopher; Seay, Rebekah F; Clarke, Holly E; Allegro, Deanne; Desbrow, Ben

    2017-12-01

    Coffee and caffeine consumption has global popularity. However, evidence for the potential of these dietary constituents to influence energy intake, gut physiology, and appetite perceptions remains unclear. The purpose of this review was to examine the evidence regarding coffee and caffeine's influence on energy intake and appetite control. The literature was examined for studies that assessed the effects of caffeine and coffee on energy intake, gastric emptying, appetite-related hormones, and perceptual measures of appetite. The literature review indicated that coffee administered 3-4.5 h before a meal had minimal influence on food and macronutrient intake, while caffeine ingested 0.5-4 h before a meal may suppress acute energy intake. Evidence regarding the influence of caffeine and coffee on gastric emptying, appetite hormones, and appetite perceptions was equivocal. The influence of covariates such as genetics of caffeine metabolism and bitter taste phenotype remain unknown; longer controlled studies are needed.

  3. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease.

    Science.gov (United States)

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide; Melmed, Shlomo

    2015-07-01

    Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E

  5. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation

    Science.gov (United States)

    Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-01-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627

  6. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  7. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  8. p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2

    International Nuclear Information System (INIS)

    Fritz, Melinda D.; Mirnics, Zeljka K.; Nylander, Karen D.; Schor, Nina F.

    2006-01-01

    p75NTR is a member of the tumor necrosis superfamily of proteins which is variably associated with induction of apoptosis and proliferation. Cyclin D2 is one of the mediators of cellular progression through G1 phase of the cell cycle. The present study demonstrates the inverse relationship between expression of cyclin D2 and expression of p75NTR in PC12 cells. Induction of p75NTR expression in p75NTR-negative PC12 cells results in downregulation of cyclin D2; suppression of p75NTR expression with siRNA in native PC12 cells results in upregulation of cyclin D2. The effects of p75NTR on cyclin D2 expression are mimicked in p75NTR-negative cells by transfection with the intracellular domain of p75NTR. Cyclin-D2-positive PC12 cell cultures grow more slowly than cyclin-D2-negative cultures, and induction of expression of cyclin D2 slows the culture growth rate of cyclin-D2-negative cells. Finally, subcutaneous murine xenografts of cyclin-D2-negative, p75NTR-positive PC12 cells more frequently and more rapidly produce tumors than the analogous xenografts of cyclin-D2-positive, p75NTR-negative cells. These results suggest that p75NTR suppresses cyclin D2 expression in PC12 cells by a mechanism distinct from its function as a nerve growth factor receptor and that cyclin D2 expression decreases cell culture and xenografted tumor growth

  9. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  10. Metabolic effects of physiological levels of caffeine in myotubes.

    Science.gov (United States)

    Schnuck, Jamie K; Gould, Lacey M; Parry, Hailey A; Johnson, Michele A; Gannon, Nicholas P; Sunderland, Kyle L; Vaughan, Roger A

    2018-02-01

    Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine's effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARβ/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARβ/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARβ/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARβ/δ.

  11. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  12. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  13. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  14. Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Mysoon M Al-Ansari

    Full Text Available BACKGROUND: Active cancer-associated fibroblasts (CAFs or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2, and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/-migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine. CONCLUSION/SIGNIFICANCE: The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

  15. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  16. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity.

    Science.gov (United States)

    Iris, Merve; Tsou, Pei-Suen; Sawalha, Amr H

    2018-04-18

    Caffeine is a widely consumed pharmacologically active product. We focused on characterizing immunomodulatory effects of caffeine on peripheral blood mononuclear cells. Caffeine at high doses showed a robust downregulatory effect on cytokine activity and genes related to several autoimmune diseases including lupus and rheumatoid arthritis. Dose-dependent validation experiments showed downregulation at the mRNA levels of key inflammation-related genes including STAT1, TNF, IFNG, and PPARG. TNF and PPARG were suppressed even with the lowest caffeine dose tested, which corresponds to the serum concentration of caffeine after administration of one cup of coffee. Cytokine levels of IL-8, MIP-1β, IL-6, IFN-γ, GM-CSF, TNF, IL-2, IL-4, MCP-1, and IL-10 were decreased significantly with caffeine treatment. Upstream regulator analysis suggests that caffeine inhibits STAT1 signaling, which was confirmed by showing reduced phosphorylated STAT1 after caffeine treatment. Further studies exploring disease-modulating potential of caffeine in autoimmune diseases and further exploring the mechanisms involved are warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  18. Caffeine withdrawal symptoms and self-administration following caffeine deprivation.

    Science.gov (United States)

    Mitchell, S H; de Wit, H; Zacny, J P

    1995-08-01

    This study examined the effects of complete or partial caffeine deprivation on withdrawal symptomatology and self-administration of coffee in caffeine-dependent coffee drinkers. Nine habitual coffee drinkers abstained from dietary sources of caffeine for 33.5 h. Caffeine deprivation was manipulated by administering capsules containing 0%, 50%, or 100% of each subject's daily caffeine intake (complete, partial, and no deprivation conditions). Caffeine withdrawal symptomatology was measured using self-report questionnaires. Caffeine self-administration was measured using: i) the amount of coffee subjects earned on a series of concurrent random-ratio schedules that yielded coffee and money reinforcers; ii) the amount of earned coffee they consumed. Saliva samples revealed that subjects complied with the caffeine abstinence instructions. Caffeine withdrawal symptoms occurred reliably following complete caffeine deprivation, though not in the partial deprivation condition. Caffeine self-administration was not related to deprivation condition. We conclude that caffeine withdrawal symptomatology is not necessarily associated with increased caffeine consumption.

  19. Caffeine as a model drug of dependence: recent developments in understanding caffeine withdrawal, the caffeine dependence syndrome, and caffeine negative reinforcement.

    Science.gov (United States)

    Griffiths, R R; Chausmer, A L

    2000-11-01

    Caffeine is an excellent model compound for understanding drugs of abuse/dependence. The results of self-administration and choice studies in humans clearly demonstrate the reinforcing effects of low and moderate doses of caffeine. Caffeine reinforcement has been demonstrated in about 45% of normal subjects with histories of moderate and heavy caffeine use. Recent studies provide compelling evidence that caffeine physical dependence potentiates the reinforcing effects of caffeine through the mechanism of withdrawal symptom avoidance. Tolerance to the subjective and sleep-disrupting effects of caffeine in humans has been demonstrated. Physical dependence as reflected in a withdrawal syndrome in humans has been repeatedly demonstrated in adults and recently demonstrated in children. Withdrawal severity is an increasing function of caffeine maintenance dose, with withdrawal occurring at doses as low as 100 mg per day. Increased cerebral blood flow may be the physiological mechanism for caffeine withdrawal headache. Case studies in adults and adolescents clearly demonstrate that some individuals meet DSM-IV diagnostic criteria for a substance dependence syndrome on caffeine, including feeling compelled to continue caffeine use despite desires and recommendations to the contrary. Survey data suggest that 9% to 30% percent of caffeine consumers may be caffeine dependent according to DSM-IV criteria.

  20. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle

    International Nuclear Information System (INIS)

    Shimura, Tsutomu

    2011-01-01

    Fractionated radiotherapy (RT) is widely used in cancer therapy for its advantages in the preservation of normal tissues. However, repopulation of surviving tumor cells during fractionated RT limits the efficacy of RT. In fact, repopulating tumors often acquire radioresistance and this is the major cause of failure of RT. We have recently demonstrated that human tumor cells acquire radioresistance when exposed to fractionated radiation (FR) of X-rays every 12 hours for 1 month. The acquired radioresistance was associated with overexpression of cyclin D1, a result of a series of molecular changes; constitutive activation of DNA-PK and AKT with concomitant down-regulation of glycogen synthase kinase-3β (GSK3β) which results in suppression of cyclin D1 proteolysis. Aberrant cyclin D1 overexpression in S-phase induced DNA double strand breaks which activated DNA-PK and established the vicious cycle of cycling D1 overexpression. This overexpression of cyclin D1 is responsible for the radioresistance phenotype of long-term FR cells, since this phenotype was completely abrogated by treatment of FR cells by the AKT/PKB signaling inhibitor (API-2), an AKT inhibitor or by a Cdk4 inhibitor. Thus, targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway can be an efficient modality to suppress acquired radioresistance of tumor cells. In this article, I overview the newly discovered molecular mechanisms underlying acquired radioresistance of tumor cells induced by FR, and propose a strategy for eradication of tumors using fractionated RT by overcoming tumor radioresistance. (author)

  1. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    Science.gov (United States)

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  2. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    International Nuclear Information System (INIS)

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan

    2007-01-01

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells

  3. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    Science.gov (United States)

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  4. A novel role for the cell cycle regulatory complex cyclin D1-CDK4 in gluconeogenesis

    OpenAIRE

    Hosooka, Tetsuya; Ogawa, Wataru

    2016-01-01

    Dysregulation of gluconeogenesis is a key pathological feature of type 2 diabetes. However, the molecular mechanisms underlying the regulation of gluconeogenesis remain unclear. Bhalla et?al. recently reported that cyclin D1 suppresses hepatic gluconeogenesis through CDK4?dependent phosphorylation of PGC1alpha and consequent inhibition of its activity. The cyclin D1?CDK4 might thus serve as an important link between the cell cycle and control of energy metabolism through modulation of PGC1alp...

  5. Differential responsiveness to caffeine and perceived effects of caffeine in moderate and high regular caffeine consumers.

    Science.gov (United States)

    Attwood, A S; Higgs, S; Terry, P

    2007-03-01

    Individual differences in responsiveness to caffeine occur even within a caffeine-consuming population, but the factors that mediate differential responsiveness remain unclear. To compare caffeine's effects on performance and mood in a group of high vs moderate consumers of caffeine and to examine the potential role of subjective awareness of the effects of caffeine in mediating any differential responsiveness. Two groups of regular caffeine consumers (200 mg/day) attended two sessions at which mood and cognitive functions were measured before and 30 min after consumption of 400-mg caffeine or placebo in a capsule. Cognitive tests included visual information processing, match-to-sample visual search (MTS) and simple and choice reaction times. Post-session questionnaires asked participants to describe any perceived effect of capsule consumption. High consumers, but not moderate consumers, demonstrated significantly faster simple and choice reaction times after caffeine relative to placebo. These effects were not attributable to obvious group differences in withdrawal or tolerance because there were no group differences in baseline mood or in reports of negative affect after caffeine. Instead, the high consumers were more likely to report experiencing positive effects of caffeine, whereas the moderate consumers were more likely to report no effect. The sensitivity of caffeine consumers to the mood- and performance-enhancing effects of caffeine is related to their levels of habitual intake. High caffeine consumers are more likely than moderate consumers to perceive broadly positive effects of caffeine, and this may contribute to their levels of use.

  6. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  7. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    Science.gov (United States)

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  8. Caffeine

    Science.gov (United States)

    What is caffeine? Caffeine is a bitter substance that occurs naturally in more than 60 plants including Coffee beans Tea leaves Kola nuts, ... chocolate products There is also synthetic (man-made) caffeine, which is added to some medicines, foods, and ...

  9. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca

    2014-09-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor

  10. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    International Nuclear Information System (INIS)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga

    2014-01-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor

  11. Caffeine and cognitive performance: persistent methodological challenges in caffeine research.

    Science.gov (United States)

    James, Jack E

    2014-09-01

    Human cognitive performance is widely perceived to be enhanced by caffeine at usual dietary doses. However, the evidence for and against this belief continues to be vigorously contested. Controversy has centred on caffeine withdrawal and withdrawal reversal as potential sources of experimental confounding. In response, some researchers have enlisted "caffeine-naïve" experimental participants (persons alleged to consume little or no caffeine) assuming that they are not subject to withdrawal. This mini-review examines relevant research to illustrate general methodological challenges that have been the cause of enduring confusion in caffeine research. At issue are the processes of caffeine withdrawal and withdrawal reversal, the definition of caffeine-naïve, the population representativeness of participants deemed to be caffeine-naïve, and confounding due to caffeine tolerance. Attention to these processes is necessary if premature conclusions are to be avoided, and if caffeine's complex effects and the mechanisms responsible for those effects are to be illuminated. Strategies are described for future caffeine research aimed at minimising confounding from withdrawal and withdrawal reversal. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Caffein

    DEFF Research Database (Denmark)

    Nørager, Charlotte Buchard; Jensen, Martin Bach; Madsen, Mogens Rørbæk

    2005-01-01

    /kg) can increase the endurance of athletes engaged in running, bicycling, swimming and other endurance sports. Caffeine is used both in training and in competitions, and the International Olympic Commitée (IOC) has included caffeine as a drug used for doping. There are several theories about caffeine...

  13. BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.

    Science.gov (United States)

    Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng

    2013-04-01

    Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.

  14. [Caffeine dependence].

    Science.gov (United States)

    Ogawa, Naoshi; Ueki, Hirofumi

    2010-08-01

    Caffeine is the most widely consumed psychoactive substance in the world and is a legal stimulant that is readily available to children. The potential for dependence on caffeine has been debated. Presently, due to a paucity of clinical evidence on caffeine dependence, no such diagnosis is included in the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR). Although in recent studies, a subset of the general population was found to demonstrate caffeine dependence. It is valuable for psychiatrists and primary care physicians to recognize caffeine dependence as a clinical syndrome, since some people are distressed by their caffeine use and feel they can not control or stop their problematic use.

  15. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  16. Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector

    Science.gov (United States)

    Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae

    2013-07-01

    Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

  17. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells.

    Science.gov (United States)

    Liu, Linna; Zhang, Hongmei; Shi, Lei; Zhang, Wenjuan; Yuan, Juanli; Chen, Xiang; Liu, Juanjuan; Zhang, Yan; Wang, Zhipeng

    2014-10-01

    Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

  18. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site...... in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed increased...... CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control...

  19. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption.

    Science.gov (United States)

    Nehlig, Astrid

    2018-04-01

    Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N -acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  1. Active Component of Danshen (Salvia miltiorrhiza Bunge, Tanshinone I, Attenuates Lung Tumorigenesis via Inhibitions of VEGF, Cyclin A, and Cyclin B Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Tang Tung

    2013-01-01

    Full Text Available Tanshinone I (T1 and tanshinone II (T2 are the major diterpenes isolated from Danshen (Salvia miltiorrhiza Bunge. Three human lung adenocarcinoma cell lines, A549, CL1-0, and CL1-5, were treated with T1 and T2 for the in vitro antitumor test. Results showed that T1 was more effective than T2 in inhibiting the growth of lung cancer cells via suppressing the expression of VEGF, Cyclin A, and Cyclin B proteins in a dose-dependent manner. Moreover, a transgenic mice model of the human vascular endothelial growth factor-A165 (hVEGF-A165 gene-induced pulmonary tumor was further treated with T1 for the in vivo lung cancer therapy test. T1 significantly attenuated hVEGF-A165 overexpression to normal levels of the transgenic mice (Tg that were pretreated with human monocytic leukemia THP-1 cell-derived conditioned medium (CM. It also suppressed the formation of lung adenocarcinoma tumors (16.7% compared with two placebo groups (50% for Tg/Placebo and 83.3% for Tg/CM/Placebo; P<0.01. This antitumor effect is likely to slow the progression of cells through the S and G2/M phases of the cell cycle. Blocking of the tumor-activated cell cycle pathway may be a critical mechanism for the observed antitumorigenic effects of T1 treatment on vasculogenesis and angiogenesis.

  2. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    The compound 3-bromopyruvate (3BP) is an analogue of pyruvate, which is the final product of glycolysis that enters the citric acid cycle. The present study aimed to investigate the suppressive effects of 3BP on the proliferation and motility of hepatocellular carcinoma (HCC) cells. HLF and PLC/PRF/5 cells were cultured with 3BP and subjected to an MTS assay. Apoptosis was analyzed by hematoxylin and eosin staining. Cell motility was analyzed using a scratch assay. Real-time quantitative polymerase chain reaction (PCR) was performed to determine the expression levels of cyclin D1 and matrix metalloproteinase (MMP)9. Proliferation of both cell lines was significantly suppressed by 3BP at 100 µM (P<0.05). The expression level of cyclin D1 was decreased after 3BP treatment at 100 µM in both cell lines (P<0.05). Pyknotic nuclei were observed in the cells cultured with 3BP at 100 µM. These results revealed that 3BP suppressed cell proliferation, decreased the expression of cyclin D1, and induced apoptosis in HCC cells. 3BP significantly suppressed motility in both cell lines (P<0.05). The expression level of MMP9 was significantly decreased (P<0.05). 3BP suppressed the proliferation and motility of HCC cells by decreasing the expression of cyclin D1 and MMP9.

  3. Cyclin D1 expression in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tucci, S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Muglia, V.F. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna (Centro de Ciência da Imagem), Ribeirão Preto, SP, Brasil, Departamento de Medicina Interna (Centro de Ciência da Imagem), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Reis, R.B. Dos [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, G.E.B. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  4. Cyclin D1 expression in prostate carcinoma

    International Nuclear Information System (INIS)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S.; Tucci, S.; Muglia, V.F.; Reis, R.B. Dos; Silva, G.E.B.

    2014-01-01

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness

  5. The Role of Cyclins and Cyclins Inhibitors in the Multistep Process of HPV-Associated Cervical Carcinoma

    International Nuclear Information System (INIS)

    Bahnassy, A.A.; Mokhtar, N.M.; Zekri, A.; Alam El-Din, H.M.; Aboubaker, A.A.; Kamel, K.; El-Sabah, M.T.

    2006-01-01

    Background: Human papillomavirus (HPV) types 16 and 18 are associated with cervical carcinogenesis. This is possibly achieved through an interaction between HPV oncogenic proteins and some cell cycle regulatory genes. However, the exact pathogenetic mechanisms are not well defined yet. Methods: We investigated 110 subjects (43 invasive squamous cell carcinoma [ISCC], 38 CIN Ill, II CIN II, 18 CIN I) confirmed to be positive for HPV 16 and/or 18 as well as 20 normal cervical tissue (NCT) samples for abnormal expression of cyclin DJ, cyclin E, CDK4, cyclin inhibitors (p2Jwa/; p27, pI6/NK4A) and Ki-67 using immunohistochemistry and differential PCR techniques. Results: There was a significant increase in the expression of Ki-67, cyclin E, CDK4, pJ6/NK4A (p=0003, 0.001,0.001) and a significant decrease in p27K1P/ from NCT to ISCC (p=0.003). There was a significant correlation between altered expression of p27K1P I and p 161NK4A (p KIpl (ρ=0.011) in all studied groups In ISCC, there was significant relationship between standard clinico-pathological prognostic factors and high Ki-67 index, increased cyclin D J and cyclin E, reduced p2 7Kip / and p21 waf Conclusion: I) Aberrations involving p27K/P 1, cyclin E, CDK4 and pJ6/NK4A are considered early events in HPV 16 and IS-associated cervical carcinogenesis (CINI and lI), whereas cyclin DI aberrations are late events (CINIII and ISCC). 2) immunohistochemical tests for pJ61NK4A and cyclin E could help in early diagnosis of cervical carcinoma. 3) Only FIGO stage, cyclin DI, p27K1P1 and Ki-67 are independent prognostic factors that might help in predicting outcome of cervical cancer palients

  6. Effects of caffeine on performance and mood depend on the level of caffeine abstinence.

    Science.gov (United States)

    Yeomans, Martin R; Ripley, Tamzin; Davies, Laura H; Rusted, Jennifer M; Rogers, Peter J

    2002-11-01

    Most studies of the effects of caffeine on performance have used regular caffeine consumers who are deprived at test. Thus the reported effects of caffeine could be explained through reversal of caffeine withdrawal. To test how preloading deprived caffeine consumers with 0, 1 or 2 mg/kg caffeine altered the subsequent ability of caffeine to modify mood and performance. Thirty moderate caffeine consumers were given a drink containing 0, 1 or 2 mg/kg caffeine at breakfast followed 60 min later by a second drink containing either 0 or 1 mg/kg caffeine. Performance on a measure of sustained attention and mood were measured before and after each drink. Administration of both 1 and 2 mg/kg caffeine at breakfast decreased reaction time and 1 mg/kg caffeine also increased performance accuracy on the sustained attention (RVIP) task relative to placebo. Both breakfast doses of caffeine also improved rated mental alertness. Similarly, 1 mg/kg caffeine administered 60 min after breakfast decreased reaction time and increased rated mental alertness in the group who had not been given caffeine at breakfast. However, this second dose of caffeine had no effect on subsequent performance or mood in the two groups who had received caffeine at breakfast. Caffeine reliably improved performance on a sustained attention task, and increased rated mental alertness, in moderate caffeine consumers who were tested when caffeine-deprived. However, caffeine had no such effects when consumers were no longer caffeine deprived. These data are consistent with the view that reversal of caffeine withdrawal is a major component of the effects of caffeine on mood and performance.

  7. Targeting the AKT/GSK3β/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-01-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3β-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3β/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor eradication in

  8. Sex-specific respiratory effects of acute and chronic caffeine administration in newborn rats.

    Science.gov (United States)

    Kouchi, Hayet; Uppari, NagaPraveena; Joseph, Vincent; Bairam, Aida

    2017-06-01

    Caffeine is widely used for the treatment of apnea of prematurity (AoP) but whether this effect varies with sex is unknown. To shed some light on this question, we present a summary of data obtained on the effects of caffeine on the respiratory chemoreflexes and apnea frequency in 1- and 12-days old male and female rats. Caffeine was either administered as a single acute injection (10mg/kg, i.p.) or for 10 consecutive days (7.5mg/kg/day between 3 and 12days of life by gavage, simulating its clinical use). Acute caffeine had little effects on breathing in 1-day old male and female rats. In 12-days old female rats caffeine reduced the response to hypercapnia (not hypoxia) compared to males. During the steady state of hypoxia females had a lower frequency of apneas than males, and acute injection of caffeine decreased the frequency of apnea, suppressing the differences between males and females. In 12-days old rats chronic administration of caffeine stimulated basal breathing and decreased the frequency of apnea similarly in males and females. In response to hypoxia, chronic caffeine administration also masked the difference in respiratory frequency between males and females observed in control rats. Female rats had lower frequency of apnea than males with or without caffeine treatment. These observations indicate that sex influences the respiratory responses to caffeine and this effect seems to depend on the modality of administration (acute vs chronic) and environmental oxygen (normoxia vs hypoxia). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A comparison of the effects of caffeine following abstinence and normal caffeine use.

    Science.gov (United States)

    Addicott, Merideth A; Laurienti, Paul J

    2009-12-01

    Caffeine typically produces positive effects on mood and performance. However, tolerance may develop following habitual use, and abrupt cessation can result in withdrawal symptoms, such as fatigue. This study investigated whether caffeine has a greater stimulant effect in a withdrawn state compared to a normal caffeinated state, among moderate daily caffeine consumers. Using a within-subjects design, 17 caffeine consumers (mean +/- sd = 375 +/- 101 mg/day) ingested placebo or caffeine (250 mg) following 30-h of caffeine abstention or normal dietary caffeine use on four separate days. Self-reported mood and performance on choice reaction time, selective attention, and memory tasks were measured. Caffeine had a greater effect on mood and choice reaction time in the abstained state than in the normal caffeinated state, but caffeine improved selective attention and memory in both states. Although improvements in mood and reaction time may best explained as relief from withdrawal symptoms, other performance measures showed no evidence of withdrawal and were equally sensitive to an acute dose of caffeine in the normal caffeinated state.

  10. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    Science.gov (United States)

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  11. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of catechins and caffeine on the development of atherosclerosis in mice.

    Science.gov (United States)

    Liu, Litong; Nagai, Izumi; Gao, Ying; Matsushima, Yoshibumi; Kawai, Yoshichika; Sayama, Kazutoshi

    2017-10-01

    Atherosclerosis is one of the diseases related to metabolic syndrome which is caused by obesity. Previous reports have shown that green tea and its components have anti-obesity effect. We examined whether catechins and caffeine can prevent the development of atherosclerosis by oral administration, singly or in combination to the atherosclerosis model mice. Results demonstrated that the number of atherosclerotic regions in the aorta was significantly reduced by the combined treatment, and the atherosclerotic area was also improved. Serum HDL-C increased by caffeine single treatment, but no effect on the TG and TC by any treatments. Moreover, ECG illuviated to atheromatous lesions in aorta and the illuviation was enhanced by caffeine. The mRNA expression levels of LOX-1 and TNF-α showed a tendency to suppress by the combined treatment. These results indicated that the combined administration of catechins and caffeine has the inhibitory effect on the development of atherosclerosis in mice.

  13. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer

    International Nuclear Information System (INIS)

    Kaukoniemi, Kirsi M; Rauhala, Hanna E; Scaravilli, Mauro; Latonen, Leena; Annala, Matti; Vessella, Robert L; Nykter, Matti; Tammela, Teuvo L J; Visakorpi, Tapio

    2015-01-01

    Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3’UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3’UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer

  14. Biodegradation of Caffeine by Trichosporon asahii Isolated from Caffeine Contaminated Soil

    OpenAIRE

    LAKSHMI V.; NILANJANA DAS

    2011-01-01

    Studies were carried out on caffeine degradation using Trichosporon asahii, a yeast species isolated from caffeine contaminated soil. There was 100 % degradation of caffeine at 54 h by the yeast cells acclimated to the medium containing caffeine and sucrose both. Experiments with T. asahii growing on caffeine in the presenceof 1 mM 1-aminobenzotriazole (ABT), an inhibitor of the cytochrome P-450 enzyme system, resulted inhibition of biomass production relative to positive control implicating ...

  15. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Caffeine dependence in teenagers.

    Science.gov (United States)

    Bernstein, Gail A; Carroll, Marilyn E; Thuras, Paul D; Cosgrove, Kelly P; Roth, Megan E

    2002-03-01

    This study identifies and characterizes symptoms of caffeine dependence in adolescents. Thirty-six adolescents who consumed caffeine daily and had some features of caffeine dependence on telephone screen were scheduled for outpatient evaluation. Evaluation included the Diagnostic Interview Schedule for Children-IV-Youth Version (DISC-IV) and modified DISC-IV questions that assessed caffeine dependence based on DSM-IV substance dependence criteria. Of 36 subjects, 41.7% (n=15) reported tolerance to caffeine, 77.8% (n=28) described withdrawal symptoms after cessation or reduction of caffeine intake, 38.9% (n=14) reported desire or unsuccessful attempts to control use, and 16.7% (n=6) endorsed use despite knowledge of physical or psychological problems associated with caffeine. There was no significant difference in the amount of caffeine consumed daily by caffeine dependent versus non-dependent teenagers. These findings are important due to the vast number of adolescents who drink caffeinated beverages.

  17. X-ray-related potentially lethal damage expressed by chromosome condensation and the influence of caffeine

    International Nuclear Information System (INIS)

    Sasaki, H.; Nishimoto, T.

    1989-01-01

    Caffeine has been reported to induce premature chromosome condensation (PCC) in S-phase cells in the presence of an inhibitor of DNA synthesis. We found that when S-phase cells are treated with caffeine and hydroxyurea after X irradiation, substantially more potentially lethal damage (PLD) is expressed, but the addition of cycloheximide, which inhibits PCC induction in S-phase cells, in the presence of caffeine and hydroxyurea reduces the expression of PLD to the same level as seen with caffeine alone. This can be interpreted to mean that the expression of PLD seen with caffeine in the absence of an inhibitor of DNA synthesis is not associated with chromosome condensation. Evidence that PCC induction in S-phase cells and the influence of caffeine on PLD expression were suppressed by incubation at 40 degrees C of tsBN75 cells with a ts defect in ubiquitin-activating enzyme indicates the involvement of ubiquitin in these two processes. These observations as well as previous findings on ubiquitin suggest to us that caffeine induces changes in DNA-chromatin conformation, which are caused by induction of PCC or ubiquitination of chromosomal protein. Such changes occurring postirradiation would favor expression of PLD

  18. X-ray-related potentially lethal damage expressed by chromosome condensation and the influence of caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, H.; Nishimoto, T. (Kyushu Univ., Fukuoka (Japan))

    1989-10-01

    Caffeine has been reported to induce premature chromosome condensation (PCC) in S-phase cells in the presence of an inhibitor of DNA synthesis. We found that when S-phase cells are treated with caffeine and hydroxyurea after X irradiation, substantially more potentially lethal damage (PLD) is expressed, but the addition of cycloheximide, which inhibits PCC induction in S-phase cells, in the presence of caffeine and hydroxyurea reduces the expression of PLD to the same level as seen with caffeine alone. This can be interpreted to mean that the expression of PLD seen with caffeine in the absence of an inhibitor of DNA synthesis is not associated with chromosome condensation. Evidence that PCC induction in S-phase cells and the influence of caffeine on PLD expression were suppressed by incubation at 40 degrees C of tsBN75 cells with a ts defect in ubiquitin-activating enzyme indicates the involvement of ubiquitin in these two processes. These observations as well as previous findings on ubiquitin suggest to us that caffeine induces changes in DNA-chromatin conformation, which are caused by induction of PCC or ubiquitination of chromosomal protein. Such changes occurring postirradiation would favor expression of PLD.

  19. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  20. Caffeine controversies.

    Science.gov (United States)

    Gentle, Samuel J; Travers, Colm P; Carlo, Waldemar A

    2018-04-01

    Caffeine use in preterm infants has endured several paradigms: from standard of care to possible neurotoxin to one of the few medications for which there is evidence of bronchopulmonary dysplasia (BPD) risk reduction. The purpose of the review is to analyze this dynamic trajectory and discuss controversies that still remain after decades of caffeine use. Following concerns for caffeine safety in preterm infants, a large randomized controlled trial demonstrated a reduction in BPD and treatment for patent ductus arteriosus. The lower rate of death or neurodevelopmental impairment noted at 18-21 months was not statistically different at later timepoints; however, infants in the caffeine group had lower rates of motor impairment at 11-year follow-up. The time of caffeine therapy initiation is now substantially earlier, and doses used are sometimes higher that previously used, but there are limited data to support these practices. Caffeine therapy for apnea of prematurity (AOP) remains one of the pillars of neonatal care, although more evidence to support dosing and timing of initiation and discontinuation are needed.

  1. Caffeine and exercise.

    Science.gov (United States)

    Paluska, Scott A

    2003-08-01

    Caffeine is the most commonly consumed drug in the world, and athletes frequently use it as an ergogenic aid. It improves performance and endurance during prolonged, exhaustive exercise. To a lesser degree it also enhances short-term, high-intensity athletic performance. Caffeine improves concentration, reduces fatigue, and enhances alertness. Habitual intake does not diminish caffeine's ergogenic properties. Several mechanisms have been proposed to explain the physiologic effects of caffeine, but adenosine receptor antagonism most likely accounts for the primary mode of action. It is relatively safe and has no known negative performance effects, nor does it cause significant dehydration or electrolyte imbalance during exercise. Routine caffeine consumption may cause tolerance or dependence, and abrupt discontinuation produces irritability, mood shifts, headache, drowsiness, or fatigue. Major sport governing bodies ban excessive use of caffeine, but current monitoring techniques are inadequate, and ethical dilemmas persist regarding caffeine intake by athletes.

  2. Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.

    Science.gov (United States)

    Koch, Gilbert; Datta, Alexandre N; Jost, Kerstin; Schulzke, Sven M; van den Anker, John; Pfister, Marc

    2017-12-01

    To identify dosing strategies that will assure stable caffeine concentrations in preterm neonates despite changing caffeine clearance during the first 8 weeks of life. A 3-step simulation approach was used to compute caffeine doses that would achieve stable caffeine concentrations in the first 8 weeks after birth: (1) a mathematical weight change model was developed based on published weight distribution data; (2) a pharmacokinetic model was developed based on published models that accounts for individual body weight, postnatal, and gestational age on caffeine clearance and volume of distribution; and (3) caffeine concentrations were simulated for different dosing regimens. A standard dosing regimen of caffeine citrate (using a 20 mg/kg loading dose and 5 mg/kg/day maintenance dose) is associated with a maximal trough caffeine concentration of 15 mg/L after 1 week of treatment. However, trough concentrations subsequently exhibit a clinically relevant decrease because of increasing clearance. Model-based simulations indicate that an adjusted maintenance dose of 6 mg/kg/day in the second week, 7 mg/kg/day in the third to fourth week and 8 mg/kg/day in the fifth to eighth week assures stable caffeine concentrations with a target trough concentration of 15 mg/L. To assure stable caffeine concentrations during the first 8 weeks of life, the caffeine citrate maintenance dose needs to be increased by 1 mg/kg every 1-2 weeks. These simple adjustments are expected to maintain exposure to stable caffeine concentrations throughout this important developmental period and might enhance both the short- and long-term beneficial effects of caffeine treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  4. Anaphylaxis due to caffeine

    OpenAIRE

    Sugiyama, Kumiya; Cho, Tatsurai; Tatewaki, Masamitsu; Onishi, Shogo; Yokoyama, Tatsuya; Yoshida, Naruo; Fujimatsu, Takayoshi; Hirata, Hirokuni; Fukuda, Takeshi; Fukushima, Yasutsugu

    2015-01-01

    We report a rare case of anaphylaxis due to caffeine intake. A 27-year-old woman suffered her first episode of anaphylaxis and a positive skin prick test suggested that the anaphylaxis was due to an IgE-mediated hypersensitivity reaction to caffeine. She was diagnosed with caffeine allergy and has not had an allergic reaction after avoiding foods and drinks containing caffeine. Although caffeine is known to have antiallergic effects, this case shows that caffeine can be an allergen and cause ...

  5. Attentional bias for caffeine-related stimuli in high but not moderate or non-caffeine consumers.

    Science.gov (United States)

    Yeomans, Martin R; Javaherian, Shabnam; Tovey, Heather M; Stafford, Lorenzo D

    2005-09-01

    Attentional bias for drug-related cues has been reported with a wide range of drugs, but to date the extent to which caffeine consumers show similar biases for caffeine-related stimuli has not been tested. The present study therefore examined this issue in terms of differences in attentional bias for caffeine-related words in High, Moderate and Non-caffeine consumers using a dot-probe word task following overnight caffeine abstinence. This study was conducted to test whether caffeine consumers show an attentional bias for caffeine-related words, and whether such biases relate to habitual levels of caffeine use. Sixteen High, Moderate and Non-consumers of caffeine were asked to complete a modified dot-probe task in order to measure attentional bias for caffeine-related relative to neutral control word groups. The task was completed following overnight caffeine abstinence, and participants also completed mood and caffeine-craving measures. The High consumer group showed a significant attentional bias for the caffeine-related words, but no such bias was seen in Moderate or Non-consumer groups. As expected, craving for caffeine was strongest in the High consumers and weakest in the Non-consumers. Attentional bias in the High group correlated with self-reported caffeine consumption and with craving for caffeine, but neither effect was significant in the Moderate group. These data confirm that High caffeine consumers show attentional bias for caffeine-related stimuli, consistent with current theories of drug addiction.

  6. Caffeine in the diet

    Science.gov (United States)

    Diet - caffeine ... Caffeine is absorbed and passes quickly into the brain. It does not collect in the bloodstream or ... been consumed. There is no nutritional need for caffeine. It can be avoided in the diet. Caffeine ...

  7. Acute effects of theanine, caffeine and theanine-caffeine combination on attention.

    Science.gov (United States)

    Kahathuduwa, Chanaka N; Dassanayake, Tharaka L; Amarakoon, A M Tissa; Weerasinghe, Vajira S

    2017-07-01

    l-theanine is a constituent of tea which is claimed to enhance cognitive functions. We aimed to determine whether theanine and theanine-caffeine combination have acute positive effects on cognitive and neurophysiological measures of attention, compared to caffeine (a positive control) and a placebo in healthy individuals. In a placebo-controlled, five-way crossover trial in 20 healthy male volunteers, we compared the effects of l-theanine (200 mg), caffeine (160 mg), their combination, black tea (one cup) and a placebo (distilled water) on cognitive (simple [SVRT] and recognition visual reaction time [RVRT]) and neurophysiological (event-related potentials [ERPs]) measures of attention. We also recorded visual (VEPs) and motor evoked potentials (MEPs) to examine any effects of treatments on peripheral visual and motor conduction, respectively. Mean RVRT was significantly improved by theanine (P = 0.019), caffeine (P = 0.043), and theanine-caffeine combination (P = 0.001), but not by tea (P = 0.429) or placebo (P = 0.822). VEP or MEP latencies or SVRT did not show significant inter-treatment differences. Theanine (P = 0.001) and caffeine (P = 0.001) elicited significantly larger mean peak-to-peak N2-P300 ERP amplitudes than the placebo, whereas theanine-caffeine combination elicited a significantly larger mean N2-P300 amplitude than placebo (P caffeine (P = 0.005). No significant theanine × caffeine interaction was observed for RVRT or N2-P300 amplitude. A dose of theanine equivalent of eight cups of back tea improves cognitive and neurophysiological measures of selective attention, to a degree that is comparable with that of caffeine. Theanine and caffeine seem to have additive effects on attention in high doses.

  8. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    DEFF Research Database (Denmark)

    Gracia-Lor, Emma; Rousis, Nikolaos I.; Zuccato, Ettore

    2017-01-01

    with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion......Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared...... of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further...

  9. Caffeine and Your Child

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Caffeine KidsHealth / For Parents / Caffeine What's in this article? ... español La cafeína y su hijo What Is Caffeine? Caffeine is a natural stimulant found in coffee, ...

  10. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  11. Caffeine promotes global spatial processing in habitual and non-habitual caffeine consumers

    Directory of Open Access Journals (Sweden)

    Grace E. Giles

    2013-10-01

    Full Text Available Information processing is generally biased toward global cues, often at the expense of local information. Equivocal extant data suggests that arousal states may accentuate either a local or global processing bias, at least partially dependent on the nature of the manipulation, task and stimuli. To further differentiate the conditions responsible for such equivocal results we varied caffeine doses to alter physiological arousal states and measured their effect on tasks requiring the retrieval of local versus global spatial knowledge. In a double-blind, repeated-measures design, non-habitual (Exp. 1; N=36, M=42.5±29 mg/day caffeine and habitual (Exp. 2; N=34, M=579.5±311.5 mg/day caffeine caffeine consumers completed four test sessions corresponding to each of four caffeine doses (0 mg, 100 mg, 200 mg, 400 mg. During each test session, participants consumed a capsule containing one of the three doses of caffeine or placebo, waited sixty minutes, and then completed two spatial tasks, one involving memorizing maps and one spatial descriptions. A spatial statement verification task tested local versus global spatial knowledge by differentially probing memory for proximal versus distal landmark relationships. On the map learning task, results indicated that caffeine enhanced memory for distal (i.e. global compared to proximal (i.e. local comparisons at 100 (marginal, 200, and 400 mg caffeine in non-habitual consumers, and marginally beginning at 200 mg caffeine in habitual consumers. On the spatial descriptions task, caffeine enhanced memory for distal compared to proximal comparisons beginning at 100 mg in non-habitual but not habitual consumers. We thus provide evidence that caffeine-induced physiological arousal amplifies global spatial processing biases, and these effects are at least partially driven by habitual caffeine consumption.

  12. Caffeine alters emotion and emotional responses in low habitual caffeine consumers.

    Science.gov (United States)

    Giles, Grace E; Spring, Alexander M; Urry, Heather L; Moran, Joseph M; Mahoney, Caroline R; Kanarek, Robin B

    2018-02-01

    Caffeine reliably increases emotional arousal, but it is unclear whether and how it influences other dimensions of emotion such as emotional valence. These experiments documented whether caffeine influences emotion and emotion regulation choice and success. Low to abstinent caffeine consumers (maximum 100 mg/day) completed measures of state anxiety, positive and negative emotion, and salivary cortisol before, 45 min after, and 75 min after consuming 400 mg caffeine or placebo. Participants also completed an emotion regulation choice task, in which they chose to employ cognitive reappraisal or distraction in response to high and low intensity negative pictures (Experiment 1), or a cognitive reappraisal task, in which they employed cognitive reappraisal or no emotion regulation strategy in response to negative and neutral pictures (Experiment 2). State anxiety, negative emotion, and salivary cortisol were heightened both 45 and 75 min after caffeine intake relative to placebo. In Experiment 1, caffeine did not influence the frequency with which participants chose reappraisal or distraction, but reduced negativity of the picture ratings. In Experiment 2, caffeine did not influence cognitive reappraisal success. Thus, caffeine mitigated emotional responses to negative situations, but not how participants chose to regulate such responses or the success with which they did so.

  13. Caffeine Reinforces Flavor Preference and Behavior in Moderate Users but Not in Low Caffeine Users

    Science.gov (United States)

    Dack, Charlotte; Reed, Phil

    2009-01-01

    The study examined the role of caffeine consumption in caffeine reinforcement. Previous findings have shown that caffeine reinforced flavor preference in moderate caffeine consumers who are caffeine deprived. However, most of these studies have employed rating procedures only, and have not shown the effectiveness of caffeine to reinforce behaviors…

  14. Faster but not smarter:effects of caffeine and caffeine withdrawal on alertness and performance

    OpenAIRE

    Rogers, Peter J; Heatherley, Susan V; Mullings, Emma L; Smith, Jessica E

    2013-01-01

    Despite 100 years of psychopharmacological research, the extent to which caffeine consumption benefits human functioning remains unclear.To measure the effects of overnight caffeine abstinence and caffeine administration as a function of level of habitual caffeine consumption.Medium-high (n = 212) and non-low (n = 157) caffeine consumers completed self-report measures and computer-based tasks before (starting at 10:30 AM) and after double-blind treatment with either caffeine (100 mg, then 150...

  15. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    NARCIS (Netherlands)

    Gracia-Lor, E.; Rousis, N.I.; Zuccato, E.; Bade, R.; Baz-Lomba, J.A.; Castrignanò, E.; Causanilles Llanes, A.; Hernández, F.; Kasprzyk-Hordern, B.; Kinyua, J.; McCall, A.-K.; van Nuijs, A.L.N.; Plósz, B.G.; Ramin, P.; Ryu, Y.; Santos, M.M.; Thomas, K.; de Voogt, P.; Yang, Z.; Castiglioni, S.

    2017-01-01

    Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the

  16. [miR-497 suppresses proliferation of human cervical carcinoma HeLa cells by targeting cyclin E1].

    Science.gov (United States)

    Han, Jiming; Huo, Manpeng; Mu, Mingtao; Liu, Junjun; Zhang, Jing

    2014-06-01

    To evaluate the effect of miR-497 on proliferation of human cervical carcinoma HeLa cells and target relationship between miR-497 and cyclin E1 (CCNE1). Pre-miR-497 sequences were synthesized and cloned into pcDNATM6.2-GW to construct recombinant plasmid pcDNATM6.2-GW-pre-miR-497 and identified by real-time quantitative PCR (qRT-PCR). In addition, sequences of the wild-type CCNE1 (WT-CCNE1) and mutant CCNE1 (MT-CCNE1) were respectively cloned into pmirGLO vectors. MTT assay was used to explore the impact of miR-497 on the proliferation of HeLa cells. Furthermore, the target effect of miR-497 on the CCNE1 was identified by dual-luciferase reporter assay system, qRT-PCR and Western blotting. The recombinant plasmids pcDNATM6.2-GW-pre-miR-497 and pmirGLO-WT-CCNE1, pmirGLO-MT-CCNE1 were successfully constructed, and the miR-497 expression level in HeLa cells transfected with pre-miR-497 was significantly higher than that in the neg-miR group (PHeLa cells (PHeLa cells with pre-miR-497 transfection (PHeLa cells transfected with pre-miR-497 (PHeLa cells could suppress cell proliferation by targeting CCNE1.

  17. Quantitative HPLC Analysis of an Analgesic/Caffeine Formulation: Determination of Caffeine

    Science.gov (United States)

    Ferguson, Glenda K.

    1998-04-01

    A modern high performance liquid chromatography (HPLC) laboratory experiment which entails the separation of acetaminophen, aspirin, and caffeine and the quantitative assay of caffeine in commercial mixtures of these compounds has been developed. Our HPLC protocol resolves these compounds in only three minutes with a straightforward chromatographic apparatus which consists of a C-18 column, an isocratic mobile phase, UV detection at 254 nm, and an integrator; an expensive, sophisticated system is not required. The separation is both repeatable and rapid. Moreover, the experiment can be completed in a single three-hour period. The experiment is appropriate for any chemistry student who has completed a minimum of one year of general chemistry and is ideal for an analytical or instrumental analysis course. The experiment detailed herein involves the determination of caffeine in Goody's Extra Strength Headache Powders, a commercially available medication which contains acetaminophen, aspirin, and caffeine as active ingredients. However, the separation scheme is not limited to this brand of medication nor is it limited to caffeine as the analyte. With only minor procedural modifications, students can simultaneously quantitate all of these compounds in a commercial mixture. In our procedure, students prepare a series of four caffeine standard solutions as well as a solution from a pharmaceutical analgesic/caffeine mixture, chromatographically analyze each solution in quadruplicate, and plot relative average caffeine standard peak area versus concentration. From the mathematical relationship that results, the concentration of caffeine in the commercial formulation is obtained. Finally, the absolute standard deviation of the mean concentration is calculated.

  18. Caffeine content of decaffeinated coffee.

    Science.gov (United States)

    McCusker, Rachel R; Fuehrlein, Brian; Goldberger, Bruce A; Gold, Mark S; Cone, Edward J

    2006-10-01

    Caffeine is the most widely consumed drug in the world with coffee representing a major source of intake. Despite widespread availability, various medical conditions necessitate caffeine-restricted diets. Patients on certain prescription medications are advised to discontinue caffeine intake. Such admonition has implications for certain psychiatric patients because of pharmacokinetic interactions between caffeine and certain anti-anxiety drugs. In an effort to abstain from caffeine, patients may substitute decaffeinated for caffeinated coffee. However, decaffeinated beverages are known to contain caffeine in varying amounts. The present study determined the caffeine content in a variety of decaffeinated coffee drinks. In phase 1 of the study, 10 decaffeinated samples were collected from different coffee establishments. In phase 2 of the study, Starbucks espresso decaffeinated (N=6) and Starbucks brewed decaffeinated coffee (N=6) samples were collected from the same outlet to evaluate variability of caffeine content of the same drink. The 10 decaffeinated coffee samples from different outlets contained caffeine in the range of 0-13.9 mg/16-oz serving. The caffeine content for the Starbucks espresso and the Starbucks brewed samples collected from the same outlet were 3.0-15.8 mg/shot and 12.0-13.4 mg/16-oz serving, respectively. Patients vulnerable to caffeine effects should be advised that caffeine may be present in coffees purported to be decaffeinated. Further research is warranted on the potential deleterious effects of consumption of "decaffeinated" coffee that contains caffeine on caffeine-restricted patients. Additionally, further exploration is merited for the possible physical dependence potential of low doses of caffeine such as those concentrations found in decaffeinated coffee.

  19. Effects of caffeine and caffeine withdrawal on mood and cognitive performance degraded by sleep restriction.

    Science.gov (United States)

    Rogers, Peter J; Heatherley, Susan V; Hayward, Robert C; Seers, Helen E; Hill, Joanne; Kane, Marian

    2005-06-01

    It has been suggested that caffeine is most likely to benefit mood and performance when alertness is low. To measure the effects of caffeine on psychomotor and cognitive performance, mood, blood pressure and heart rate in sleep-restricted participants. To do this in a group of participants who had also been previously deprived of caffeine for 3 weeks, thereby potentially removing the confounding effects of acute caffeine withdrawal. Participants were moderate to moderate-high caffeine consumers who were provided with either decaffeinated tea and/or coffee for 3 weeks (LTW) or regular tea and/or coffee for 3 weeks (overnight caffeine-withdrawn participants, ONW). Then, following overnight caffeine abstinence, they were tested on a battery of tasks assessing mood, cognitive performance, etc. before and after receiving caffeine (1.2 mg/kg) or on another day after receiving placebo. Final analyses were based on 17 long-term caffeine-withdrawn participants (LTW) and 17 ONW participants whose salivary caffeine levels on each test day confirmed probable compliance with the instructions concerning restrictions on consumption of caffeine-containing drinks. Acute caffeine withdrawal (ONW) had a number of negative effects, including impairment of cognitive performance, increased headache, and reduced alertness and clear-headedness. Caffeine (versus placebo) did not significantly improve cognitive performance in LTW participants, although it prevented further deterioration of performance in ONW participants. Caffeine increased tapping speed (but tended to impair hand steadiness), increased blood pressure, and had some effects on mood in both groups. The findings provide strong support for the withdrawal reversal hypothesis. In particular, cognitive performance was found to be affected adversely by acute caffeine withdrawal and, even in the context of alertness lowered by sleep restriction, cognitive performance was not improved by caffeine in the absence of these withdrawal

  20. Caffeine overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002579.htm Caffeine overdose To use the sharing features on this page, please enable JavaScript. Caffeine is a substance that exists naturally in certain ...

  1. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users.

    Science.gov (United States)

    Childs, Emma; de Wit, Harriet

    2006-05-01

    Caffeine produces mild psychostimulant effects that are thought to underlie its widespread use. However, the direct effects of caffeine are difficult to evaluate in regular users of caffeine because of tolerance and withdrawal. Indeed, some researchers hypothesize that the psychostimulant effects of caffeine are due largely to the reversal of withdrawal and question whether there are direct effects of caffeine consumption upon mood, alertness, or mental performance in nondependent individuals. This study investigated the physiological, subjective, and behavioral effects of 0, 50, 150, and 450 mg caffeine in 102 light, nondependent caffeine users. Using a within-subjects design, subjects participated in four experimental sessions, in which they received each of the four drug conditions in random order under double blind conditions. Participants completed subjective effects questionnaires and vital signs were measured before and at repeated time points after drug administration. Forty minutes after the capsules were ingested, subjects completed behavioral tasks that included tests of sustained attention, short-term memory, psychomotor performance, and behavioral inhibition. Caffeine significantly increased blood pressure, and produced feelings of arousal, positive mood, and high. Caffeine increased the number of hits and decreased reaction times in a vigilance task, but impaired performance on a memory task. We confirm that acute doses of caffeine, at levels typically found in a cup of coffee, produce stimulant-like subjective effects and enhance performance in light, nondependent caffeine users. These findings support the idea that the drug has psychoactive effects even in the absence of withdrawal.

  2. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  3. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.

    Science.gov (United States)

    Guessous, Idris; Pruijm, Menno; Ponte, Belén; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Vuistiner, Philippe; Staessen, Jan; Gu, Yumei; Paccaud, Fred; Mohaupt, Markus; Vogt, Bruno; Pechère-Bertschi, Antoinette; Pechère-Berstchi, Antoinette; Martin, Pierre-Yves; Burnier, Michel; Eap, Chin B; Bochud, Murielle

    2015-03-01

    Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure. © 2014 American Heart Association, Inc.

  4. Caffeine's implications for women's health and survey of obstetrician-gynecologists' caffeine knowledge and assessment practices.

    Science.gov (United States)

    Anderson, Britta L; Juliano, Laura M; Schulkin, Jay

    2009-09-01

    Caffeine has relevance for women's health and pregnancy, including significant associations with spontaneous abortion and low birth weight. According to scientific data, pregnant women and women of reproductive age should be advised to limit their caffeine consumption. This article reviews the implications of caffeine for women's psychological and physical health, and presents data on obstetrician-gynecologists' (ob-gyns) knowledge and practices pertaining to caffeine. Ob-gyns (N = 386) who are members of the American College of Obstetricians and Gynecologists' Collaborative Ambulatory Research Network responded to a 21-item survey about caffeine. Although most knew that caffeine is passed through breast milk, only 24.8% were aware that caffeine metabolism significantly slows as pregnancy progresses. Many respondents were not aware of the caffeine content of commonly used products, such as espresso and Diet Coke, with 14.3% and 57.8% indicating amounts within an accurate range, respectively. Furthermore, ob-gyns did not take into account large differences in caffeine content across different caffeinated beverages with most recommending one to two servings of coffee or tea or soft drinks per day. There was substantial inconsistency in what was considered to be "high levels" of maternal caffeine consumption, with only 31.6% providing a response. When asked to indicate the risk that high levels of caffeine have on various pregnancy outcomes, responses were not consistent with scientific data. For example, respondents overestimated the relative risk of stillbirths and underestimated the relative risk of spontaneous abortion. There was great variability in assessment and advice practices pertaining to caffeine. More than half advise their pregnant patients to consume caffeine under certain circumstances, most commonly to alleviate headache and caffeine withdrawal. The data suggest that ob-gyns could benefit from information about caffeine and its relevance to their

  5. Effects of chronic administration of caffeine and stress on feeding behavior of rats.

    Science.gov (United States)

    Pettenuzzo, Leticia Ferreira; Noschang, Cristie; von Pozzer Toigo, Eduardo; Fachin, Andrelisa; Vendite, Deusa; Dalmaz, Carla

    2008-10-20

    Anorectic effects of caffeine are controversial in the literature, while stress and obesity are growing problems in our society. Since many stressed people are coffee drinkers, the objective of the present study was to evaluate the effect of stress and chronic administration of caffeine on feeding behavior and body weight in male and female rats. Wistar rats (both males and females) were divided into 3 groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated-restraint stress for 40 days). During the entire treatment, chow consumption was monitored and rats were weighed monthly. Afterwards, feeding behavior was evaluated during 3-min trials in food-deprived and ad libitum fed animals and also in repeated exposures, using palatable food (Froot Loops and Cheetos). Chronic administration of caffeine did not affect rat chow consumption or body weight gain, but diminished the consumption of both salty (Cheetos) and sweet (Froot Loops) palatable food. In the repeated trial tests, stress diminished savory snack consumption in the later exposures [I.S. Racotta, J. Leblanc, D. Richard The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav. 1994, 48:887-892; S.D. Comer, M. Haney, R.W. Foltin, M.W. Fischman Effects of caffeine withdrawal on humans living in a residential laboratory. Exp Clin Psychopharmacol. 1997, 5:399-403; A. Jessen, B. Buemann, S. Toubro, I.M. Skovgaard, A. Astrup The appetite-suppressant effect of nicotine is enhanced by caffeine. Diab Ob Metab. 2005, 7:327-333; J.M. Carney Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol. 1982, 75:451-454] and caffeine diminished consumption of both palatable foods (savory and sweet) during the early and later exposures. Most responses to caffeine were stronger

  6. Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-01-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. PMID:24666325

  7. Caffeine, fatigue, and cognition.

    Science.gov (United States)

    Lorist, Monicque M; Tops, Mattie

    2003-10-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support the general belief that caffeine acts as a stimulant. Studies using ERP measures indicate that caffeine has an effect on attention, which is independent of specific stimulus characteristics. Behavioural effects on response related processes turned out to be mainly related to more peripheral motor processes. Recent insights in adenosine and dopamine physiology and functionality and their relationships with fatigue point to a possible modulation by caffeine of mechanisms involved in the regulation of behavioural energy expenditure.

  8. Caffeine consumption among eating disorder patients: epidemiology, motivations, and potential of abuse.

    Science.gov (United States)

    Burgalassi, A; Ramacciotti, C E; Bianchi, M; Coli, E; Polese, L; Bondi, E; Massimetti, G; Dell'osso, L

    2009-12-01

    Aim of the study was to investigate caffeine use in different types of eating disorders (ED) patients either using a categorical approach [Diagnostic and Statistical Manual of Mental Disorders - Fourth Edition - Text Revision (DSM-IV-TR) diagnostic criteria] or a dimensional perspective. Fifty-eight ED female patients [anorexia nervosa (AN), restricting and binge-eating/purging type, N=15; bulimia nervosa (BN) purging type/nonpurging type, N=26; binge eating disorder (BED), N=17] referred to an Eating Disorder Unit and 15 non-clinical controls were administered the Eating Disorder Inventory-2 (EDI-2), the Clinical Global Impression (CGI) and the Caffeine Use Test, an interview specifically developed to investigate caffeine intake. Statistical analyses were then repeated clustering patients according to the presence/absence of purging behaviors (purgers, N=22; non-purgers, N=19; BED, N=17). Current and lifetime caffeine use, measured as mg/day, were similar comparing controls and ED patients as a whole. BN patients showed a significantly higher maximum lifetime caffeine intake (817.4+/-528,9 vs 325.0+/-294.6 mg/die, F=3.246, pCaffeine abuse was significantly more represented among patients vs controls (pcaffeine, no significant difference was found among the different groups, for either Dependence, Intoxication or Withdrawal. Most of patients and controls reported pleasure as the main motivation for caffeine use, followed by increased vigilance and attention and appetite suppression in AN and BN patients. Note that a shift in diagnosis in the course of the ED from non-purging to purging type was associated with an increase in caffeine current, lifetime and maximum lifetime intake (F=1.667 pcaffeine intake in patients as a whole, but in the purging subgroup current caffeine use was increased in presence of an anxiety disorder (pcaffeine with an average intake similar to that of the general population, however with a kind of binge attitude. Among heavy drinkers, daily

  9. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Is caffeine a cognitive enhancer?

    Science.gov (United States)

    Nehlig, Astrid

    2010-01-01

    The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.

  11. Caffeine: Friend or Foe?

    Science.gov (United States)

    Doepker, Candace; Lieberman, Harris R; Smith, Andrew Paul; Peck, Jennifer D; El-Sohemy, Ahmed; Welsh, Brian T

    2016-01-01

    The debate on the safety of and regulatory approaches for caffeine continues among various stakeholders and regulatory authorities. This decision-making process comes with significant challenges, particularly when considering the complexities of the available scientific data, making the formulation of clear science-based regulatory guidance more difficult. To allow for discussions of a number of key issues, the North American Branch of the International Life Sciences Institute (ILSI) convened a panel of subject matter experts for a caffeine-focused session entitled "Caffeine: Friend or Foe?," which was held during the 2015 ILSI Annual Meeting. The panelists' expertise covered topics ranging from the natural occurrence of caffeine in plants and interindividual metabolism of caffeine in humans to specific behavioral, reproductive, and cardiovascular effects related to caffeine consumption. Each presentation highlighted the potential risks, benefits, and challenges that inform whether caffeine exposure warrants concern. This paper aims to summarize the key topics discussed during the session.

  12. The Effects of Caffeine Use on Driving Safety Among Truck Drivers Who Are Habitual Caffeine Users.

    Science.gov (United States)

    Heaton, Karen; Griffin, Russell

    2015-08-01

    The purpose of this study was to describe caffeine use among a group of habitual caffeine users, truck drivers, and to explore the associations between caffeine use and critical safety events by age in the naturalistic work setting. A secondary analysis of existing data from the Naturalistic Truck Driving Study was conducted. Analyses focused on the association between sleep and caffeine consumption by duty status, comparisons of sleep and caffeine use by age, and the associations between caffeine use and safety-critical events (SCEs). Findings indicated differences in caffeine use by duty status. However, no difference in sleep time by duty status, or between sleep time and caffeine use was found regardless of when the caffeine was consumed during the 5 hours prior to sleep. Sleep time did not vary significantly by age, although increasing age was associated with decreased caffeine use. Overall, a 6% reduction in the rate of SCEs per eight ounces of caffeinated beverage consumed was found. This study makes a unique scientific contribution because it uses real-time observations of truckers in the naturalistic work setting. It also does not involve caffeine withdrawal but rather an investigation of the effects of the naturalistic consumption of caffeine on sleep and driving performance. Findings suggest that caffeine use among habitual users offers a protective effect for safety-critical driving events. Occupational health nurses may use this information to counsel workers in the use of caffeine to enhance driving safety. © 2015 The Author(s).

  13. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal.

    Science.gov (United States)

    Shearer, Jane; Graham, Terry E

    2014-10-01

    This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle. © 2014 International Life Sciences Institute.

  14. Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance.

    Science.gov (United States)

    Rogers, Peter J; Heatherley, Susan V; Mullings, Emma L; Smith, Jessica E

    2013-03-01

    Despite 100 years of psychopharmacological research, the extent to which caffeine consumption benefits human functioning remains unclear. To measure the effects of overnight caffeine abstinence and caffeine administration as a function of level of habitual caffeine consumption. Medium-high (n = 212) and non-low (n = 157) caffeine consumers completed self-report measures and computer-based tasks before (starting at 10:30 AM) and after double-blind treatment with either caffeine (100 mg, then 150 mg) or placebo. The first treatment was given at 11:15 AM and the second at 12:45 PM, with post-treatment measures repeated twice between 1:45 PM and 3:30 PM. Caffeine withdrawal was associated with some detrimental effects at 10:30 AM, and more severe effects, including greater sleepiness, lower mental alertness, and poorer performance on simple reaction time, choice reaction time and recognition memory tasks, later in the afternoon. Caffeine improved these measures in medium-high consumers but, apart from decreasing sleepiness, had little effect on them in non-low consumers. The failure of caffeine to increase mental alertness and improve mental performance in non-low consumers was related to a substantial caffeine-induced increase in anxiety/jitteriness that offset the benefit of decreased sleepiness. Caffeine enhanced physical performance (faster tapping speed and faster simple and choice reaction times) in both medium-high and non-low consumers. While caffeine benefits motor performance and tolerance develops to its tendency to increase anxiety/jitteriness, tolerance to its effects on sleepiness means that frequent consumption fails to enhance mental alertness and mental performance.

  15. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation.

    Science.gov (United States)

    Gonçalves, Lívia de Souza; Painelli, Vitor de Salles; Yamaguchi, Guilherme; Oliveira, Luana Farias de; Saunders, Bryan; da Silva, Rafael Pires; Maciel, Erika; Artioli, Guilherme Giannini; Roschel, Hamilton; Gualano, Bruno

    2017-07-01

    This study investigates the influence of habitual caffeine intake on aerobic exercise-performance responses to acute caffeine supplementation. A double-blind, crossover, counterbalanced study was performed. Forty male endurance-trained cyclists were allocated into tertiles, according to their daily caffeine intake: low (58 ± 29 mg/d), moderate (143 ± 25 mg/d), and high (351 ± 139 mg/d) consumers. Participants completed three trials in which they performed simulated cycling time trials (TTs) in the fastest time possible following ingestion of the following: caffeine (CAF: 6 mg/kg body mass), placebo (PLA), and no supplement (CON). A mixed-model analysis revealed that TT performance was significantly improved in CAF compared with PLA and CON (29.92 ± 2.18 vs. 30.81 ± 2.67 and 31.14 ± 2.71 min, respectively; P = 0.0002). Analysis of covariance revealed no influence of habitual caffeine intake as a covariate on exercise performance ( P = 0.47). TT performance was not significantly different among tertiles ( P = 0.75). No correlation was observed between habitual caffeine intake and absolute changes (CAF - CON) in TT performance with caffeine ( P = 0.524). Individual analysis showed that eight, seven, and five individuals improved above the variation of the test in CAF in the low, moderate, and high tertiles, respectively. A Fisher's exact test did not show any significant differences in the number of individuals who improved in CAF among the tertiles ( P > 0.05). Blood lactate and ratings of perceived exertion were not different between trials and tertiles ( P > 0.05). Performance effects of acute caffeine supplementation during an ~30-min cycling TT performance were not influenced by the level of habitual caffeine consumption. NEW & NOTEWORTHY There has been a long-standing paradigm that habitual caffeine intake may influence the ergogenicity of caffeine supplementation. Low, moderate, and high caffeine consumers showed similar absolute and

  16. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  17. Caffeine, extraversion and working memory.

    Science.gov (United States)

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  18. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    International Nuclear Information System (INIS)

    Niwa, O.; Sugahara, T.

    1981-01-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation. For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells

  19. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  20. Misexpression of cyclin B3 leads to aberrant spermatogenesis.

    Science.gov (United States)

    Refik-Rogers, Jale; Manova, Katia; Koff, Andrew

    2006-09-01

    Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.

  1. Caffeine, fatigue, and cognition

    NARCIS (Netherlands)

    Lorist, M.M.; Tops, M.

    2003-01-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support

  2. A Randomized, Two-Way Crossover Study to Evaluate the Pharmacokinetics of Caffeine Delivered Using Caffeinated Chewing Gum Versus a Marketed Caffeinated Beverage in Healthy Adult Volunteers.

    Science.gov (United States)

    Sadek, Paul; Pan, Xiao; Shepherd, Phil; Malandain, Elise; Carney, John; Coleman, Hugh

    2017-12-01

    Background: This study was conducted to compare the pharmacokinetics of caffeine delivered using caffeinated chewing gum to that delivered using a marketed caffeinated beverage (instant coffee) in 16 healthy adult volunteers. Materials and Methods: This was a controlled open-label, randomized, two-period crossover study. Caffeinated chewing gum and a serving of instant coffee, each containing ∼50 mg caffeine, were administered with blood samples collected before and up to 24 hours after administration starts. Plasma caffeine levels were analyzed using validated liquid chromatography coupled with tandem mass spectrometry methodology. Results: There were no statistical differences between the two caffeine products in t max ( p  = 0.3308) and k a ( p  = 0.3894). Although formulated at ∼50 mg caffeine each, mean dose released from chewing gum was ∼18% less than beverage. Dose-normalized area under the concentration-time curve (AUC) 0-t , AUC 0-∞ , and C max was similar between products. Although the criteria were not set a priori and the study was not powered for concluding bioequivalence, the 90% confidence intervals fell within the bioequivalence limit of 80% to 125%. Conclusions: Existing scientific literature on caffeine, based mostly on data from caffeinated beverages, can be leveraged to support the safety of caffeine delivered by chewing gum and current maximum safe caffeine dose advice should be applicable irrespective of delivery method.

  3. Modeling caffeine concentrations with the Stanford Caffeine Questionnaire: preliminary evidence for an interaction of chronotype with the effects of caffeine on sleep.

    Science.gov (United States)

    Nova, Philip; Hernandez, Beatriz; Ptolemy, Adam S; Zeitzer, Jamie M

    2012-04-01

    To examine the validity of a novel caffeine intake questionnaire and to examine the effects of caffeine on sleep in college students. One-week, ad libitum behavior of 50 university students (28 female, 22 male; aged 20.9 ± 1.78 years) was examined with sleep logs, wrist actigraphy, and a novel daily questionnaire assessing caffeine intake at different times of day. Saliva samples were collected for caffeine assessment (questionnaire validation) and DNA extraction, and for analysis of a single nucleotide polymorphism in the adenosine receptor 2A (ADORA2A) gene. The caffeine questionnaire was able to accurately predict salivary concentrations of caffeine (R(2) = 0.41, Psleep were correlated with wake after sleep onset (WASO) most strongly in morning-type individuals (R(2) = 0.49; Psleep and genotype and chronotype. Published by Elsevier B.V.

  4. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  5. Cognitive and psychomotor performance, mood, and pressor effects of caffeine after 4, 6 and 8 h caffeine abstinence.

    Science.gov (United States)

    Heatherley, Susan V; Hayward, Robert C; Seers, Helen E; Rogers, Peter J

    2005-04-01

    Many studies have found that caffeine consumed after overnight caffeine abstinence improves cognitive performance and mood. Much less is known, however, about the effects of caffeine after shorter periods of caffeine abstinence. The aim of this study was to measure the effects on psychomotor and cognitive performance, mood, hand steadiness, blood pressure and heart rate of caffeine administration after periods of 4, 6, and 8 h of caffeine abstinence. Participants (n = 49, 27 female) were moderate to moderate-high caffeine consumers (mean daily intake 370 mg/day). Following overnight caffeine abstinence, a 'pre-dose' of caffeine (1.2 mg/kg) was administered at 9 A.M, 11 A.M or 1 P.M. The participants started a baseline battery of measurements at 4 P.M.: before receiving caffeine (1.2 mg/kg) or placebo at 5 P.M.: They then performed the battery of tests again, starting at 5:30 P.M. This was a double-blind, placebo-controlled, randomised study. Performance and mood measurements confirmed a psychostimulant action of caffeine (versus placebo), but only after 8 h of caffeine abstinence. Caffeine also increased blood pressure after 8-h abstinence, whereas hand steadiness was decreased and perception of task demand was increased by caffeine after 4 h, but not after 6- and 8-h abstinence. A second cup-of-coffee equivalent dose of caffeine only reliably affected cognitive performance and mood after an 8-h interval between doses, but not after shorter intervals (when caffeine had some adverse effects). These results show that, apart from caffeine consumption soon after waking, the daily pattern of caffeine intake of many typical caffeine consumers is not well explained by the short-term psychostimulant effects of caffeine.

  6. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers.

    Science.gov (United States)

    Smit, H J; Rogers, P J

    2000-10-01

    Caffeine is present in many widely consumed drinks and some foods. In the fairly extensive literature on the psychostimulant effects of caffeine, there are few dose-response studies and even fewer studies of the effects of doses of caffeine lower than 50 mg (the range of the amounts of caffeine contained in, for example, a typical serving of tea or cola). This study measured the effects of 0, 12.5, 25, 50 and 100 mg caffeine on cognitive performance, mood and thirst in adults with low and moderate to high habitual caffeine intakes. This was a double-blind, within-subjects study. Following overnight caffeine abstinence, participants (n=23) completed a test battery once before and three times after placebo or caffeine administration. The test battery consisted of two performance tests, a long duration simple reaction time task and a rapid visual information processing task, and a mood questionnaire (including also an item on thirst). Effects on performance and mood confirmed a psychostimulant action of caffeine. All doses of caffeine significantly affected cognitive performance, and the dose-response relationships for these effects were rather flat. The effects on performance were more marked in individuals with a higher level of habitual caffeine intake, whereas caffeine increased thirst only in low caffeine consumers. After overnight caffeine abstinence, caffeine can significantly affect cognitive performance, mood and thirst at doses within and even lower than the range of amounts of caffeine contained in a single serving of popular caffeine-containing drinks. Regular caffeine consumers appear to show substantial tolerance to the thirst-increasing but not to the performance and mood effects of caffeine.

  7. Caffeine Confusion

    Science.gov (United States)

    ... 20 mg* Milk chocolate 1 ounce 6 mg* Cocoa beverage 5 ounces 4 mg* Chocolate milk beverage 8 ounces 5 mg* Cold relief medication 1 tablet 30 mg* *This is an average amount of caffeine. That means some of these products may contain a little more caffeine; some may ...

  8. Caffeine in the milk prevents respiratory disorders caused by in utero caffeine exposure in rats.

    Science.gov (United States)

    Bodineau, Laurence; Saadani-Makki, Fadoua; Jullien, Hugues; Frugière, Alain

    2006-01-25

    Consequences of postnatal caffeine exposure by the milk on ponto-medullary respiratory disturbances observed following an in utero caffeine exposure were analysed. Ponto-medullary-spinal cord preparations from newborn rats exposed to caffeine during gestation but not after the birth display an increase in respiratory frequency and an exaggeration of the hypoxic respiratory depression compared to not treated preparations. These data suggest that tachypneic and apneic episodes encountered in human newborns whose mother consumed caffeine during pregnancy are due in large part to central effect of caffeine at the ponto-medullary level. Both baseline respiratory frequency increase and emphasis of hypoxic respiratory depression are not encountered if rat dams consumed caffeine during nursing. Our hypothesis is that newborn rats exposed to caffeine during gestation but not after the birth would be in withdrawal situation whereas, when caffeine is present in drinking fluid of lactating dams, it goes down the milk and is able to prevent ponto-medullary respiratory disturbances.

  9. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.

    Science.gov (United States)

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-04-01

    This is the first study reporting the presence of endogenous caffeine, theobromine, and theophylline in all organs of poplar plants. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used in order to evaluate the uptake, translocation, and metabolism of caffeine-(trimethyl-(13)C) in Populus alba L. Villafranca clone grown in hydroponic conditions. We investigated the remediation of caffeine since it is one of the most widely consumed drugs and it is frequently detected in wastewater treatment plant effluents, surface water, and groundwater worldwide. Our results demonstrated that poplar can absorb and degrade exogenous caffeine without negative effects on plant health. Data showed that concentrations of all endogenous compounds varied depending on caffeine-(trimethyl-(13)C) treatments. In particular, in control conditions, endogenous caffeine, theobromine, and theophylline were mainly distributed in roots. On the other hand, once caffeine-(trimethyl-(13)C) was provided, this compound and its dimethy-(13)C metabolites are mainly localized at leaf level. In conclusion, our results support the possible use of Villafranca clone in association with other water treatment systems in order to complete the process of caffeine remediation.

  10. Anti-stress effects of drinking green tea with lowered caffeine and enriched theanine, epigallocatechin and arginine on psychosocial stress induced adrenal hypertrophy in mice.

    Science.gov (United States)

    Unno, Keiko; Hara, Ayane; Nakagawa, Aimi; Iguchi, Kazuaki; Ohshio, Megumi; Morita, Akio; Nakamura, Yoriyuki

    2016-11-15

    Theanine, an amino acid in tea, has significant anti-stress effects on animals and humans. However, the anti-stress effects of drinking green tea have not yet been elucidated. The present study aimed to explore anti-stress effects of green tea and roles of tea components in a mouse model of psychosocial stress. We examined anti-stress effects of three types of green teas, theanine-rich "Gyokuro", standard "Sencha", and Sencha with lowered caffeine (low-caffeine green tea). Furthermore, the roles of tea components such as caffeine, catechins, and other amino acids in anti-stress effects were examined. To prepare low-caffeine green tea, plucked new tea leaves were treated with a hot-water spray. Mice were psychosocially stressed from a conflict among male mice under confrontational housing. Mice consumed each tea that was eluted with room temperature water ad libitum. As a marker for the stress response, adrenal hypertrophy was compared with mice that ingested water. Caffeine was significantly lowered by spraying hot-water on tea leaves. While epigallocatechin gallate (EGCG) is the main catechin in tea leaves, epigallocatechin (EGC) was mainly infused into water at room temperature. Adrenal hypertrophy was significantly suppressed in mice that ingested theanine-rich and low-caffeine green tea that were eluted with water at room temperature. Caffeine and EGCG suppressed the anti-stress effects of theanine while EGC and arginine (Arg) retained these effects. These results suggest that drinking green tea exhibits anti-stress effects, where theanine, EGC and Arg cooperatively abolish the counter-effect of caffeine and EGCG on psychosocial stress induced adrenal hypertrophy in mice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Evaluating Dependence Criteria for Caffeine.

    Science.gov (United States)

    Striley, Catherine L W; Griffiths, Roland R; Cottler, Linda B

    2011-12-01

    Background: Although caffeine is the most widely used mood-altering drug in the world, few studies have operationalized and characterized Diagnostic and Statistical Manual IV (DSM-IV) substance dependence criteria applied to caffeine. Methods: As a part of a nosological study of substance use disorders funded by the National Institute on Drug Abuse, we assessed caffeine use and dependence symptoms among high school and college students, drug treatment patients, and pain clinic patients who reported caffeine use in the last 7 days and also reported use of alcohol, nicotine, or illicit drugs within the past year ( n =167). Results: Thirty-five percent met the criteria for dependence when all seven of the adopted DSM dependence criteria were used. Rates of endorsement of several of the most applicable diagnostic criteria were as follows: 26% withdrawal, 23% desire to cut down or control use, and 44% continued use despite harm. In addition, 34% endorsed craving, 26% said they needed caffeine to function, and 10% indicated that they talked to a physician or counselor about problems experienced with caffeine. There was a trend towards increased caffeine dependence among those dependent on nicotine or alcohol. Within a subgroup that had used caffeine, alcohol, and nicotine in the past year, 28% fulfilled criteria for caffeine dependence compared to 50% for alcohol and 80% for nicotine. Conclusion: The present study adds to a growing literature suggesting the reliability, validity, and clinical utility of the caffeine dependence diagnosis. Recognition of caffeine dependence in the DSM-V may be clinically useful.

  12. Administration of Caffeine in Alternate Forms.

    Science.gov (United States)

    Wickham, Kate A; Spriet, Lawrence L

    2018-03-01

    There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be important in many sporting situations. Caffeinated chewing gum improved endurance cycling performance, and there is limited evidence that repeated sprint cycling and power production may also be improved. Mouth rinsing with caffeine may stimulate nerves with direct links to the brain, in addition to caffeine absorption in the mouth. However, caffeine mouth rinsing has not been shown to have significant effects on cognitive performance. Delivering caffeine with mouth rinsing improved short-duration, high-intensity, repeated sprinting in normal and depleted glycogen states, while the majority of the literature indicates no ergogenic effect on aerobic exercise performance, and resistance exercise has not been adequately studied. Studies with caffeinated energy drinks have generally not examined the individual effects of caffeine on performance, making conclusions about this form of caffeine delivery impossible. Caffeinated aerosol mouth and nasal sprays may stimulate nerves with direct brain connections and enter the blood via mucosal and pulmonary absorption, although little support exists for caffeine delivered in this manner. Overall, more research is needed examining alternate forms of caffeine delivery including direct measures of brain activation and entry of caffeine into the blood, as well as more studies examining trained athletes and female subjects.

  13. Spectrophotometric Analysis of Caffeine

    Directory of Open Access Journals (Sweden)

    Showkat Ahmad Bhawani

    2015-01-01

    Full Text Available The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.

  14. The 3' untranslated region of the cyclin B mRNA is not sufficient to enhance the synthesis of cyclin B during a mitotic block in human cells.

    Directory of Open Access Journals (Sweden)

    Dominik Schnerch

    Full Text Available Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents.

  15. Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Aulia, Selina; Tang, Bor Luen

    2006-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a key E3 ubiquitin ligase complex that functions in regulating cell cycle transitions in proliferating cells and has, as revealed recently, novel roles in postmitotic neurons. Regulated by its activator Cdh1 (or Hct1), whose level is high in postmitotic neurons, APC/C seems to have multiple functions at different cellular locations, modulating diverse processes such as synaptic development and axonal growth. These processes do not, however, appear to be directly connected to cell cycle regulation. It is now shown that Cdh1-APC/C activity may also have a basic role in suppressing cyclin B levels, thus preventing terminally differentiated neurons from aberrantly re-entering the cell cycle. The result of an aberrant cyclin B-induced S-phase entry, at least for some of these neurons, would be death via apoptosis. Cdh1 thus play an active role in maintaining the terminally differentiated, non-cycling state of postmitotic neurons-a function that could become impaired in Alzheimer's and other neurodegenerative diseases

  16. Caffeine for asthma

    OpenAIRE

    Welsh, EJ; Bara, A; Barley, E; Cates, CJ

    2010-01-01

    Background\\ud \\ud Caffeine has a variety of pharmacological effects; it is a weak bronchodilator and it also reduces respiratory muscle fatigue. It is chemically related to the drug theophylline which is used to treat asthma. It has been suggested that caffeine may reduce asthma symptoms and interest has been expressed in its potential role as an asthma treatment. A number of studies have explored the effects of caffeine in asthma, this is the first review to systematically examine and summar...

  17. Caffeine in Pregnancy

    Science.gov (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... Nutrition, weight & fitness > Caffeine in pregnancy Caffeine in pregnancy E-mail to a friend Please fill in ...

  18. Caffeine Use and Extroversion.

    Science.gov (United States)

    Landrum, R. Eric; Meliska, Charles J.

    Some research on the stimulant effect of caffeine suggests that the amount of behavioral enhancement produced by caffeine may depend on subjects' prior experience with the task and the drug. A study was undertaken to test whether prior experience with a task while under the influence of caffeine would facilitate performance of that task. Male…

  19. Caffeine: sleep and daytime sleepiness.

    Science.gov (United States)

    Roehrs, Timothy; Roth, Thomas

    2008-04-01

    Caffeine is one of the most widely consumed psychoactive substances and it has profound effects on sleep and wake function. Laboratory studies have documented its sleep-disruptive effects. It clearly enhances alertness and performance in studies with explicit sleep deprivation, restriction, or circadian sleep schedule reversals. But, under conditions of habitual sleep the evidence indicates that caffeine, rather then enhancing performance, is merely restoring performance degraded by sleepiness. The sleepiness and degraded function may be due to basal sleep insufficiency, circadian sleep schedule reversals, rebound sleepiness, and/or a withdrawal syndrome after the acute, over-night, caffeine discontinuation typical of most studies. Studies have shown that caffeine dependence develops at relatively low daily doses and after short periods of regular daily use. Large sample and population-based studies indicate that regular daily dietary caffeine intake is associated with disturbed sleep and associated daytime sleepiness. Further, children and adolescents, while reporting lower daily, weight-corrected caffeine intake, similarly experience sleep disturbance and daytime sleepiness associated with their caffeine use. The risks to sleep and alertness of regular caffeine use are greatly underestimated by both the general population and physicians.

  20. The Janus face of caffeine.

    Science.gov (United States)

    Porciúncula, Lisiane O; Sallaberry, Cássia; Mioranzza, Sabrina; Botton, Paulo Henrique S; Rosemberg, Denis B

    2013-11-01

    Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Caffeine levels in beverages from Argentina's market: application to caffeine dietary intake assessment.

    Science.gov (United States)

    Olmos, V; Bardoni, N; Ridolfi, A S; Villaamil Lepori, E C

    2009-03-01

    The caffeine content of different beverages from Argentina's market was measured. Several brands of coffees, teas, mates, chocolate milks, soft and energy drinks were analysed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The highest concentration level was found in short coffee (1.38 mg ml(-1)) and the highest amount per serving was found in instant coffee (95 mg per serving). A consumption study was also carried out among 471 people from 2 to 93 years of age to evaluate caffeine total dietary intake by age and to identify the sources of caffeine intake. The mean caffeine intake among adults was 288 mg day(-1) and mate was the main contributor to that intake. The mean caffeine intake among children of 10 years of age and under was 35 mg day(-1) and soft drinks were the major contributors to that intake. Children between 11 and 15 years old and teenagers (between 16 and 20 years) had caffeine mean intakes of 120 and 240 mg day(-1), respectively, and mate was the major contributor to those intakes. Drinking mate is a deep-rooted habit among Argentine people and it might be the reason for their elevated caffeine mean daily intake.

  2. Clinical importance of caffeine dependence and abuse.

    Science.gov (United States)

    Ogawa, Naoshi; Ueki, Hirofumi

    2007-06-01

    Caffeine is the most widely consumed psychoactive substance and is a legal stimulant that is readily available to children. Caffeine has occasionally been considered a drug of abuse and the potential for dependence on caffeine has been debated. Presently, due to a paucity of clinical evidence on caffeine dependence or abuse, no such diagnosis is included in the Diagnostic and Statistical Manual of Mental Disorder-fourth edition. The authors present two cases of abuse or dependence on the caffeine contained in 'eutrophic' (energy/nutritional) beverages or caffeine preparations, followed by a review of clinical studies demonstrating evidence that some people can manifest a clinical syndrome of caffeine dependence or abuse. The cases suggest that caffeine can produce a clinical dependence syndrome similar to those produced by other psychoactive substances and has a potential for abuse. In a recent study using a structured interview and the Diagnostic and Statistical Manual of Mental Disorder-fourth edition criteria for substance dependence and abuse, a subset of the general population was found to demonstrate caffeine dependence or caffeine abuse. Therefore, the authors propose that companies or businesses manufacturing or marketing caffeine or products containing caffeine must meet the following guidelines: (i) clearly indicate the caffeine content of products containing comparatively higher quantities of caffeine; (ii) warn that such products should be avoided by infants and children wherever possible, and inform adult consumers about the precise quantity of caffeine that is considered safe for consumption; and (iii) clearly state that consuming large quantities of caffeine and the long-term use of caffeine carry health risks.

  3. Compound list: caffeine [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available caffeine CAF 00097 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/caffeine....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/caffeine....Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/caffeine...-tggates/LATEST/Rat/in_vivo/Liver/Repeat/caffeine.Rat.in_vivo.Liver.Repeat.zip ftp://ftp.biosciencedbc.jp/ar...chive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/caffeine.Rat.in_vivo.Kidney.Single.zip ftp://ftp.bioscie

  4. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    International Nuclear Information System (INIS)

    Swenberg, C.E.; Landauer, M.R.; Weiss, J.F.

    1997-01-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  5. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    Energy Technology Data Exchange (ETDEWEB)

    Swenberg, C.E.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, Bethesda (United States); Weiss, J.F. [Office of International Health Programs, Department of Energy, Germantown (United States)

    1997-03-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  6. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  7. Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students

    NARCIS (Netherlands)

    Mackus, Marlou; van de Loo, Aurora J A E; Benson, Sarah; Scholey, Andrew; Verster, Joris C

    2016-01-01

    The purpose of the current study was to examine the knowledge of caffeine content of a variety of caffeinated beverages among Dutch university students. A pencil-and-paper survey was conducted among N = 800 Dutch students. Most participants (87.8%) reported consuming caffeinated beverages during the

  8. Caffeine Content of Tea and Coffee

    African Journals Online (AJOL)

    1974-03-13

    Mar 13, 1974 ... The xanthines (caffeine, theophylline, and theobromine) occur in plants widely distributed throughout the world. Best known for the preparation of beverages are coffee beans which contain caffeine, tea leaves which contain caffeine and theophylline, and cocoa seeds which contain caffeine and ...

  9. Heritability of caffeine metabolism

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Tzvetkov, Mladen V; Strube, Jakob

    2016-01-01

    Heritability of caffeine pharmacokinetics and CYP1A2 activity is controversial. Here we analyzed the pharmacokinetics of caffeine, an in vivo probe drug for CYP1A2 and arylamine N-acetyltransferase 2 (NAT2) activity, in monozygotic and dizygotic twins. In the entire group, common and unique...... environmental effects explained most variation in caffeine AUC. Apparently, smoking and hormonal contraceptives masked the genetic effects on CYP1A2 activity. However, when excluding smokers and users of hormonal contraceptives, 89% of caffeine AUC variation was due to genetic effects and even in the entire...... group, 8% of caffeine AUC variation could be explained by a CYP1A1/1A2 promotor polymorphism (rs2470893). In contrast, nearly all of the variation (99%) of NAT2 activity was explained by genetic effects. This study illustrates two very different situations in pharmacogenetics, from an almost exclusively...

  10. CORRELATION BETWEEN CAFFEINE CONTENTS OF GREEN ...

    African Journals Online (AJOL)

    KEY WORDS: Green coffee beans, Caffeine, Correlation between caffeine content and altitude of coffee plant,. UV-Vis .... The extraction of caffeine from green coffee bean samples in to water was carried out by the reported method ..... caffeine in proposed green tea standard reference materials by liquid chromatography.

  11. Caffeine intake among adolescents in Delhi

    Directory of Open Access Journals (Sweden)

    Mridul Gera

    2016-01-01

    Full Text Available Background: Availability and advertising of caffeinated drinks is on the rise in Indian market. Excess caffeine intake may have deleterious effects on health. Objective: To estimate the daily consumption of caffeine among urban school-going adolescents from Delhi. Materials and Methods: A school-based survey was conducted to determine the amount and pattern of caffeine consumption among students of classes 9-12, using a self-administered questionnaire. Results: Of 300 participants (median age 15 year, 174 boys, 291 (97% were consuming caffeine [mean (SD: 121.0 (98.2 mg/day]. Nineteen (6% students were consuming more than 300 mg of caffeine per day. Tea/coffee contributed to more than 50% of the caffeine intake. The rest was derived from cola beverages, chocolates, and energy drinks. Conclusion: Average caffeine consumption among school-going adolescents from Delhi is high. The findings of this preliminary survey need to be confirmed in larger data sets.

  12. Effects of caffeine on alcohol-related changes in behavioural control and perceived intoxication in light caffeine consumers.

    Science.gov (United States)

    Attwood, Angela S; Rogers, Peter J; Ataya, Alia F; Adams, Sally; Munafò, Marcus R

    2012-06-01

    Caffeinated alcoholic beverages have been associated with increased risk of alcohol-related harms. However, few studies have examined these combined effects on behavioural control, which is believed to underlie many of the negative effects of alcohol consumption. In addition, studies have often omitted subjective measures, and none have directly assessed the role of caffeine consumer history. To examine the combined effects of alcohol and caffeine on measures of behavioural control and perceived intoxication in abstinent, light caffeine consumers. Participants (n = 28; 50% male) attended four sessions at which they consumed one of the following beverages in a randomised order: placebo, alcohol alone (0.6 g/kg), caffeine alone (2.0 mg/kg), and alcohol/caffeine. They completed measures of mood, intoxication, anxiety and alcohol craving before and after a task battery comprising measures of behavioural control and reaction time performance. Caffeine attenuated alcohol-related performance deficits on stop-signal accuracy, had no effect on go-no-go performance deficits, and worsened accuracy on the Stroop task. Caffeine did not influence absolute changes in perceived intoxication but there was suggestion that caffeine may have changed the nature of intoxication with increases in stimulation. Caffeine appears to have mixed effects on alcohol intoxication that are task-dependent. We found increased stimulation in the alcohol/caffeine condition, supporting the contention that caffeinated alcoholic beverages enable an individual to drink for longer. Future research should model real world drinking behaviour by examining how these effects change across multiple drink administrations.

  13. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations

    International Nuclear Information System (INIS)

    Taga, Masataka; Shiraishi, Kazunori; Shimura, Tsutomu; Uematsu, Norio; Kato, Tomohisa; Niwa, Ohtsura; Nishimune, Yoshitake; Aizawa, Shinichi; Oshimura, Mitsuo

    2000-01-01

    The effect of caffeine was studied on the radioresponses of undifferentiated mouse embryonal carcinoma cells (EC cells) with or without the functional p53. The radioresponses studied included radiosensitivity, the activation of p53, apoptosis with characteristic DNA ladder formation and cell cycle progression. An undifferentiated mouse EC cell line, ECA2, and a newly established p53-deficient EC cell line, p53δ, were used in the present study. The status of the p53 gene did not significantly affect the colony survivals of undifferentiated EC cells to X-rays and UV. Although a post-irradiation treatment with caffeine sensitized both lines to X-rays marginally, the sensitization was prominent for UV regardless of the p53 status of the cells. The activation of a p53 responsible lacZ reporter construct was observed in stably transfected ECA2 cells after X-ray and UV irradiations. Caffeine suppressed the X-ray induced activation of the lacZ reporter, while it drastically enhanced the activation after UV irradiation. X-rays and UV readily triggered the apoptosis of ECA2 cells with the characteristic DNA ladder. Although UV-induced DNA ladder formation was enhanced by caffeine, that induced by X-rays was unaffected. Therefore, the effects of caffeine on the p53-dependent radioresponses were found to be agent specific: suppression for the X-ray induced and augmentation for the UV induced. In contrast to p53-proficient ECA2 cells, smear-like DNA degradation was observed for irradiated p53δ cells, suggesting the presence of a mode of cell death without DNA ladder formation. UV induction of the smear-like DNA degradation was enhanced in the presence of caffeine. Regardless of the state of the p53 gene, G1/S arrest was not observed in X-ray and UV irradiated EC cells. X-rays induced G2/M arrest in both lines, which was abrogated by caffeine, while G2/M arrest after UV was unaffected by a caffeine treatment. These results indicate that the radioresponses of undifferentiated

  14. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Taga, Masataka; Shiraishi, Kazunori; Shimura, Tsutomu; Uematsu, Norio; Kato, Tomohisa; Niwa, Ohtsura [Kyoto Univ. (Japan). Radiation Biology Center; Nishimune, Yoshitake; Aizawa, Shinichi; Oshimura, Mitsuo

    2000-09-01

    The effect of caffeine was studied on the radioresponses of undifferentiated mouse embryonal carcinoma cells (EC cells) with or without the functional p53. The radioresponses studied included radiosensitivity, the activation of p53, apoptosis with characteristic DNA ladder formation and cell cycle progression. An undifferentiated mouse EC cell line, ECA2, and a newly established p53-deficient EC cell line, p53{delta}, were used in the present study. The status of the p53 gene did not significantly affect the colony survivals of undifferentiated EC cells to X-rays and UV. Although a post-irradiation treatment with caffeine sensitized both lines to X-rays marginally, the sensitization was prominent for UV regardless of the p53 status of the cells. The activation of a p53 responsible lacZ reporter construct was observed in stably transfected ECA2 cells after X-ray and UV irradiations. Caffeine suppressed the X-ray induced activation of the lacZ reporter, while it drastically enhanced the activation after UV irradiation. X-rays and UV readily triggered the apoptosis of ECA2 cells with the characteristic DNA ladder. Although UV-induced DNA ladder formation was enhanced by caffeine, that induced by X-rays was unaffected. Therefore, the effects of caffeine on the p53-dependent radioresponses were found to be agent specific: suppression for the X-ray induced and augmentation for the UV induced. In contrast to p53-proficient ECA2 cells, smear-like DNA degradation was observed for irradiated p53{delta} cells, suggesting the presence of a mode of cell death without DNA ladder formation. UV induction of the smear-like DNA degradation was enhanced in the presence of caffeine. Regardless of the state of the p53 gene, G1/S arrest was not observed in X-ray and UV irradiated EC cells. X-rays induced G2/M arrest in both lines, which was abrogated by caffeine, while G2/M arrest after UV was unaffected by a caffeine treatment. These results indicate that the radioresponses of

  15. Caffeine withdrawal and high-intensity endurance cycling performance.

    Science.gov (United States)

    Irwin, Christopher; Desbrow, Ben; Ellis, Aleisha; O'Keeffe, Brooke; Grant, Gary; Leveritt, Michael

    2011-03-01

    In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users.

  16. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells.

    Science.gov (United States)

    Park, Su Bin; Park, Gwang Hun; Song, Hun Min; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2017-09-05

    Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β-catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  17. Effects of smoking cues on caffeine urges in heavy smokers and caffeine consumers with and without schizophrenia.

    Science.gov (United States)

    Adolfo, Amy B; AhnAllen, Christopher G; Tidey, Jennifer W

    2009-02-01

    Cigarette smoking and caffeine use are established and problematic drug-use behaviors in people with schizophrenia. Associative links between drugs of abuse may occur but the relationship between caffeine use and cigarette smoking has received little attention in schizophrenia. In this cross-cue reactivity laboratory study, we examined the effects of neutral and smoking cues on craving for caffeinated beverages in participants with schizophrenia or schizoaffective disorder (SS; n=15) and non-psychiatric controls (CS; n=18) all of whom were heavy smokers and daily caffeine users. Participants were tested under non-abstinent and 5-hour abstinent conditions. SS tended to report greater daily levels of caffeine use than CS. Although this difference was not significant, that may be due to the small sample sizes as the size of this effect was large. Daily caffeine intake was significantly correlated with daily smoking rate in SS but not CS. A significant interaction between group and cue type after controlling for caffeine intake indicated that exposure to smoking cues increased urge for caffeinated beverages in SS but not CS. These results indicate support for associative connections between cigarette smoking cues and craving for caffeine in smokers with schizophrenia.

  18. Caffeine dependence in combination with a family history of alcoholism as a predictor of continued use of caffeine during pregnancy.

    Science.gov (United States)

    Svikis, Dace S; Berger, Nathan; Haug, Nancy A; Griffiths, Roland R

    2005-12-01

    The purpose of the study was to examine whether caffeine dependence and a family history of alcoholism are associated with continued use of caffeine during pregnancy. Forty-four women seeking obstetrical care in an office-based practice completed questionnaires and provided saliva samples at three prenatal visits occurring 2-3, 3-4, and 7 months postconception. On visit 1, the patients received the physician's instructions to stop using caffeine. Structured interviews were used to assign a diagnosis of caffeine dependence (lifetime) and to identify family history of alcoholism. Outcome measures included self-reported levels of caffeine use and saliva caffeine levels at the three prenatal visits. Although most women eliminated or substantially reduced their caffeine consumption between pregnancy awareness and prenatal visit 1, those with a lifetime diagnosis of caffeine dependence and a family history of alcoholism had higher levels of caffeine use and lower rates of abstinence throughout pregnancy. Saliva caffeine levels confirmed these effects. Withdrawal symptoms, functional impairment, and craving were cited as reasons they failed to eliminate or cut back on caffeine use. Fifty percent of the women with both a lifetime diagnosis of caffeine dependence and a family history of alcoholism continued to use caffeine in amounts (>300 mg/day) greater than those considered safe during pregnancy, compared to none of the women without caffeine dependence and a family history of alcoholism. Women with a lifetime diagnosis of caffeine dependence and a family history of alcoholism also reported higher rates of past cigarette smoking and problematic alcohol use. Caffeine-dependent women with a family history of alcoholism were not able to follow their physician's advice to reduce or eliminate caffeine consumption during pregnancy, despite their wanting to do so. This subgroup may require more intensive intervention to ensure caffeine abstinence and may be at greater risk for

  19. 21 CFR 182.1180 - Caffeine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Caffeine. 182.1180 Section 182.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1180 Caffeine. (a) Product. Caffeine. (b) Tolerance. 0.02 percent. (c) Limitations, restrictions, or...

  20. Does Caffeine Enhance Athletic Performance?

    Directory of Open Access Journals (Sweden)

    Marcou Juliana

    2016-04-01

    Conclusion: Caffeine consumption may enhance athletic endurance, based on strong evidence, but further research needs to be conducted. High caffeine doses than the optimal, 3-6 mg/kg, before exercise does not confer any additional improvement in athletic performance. Additional, higher caffeine doses may cause side effects in athletes.

  1. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    Science.gov (United States)

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  2. Caffeine, mental health, and psychiatric disorders.

    Science.gov (United States)

    Lara, Diogo R

    2010-01-01

    Caffeine intake is so common that its pharmacological effects on the mind are undervalued. Since it is so readily available, individuals can adjust their own dose, time of administration and dose intervals of caffeine, according to the perceived benefits and side effects of each dose. This review focuses on human studies of caffeine in subjects with and without psychiatric disorders. Besides the possibility of mild drug dependence, caffeine may bring benefits that contribute to its widespread use. These benefits seem to be related to adaptation of mental energy to the context by increasing alertness, attention, and cognitive function (more evident in longer or more difficult tasks or situations of low arousal) and by elevating mood. Accordingly, moderate caffeine intake (caffeine can induce psychotic and manic symptoms, and more commonly, anxiety. Patients with panic disorder and performance social anxiety disorder seem to be particularly sensitive to the anxiogenic effects of caffeine, whereas preliminary data suggests that it may be effective for some patients with obsessive compulsive disorder (OCD). The threshold for the anxiogenic effect of caffeine is influenced by a polymorphism of the A2A receptor. In summary, caffeine can be regarded as a pharmacological tool to increase energy and effortful behavior in daily activities. More populational (cross-sectional and prospective) and experimental studies are necessary to establish the role of caffeine intake in psychiatric disorders, especially its putative efficacy on depressive mood and cognitive/attentional disorders.

  3. Caffeine Toxicity Due to Supplement Use in Caffeine--Naïve Individual: A Cautionary Tale.

    Science.gov (United States)

    Lystrup, Robert M; Leggit, Jeffery C

    2015-08-01

    Thousands of military members self-medicate with dietary supplements containing unknown quantities of pharmacologically active compounds. These poorly regulated substances can cause real harm to the military population, especially when they contain stimulants such as caffeine. When taken regularly, caffeine has several performance-enhancing benefits. However, when used excessively or in vulnerable populations, caffeine can cause several unwanted side effects such as nervousness, sensory disturbances, insomnia, arrhythmia, excitability, inattentiveness, restlessness, mood changes, gastrointestinal disturbances, and even psychosis. Vulnerable patients include the caffeine-naïve, physiologically stressed, young, and mentally ill patients. One such case describes a caffeine-naïve service member who suffered an adverse reaction after taking an allegedly moderate dose of caffeine from a pill he obtained from a teammate. This case highlights the importance of supplement awareness among service members, increased provider vigilance, third party verification, and enhanced regulation on the approval and marketing of dietary supplements. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  4. Cyclin D1 and Ewing's sarcoma/PNET: A microarray analysis.

    Science.gov (United States)

    Fagone, Paolo; Nicoletti, Ferdinando; Salvatorelli, Lucia; Musumeci, Giuseppe; Magro, Gaetano

    2015-10-01

    Recent immunohistochemical analyses have showed that cyclin D1 is expressed in soft tissue Ewing's sarcoma/peripheral neuroectodermal tumor (PNET) of childhood and adolescents, while it is undetectable in both embryonal and alveolar rhabdomyosarcoma. In the present paper, microarray analysis provided evidence of a significant upregulation of cyclin D1 in Ewing's sarcoma as compared to normal tissues. In addition, we confirmed our previous findings of a significant over-expression of cyclin D1 in Ewing sarcoma as compared to rhabdomyosarcoma. Bioinformatic analysis also allowed to identify some other genes, strongly correlated to cyclin D1, which, although not previously studied in pediatric tumors, could represent novel markers for the diagnosis and prognosis of Ewing's sarcoma/PNET. The data herein provided support not only the use of cyclin D1 as a diagnostic marker of Ewing sarcoma/PNET but also the possibility of using drugs targeting cyclin D1 as potential therapeutic strategies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health

    DEFF Research Database (Denmark)

    Scurachio, R. S.; Mattiucci, F.; Santos, W. G.

    2016-01-01

    . Caffeine metabolites rather than caffeine seem accordingly important for the observed protective effect against cutaneous melanoma identified for drinkers of regular but not of decaffeinated coffee. The caffeine metabolites, but not caffeine, were by time resolved single photon counting found to quench...... singlet excited riboflavin through exothermic formation of ground-state precursor complexes indicating importance of hydrogen bounding through keto-enol tautomer's for protection of oxidizable substrates and sensitive structures against riboflavin photosensitization....

  6. Characterization of individuals seeking treatment for caffeine dependence.

    Science.gov (United States)

    Juliano, Laura M; Evatt, Daniel P; Richards, Brian D; Griffiths, Roland R

    2012-12-01

    Previous investigations have identified individuals who meet criteria for Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR; American Psychiatric Association, 2000) substance dependence as applied to caffeine, but there is little research on treatments for caffeine dependence. This study aimed to thoroughly characterize individuals who are seeking treatment for problematic caffeine use. Ninety-four individuals who identified as being psychologically or physically dependent on caffeine, or who had tried unsuccessfully to modify caffeine consumption participated in a face-to-face diagnostic clinical interview. They also completed measures concerning caffeine use and quitting history, reasons for seeking treatment, and standardized self-report measures of psychological functioning. Caffeine treatment seekers (mean age 41 years, 55% women) consumed an average of 548 mg caffeine per day. The primary source of caffeine was coffee for 50% of the sample and soft drinks for 37%. Eighty-eight percent reported prior serious attempts to modify caffeine use (mean 2.7 prior attempts), and 43% reported being advised by a medical professional to reduce or eliminate caffeine. Ninety-three percent met criteria for caffeine dependence when generic DSM-IV-TR substance dependence criteria were applied to caffeine use. The most commonly endorsed criteria were withdrawal (96%), persistent desire or unsuccessful efforts to control use (89%), and use despite knowledge of physical or psychological problems caused by caffeine (87%). The most common reasons for wanting to modify caffeine use were health-related (59%) and not wanting to be dependent on caffeine (35%). This investigation reveals that there are individuals with problematic caffeine use who are seeking treatment and suggests that there is a need for effective caffeine dependence treatments. 2013 APA, all rights reserved

  7. Caffeine and cardiovascular health.

    Science.gov (United States)

    Turnbull, Duncan; Rodricks, Joseph V; Mariano, Gregory F; Chowdhury, Farah

    2017-10-01

    This report evaluates the scientific literature on caffeine with respect to potential cardiovascular outcomes, specifically relative risks of total cardiovascular disease (CVD), coronary heart disease (CHD) and acute myocardial infarction (AMI), effects on arrhythmia, heart failure, sudden cardiac arrest, stroke, blood pressure, hypertension, and other biomarkers of effect, including heart rate, cerebral blood flow, cardiac output, plasma homocysteine levels, serum cholesterol levels, electrocardiogram (EKG) parameters, heart rate variability, endothelial/platelet function and plasma/urine catecholamine levels. Caffeine intake has been associated with a range of reversible and transient physiological effects broadly and cardiovascular effects specifically. This report attempts to understand where the delineations exist in caffeine intake and corresponding cardiovascular effects among various subpopulations. The available literature suggests that cardiovascular effects experienced by caffeine consumers at levels up to 600 mg/day are in most cases mild, transient, and reversible, with no lasting adverse effect. The point at which caffeine intake may cause harm to the cardiovascular system is not readily identifiable in part because data on the effects of daily intakes greater than 600 mg is limited. However, the evidence considered within this review suggests that typical moderate caffeine intake is not associated with increased risks of total cardiovascular disease; arrhythmia; heart failure; blood pressure changes among regular coffee drinkers; or hypertension in baseline populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine.

    Science.gov (United States)

    Beaumont, Ross; Cordery, Philip; Funnell, Mark; Mears, Stephen; James, Lewis; Watson, Phillip

    2017-10-01

    This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers (caffeine (1.5-3.0 mg · kg -1 day -1 ; titrated) or placebo for 28 days. Groups were matched for age, body mass, V̇O 2peak and W max (P > 0.05). Before supplementation, all participants completed one V̇O 2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg -1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V̇O 2peak test was completed on day 21 before a final, acute 3 mg · kg -1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V̇O 2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen's d effect size [ES] = 0.49; P = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; P = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; P = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; P > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all P > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion.

  9. Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

    International Nuclear Information System (INIS)

    Chou, D.T.; Khan, S.; Forde, J.; Hirsh, K.R.

    1985-01-01

    The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of [ 3 H]-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify the neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, the data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for [ 3 H]-CHA was observed in reticular formation membranes without any change in receptor affinity. 28 references, 4 figures

  10. Caffeine Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Williams, Ronald D; Delorey, Donald R; Woolsey, Conrad L

    2017-04-01

    Education frequently dictates students need to study for prolonged periods of time to adequately prepare for examinations. This is especially true with aviation preflight indoctrination (API) candidates who have to assimilate large volumes of information in a limited amount of time during API training. The purpose of this study was to assess caffeine consumption patterns (frequency, type, and volume) among naval aviation candidates attending API to determine the most frequently consumed caffeinated beverage and to examine if the consumption of a nonenergy drink caffeinated beverage was related to energy drink consumption. Data were collected by means of an anonymous 44-item survey administered and completed by 302 students enrolled in API at Naval Air Station Pensacola, FL. Results indicated the most frequently consumed caffeinated beverage consumed by API students was coffee (86.4%), with daily coffee consumption being approximately 28% and the most frequent pattern of consumption being 2 cups per day (85%). The least frequently consumed caffeinated beverages reported were energy drinks (52%) and energy shots (29.1%). The present study also found that the consumption patterns (weekly and daily) of caffeinated beverages (coffee and cola) were positively correlated to energy drink consumption patterns. Naval aviation candidates' consumption of caffeinated beverages is comparable to other college and high school cohorts. This study found that coffee and colas were the beverages of choice, with energy drinks and energy shots being the least frequently reported caffeinated beverages used. Additionally, a relationship between the consumption of caffeinated beverages and energy drinks was identified.Sather TE, Williams RD, Delorey DR, Woolsey CL. Caffeine consumption among naval aviation candidates. Aerosp Med Hum Perform. 2017; 88(4):399-405.

  11. Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas

    International Nuclear Information System (INIS)

    Milas, Luka; Akimoto, Tetsuo; Hunter, Nancy R.; Mason, Kathyrn A.; Buchmiller, Lara; Yamakawa, Michitaka; Muramatsu, Hiroyuki; Ang, K. Kian

    2002-01-01

    Purpose: We recently reported that overexpression of epidermal growth factor receptor (EGFR) positively correlated with radioresistance of murine carcinomas. Because cyclin D1 is a downstream sensor of EGFR activation, the present study investigated whether a relationship exists between the extent of cyclin D1 expression and in vivo radiocurability of murine tumors. We further investigated the influence of radiation on cyclin D1 expression and the expression of p27, an inhibitor of the cyclin D1 downstream pathway, as well as the relationship of these molecular determinants to cell proliferation and induced apoptosis in tumors exposed to radiation. Methods and Materials: Cyclin D1 expression was assayed in nine carcinomas syngeneic to C3Hf/Kam mice using Western blot analysis. These tumors greatly differed in their radioresponse as assessed by TCD 50 . The expression of cyclin D1 and p27 proteins was determined by Western blotting. Cell proliferative activity in tumors was determined by proliferating cell nuclear antigen (PCNA) immunochemistry. The effect of irradiation on the expression of cyclin D1 or p27 proteins and on PCNA positivity was determined in the radiosensitive OCa-I and in the radioresistant SCC-VII tumors. Results: Cyclin D1 expression varied among tumors by 40-fold, and its magnitude positively correlated with poorer tumor radioresponse (higher TCD 50 values). The level of cyclin D1 expression paralleled that of EGFR. A 15-Gy dose reduced constitutive expression of cyclin D1 in the radiosensitive OCa-I tumors, but had no influence on expression of cyclin D1 in the radioresistant SCC-VII tumors. In contrast, 15 Gy increased the expression of p27 in radiosensitive tumors and reduced it in radioresistant tumors. Radiation induced no significant apoptosis or change in the percentage of PCNA-positive (proliferating) cells in SCC-VII tumors with high cyclin D1 levels, but it induced significant apoptosis and a decrease in the percentage of proliferating

  12. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  13. Caffeine as a Gelator

    Directory of Open Access Journals (Sweden)

    Nonappa

    2016-03-01

    Full Text Available Caffeine (a stimulant and ethanol (a depressant may have opposite effects in our body, but under in vitro conditions they can “gel” together. Caffeine, being one of the widely used stimulants, continued to surprise the scientific community with its unprecedented biological, medicinal and physicochemical properties. Here, we disclose the supramolecular self-assembly of anhydrous caffeine in a series of alcoholic and aromatic solvents, rendering a highly entangled microcrystalline network facilitating the encapsulation of the solvents as illustrated using direct imaging, microscopy analysis and NMR studies.

  14. Cyclin d1 expression in odontogenic cysts.

    Science.gov (United States)

    Taghavi, Nasim; Modabbernia, Shirin; Akbarzadeh, Alireza; Sajjadi, Samad

    2013-01-01

    In the present study expression of cyclin D1 in the epithelial lining of odontogenic keratocyst, radicular cyst, dentigerous cyst and glandular odontogenic cyst was investigated to compare proliferative activity in these lesions. Immunohistochemical staining of cyclin D1 on formalin-fixed, paraffin-embedded tissue sections of odontogenic keratocysts (n=23), dentigerous cysts (n=20), radicular cysts (n=20) and glandular odontogenic cysts (n=5) was performed by standard EnVision method. Then, slides were studied to evaluate the following parameters in epithelial lining of cysts: expression, expression pattern, staining intensity and localization of expression. The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p keratocysts, but difference was not statistically significant among groups respectively (p=0.204, 0.469). Considering expression localization, cyclin D1 positive cells in odontogenic keratocysts and dentigerous cysts were frequently confined in parabasal layer, different from radicular cysts and glandular odontogenic cysts. The difference was statistically significant (p keratocyst and the entire cystic epithelium of glandular odontogenic cysts comparing to dentigerous cysts and radicular cysts, implying the possible role of G1-S cell cycle phase disturbances in the aggressiveness of odontogenic keratocyst and glandular odontogenic cyst.

  15. The Safety of Ingested Caffeine: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Jennifer L. Temple

    2017-05-01

    Full Text Available Caffeine is the most widely consumed psychoactive drug in the world. Natural sources of caffeine include coffee, tea, and chocolate. Synthetic caffeine is also added to products to promote arousal, alertness, energy, and elevated mood. Over the past decade, the introduction of new caffeine-containing food products, as well as changes in consumption patterns of the more traditional sources of caffeine, has increased scrutiny by health authorities and regulatory bodies about the overall consumption of caffeine and its potential cumulative effects on behavior and physiology. Of particular concern is the rate of caffeine intake among populations potentially vulnerable to the negative effects of caffeine consumption: pregnant and lactating women, children and adolescents, young adults, and people with underlying heart or other health conditions, such as mental illness. Here, we review the research into the safety and safe doses of ingested caffeine in healthy and in vulnerable populations. We report that, for healthy adults, caffeine consumption is relatively safe, but that for some vulnerable populations, caffeine consumption could be harmful, including impairments in cardiovascular function, sleep, and substance use. We also identified several gaps in the literature on which we based recommendations for the future of caffeine research.

  16. Aspirin, Butalbital, and Caffeine

    Science.gov (United States)

    The combination of aspirin, butalbital, and caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 ... explain any part you do not understand. Take aspirin, butalbital, and caffeine exactly as directed. Do not ...

  17. Reinforcing effects of caffeine in coffee and capsules.

    Science.gov (United States)

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-09-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference for caffeine was demonstrated whether or not preference testing was preceded by a period of 10 to 37 days of caffeine abstinence, suggesting that a recent history of heavy caffeine intake (tolerance/dependence) was not a necessary condition for caffeine to function as a reinforcer. In Experiment 2, 6 subjects had 10 opportunities each day to self-administer a cup of coffee or (on different days) a capsule, dependent upon completing a work requirement that progressively increased and then decreased over days. Each day, one of four conditions was studied: caffeinated coffee (100 mg/cup), decaffeinated coffee, caffeine capsules (100 mg/capsule), or placebo capsules. Caffeinated coffee maintained the most self-administration, significantly higher than decaffeinated coffee and placebo capsules but not different from caffeine capsules. Both decaffeinated coffee and caffeine capsules were significantly higher than placebo capsules but not different from each other. In both experiments, subject ratings of "linking" of coffee or capsules covaried with the self-administration measures. These experiments provide the clearest demonstrations to date of the reinforcing effects of caffeine in capsules and in coffee.

  18. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.

    Science.gov (United States)

    Pazos, Elena; Mascareñas, José L; Vázquez, M Eugenio

    2016-01-01

    A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

  19. Effects of hyperoxia and caffeine on the expression of fragile site at Xq27.3

    Energy Technology Data Exchange (ETDEWEB)

    Rafi, S.K.; Surana, R.B.; Christopher, K.L. [Armed Forces Institute of Pathology, Washington, DC (United States)] [and others

    1996-02-02

    To enhance the cytogenetic expression of the fragile X chromosome, we studied the effects of hyperoxia and caffeine on the induction of fragile Xq27.3. A lymphoblastoid cell line (GM 06912) derived from a fragile X male proband was cultured in RPMI 1640 containing 16% dialyzed fetal calf serum. The cells were synchronously subjected to one of 3 different atmospheric oxygen tensions (21%, 21.3 kPa, hyperoxic) during the last 24 hours of the 72 hour culture, immediately after the addition of 2{prime}-deoxy-5-fluorouridine (FUdR) at 25 ng/ml. To study the enhancing effect of caffeine, with or without hyperoxia, a second set of cultures was additionally subjected to caffeine (2.5 mM) during the last 6 hours of the culture. When the fragility of hyperoxic cells (38.1 kPa dissolved oxygen) was compared to that of normoxic control cells (13.3 kPa dissolved oxygen), the difference was significant (P < 0.05). These data suggest that there is a mean increase in the fragile Xq27.3 expressivity as the dissolved oxygen tension increases. Additionally, we observed that caffeine, with or without hyperoxia, significantly (P <0.05) suppressed the expression of the fragile X site in this lymphoblastoid cell line. 34 refs., 2 tabs.

  20. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Science.gov (United States)

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  1. Caffeinated Energy Drinks -- A Growing Problem

    Science.gov (United States)

    Reissig, Chad J.; Strain, Eric C.; Griffiths, Roland R.

    2009-01-01

    Since the introduction of Red Bull in Austria in 1987 and in the United States in 1997, the energy drink market has grown exponentially. Hundreds of different brands are now marketed, with caffeine content ranging from a modest 50 mg to an alarming 505 mg per can or bottle. Regulation of energy drinks, including content labeling and health warnings differs across countries, with some of the most lax regulatory requirements in the U.S. The absence of regulatory oversight has resulted in aggressive marketing of energy drinks, targeted primarily toward young males, for psychoactive, performance-enhancing and stimulant drug effects. There are increasing reports of caffeine intoxication from energy drinks, and it seems likely that problems with caffeine dependence and withdrawal will also increase. In children and adolescents who are not habitual caffeine users, vulnerability to caffeine intoxication may be markedly increased due to an absence of pharmacological tolerance. Genetic factors may also contribute to an individual’s vulnerability to caffeine related disorders including caffeine intoxication, dependence, and withdrawal. The combined use of caffeine and alcohol is increasing sharply, and studies suggest that such combined use may increase the rate of alcohol-related injury. Several studies suggest that energy drinks may serve as a gateway to other forms of drug dependence. Regulatory implications concerning labeling and advertising, and the clinical implications for children and adolescents are discussed. PMID:18809264

  2. Determination of caffeine and identification of undeclared substances in dietary supplements and caffeine dietary exposure assessment.

    Science.gov (United States)

    Neves, Diana Brito da Justa; Caldas, Eloisa Dutra

    2017-07-01

    Caffeine is one of the most consumed stimulants in the world, and is a frequent ingredient of dietary supplements. The aims of this work were to validate a GC-MS method for the quantitation of caffeine and identification of other substances in supplements, mainly weight loss products, and to estimate the caffeine intake by consumers. Sample preparation included extraction with chloroform:water in ultrasonic bath, centrifugation and analysis of the organic layer for caffeine quantitation, and extraction with methanol for identification of other substances. A total of 213 samples of 52 supplement products not registered in Brazil and seized by the Brazilian Federal Police were analyzed. From the 109 samples that declared the amount of caffeine present, 26.6% contained more than 120% of the specified content. Considering the maximum recommended dose stated on the product labels, the consumption of 47.9% of the samples would lead to a daily intake of caffeine above the safe limit of 400 mg. Undeclared drugs, including sibutramine, phenolphthalein, amphepramone and femproporex were found in 28 samples. These results show that consumers of dietary supplements should be aware that these products might contain caffeine at levels that could represent potential health risks, in addition to undeclared pharmaceutical drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  4. Role of adenosine receptors in caffeine tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, S.G.; Mante, S.; Minneman, K.P. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  5. miR-338-3p Is Down-Regulated by Hepatitis B Virus X and Inhibits Cell Proliferation by Targeting the 3′-UTR Region of CyclinD1

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    2012-07-01

    Full Text Available Hepatitis B virus X protein (HBx is recognized as an oncogene in hepatocellular carcinoma (HCC. HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.

  6. Caffeine, sleep and quality of life

    NARCIS (Netherlands)

    Lorist, M.M.; Snel, J.; Verster, J.C.; Pandi-Perumal, S.R.; Streiner, D.L.

    2008-01-01

    Caffeine is regarded as a mild stimulant acting on the central nervous system that is responsible for a significant portion of the behavioural and physiological effects of coffee and tea. Motives why people take caffeine are reflected in consumption patterns. Early in the morning caffeine might help

  7. Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes With Low Habitual Caffeine Consumption.

    Science.gov (United States)

    Evans, Mark; Tierney, Peter; Gray, Nicola; Hawe, Greg; Macken, Maria; Egan, Brendan

    2018-04-23

    The effects of acute ingestion of caffeine on short-duration high-intensity performance are equivocal, while studies of novel modes of delivery and the efficacy of low doses of caffeine are warranted. The aims of the present study were to investigate the effect of acute ingestion of caffeinated chewing gum on repeated sprint performance (RSP) in team sport athletes, and whether habitual caffeine consumption alters the ergogenic effect, if any, on RSP. A total of 18 male team sport athletes undertook four RSP trials using a 40-m maximum shuttle run test, which incorporates 10 × 40-m sprints with 30 s between the start of each sprint. Each participant completed two familiarization sessions, followed by caffeine (CAF; caffeinated chewing gum; 200 mg caffeine) and placebo (PLA; noncaffeinated chewing gum) trials in a randomized, double-blind manner. RSP, assessed by sprint performance decrement (%), did not differ (p = .209; effect size = 0.16; N = 18) between CAF (5.00 ± 2.84%) and PLA (5.43 ± 2.68%). Secondary analysis revealed that low habitual caffeine consumers (130 mg/day, n = 6; 3.98 ± 2.57% vs. 3.80 ± 1.79%, respectively; p = .684; effect size = 0.08). The data suggest that a low dose of caffeine in the form of caffeinated chewing gum attenuates the sprint performance decrement during RSP by team sport athletes with low, but not moderate-to-high, habitual consumption of caffeine.

  8. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2001-01-01

    Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits...... the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism...... of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified...

  9. Caffeine and the olfactory bulb.

    Science.gov (United States)

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  10. Design, formulation and evaluation of caffeine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  11. Evaluating Dependence Criteria for Caffeine

    OpenAIRE

    Striley, Catherine L.W.; Griffiths, Roland R.; Cottler, Linda B.

    2011-01-01

    Background: Although caffeine is the most widely used mood-altering drug in the world, few studies have operationalized and characterized Diagnostic and Statistical Manual IV (DSM-IV) substance dependence criteria applied to caffeine. Methods: As a part of a nosological study of substance use disorders funded by the National Institute on Drug Abuse, we assessed caffeine use and dependence symptoms among high school and college students, drug treatment patients, and pain clinic patients who re...

  12. Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models

    International Nuclear Information System (INIS)

    Sutherland, Robert L; Musgrove, Elizabeth A

    2002-01-01

    Cyclin D1 is one of the most commonly overexpressed oncogenes in breast cancer, with 45–50% of primary ductal carcinomas overexpressing this oncoprotein. Targeted deletion of the gene encoding cyclin D1 demonstrates an essential role in normal mammary gland development while transgenic studies provide evidence that cyclin D1 is a weak oncogene in mammary epithelium. In a recent exciting development, Yu et al. demonstrate that cyclin D1-deficient mice are resistant to mammary carcinomas induced by c-neu and v-Ha-ras, but not those induced by c-myc or Wnt-1. These findings define a pivotal role for cyclin D1 in a subset of mammary cancers in mice and imply a functional role for cyclin D1 overexpression in human breast cancer

  13. Galectin-3 and cyclin D1 expression in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gołecki Marcin

    2011-10-01

    Full Text Available Abstract Introduction Lung cancer is a major cause of mortality and morbidity worldwide. Galectin-3 is multifunctional protein, which is involved in regulation of cell growth, cell adhesion, cell proliferation, angiogenesis and apoptosis. Cyclin D1 together with other cyclin plays an important role in cell cycle control. Cyclin D1 regulates the G1-to-S phase transition. The aim of this study was the evaluation of correlations between clinicopathological findings and cyclin D1 and galectin-3 expression in non-small cell lung cancer (NSCLC. We wanted also to analyze the prognostic value of cyclin D1 and galectin-3 expression. Moreover we tried to evaluate the correlations between galectin-3 and cyclin D1 expression in tumor tissue. Materials and methods We used the immunochemistry method to investigate the expression of galectin-3 and cyclin D1 in the paraffin-embedded tumor tissue of 47 patients (32 men and 15 women; mean age 59.34 ± 8.90. years. We used monoclonal antibodies to cyclin D1 (NCL-L-cyclin D1-GM clone P2D11F11 NOVO CASTRA and to galectin-3 (mouse monoclonal antibody NCL-GAL3 NOVO CASTRA. Results Galectin-3 expression was positive in 18 cases (38.29% and cyclin D1 in 39 (82.97%. We showed only weak trend, that galectin-3 expression was lower in patients without lymph node involvement (p = 0.07 and cyclin D1 expression was higher in this group (p = 0.080. We didn't reveal differences in cyclin D1 and galectin-3 expression in SCC and adenocarcinoma patients. We didn't demonstrated also differences in galectin-3 and cyclin D1 expression depending on disease stage. Moreover we analyzed the prognostic value of cyclin D1 expression and galectin-3 in all examinated patients and separately in SCC and in adenocarcinoma and in all stages, but we didn't find any statistical differences. We demonstrated that in galectin-3 positive tumors cyclin D1 expression was higher (96.55% vs 61.11%, Chi2 Yatesa 7.53, p = 0.0061 and we revealed negative

  14. Regulation of Fumonisin B1 Biosynthesis and Conidiation in Fusarium verticillioides by a Cyclin-Like (C-Type) Gene, FCC1†

    Science.gov (United States)

    Shim, Won-Bo; Woloshuk, Charles P.

    2001-01-01

    Fumonisins are a group of mycotoxins produced in corn kernels by the plant-pathogenic fungus Fusarium verticillioides. A mutant of the fungus, FT536, carrying a disrupted gene named FCC1 (for Fusarium cyclin C1) resulting in altered fumonisin B1 biosynthesis was generated. FCC1 contains an open reading frame of 1,018 bp, with one intron, and encodes a putative 319-amino-acid polypeptide. This protein is similar to UME3 (also called SRB11 or SSN8), a cyclin C of Saccharomyces cerevisiae, and contains three conserved motifs: a cyclin box, a PEST-rich region, and a destruction box. Also similar to the case for C-type cyclins, FCC1 was constitutively expressed during growth. When strain FT536 was grown on corn kernels or on defined minimal medium at pH 6, conidiation was reduced and FUM5, the polyketide synthase gene involved in fumonisin B1 biosynthesis, was not expressed. However, when the mutant was grown on a defined minimal medium at pH 3, conidiation was restored, and the blocks in expression of FUM5 and fumonisin B1 production were suppressed. Our data suggest that FCC1 plays an important role in signal transduction regulating secondary metabolism (fumonisin biosynthesis) and fungal development (conidiation) in F. verticillioides. PMID:11282612

  15. Caffeine as a cause of urticaria-angioedema

    Directory of Open Access Journals (Sweden)

    Linda Tognetti

    2014-01-01

    Full Text Available We report the case of a young woman presenting with recurrent urticaria. The episodes occurred both in and out of the workplace. On three occasions it presented as urticaria-angioedema, requiring emergency care on one occassion. A thorough clinical history along with serological and allergological tests allowed a diagnosis of caffeine-induced urticaria-angioedema. We advised the patient to follow a caffeine-free diet and to avoid all caffeine or methylxanthine-containing drugs. After two years of caffeine abstinence, she had not experienced any further episodes of urticaria-angioedema. Only a few cases of caffeine-induced urticaria and/or anaphylaxis have been reported till date, with varying outcomes in allergologic investigations. Moreover, several cases are probably undiagnosed or misdiagnosed as idiopathic urticaria or as occupational allergy. We speculate that hypersensitivity to caffeine rather than autoimmine reaction may be the probable cause of urticaria. Caffeine should considered as a potential urticaria-inducing agent and should be included in the allergological test series.

  16. Caffeine deprivation affects vigilance performance and mood.

    Science.gov (United States)

    Lane, J D; Phillips-Bute, B G

    1998-08-01

    The effects of brief caffeine deprivation on vigilance performance, mood, and symptoms of caffeine withdrawal were studied in habitual coffee drinkers. Thirty male and female coffee drinkers were tested twice at midday (1130 to 1330 hours) after mornings in which they either consumed caffeinated beverages ad lib or abstained. Vigilance performance was tested with a 30-min computerized visual monitoring task. Mood and withdrawal symptom reports were collected by questionnaires. Caffeine deprivation was associated with impaired vigilance performance characterized by a reduction in the percentage of targets detected and an increase in response time, and by subjective reports of decreased vigor and increased fatigue and symptoms characterized by sleepiness, headache, and reduced ability to work. Even short periods of caffeine deprivation, equivalent in length to skipping regular morning coffee, can produce deficits in sustained attention and noticeable unpleasant caffeine-withdrawal symptoms in habitual coffee drinkers. Such symptoms may be a common side-effect of habitual caffeine consumption that contributes to the maintenance of this behavior.

  17. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  18. Foci of cyclin A2 interact with actin and RhoA in mitosis.

    Science.gov (United States)

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-06-09

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis.

  19. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  20. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  1. Characterization of Individuals Seeking Treatment for Caffeine Dependence

    OpenAIRE

    Juliano, Laura M.; Evatt, Daniel P.; Richards, Brian D.; Griffiths, Roland R.

    2012-01-01

    Previous investigations have identified individuals who meet criteria for DSM-IV-TR substance dependence as applied to caffeine, but there is little research on treatments for caffeine dependence. This study aimed to thoroughly characterize individuals who are seeking treatment for problematic caffeine use. Ninety-four individuals who identified as being psychologically or physically dependent on caffeine, or who had tried unsuccessfully to modify caffeine consumption participated in a face-t...

  2. A fluvoxamine-caffeine interaction study

    DEFF Research Database (Denmark)

    Jeppesen, U; Loft, S; Poulsen, H E

    1996-01-01

    The selective serotonin reuptake inhibitor fluvoxamine is a very potent inhibitor of the liver enzyme CYP1A2, which is the major P450 catalysing the biotransformation of caffeine. Thus, a pharmacokinetic study was undertaken with the purpose of documenting a drug-drug interaction between fluvoxam......The selective serotonin reuptake inhibitor fluvoxamine is a very potent inhibitor of the liver enzyme CYP1A2, which is the major P450 catalysing the biotransformation of caffeine. Thus, a pharmacokinetic study was undertaken with the purpose of documenting a drug-drug interaction between...... fluvoxamine and caffeine. The study was carried out as a randomized, in vivo, cross-over study including eight healthy volunteers. In Period A of the study, each subject took 200 mg caffeine orally, and in Period B, the subjects took fluvoxamine 50 mg per day for 4 days and 100 mg per day for 8 days. On day 8...... fluvoxamine treatment may lead to caffeine intoxication. Finally, our study provides additional evidence that fluvoxamine can be used to probe CYP1A2 in drug metabolism....

  3. Energy drinks and the neurophysiological impact of caffeine.

    Science.gov (United States)

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  4. Energy drinks and the neurophysiological impacts of caffeine

    Directory of Open Access Journals (Sweden)

    Leeana eBagwath Persad

    2011-10-01

    Full Text Available Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  5. Caffeine and cognition in functional magnetic resonance imaging.

    Science.gov (United States)

    Koppelstaetter, Florian; Poeppel, Thorsten D; Siedentopf, Christian M; Ischebeck, Anja; Kolbitsch, Christian; Mottaghy, Felix M; Felber, Stephan R; Jaschke, Werner R; Krause, Bernd J

    2010-01-01

    Caffeine has been consumed since ancient times due to its beneficial effects on attention, psychomotor function, and memory. Caffeine exerts its action mainly through an antagonism of cerebral adenosine receptors, although there are important secondary effects on other neurotransmitter systems. Recently, functional MRI (fMRI) entered the field of neuropharmacology to explore the intracerebral sites and mechanisms of action of pharmacological agents. However, as caffeine possesses vasoconstrictive properties it may interfere with the mechanisms underlying the functional contrast in fMRI. Yet, only a limited number of studies dealt with the effect of caffeine on measures in fMRI. Even fewer neuroimaging studies examined the effects that caffeine exerts on cognition: Portas and colleagues used fMRI in an attentional task under different levels of arousal (sleep deprivation or caffeine administration), concluding that the thalamus is involved in mediating the interaction of attention and arousal. Bendlin and colleagues found caffeine to stabilize the extent of neuronal activation in repetitive word stem completion, counteracting the general task practice effect. Recently, Koppelstaetter and colleagues assessed the effect of caffeine on verbal working memory demonstrating a modulatory effect of caffeine on brain regions (medial frontopolar and anterior cingulate cortex) that have been associated with attentional and executive functions. This review surveys and discusses neuroimaging findings on 1) how caffeine affects the contrast underlying fMRI techniques, particularly the blood oxygen level dependent contrast (BOLD fMRI), and 2) how caffeine operates on neuronal activity underlying cognition, to understand the effect of caffeine on behavior and its neurobiological underpinnings.

  6. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanism

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Tatsumi, M.

    1976-01-01

    Replicative bypass repair of UV damage to DNA was studied in a wide variaty of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthesized after irradiation with 10 J/m 2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionally, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimodine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative bypassing became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability

  7. Caffeine, exercise and the brain.

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart; Spriet, Lawrence L

    2013-01-01

    Caffeine can improve exercise performance when it is ingested at moderate doses (3-6 mg/kg body mass). Caffeine also has an effect on the central nervous system (CNS), and it is now recognized that most of the performance-enhancing effect of caffeine is accomplished through the antagonism of the adenosine receptors, influencing the dopaminergic and other neurotransmitter systems. Adenosine and dopamine interact in the brain, and this might be one mechanism to explain how the important components of motivation (i.e. vigor, persistence and work output) and higher-order brain processes are involved in motor control. Caffeine maintains a higher dopamine concentration especially in those brain areas linked with 'attention'. Through this neurochemical interaction, caffeine improves sustained attention, vigilance, and reduces symptoms of fatigue. Other aspects that are localized in the CNS are a reduction in skeletal muscle pain and force sensation, leading to a reduction in perception of effort during exercise and therefore influencing the motivational factors to sustain effort during exercise. Because not all CNS aspects have been examined in detail, one should consider that a placebo effect may also be present. Overall, it appears that the performance-enhancing effects of caffeine reside in the brain, although more research is necessary to reveal the exact mechanisms through which the CNS effect is established. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  8. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  9. Associations of Urinary Caffeine and Caffeine Metabolites With Arterial Stiffness in a Large Population-Based Study.

    Science.gov (United States)

    Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Staessen, Jan A; Vogt, Bruno; Pechère-Bertschi, Antoinette; Burnier, Michel; Martin, Pierre-Yves; Eap, Chin B; Bochud, Murielle; Guessous, Idris

    2018-05-01

    To assess the influence of caffeine on arterial stiffness by exploring the association of urinary excretion of caffeine and its related metabolites with pulse pressure (PP) and pulse wave velocity (PWV). Families were randomly selected from the general population of 3 Swiss cities from November 25, 2009, through April 4, 2013. Pulse pressure was defined as the difference between the systolic and diastolic blood pressures obtained by 24-hour ambulatory monitoring. Carotid-femoral PWV was determined by applanation tonometry. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24-hour urine collections. Multivariate linear and logistic mixed models were used to explore the associations of quartiles of urinary caffeine and metabolite excretions with PP, high PP, and PWV. We included 863 participants with a mean ± SD age of 47.1±17.6 years, 24-hour PP of 41.9±9.2 mm Hg, and PWV of 8.0±2.3 m/s. Mean (SE) brachial PP decreased from 43.5 (0.5) to 40.5 (0.6) mm Hg from the lowest to the highest quartiles of 24-hour urinary caffeine excretion (P<.001). The odds ratio (95% CI) of high PP decreased linearly from 1.0 to 0.52 (0.31-0.89), 0.38 (0.22-0.65), and 0.31 (0.18-0.55) from the lowest to the highest quartile of 24-hour urinary caffeine excretion (P<.001). Mean (SE) PWV in the highest caffeine excretion quartile was significantly lower than in the lowest quartile (7.8 [0.1] vs 8.1 [0.1] m/s; P=.03). Similar associations were found for paraxanthine and theophylline, whereas no associations were found with theobromine. Urinary caffeine, paraxanthine, and theophylline excretions were associated with decreased parameters of arterial stiffness, suggesting a protective effect of caffeine intake beyond its blood pressure-lowering effect. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  11. Caffeine reduces dipyridamole-induced myocardial ischemia

    International Nuclear Information System (INIS)

    Smits, P.; Aengevaeren, W.R.; Corstens, F.H.; Thien, T.

    1989-01-01

    The mechanism of action of coronary vasodilation after dipyridamole may be based on inhibition of cellular uptake of circulating endogenous adenosine. Since caffeine has been reported to be a competitive antagonist of adenosine we studied the effect of caffeine on the outcome of dipiridamole- 201 Tl cardiac imaging in one patient. During caffeine abstinence dipyridamole induced myocardial ischemia with down-slope ST depressions on the ECG, and reversible perfusion defects on the scintigrams. When the test was repeated 1 wk later on similar conditions, but now shortly after infusion of caffeine (4 mg/kg), the ECG showed nodepressions, and the scintigrams only slight signs of ischemia. We conclude that when caffeine abstinence is not sufficient, the widespread use of coffee and related products may be responsible for false-negative findings in dipyridamole-201Tl cardiac imaging

  12. Caffeine reduces dipyridamole-induced myocardial ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Smits, P.; Aengevaeren, W.R.; Corstens, F.H.; Thien, T. (Univ. of Nijmegen (Netherlands))

    1989-10-01

    The mechanism of action of coronary vasodilation after dipyridamole may be based on inhibition of cellular uptake of circulating endogenous adenosine. Since caffeine has been reported to be a competitive antagonist of adenosine we studied the effect of caffeine on the outcome of dipiridamole-{sup 201}Tl cardiac imaging in one patient. During caffeine abstinence dipyridamole induced myocardial ischemia with down-slope ST depressions on the ECG, and reversible perfusion defects on the scintigrams. When the test was repeated 1 wk later on similar conditions, but now shortly after infusion of caffeine (4 mg/kg), the ECG showed nodepressions, and the scintigrams only slight signs of ischemia. We conclude that when caffeine abstinence is not sufficient, the widespread use of coffee and related products may be responsible for false-negative findings in dipyridamole-201Tl cardiac imaging.

  13. HPLC determination of caffeine in coffee beverage

    Science.gov (United States)

    Fajara, B. E. P.; Susanti, H.

    2017-11-01

    Coffee is the second largest beverage which is consumed by people in the world, besides the water. One of the compounds which contained in coffee is caffeine. Caffeine has the pharmacological effect such as stimulating the central nervous system. The purpose of this study is to determine the level of caffeine in coffee beverages with HPLC method. Three branded coffee beverages which include in 3 of Top Brand Index 2016 Phase 2 were used as samples. Qualitative analysis was performed by Parry method, Dragendorff reagent, and comparing the retention time between sample and caffeine standard. Quantitative analysis was done by HPLC method with methanol-water (95:5v/v) as mobile phase and ODS as stationary phasewith flow rate 1 mL/min and UV 272 nm as the detector. The level of caffeine data was statistically analyzed using Anova at 95% confidence level. The Qualitative analysis showed that the three samples contained caffeine. The average of caffeine level in coffee bottles of X, Y, and Z were 138.048 mg/bottle, 109.699 mg/bottle, and 147.669 mg/bottle, respectively. The caffeine content of the three coffee beverage samples are statistically different (pcoffee beverage samples were not meet the requirements set by the Indonesian Standard Agency of 50 mg/serving.

  14. Creatine and Caffeine: Considerations for Concurrent Supplementation.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E

    2015-12-01

    Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤ 30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine.

  15. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  16. Determination of CaffeineIn Beverages: A Review

    OpenAIRE

    Igelige Gerald; David Ebuka Arthur; Adebiyi Adedayo

    2014-01-01

    Caffeine is a well-known stimulant which is added as an ingredient to various carbonated soft drinks. Caffeine has drawn more attention due to its physiological effects beyond that of its stimulatory effect. Consumers are interested in knowing the exact amounts of caffeine existing in beverages. However, limited data exist, especially for store brand beverages. Therefore, it is pertinent to review the various methods that will effectively determine the caffeine contents in different carbonate...

  17. Variation in caffeine concentration in single coffee beans.

    Science.gov (United States)

    Fox, Glen P; Wu, Alex; Yiran, Liang; Force, Lesleigh

    2013-11-13

    Twenty-eight coffee samples from around the world were tested for caffeine levels to develop near-infrared reflectance spectroscopy (NIRS) calibrations for whole and ground coffee. Twenty-five individual beans from five of those coffees were used to develop a NIRS calibration for caffeine concentration in single beans. An international standard high-performance liquid chromatography method was used to analyze for caffeine content. Coffee is a legal stimulant and possesses a number of heath properties. However, there is variation in the level of caffeine in brewed coffee and other caffeinated beverages. Being able to sort beans on the basis of caffeine concentration will improve quality control in the level of caffeine in those beverages. The range in caffeine concentration was from 0.01 mg/g (decaffeinated coffee) to 19.9 mg/g (Italian coffee). The majority of coffees were around 10.0-12.0 mg/g. The NIRS results showed r(2) values for bulk unground and ground coffees were >0.90 with standard errors coffee beans. One application of this calibration could be sorting beans on caffeine concentration to provide greater quality control for high-end markets. Furthermore, bean sorting may open new markets for novel coffee products.

  18. Caffeine products consumption habits of vilnius university students

    OpenAIRE

    Acus, Edgaras

    2017-01-01

    A small amount of caffeine in caffeine-containing products helps with stimulating labor activity, but an overdose of caffeine can cause a health hazard, so it is important to pay close attention to the use of caffeine-containing products. The use of psychoactive drugs is very important public health problem, because students attitude to addictive substances can influence their behavior in their family, the labor market and in society in general. Although caffeine is a natural product, but the...

  19. Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption

    Science.gov (United States)

    Rogers, Peter J; Hohoff, Christa; Heatherley, Susan V; Mullings, Emma L; Maxfield, Peter J; Evershed, Richard P; Deckert, Jürgen; Nutt, David J

    2010-01-01

    Caffeine, a widely consumed adenosine A1 and A2A receptor antagonist, is valued as a psychostimulant, but it is also anxiogenic. An association between a variant within the ADORA2A gene (rs5751876) and caffeine-induced anxiety has been reported for individuals who habitually consume little caffeine. This study investigated whether this single nucleotide polymorphism (SNP) might also affect habitual caffeine intake, and whether habitual intake might moderate the anxiogenic effect of caffeine. Participants were 162 non-/low (NL) and 217 medium/high (MH) caffeine consumers. In a randomized, double-blind, parallel groups design they rated anxiety, alertness, and headache before and after 100 mg caffeine and again after another 150 mg caffeine given 90 min later, or after placebo on both occasions. Caffeine intake was prohibited for 16 h before the first dose of caffeine/placebo. Results showed greater susceptibility to caffeine-induced anxiety, but not lower habitual caffeine intake (indeed coffee intake was higher), in the rs5751876 TT genotype group, and a reduced anxiety response in MH vs NL participants irrespective of genotype. Apart from the almost completely linked ADORA2A SNP rs3761422, no other of eight ADORA2A and seven ADORA1 SNPs studied were found to be clearly associated with effects of caffeine on anxiety, alertness, or headache. Placebo administration in MH participants decreased alertness and increased headache. Caffeine did not increase alertness in NL participants. With frequent consumption, substantial tolerance develops to the anxiogenic effect of caffeine, even in genetically susceptible individuals, but no net benefit for alertness is gained, as caffeine abstinence reduces alertness and consumption merely returns it to baseline. PMID:20520601

  20. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    International Nuclear Information System (INIS)

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-01-01

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16 INK4a , a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis

  1. Energy Drinks and the Neurophysiological Impact of Caffeine

    OpenAIRE

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can in...

  2. Energy drinks and the neurophysiological impacts of caffeine

    OpenAIRE

    Leeana eBagwath Persad

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can in...

  3. Caffeine effects on mood and memory.

    Science.gov (United States)

    Herz, R S

    1999-09-01

    The purpose of the present research was to assess whether a psychoactive dose of caffeine would have differential affects on the mood dimensions of arousal versus feelings of pleasantness and whether these mood alterations would influence memory either by (1) the experience of arousal at learning and/or (2) altered and congruent mood states at learning and recall. To address these questions, the administration of 5 mg/kg caffeine or placebo at learning and retrieval sessions was manipulated and subjects' mood was evaluated by several different self-report measures. Sixteen words were incidentally studied during the learning session and memory was evaluated by the number of words correctly recalled at the retrieval session two days later. Results revealed that caffeine reliably increased arousal, but did not affect any emotion dimensions related to feelings of pleasure. Subjects who received caffeine at learning and retrieval were also in equivalent mood states at both sessions. Moreover, caffeine did not produce any effects on memory; thus, neither hypothesis concerning the influence of arousal on memory was supported. These data show that caffeine is a useful method for manipulating arousal in the laboratory without influencing feelings of pleasantness or learning and memory performance.

  4. Temporal patterns of caffeine intake in the United States.

    Science.gov (United States)

    Martyn, Danika; Lau, Annette; Richardson, Philip; Roberts, Ashley

    2018-01-01

    To investigate whether caffeine intake among adolescents and adults in the U.S. varies across the week or throughout the day, data from a 7-day online beverage consumption survey (2010-2011) were analyzed. Mean (206.8-213.0 mg/day) and 90th percentile (437.4-452.6 mg/day) daily caffeine intakes among consumers 13 years and older were relatively constant across the week with no marked difference among weekdays versus weekend days. Percent consumers of caffeinated beverages likewise remained stable across the week. Mean daily caffeine intake for coffee and energy drink consumers 13 years and older was higher than contributions for tea and carbonated soft drink consumers. Caffeinated beverage consumers (13 + yrs) consumed most of their caffeine in the morning (61% versus 21% and 18% in the afternoon and evening) which was driven by coffee. Caffeinated beverage consumption patterns among adolescents (13-17 yrs) - who typically consume less daily caffeine - were more evenly distributed throughout the day. These findings provide insight into U.S. temporal caffeine consumption patterns among specific caffeinated beverage consumers and different age brackets. These data suggest that while caffeine intakes do not vary from day-to-day, mornings generally drive the daily caffeine intake of adults and is predominantly attributed to coffee. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Caffeine Use Disorder: A Comprehensive Review and Research Agenda.

    Science.gov (United States)

    Meredith, Steven E; Juliano, Laura M; Hughes, John R; Griffiths, Roland R

    2013-09-01

    Caffeine is the most commonly used drug in the world. Although consumption of low to moderate doses of caffeine is generally safe, an increasing number of clinical studies are showing that some caffeine users become dependent on the drug and are unable to reduce consumption despite knowledge of recurrent health problems associated with continued use. Thus, the World Health Organization and some health care professionals recognize caffeine dependence as a clinical disorder. In this comprehensive literature review, we summarize published research on the biological evidence for caffeine dependence; we provide a systematic review of the prevalence of caffeine dependence and rates of endorsement of clinically meaningful indicators of distress and functional impairment among habitual caffeine users; we discuss the diagnostic criteria for Caffeine Use Disorder-a condition for further study included in the Diagnostic and Statistical Manual of Mental Disorders ( 5 th ed .); and we outline a research agenda to help guide future clinical, epidemiological, and genetic investigations of caffeine dependence. Numerous controlled laboratory investigations reviewed in this article show that caffeine produces behavioral and physiological effects similar to other drugs of dependence. Moreover, several recent clinical studies indicate that caffeine dependence is a clinically meaningful disorder that affects a nontrivial proportion of caffeine users. Nevertheless, more research is needed to determine the reliability, validity, and prevalence of this clinically important health problem.

  6. Caffeine addiction: Need for awareness and research and regulatory measures.

    Science.gov (United States)

    Jain, Shobhit; Srivastava, Adya Shanker; Verma, Raghunath Prasad; Maggu, Gaurav

    2017-02-04

    Caffeine consumption has been constantly growing in India especially among children and youngsters. Addictive potential of caffeine has long been reported, still there is lack of awareness about caffeine abuse in India. There is an intense need for appropriate public health regulatory measures and awareness about addictive potential & harms related to caffeine. To the best of our knowledge this is first case from India highlighting several important issues with progressive caffeine abuse resulting in dependence leading to physical, psychological, academic and social consequences; psychotic symptoms during intoxication; predisposing factors as impulsivity and novelty seeking traits in pre-morbid personality; psychosis in family; poor awareness of health hazards even among medical professionals. Widely variable caffeine containing products are available but caffeine content or its safety limit is not mentioned on caffeine products in India. Due to harmful consequences, legal availability to children, growing consumption of caffeine products, it is utmost essential to recognize caffeine as addictive substance and impose regulatory measures on sale, advertisement, maximum caffeine content, health consequences and safety limits of caffeine containing products. Further school teachers, parents and medical practitioners need to be made aware of health hazards of caffeine. Caffeine use shall always be enquired from patients presenting with psychiatric complaints. Further research and survey are required on caffeine use and related problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Speeding through cell cycle roadblocks: Nuclear cyclin D1-dependent kinase and neoplastic transformation

    Directory of Open Access Journals (Sweden)

    Diehl J Alan

    2008-09-01

    Full Text Available Abstract Mitogenic induction of cyclin D1, the allosteric regulator of CDK4/6, is a key regulatory event contributing to G1 phase progression. Following the G1/S transition, cyclin D1 activation is antagonized by GSK3β-dependent threonine-286 (Thr-286 phosphorylation, triggering nuclear export and subsequent cytoplasmic degradation mediated by the SCFFbx4-αBcrystallin E3 ubiquitin ligase. Although cyclin D1 overexpression occurs in numerous malignancies, overexpression of cyclin D1 alone is insufficient to drive transformation. In contrast, cyclin D1 mutants refractory to phosphorylation-dependent nuclear export and degradation are acutely transforming. This raises the question of whether overexpression of cyclin D1 is a significant contributor to tumorigenesis or an effect of neoplastic transformation. Significantly, recent work strongly supports a model wherein nuclear accumulation of cyclin D1-dependent kinase during S-phase is a critical event with regard to transformation. The identification of mutations within SCFFbx4-αBcrystallin ligase in primary tumors provides mechanistic insight into cyclin D1 accumulation in human cancer. Furthermore, analysis of mouse models expressing cyclin D1 mutants refractory to degradation indicate that nuclear cyclin D1/CDK4 kinase triggers DNA re-replication and genomic instability. Collectively, these new findings provide a mechanism whereby aberrations in post-translational regulation of cyclin D1 establish a cellular environment conducive to mutations that favor neoplastic growth.

  8. Caffeine use and dependence in adolescents: one-year follow-up.

    Science.gov (United States)

    Oberstar, Joel V; Bernstein, Gail A; Thuras, Paul D

    2002-01-01

    The objectives were to conduct a 1-year follow-up of daily caffeine-using adolescents to further describe caffeine dependence symptoms and to determine whether caffeine dependence is associated with other substance dependence disorders. Twenty-one of 36 (58.3%) adolescents who participated in a study of caffeine dependence returned for follow-up. The previous study was a case series of adolescents who consumed caffeine daily and met some Diagnostic and Statistical Manual of Mental Disorders (fourth edition) substance dependence criteria as applied to caffeine. At follow-up, caffeine consumption from beverages was 179.9 +/- 151.8 mg/day. Of the 21 teenagers, 23.8% (n = 5) met criteria for caffeine dependence. Four of these participants developed caffeine dependence during the follow-up period. Other substance dependence disorders were not overrepresented in the caffeine dependent group compared to the caffeine nondependent group. The most commonly reported withdrawal symptoms in dependent teenagers (at baseline and follow-up combined) were feeling drowsy/tired, fatigued, or sluggish/slowed down (83.3% each) and headache (75.0%). Caffeine dependence occurs in some adolescents who drink caffeine daily and is marked by symptoms similar to those found in adults.

  9. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  10. 17-AAG enhances the cytotoxicity of flavopiridol in mantle cell lymphoma via autophagy suppression.

    Science.gov (United States)

    Xiao, Y; Guan, J

    2015-01-01

    Flavopiridol, a cyclin-dependent kinase inhibitor (CDKI), shows promising anti-tumor activity in hematologic malignancies. However, Flavopiridol-induced protective autophagy may lead to drug resistance. Here we found that Hsp90 inhibitor 17-AAG can sensitize mantle cell lymphoma (MCL) cells to flavopiridol by suppressing flavopiridol-triggered protective autophagy. The suppressing effect of 17-AAG on autophgy was mediated by Beclin1 degradation and ERK inactivation. Furthermore, 17-AAG enhanced flavopiridol-induced apoptosis and growth suppression in MCL cells. Our study may provide some insights into CDKI -targeted chemotherapies.

  11. Energy drink consumption and impact on caffeine risk.

    Science.gov (United States)

    Thomson, Barbara M; Campbell, Donald M; Cressey, Peter; Egan, Ursula; Horn, Beverley

    2014-01-01

    The impact of caffeine from energy drinks occurs against a background exposure from naturally occurring caffeine (coffee, tea, cocoa and foods containing these ingredients) and caffeinated beverages (kola-type soft drinks). Background caffeine exposure, excluding energy drinks, was assessed for six New Zealand population groups aged 15 years and over (n = 4503) by combining concentration data for 53 caffeine-containing foods with consumption information from the 2008/09 New Zealand Adult Nutrition Survey (ANS). Caffeine exposure for those who consumed energy drinks (n = 138) was similarly assessed, with inclusion of energy drinks. Forty-seven energy drink products were identified on the New Zealand market in 2010. Product volumes ranged from 30 to 600 ml per unit, resulting in exposures of 10-300 mg caffeine per retail unit consumed. A small percentage, 3.1%, of New Zealanders reported consuming energy drinks, with most energy drink consumers (110/138) drinking one serving per 24 h. The maximum number of energy drinks consumed per 24 h was 14 (total caffeine of 390 mg). A high degree of brand loyalty was evident. Since only a minor proportion of New Zealanders reported consuming energy drinks, a greater number of New Zealanders exceeded a potentially adverse effect level (AEL) of 3 mg kg(-1) bw day(-1) for caffeine from caffeine-containing foods than from energy drinks. Energy drink consumption is not a risk at a population level because of the low prevalence of consumption. At an individual level, however, teenagers, adults (20-64 years) and females (16-44 years) were more likely to exceed the AEL by consuming energy drinks in combination with caffeine-containing foods.

  12. Impact of caffeine and coffee on our health.

    Science.gov (United States)

    Gonzalez de Mejia, Elvira; Ramirez-Mares, Marco Vinicio

    2014-10-01

    Coffee is the most frequently consumed caffeine-containing beverage. The caffeine in coffee is a bioactive compound with stimulatory effects on the central nervous system and a positive effect on long-term memory. Although coffee consumption has been historically linked to adverse health effects, new research indicates that coffee consumption may be beneficial. Here we discuss the impact of coffee and caffeine on health and bring attention to the changing caffeine landscape that includes new caffeine-containing energy drinks and supplements, often targeting children and adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Expectation of having consumed caffeine can improve performance and mood.

    Science.gov (United States)

    Dawkins, Lynne; Shahzad, Fatima-Zahra; Ahmed, Suada S; Edmonds, Caroline J

    2011-12-01

    We explored whether caffeine, and expectation of having consumed caffeine, affects attention, reward responsivity and mood using double-blinded methodology. 88 participants were randomly allocated to 'drink-type' (caffeinated/decaffeinated coffee) and 'expectancy' (told caffeinated/told decaffeinated coffee) manipulations. Both caffeine and expectation of having consumed caffeine improved attention and psychomotor speed. Expectation enhanced self-reported vigour and reward responsivity. Self-reported depression increased at post-drink for all participants, but less in those receiving or expecting caffeine. These results suggest caffeine expectation can affect mood and performance but do not support a synergistic effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cyclin D1, Id1 and EMT in breast cancer

    International Nuclear Information System (INIS)

    Tobin, Nicholas P; Sims, Andrew H; Lundgren, Katja L; Lehn, Sophie; Landberg, Göran

    2011-01-01

    Cyclin D1 is a well-characterised cell cycle regulator with established oncogenic capabilities. Despite these properties, studies report contrasting links to tumour aggressiveness. It has previously been shown that silencing cyclin D1 increases the migratory capacity of MDA-MB-231 breast cancer cells with concomitant increase in 'inhibitor of differentiation 1' (ID1) gene expression. Id1 is known to be associated with more invasive features of cancer and with the epithelial-mesenchymal transition (EMT). Here, we sought to determine if the increase in cell motility following cyclin D1 silencing was mediated by Id1 and enhanced EMT-features. To further substantiate these findings we aimed to delineate the link between CCND1, ID1 and EMT, as well as clinical properties in primary breast cancer. Protein and gene expression of ID1, CCND1 and EMT markers were determined in MDA-MB-231 and ZR75 cells by western blot and qPCR. Cell migration and promoter occupancy were monitored by transwell and ChIP assays, respectively. Gene expression was analysed from publicly available datasets. The increase in cell migration following cyclin D1 silencing in MDA-MB-231 cells was abolished by Id1 siRNA treatment and we observed cyclin D1 occupancy of the Id1 promoter region. Moreover, ID1 and SNAI2 gene expression was increased following cyclin D1 knock-down, an effect reversed with Id1 siRNA treatment. Similar migratory and SNAI2 increases were noted for the ER-positive ZR75-1 cell line, but in an Id1-independent manner. In a meta-analysis of 1107 breast cancer samples, CCND1 low /ID1 high tumours displayed increased expression of EMT markers and were associated with reduced recurrence free survival. Finally, a greater percentage of CCND1 low /ID1 high tumours were found in the EMT-like 'claudin-low' subtype of breast cancer than in other subtypes. These results indicate that increased migration of MDA-MB-231 cells following cyclin D1 silencing can be mediated by Id

  15. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  16. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  17. Cigarette, alcohol, and caffeine consumption

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2003-01-01

    OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized;...... units alcohol per week and 375 mg or more caffeine per day during pregnancy may increase the risk of spontaneous abortion.......OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol...

  18. Expectation of having consumed caffeine can improve performance and mood

    OpenAIRE

    Dawkins, Lynne; Shahzad, Fatima-Zahra; Ahmed, Suada S.; Edmonds, Caroline J.

    2011-01-01

    We explored whether caffeine, and expectation of having consumed caffeine, affects attention, reward responsivity and mood using double-blinded methodology. 88 participants were randomly allocated to ‘drink-type’ (caffeinated/decaffeinated coffee) and ‘expectancy’ (told caffeinated/told decaffeinated coffee) manipulations. Both caffeine and expectation of having consumed caffeine improved attention and psychomotor speed. Expectation enhanced self-reported vigour and reward responsivity. Self-...

  19. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  20. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    International Nuclear Information System (INIS)

    Jian Yongzhi; Yan Jun; Wang Hanzhou; Chen Chen; Sun Maoyun; Jiang Jianhai; Lu Jieqiong; Yang Yanzhong; Gu Jianxin

    2005-01-01

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  1. Low-dose caffeine physical dependence in humans.

    Science.gov (United States)

    Griffiths, R R; Evans, S M; Heishman, S J; Preston, K L; Sannerud, C A; Wolf, B; Woodson, P P

    1990-12-01

    This study investigated the effects of terminating low dose levels of caffeine (100 mg/day) in 7 normal humans. Substitution of placebo capsules for caffeine capsules occurred under double-blind conditions while subjects rated various dimensions of their mood and behavior. In the first phase of the study, substitution of placebo for 12 consecutive days resulted in an orderly withdrawal syndrome in 4 subjects which peaked on days 1 or 2 and progressively decreased toward prewithdrawal levels over about 1 week. Data from the remaining three subjects provided no evidence of withdrawal. In the second phase of the study, the generality of the withdrawal effect was examined by repeatedly substituting placebo for 100 mg/day of caffeine for 1-day periods separated by an average of 9 days. Despite differences within and across subjects with respect to the presence, nature and magnitude of symptoms, each of the seven subjects demonstrated a statistically significant withdrawal effect. Although the phenomenon of caffeine withdrawal has been described previously, the present report documents that the incidence of caffeine withdrawal is higher (100% of subjects), the daily dose level at which withdrawal occurs is lower (roughly equivalent to the amount of caffeine in a single cup of strong brewed coffee or 3 cans of caffeinated soft drink) and the range of symptoms experienced is broader (including headache, fatigue and other dysphoric mood changes, muscle pain/stiffness, flu-like feelings, nausea/vomiting and craving for caffeine) than heretofore recognized.

  2. Regulation of cerebrospinal fluid production by caffeine consumption

    Directory of Open Access Journals (Sweden)

    Yoon Sik

    2009-09-01

    Full Text Available Abstract Background Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date. Results In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF. In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats. Conclusion The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.

  3. Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT).

    Science.gov (United States)

    Rudolph, E; Färbinger, A; König, J

    2012-01-01

    The caffeine content of 124 products, including coffee, coffee-based beverages, energy drinks, tea, colas, yoghurt and chocolate, were determined using RP-HPLC with UV detection after solid-phase extraction. Highest concentrations of caffeine were found for coffee prepared from pads (755 mg l⁻¹) and regular filtered coffee (659 mg l⁻¹). The total caffeine content of coffee and chocolate-based beverages was between 15 mg l⁻¹ in chocolate milk and 448 mg l⁻¹ in canned ice coffee. For energy drinks the caffeine content varied in a range from 266 to 340 mg l⁻¹. Caffeine concentrations in tea and ice teas were between 13 and 183 mg l⁻¹. Coffee-flavoured yoghurts ranged from 33 to 48 mg kg⁻¹. The caffeine concentration in chocolate and chocolate bars was between 17 mg kg⁻¹ in whole milk chocolate and 551 mg kg⁻¹ in a chocolate with coffee filling. A caffeine assessment tool was developed and validated by a 3-day dietary record (r²= 0.817, p < 0.01) using these analytical data and caffeine saliva concentrations (r²= 0.427, p < 0.01).

  4. Caffeine and sports performance.

    Science.gov (United States)

    Burke, Louise M

    2008-12-01

    Athletes are among the groups of people who are interested in the effects of caffeine on endurance and exercise capacity. Although many studies have investigated the effect of caffeine ingestion on exercise, not all are suited to draw conclusions regarding caffeine and sports performance. Characteristics of studies that can better explore the issues of athletes include the use of well-trained subjects, conditions that reflect actual practices in sport, and exercise protocols that simulate real-life events. There is a scarcity of field-based studies and investigations involving elite performers. Researchers are encouraged to use statistical analyses that consider the magnitude of changes, and to establish whether these are meaningful to the outcome of sport. The available literature that follows such guidelines suggests that performance benefits can be seen with moderate amounts (~3 mg.kg-1 body mass) of caffeine. Furthermore, these benefits are likely to occur across a range of sports, including endurance events, stop-and-go events (e.g., team and racquet sports), and sports involving sustained high-intensity activity lasting from 1-60 min (e.g., swimming, rowing, and middle and distance running races). The direct effects on single events involving strength and power, such as lifts, throws, and sprints, are unclear. Further studies are needed to better elucidate the range of protocols (timing and amount of doses) that produce benefits and the range of sports to which these may apply. Individual responses, the politics of sport, and the effects of caffeine on other goals, such as sleep, hydration, and refuelling, also need to be considered.

  5. Inhibitory effects of caffeine on hippocampal neurogenesis and function.

    Science.gov (United States)

    Han, Myoung-Eun; Park, Kyu-Hyun; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Kim, Hak-Jin; Oh, Sae-Ock

    2007-05-18

    Caffeine is one of the most extensively consumed psychostimulants in the world. However, compared to short-term effects of caffeine, the long-term effects of caffeine consumption on learning and memory are poorly characterized. The present study found that long-term consumption of low dose caffeine (0.3 g/L) slowed hippocampus-dependent learning and impaired long-term memory. Caffeine consumption for 4 weeks also significantly reduced hippocampal neurogenesis compared to controls. From these results, we concluded that long-term consumption of caffeine could inhibit hippocampus-dependent learning and memory partially through inhibition of hippocampal neurogenesis.

  6. Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life.

    Science.gov (United States)

    Ardais, Ana Paula; Rocha, Andréia S; Borges, Maurício Felisberto; Fioreze, Gabriela T; Sallaberry, Cássia; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Cunha, Rodrigo A; Porciúncula, Lisiane de Oliveira

    2016-04-15

    Caffeine is the psychostimulant most consumed worldwide. In moderate doses, it affords a beneficial effect in adults and upon aging, but has a deleterious effect during brain development. We now tested if caffeine consumption by rats (0.1, 0.3, 1.0 g/L in the drinking water, only during active cycle and weekdays) during adulthood could revert the potentially negative effects of caffeine during early life. Thus, we compared caffeine intake starting 15 days before mating and lasting either up to weaning (development) or up to adulthood, on behavior and synaptic proteins in male and female rats. Recognition memory was impaired only in female rats receiving caffeine (0.3 and 1.0 g/L) during development, coincident with increased proBDNF and unchanged BDNF levels in the hippocampus. Caffeine in both treatment regimens caused hyperlocomotion only in male rats, whereas anxiety-related behavior was attenuated in both sexes by caffeine (1.0 g/L) throughout life. Both caffeine treatment regimens decreased GFAP (as an astrocyte marker) and SNAP-25 (as a nerve terminals marker) in the hippocampus from male rats. TrkB receptor was decreased in the hippocampus from both sexes and treatment regimens. These findings revealed that caffeine intake during a specific time window of brain development promotes sex-dependent behavioral outcomes related to modification in BDNF signaling. Furthermore, caffeine throughout life can overcome the deleterious effects of caffeine on recognition memory during brain development in female rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Caffeine, Diabetes, Cognition, and Dementia

    NARCIS (Netherlands)

    Biessels, Geert Jan

    2010-01-01

    People with diabetes mellitus are at increased risk of cognitive dysfunction. This review explores the relation between caffeine intake, diabetes, cognition and dementia, focusing on type 2 diabetes (T2DM). Epidemiological studies on caffeine/coffee intake and T2DM risk are reviewed. Next, the

  8. Effects of Smoking Cues on Caffeine Urges in Heavy Smokers and Caffeine Consumers with and without Schizophrenia

    OpenAIRE

    Adolfo, Amy B.; AhnAllen, Christopher G.; Tidey, Jennifer W.

    2008-01-01

    Cigarette smoking and caffeine use are established and problematic drug-use behaviors in people with schizophrenia. Associative links between drugs of abuse may occur but the relationship between caffeine use and cigarette smoking has received little attention in schizophrenia. In this cross-cue reactivity laboratory study, we examined the effects of neutral and smoking cues on craving for caffeinated beverages in participants with schizophrenia or schizoaffective disorder (SS; n = 15) and no...

  9. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  10. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  11. Exercise and sport performance with low doses of caffeine.

    Science.gov (United States)

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

  12. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    Full Text Available Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD simulations were performed on six inhibitors, chrysin (M01, fisetin (M03, galangin (M04, genistein (M05, quercetin (M06 and kaempferol (M07, complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15. The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.

  13. Caffeine intake by patients with autosomal dominant polycystic kidney disease

    International Nuclear Information System (INIS)

    Vendramini, L.C.; Nishiura, J.L.; Baxmann, A.C.; Heilberg, I.P.

    2012-01-01

    Because caffeine may induce cyst and kidney enlargement in autosomal dominant polycystic kidney disease (ADPKD), we evaluated caffeine intake and renal volume using renal ultrasound in ADPKD patients. Caffeine intake was estimated by the average of 24-h dietary recalls obtained on 3 nonconsecutive days in 102 ADPKD patients (68 females, 34 males; 39 ± 12 years) and compared to that of 102 healthy volunteers (74 females, 28 males; 38 ± 14 years). The awareness of the need for caffeine restriction was assessed. Clinical and laboratory data were obtained from the medical records of the patients. Mean caffeine intake was significantly lower in ADPKD patients versus controls (86 vs 134 mg/day), and 63% of the ADPKD patients had been previously aware of caffeine restriction. Caffeine intake did not correlate with renal volume in ADPKD patients. There were no significant differences between the renal volumes of patients in the highest and lowest tertiles of caffeine consumption. Finally, age-adjusted multiple linear regression revealed that renal volume was associated with hypertension, chronic kidney disease stage 3 and the time since diagnosis, but not with caffeine intake. The present small cross-sectional study indicated a low level of caffeine consumption by ADPKD patients when compared to healthy volunteers, which was most likely due to prior awareness of the need for caffeine restriction. Within the range of caffeine intake observed by ADPKD patients in this study (0-471 mg/day), the renal volume was not directly associated with caffeine intake

  14. Caffeine intake by patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini, L.C.; Nishiura, J.L.; Baxmann, A.C.; Heilberg, I.P. [Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2012-07-20

    Because caffeine may induce cyst and kidney enlargement in autosomal dominant polycystic kidney disease (ADPKD), we evaluated caffeine intake and renal volume using renal ultrasound in ADPKD patients. Caffeine intake was estimated by the average of 24-h dietary recalls obtained on 3 nonconsecutive days in 102 ADPKD patients (68 females, 34 males; 39 ± 12 years) and compared to that of 102 healthy volunteers (74 females, 28 males; 38 ± 14 years). The awareness of the need for caffeine restriction was assessed. Clinical and laboratory data were obtained from the medical records of the patients. Mean caffeine intake was significantly lower in ADPKD patients versus controls (86 vs 134 mg/day), and 63% of the ADPKD patients had been previously aware of caffeine restriction. Caffeine intake did not correlate with renal volume in ADPKD patients. There were no significant differences between the renal volumes of patients in the highest and lowest tertiles of caffeine consumption. Finally, age-adjusted multiple linear regression revealed that renal volume was associated with hypertension, chronic kidney disease stage 3 and the time since diagnosis, but not with caffeine intake. The present small cross-sectional study indicated a low level of caffeine consumption by ADPKD patients when compared to healthy volunteers, which was most likely due to prior awareness of the need for caffeine restriction. Within the range of caffeine intake observed by ADPKD patients in this study (0-471 mg/day), the renal volume was not directly associated with caffeine intake.

  15. [birthweight And Caffeine Consumption].

    OpenAIRE

    Bicalho, Gladys Gripp; Barros Filho, Antônio de Azevedo

    2015-01-01

    To assess the association between maternal caffeine consumption during pregnancy and low birth weight, prematurity and intrauterine growth retardation. A case-control was carried out and 354 newborns of single labor with birthweight 3,000 g (controls) were analyzed. Caffeine consumption was calculated based on daily consumption of coffee, soft drinks and tea. Results were adjusted using multiple logistic regression for the following confounders: mother's age, schooling, income, marital status...

  16. D-ribose--an additive with caffeine.

    Science.gov (United States)

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  17. Caffeine effects on resting-state arousal.

    Science.gov (United States)

    Barry, Robert J; Rushby, Jacqueline A; Wallace, Mark J; Clarke, Adam R; Johnstone, Stuart J; Zlojutro, Ilinka

    2005-11-01

    This study examined the use of caffeine to manipulate arousal level without the confounds associated with task-related activation. From previous work in our laboratory, an increase in skin conductance level (SCL) and EEG alpha frequency, together with a global decrease in alpha power, were used as markers of arousal increase, and we sought to identify these effects with caffeine ingestion. We examined the effect of a single oral dose of caffeine (250 mg) in a randomised double-blind placebo-controlled repeated-measures cross-over study. Eighteen healthy university students (mean age 21 years; 13/18 females) participated in two sessions 1 week apart. EEG and autonomic data (SCL, heart rate, systolic and diastolic blood pressure, and respiration rate) from a 2 min eyes-closed epoch, commencing approximately 30 min after ingestion of caffeine or placebo, were examined. Caffeine was associated with increased SCL, a global reduction in EEG power in the alpha band, and a global increase in alpha frequency. There were no cardiovascular effects. The positive results are consistent with recent electrodermal and EEG studies of arousal and suggest that caffeine may be utilised as a task-free means of manipulating arousal in future investigations. Further work is necessary to clarify the absence of cardiovascular effects, and to integrate those data with emerging conceptualisations of arousal and activation. The present data support the use of caffeine as a simple tool to explore the role of arousal in both normal and atypical functioning, and this may be useful in determining the validity and importance of supposed hyper- or hypo-arousal in such syndromes as attention-deficit/hyperactivity disorder (AD/HD).

  18. Administration of Caffeine in Alternate Forms

    OpenAIRE

    Wickham, Kate A.; Spriet, Lawrence L.

    2018-01-01

    There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be importa...

  19. Selective induction of cyclin B protein abrogates the G2 delay after irradiation

    International Nuclear Information System (INIS)

    Kao, G.; Muschel, R.J.; Maity, A.; Kunig, A.; McKenna, W.G.

    1996-01-01

    Purpose/Objective: Irradiation of tumor cells commonly results in G2 delay, which has been postulated to allow DNA repair and cell survival. The G2 delay after irradiation is also often marked in some cell lines by delayed expression of cyclin B protein, suggesting a role for cyclin B regulation. Investigations of these hypotheses however has been hampered by the inability to selectively perturb the G2 delay in a physiologic manner. Materials and Methods: We have devised a system, with which we are able to selectively induce cyclin B protein expression in vivo at specific points in the cell cycle, by transfecting Hela cells with an expression vector under control of a dexamethasone-inducible promoter. Experiments were subsequently performed by synchronizing, releasing, irradiating, inducing, and harvesting these cells through the cell cycle. Results: Irradiation with 5 Gy led to a pronounced G2 delay, reflected by markedly slowed progression into mitosis, concomitant with reduced expression of cyclin B protein. Induction of cyclin B after radiation in these cells abrogated the G2 delay by approximately doubling the rate at which the cells re-enter mitosis. Treatment of irradiated untransfected control cells with dexamethasone, in which cyclin B is not induced, led to minimal changes. Studies of effects of cyclin B induction on cyclin B localization (using immunofluorescence), cdc2 phosphorylation and activation will also be presented. Conclusion: This system should allow further investigations into fundamental mechanisms of cell cycle regulation after irradiation and DNA damage. This also provides direct evidence for the first time that cyclin B protein regulation may play a role in the G2 delay following irradiation in Hela cells, perhaps complementing phosphorylation events

  20. Fewer but heavier caffeine consumers in schizophrenia: a case-control study.

    Science.gov (United States)

    Gurpegui, Manuel; Aguilar, M Carmen; Martínez-Ortega, José M; Jurado, Dolores; Diaz, Francisco J; Quintana, Hernando M; de Leon, Jose

    2006-09-01

    According to the literature, there is an association between schizophrenia and caffeine consumption, but it is not clear whether schizophrenia is associated with either higher prevalence of daily caffeine intake or the amount consumed. In this study we compared our previously published schizophrenia patients (n=250) with a control sample (n=290) after controlling for demographic variables and tobacco and alcohol consumption. Current caffeine intake was less frequent in schizophrenia patients (59%, 147/250) than in controls (70%, 204/290). In the multivariate analyses, caffeine intake was less frequent at an older age and in schizophrenia patients, and more frequent in smokers and alcohol users. Among caffeine consumers, heavy caffeine intake (> or =200 mg/day) was significantly associated with schizophrenia (64%, 94/147 in schizophrenia versus 36%, 73/204 in controls), as well as older age and smoking. Daily amount of caffeine intake and smoked cigarettes correlated significantly in the schizophrenia group but not in the control group; the correlation of caffeine intake with nicotine dependence was low and non-significant in both groups. The association between current smoking and heavy caffeine intake may be partly explained by a pharmacokinetic effect: tobacco smoke compounds induce caffeine metabolism by the cytochrome P450 1A2. Although schizophrenia by itself may be associated with heavy caffeine intake in caffeine users, part of this association was explained by the association between schizophrenia and smoking. The relationship between caffeine and alcohol intake appeared to be more complex; alcohol and caffeine use were significantly associated, but within caffeine users alcohol was associated with less frequent heavy caffeine consumption among smokers. In future studies, the measurement of plasma caffeine levels will help both to better define heavy caffeine intake and to control for smoking pharmacokinetic effects.

  1. Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Gardony, Aaron L; Taylor, Holly A; Kanarek, Robin B

    2012-10-01

    Energy drinks containing caffeine, taurine, and glucose may improve mood and cognitive performance. However, there are no studies assessing the individual and interactive effects of these ingredients. We evaluated the effects of caffeine, taurine, and glucose alone and in combination on cognitive performance and mood in 24-hour caffeine-abstained habitual caffeine consumers. Using a randomized, double-blind, mixed design, 48 habitual caffeine consumers (18 male, 30 female) who were 24-hour caffeine deprived received one of four treatments (200 mg caffeine/0 mg taurine, 0 mg caffeine/2000 mg taurine, 200 mg caffeine/2000 mg taurine, 0 mg caffeine/0 mg taurine), on each of four separate days, separated by a 3-day wash-out period. Between-participants treatment was a glucose drink (50 g glucose, placebo). Salivary cortisol, mood and heart rate were measured. An attention task was administered 30-minutes post-treatment, followed by a working memory and reaction time task 60-minutes post-treatment. Caffeine enhanced executive control and working memory, and reduced simple and choice reaction time. Taurine increased choice reaction time but reduced reaction time in the working memory tasks. Glucose alone slowed choice reaction time. Glucose in combination with caffeine, enhanced object working memory and in combination with taurine, enhanced orienting attention. Limited glucose effects may reflect low task difficulty relative to subjects' cognitive ability. Caffeine reduced feelings of fatigue and increased tension and vigor. Taurine reversed the effects of caffeine on vigor and caffeine-withdrawal symptoms. No effects were found for salivary cortisol or heart rate. Caffeine, not taurine or glucose, is likely responsible for reported changes in cognitive performance following consumption of energy drinks, especially in caffeine-withdrawn habitual caffeine consumers. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Reinforcing effects of caffeine in coffee and capsules.

    OpenAIRE

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-01-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference ...

  3. Caffeine Withdrawal and Dependence: A Convenience Survey Among Addiction Professionals.

    Science.gov (United States)

    Budney, Alan J; Brown, Pamela C; Griffiths, Roland R; Hughes, John R; Juliano, Laura M

    2013-06-01

    Caffeine withdrawal was included in the research appendix of the DSM-IV to encourage additional research to assist with determining its status for the next version of the manual. Caffeine dependence was not included because of a lack of empirical research at the time of publication. This study assessed the beliefs of addiction professionals about the clinical importance of caffeine withdrawal and dependence. A 6-item survey was developed and delivered electronically to the members of six professional organizations that focus on addiction. Open-ended comments were also solicited. Five hundred members responded. The majority (95%) thought that cessation of caffeine could produce a withdrawal syndrome, and that caffeine withdrawal can have clinical importance (73%); however, only half (48%) thought that caffeine withdrawal should be included in the Diagnostic and Statistical Manual of Mental Disorders (DSM). A majority (58%) believed that some people develop caffeine dependence; however, only 44% indicated that it should be in the DSM. Comments suggested that trepidation about inclusion of caffeine diagnoses was due to the concerns about the field of psychiatry being criticized for including common disorders with a relatively low clinical severity. Others, however, expressed an urgent need to take caffeine-related problems more seriously. The majority of addiction professionals believe that caffeine withdrawal and dependence disorders exist and are clinically important; however, these professionals are divided in whether caffeine withdrawal and dependence should be included in DSM. Wider dissemination of the extant literature on caffeine withdrawal and additional research on caffeine dependence will be needed to provide additional guidance to policymakers and healthcare workers.

  4. Caffeine antagonism of alcohol-induced driving impairment.

    Science.gov (United States)

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  5. Caffeine Content in Popular Energy Drinks and Energy Shots.

    Science.gov (United States)

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  6. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  7. The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level.

    Science.gov (United States)

    Soares, Rogerio Nogueira; Schneider, Augusto; Valle, Sandra Costa; Schenkel, Paulo Cavalheiro

    2018-03-06

    This study aimed to investigate whether the influence of CYP1A2 genotype in the blood pressure (BP) response to caffeine ingestion was affected by physical activity status and habitual caffeine consumption. Thirty-seven participants (19-50 years old) took place in the study and were categorized according to i) genotype: CYP1A2 (AA) "fast metabolizer", and CYP1A2 (AC) "slow metabolizer"; ii) physical activity level: sedentary (S) and physically active (A); and iii) caffeine consumption level: non-habitual caffeine consumer (NC) and habitual heavy caffeine consumer (C). All groups had BP assessed before (basal) and 1 hourh after (post) caffeine ingestion (6 mg·kg -1 ). It was observed that AC genotype individuals had increased basal-DBP and post-caffeine SBP when compared to AA individuals. Additionally, acute caffeine ingestion increased SBP only in the AC group. It was also found that physical activity only modulated the BP responses to acute caffeine ingestion in AC individuals. Furthermore, the results indicated that the habitual heavy caffeine consumers AC individuals had increased basal-DBP when compared to the AA ones. Our results suggest that the influence of CYP1A2 genotype in the basal and post-caffeine BP response to caffeine ingestion is modified by physical activity status and caffeine consumption level. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Teratogenic effects of caffeine and clomipramine on rat fetus

    Directory of Open Access Journals (Sweden)

    Takzare N

    2012-09-01

    Full Text Available Background: Obsessive-compulsive disorders and depression have a high prevalence during pregnancy therefore, pregnant women may take clomipramine and also take other drugs or consume foods that contain caffeine. As investigations about the teratogenic effects of clomipramine and its concurrent administration with caffeine during organogenesis period are scarce, we aimed to study the teratogenicity of simultaneous administration of clomipramine and caffeine in rat fetus.Methods: After dividing 42 pregnant rats to several case and control groups, we injected different doses of caffeine and clomipramine to the animals. All the injections were performed on the eighth until the 15th day of pregnancy. We removed the fetuses on the 17th day of pregnancy and studied the morphological features and apparent anomalies of the fetuses macroscopically. Results: We found a significant rate of mortality, apparent anomalies, abnormal torsion, shrinkage of skin and subcutaneous bleeding in fetuses of rats receiving high doses of caffeine or a combination of caffeine and clomipramine. Statistical analysis of the data revealed a significant increase (P?0.001 in teratogenicity of high doses of caffeine and its combination with clomipramine. Conclusion: This study implies simultaneous intake of high amounts of caffeine and clomipramine lead to teratogenicity. We recommend pregnant women to avoid uncontrolled consumption of foods that contain caffeine or drugs that contain high amounts of this substance. They should not also take clomipramine with caffeine in the first trimester of pregnancy.

  9. Control of cyclin C levels during development of Dictyostelium.

    Directory of Open Access Journals (Sweden)

    David M Greene

    2010-05-01

    Full Text Available Cdk8 and its partner cyclin C form part of the mediator complex which links the basal transcription machinery to regulatory proteins. The pair are required for correct regulation of a subset of genes and have been implicated in control of development in a number of organisms including the social amoeba Dictyostelium discoideum. When feeding, Dictyostelium amoebae are unicellular but upon starvation they aggregate to form a multicellular structure which develops into a fruiting body containing spores. Cells in which the gene encoding Cdk8 has been deleted fail to enter aggregates due to a failure of early gene expression.We have monitored the expression levels of cyclin C protein during development and find levels decrease after the multicellular mound is formed. This decrease is triggered by extracellular cAMP that, in turn, is working in part through an increase in intracellular cAMP. The loss of cyclin C is coincident with a reduction in the association of Cdk8 with a high molecular weight complex in the nucleus. Overexpression of cyclin C and Cdk8 lead to an increased rate of early development, consistent with the levels being rate limiting.Overall these results show that both cyclin C and Cdk8 are regulated during development in response to extracellular signals and the levels of these proteins are important in controlling the timing of developmental processes. These findings have important implications for the role of these proteins in controlling development, suggesting that they are targets for developmental signals to regulate gene expression.

  10. Rational design of a cyclin A fluorescent peptide sensor.

    Science.gov (United States)

    Pazos, Elena; Pérez, Miguel; Gutiérrez-de-Terán, Hugo; Orzáez, Mar; Guevara, Tatiana; Mascareñas, José L; Vázquez, M Eugenio

    2011-10-26

    We report the design and development of a fluorescent sensor specifically designed to target cyclin A, a protein that plays a key role in the regulation of the cell cycle. Computational studies provide a molecular picture that explains the observed emission increase, suggesting that the 4-DMAP fluorophore in the peptide is protected from the bulk solvent when inserted into the hydrophobic binding groove of cyclin A.

  11. Effect of Carbohydrate, Caffeine, and Carbohydrate + Caffeine Mouth Rinsing on Intermittent Running Performance in Collegiate Male Lacrosse Athletes.

    Science.gov (United States)

    Dolan, Patrick; Witherbee, Kyle E; Peterson, Kimi M; Kerksick, Chad M

    2017-09-01

    Dolan, P, Witherbee, KE, Peterson, KM, and Kerksick, CM. Effect of carbohydrate, caffeine, and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res 31(9): 2473-2479, 2017-Recently, an interest has developed in the potential to rinse the oral cavity with key nutrients to impact various types of exercise and presumably sporting performance. Although multiple studies examining carbohydrate mouth rinsing have been completed, conflicting evidence surrounding caffeine mouth rinsing persists, and no research has explored its ability to impact high-intensity, intermittent running performance. This study investigated the independent and synergistic ability of carbohydrate and caffeine mouth rinsing to improve intermittent running performance. The Yo-Yo Intermittent Recovery Test-Level 1 (Yo-Yo Level 1) was completed in 10 collegiate (National Collegiate Athletic Association [NCAA] Division II) male lacrosse players after a 10-second mouth rinse with a solution of either carbohydrate (CHO), caffeine (CAF), carbohydrate + caffeine (CHO + CAF), placebo (H2O), or a no rinse control (CON). No significant improvements in Yo-Yo IRT-1 performance were found (p > 0.05). Perceptual indications of effort (i.e., rating of their perceived exertion [RPE]) were significantly lower (p ≤ 0.05) in CHO and CHO + CAF when compared with CON after speed level 11. Interestingly, RPE levels were nonsignificantly lower in all but one level of the Yo-Yo Level 1 for CHO in comparison with other groups. Carbohydrate and caffeine mouth rinsing seems to exert no impact on running performance before maximal intermittent running in a group of male collegiate lacrosse players.

  12. Interaction of caffeine with the SOS response pathway in Escherichia coli.

    Science.gov (United States)

    Whitney, Alyssa K; Weir, Tiffany L

    2015-01-01

    Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

  13. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  14. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  15. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xun Guo

    2015-03-01

    Full Text Available RNA binding protein (RBPs and microRNAs (miRNAs or miRs are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC. Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.

  16. Caffeine delays autonomic recovery following acute exercise.

    Science.gov (United States)

    Bunsawat, Kanokwan; White, Daniel W; Kappus, Rebecca M; Baynard, Tracy

    2015-11-01

    Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults. © The European Society of Cardiology 2014.

  17. The Interaction of Sorbitol with Caffeine in Aqueous Solution.

    Science.gov (United States)

    Tavagnacco, Letizia; Brady, John W; Cesàro, Attilio

    2013-09-01

    Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity.

  18. Endorsement of DSM-IV dependence criteria among caffeine users.

    Science.gov (United States)

    Hughes, J R; Oliveto, A H; Liguori, A; Carpenter, J; Howard, T

    1998-10-01

    The purpose of this article is to determine whether some caffeine users endorse clinical indicators of dependence and abuse. We asked 162 randomly-selected caffeine users generic DSM-IV criteria for dependence, abuse, intoxication and withdrawal pertaining to their caffeine use in the last year via a structured telephone interview. The prevalence of endorsement of dependence items was 56% for strong desire or unsuccessful attempt to stop use, 50% for spending a great deal of time with the drug, 28% for using more than intended, 18% for withdrawal, 14% for using despite knowledge of harm, 8% for tolerance and 1% for foregoing activities to use. Seven percent of users met DSM-IV criteria for caffeine intoxication and, among those who had tried to stop caffeine permanently, 24% met DSM-IV research criteria for caffeine withdrawal. Test-retest interviews for dependency agreed in 29/30 cases (97%). Eight expert substance abuse clinicians agreed with self-endorsed caffeine dependence 91% of the time. Our results replicate earlier work and suggest that a substantial proportion of caffeine users exhibit dependence-like behaviors. Further studies are needed to determine whether such users exhibit a clinically significant syndrome of drug dependence.

  19. MeCP2 Expression and Promoter Methylation of Cyclin D1 Gene Are Associated with Cyclin D1 Expression in Developing Rat Epididymal Duct

    International Nuclear Information System (INIS)

    Darwanto, Agus; Kitazawa, Riko; Mori, Kiyoshi; Kondo, Takeshi; Kitazawa, Sohei

    2008-01-01

    Hypermethylation-dependent silencing of the gene is achieved by recruiting methyl-CpG binding proteins (MeCPs). Among the MeCPs, MeCP2 is the most abundantly and ubiquitously expressed in various types of cells. We first screened the distribution and expression pattern of MeCP2 in adult and developing rat tissues and found strong MeCP2 expression, albeit rather ubiquitously among normal tissues, in ganglion cells and intestinal epithelium in the small intestine, in Purkinje cells and neurons in the brain, in spermatogonia and in epithelial cells in the epididymal duct of the testis. We then assessed the expression and the methylation pattern of the promoter region of cyclin D1 by immunohistochemistry and sodium bisulfite mapping, and found that cyclin D1 expression in the epididymal duct decreased rapidly during rat development: strong in newborn rats and very weak or almost negative in 7-day-old rats. Mirroring the decrease of cyclin D1 expression, methylated cytosine at both CpG and non-CpG loci in the cyclin D1 promoter was frequently observed in the epididymal duct of 7-day-old rats but not in that of newborn rats. Interestingly, MeCP2 expression also increased concomitant with the increase of methylation. Cyclin D1 expression in the epididymal duct may be efficiently regulated by the epigenetic mechanism of the cooperative increase of MeCP2 expression and promoter methylation

  20. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  1. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements.

    Science.gov (United States)

    Liu, Shu; Bolger, Joshua K; Kirkland, Lindsay O; Premnath, Padmavathy N; McInnes, Campbell

    2010-12-17

    An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been

  2. Excess caffeine exposure impairs eye development during chick embryogenesis

    Science.gov (United States)

    Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong

    2014-01-01

    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305

  3. Caffeine Use Disorder: A Review of the Evidence and Future Implications.

    Science.gov (United States)

    Addicott, Merideth A

    2014-09-01

    The latest edition of the Diagnostic and Statistical Manual (DSM-5) has introduced new provisions for caffeine-related disorders. Caffeine Withdrawal is now an officially recognized diagnosis, and criteria for caffeine use disorder have been proposed for additional study. caffeine use disorder is intended to be characterized by cognitive, behavioral, and physiological symptoms indicative of caffeine use despite significant caffeine-related problems, similar to other Substance Use Disorders. However, since nonproblematic caffeine use is so common and widespread, it may be difficult for some health professionals to accept that caffeine use can result in the same types of pathological behaviors caused by alcohol, cocaine, opiates, or other drugs of abuse. Yet there is evidence that some individuals are psychologically and physiologically dependent on caffeine, although the prevalence and severity of these problems is unknown. This article reviews the recent changes to the DSM, the concerns regarding these changes, and some potential impacts these changes could have on caffeine consumers.

  4. Caffeine Consumption Patterns and Beliefs of College Freshmen

    Science.gov (United States)

    McIlvain, Gary E.; Noland, Melody P.; Bickel, Robert

    2011-01-01

    Background: Caffeine consumption by young people has increased dramatically over the last decade through increased coffee consumption and "energy drinks." In higher amounts, caffeine causes many adverse effects that are cause for concern. Purpose: Purposes of this study were to determine: (1) the amount of caffeine consumed by a sample…

  5. Caffeine in the management of patients with headache.

    Science.gov (United States)

    Lipton, Richard B; Diener, Hans-Christoph; Robbins, Matthew S; Garas, Sandy Yacoub; Patel, Ketu

    2017-10-24

    Caffeinated headache medications, either alone or in combination with other treatments, are widely used by patients with headache. Clinicians should be familiar with their use as well as the chemistry, pharmacology, dietary and medical sources, clinical benefits, and potential safety issues of caffeine. In this review, we consider the role of caffeine in the over-the-counter treatment of headache. The MEDLINE and Cochrane databases were searched by combining "caffeine" with the terms "headache," "migraine," and "tension-type." Studies that were not placebo-controlled or that involved medications available only with a prescription, as well as those not assessing patients with migraine and/or tension-type headache (TTH), were excluded. Compared with analgesic medication alone, combinations of caffeine with analgesic medications, including acetaminophen, acetylsalicylic acid, and ibuprofen, showed significantly improved efficacy in the treatment of patients with TTH or migraine, with favorable tolerability in the vast majority of patients. The most common adverse events were nervousness (6.5%), nausea (4.3%), abdominal pain/discomfort (4.1%), and dizziness (3.2%). This review provides evidence for the role of caffeine as an analgesic adjuvant in the acute treatment of primary headache with over-the-counter drugs, caffeine doses of 130 mg enhance the efficacy of analgesics in TTH and doses of ≥100 mg enhance benefits in migraine. Additional studies are needed to assess the relationship between caffeine dosing and clinical benefits in patients with TTH and migraine.

  6. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.

    Science.gov (United States)

    Ardais, A P; Borges, M F; Rocha, A S; Sallaberry, C; Cunha, R A; Porciúncula, L O

    2014-06-13

    Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    International Nuclear Information System (INIS)

    Li, Hua; Lee, Hwa Jin; Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young; Ryu, Jae-Ha

    2014-01-01

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer

  8. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  9. Electrophysiological studies in healthy subjects involving caffeine.

    Science.gov (United States)

    de Carvalho, Mamede; Marcelino, Erica; de Mendonça, Alexandre

    2010-01-01

    We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arousal is supported by a number of electrophysiological studies. The evidence in favor of an increased muscle fiber resistance is not definitive, but higher or lower motor neuron excitability can occur as a consequence of a greater excitation of the descending input from the brainstem and upper motor neurons. TMS can address the influence of caffeine on the upper motor neuron. Previous studies showed that cortico-motor threshold and intracortical excitatory and inhibitory pathways are not influenced by caffeine. Nonetheless, our results indicate that cortical silent period (CSP) is reduced in resting muscles after caffeine consumption, when stimulating the motor cortex with intensities slightly above threshold. We present new data demonstrating that this effect is also observed in fatigued muscle. We conclude that CSP can be considered a surrogate marker of the effect of caffeine in the brain, in particular of its central ergogenic effect.

  10. Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine.

    Science.gov (United States)

    Suzuki, T; Takahashi, E

    1975-01-01

    1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants. PMID:238504

  11. Withdrawal syndrome after the double-blind cessation of caffeine consumption.

    Science.gov (United States)

    Silverman, K; Evans, S M; Strain, E C; Griffiths, R R

    1992-10-15

    People who stop consuming caffeine may have symptoms, but the incidence and severity of caffeine withdrawal are not known. This study was performed to determine the effects in the general population of ending one's dietary intake of caffeine. We studied 62 normal adults whose intake of caffeine was low to moderate (mean amount, 235 mg--the equivalent of 2.5 cups of coffee--per day). They completed questionnaires about symptoms and tests of their mood and performance when consuming their normal diets (base-line period) and at the end of each of two two-day periods during which they consumed caffeine-free diets and under double-blind conditions received capsules containing placebo (placebo period) or caffeine (caffeine period) in amounts equal to their daily caffeine consumption. More subjects had abnormally high Beck Depression Inventory scores (11 percent), high scores on the trait scale of the State-Trait Anxiety Inventory (8 percent), low vigor scores (11 percent) and high fatigue scores (8 percent) on the Profile of Mood States, and moderate or severe headache (52 percent) during the placebo period than during either the base-line period (2, 0, 0, 0, and 2 percent, respectively; P less than 0.05) or the caffeine period (3, 2, 2, 0, and 6 percent; P less than 0.05). More subjects reported unauthorized use of medications during the placebo period (13 percent) than during the caffeine period (2 percent, P = 0.017). Performance of a tapping task was slower during the placebo period than during the base-line and caffeine periods (P less than 0.01). Persons who consume low or moderate amounts of caffeine may have a withdrawal syndrome after their daily consumption of caffeine ceases.

  12. Effect of breastfeeding piperine on the learning of offspring mice: interaction with caffeine and diazepam.

    Science.gov (United States)

    Moghadamnia, Ali Akbar; Zangoori, Vahid; Zargar-Nattaj, Seyed Sadegh; Tayebi, Pooya; Moghadamnia, Yasaman; Jorsaraei, Seyed Gholam Ali

    2010-01-01

    Piperine, the main alkaloid of black pepper (Piper nigrum), has been suggested to display several pharmacological properties, including pain relief, anticonvulsant, antidepressant-like, antianxiety, sedative, and anti-inflammatory effects. This study was designed to investigate the effect of piperine on learning in mice and the interaction of the effect with caffeine and diazepam. Piperine (100 mg/kg intraperitoneally) was injected into the mouse mothers or nursing dams during breastfeeding for 25 days at five-day intervals. After feeding the newborn mice, their learning was evaluated using a step-through passive avoidance task. Mouse learning was assessed 1 hr and 24 hr and 1 week after a training session. Piperine increased learning in the first (1 hr: 243.33 s vs 55.17 s, P = 0.002) and third assessments (1 week: 226 s vs 97 s, P effect of a low dose of caffeine (25 mg/kg intraperitoneally after a shock of 2 s duration) in a first assessment (295.17 s vs 149.17 s, P = 0.026) compared to a higher dose of caffeine. Piperine reversed diazepam (1 mg/kg intraperitoneally) suppression of learning 24 hours after training by a 4 s shock (298 s vs 135.67 s, P = 0.03). According to the results, piperine alone significantly increased learning 1 hour and 1 week after training assessments, and learning can be improved in the short term when followed by piperine administration. It was also shown that piperine can potentiate the effect of a low dose of caffeine and can reverse the effect of diazepam.

  13. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  14. Studies of action of heavy metals on caffeine degradation by ...

    African Journals Online (AJOL)

    Caffeine is an important naturally occurring compound that can be degraded by bacteria. Excessive caffeine consumption is known to have some adverse problems. Previously, Leifsonia sp. strain SIU capable of degrading caffeine was isolated from agricultural soil. The bacterium was tested for its ability to degrade caffeine ...

  15. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  16. Caffeine enhances working memory for extraverts.

    Science.gov (United States)

    Smillie, Luke D; Gökçen, Elif

    2010-12-01

    Using a randomized double-blind placebo-controlled design we examined the effects of caffeine on working memory (WM) as a function of extraverted personality. Participants (N=59) received 200mg of caffeine and placebo in counterbalanced-order over two sessions prior to completing a 'N-Back' WM paradigm. Findings revealed that caffeine administration relative to the placebo condition resulted in heightened WM performance, but only for extraverted participants. We suggest based on previous theory and research that dopamine function (DA) may be the most plausible mechanism underlying this finding. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  17. [Caffeine: a nutrient, a drug or a drug of abuse].

    Science.gov (United States)

    Pardo Lozano, Ricardo; Alvarez García, Yolanda; Barral Tafalla, Diego; Farré Albaladejo, Magí

    2007-01-01

    Coffee, tea, chocolate and caffeinated drinks are the main sources of caffeine, which is consumed in almost all ages and socioeconomic levels. Caffeine acts as a non-selective adenosine receptor antagonist in the central nervous system. Its main effects are as psychostimulant, acting in addition on the respiratory, muscular and cardiovascular systems. Basically, caffeine is metabolized by the hepatic cytochrome P-450 1A2 enzymes (CYP1A2). Several drugs can interact with its metabolism. The observed interindividual differences of its effects can be explained by variations in its metabolism. The main therapeutic use of caffeine is bronchodilator in respiratory diseases. Other possible uses are under investigation. Acute or chronic consumption of caffeine can induce several adverse effects, including intoxication that can be lethal. Finally, caffeine can be considered a drug of abuse. It has positive reinforcing actions, produces tolerance, and a withdrawal syndrome after stopping its consumption. Caffeine can cause different mental disorders such as dependence, which is not included in the DSM-IV-R, withdrawal syndrome and intoxication. Depending on its use, caffeine can be considered a nutrient, a drug or a drug of abuse.

  18. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    International Nuclear Information System (INIS)

    Kitkumthorn, Nakarin; Mutirangura, Apiwat; Yanatatsanajit, Pattamawadee; Kiatpongsan, Sorapop; Phokaew, Chureerat; Triratanachat, Surang; Trivijitsilp, Prasert; Termrungruanglert, Wichai; Tresukosol, Damrong; Niruthisard, Somchai

    2006-01-01

    The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer

  19. Caffeine, cognitive failures and health in a non-working community sample.

    Science.gov (United States)

    Smith, Andrew P

    2009-01-01

    Most studies of the effects of caffeine on performance have been conducted in the laboratory and further information is required on the real-life effects of caffeine consumption on cognition. In addition, possible effects of caffeine consumption on a range of health outcomes should also be assessed in these studies to enable cost-benefit analyses to be conducted. Secondary analyses of a large epidemiological database (N = 3223 non-working participants, 57% female, with a mean age of 49.6 years, range 17-92 years) were conducted to examine associations between caffeine consumption (mean caffeine consumption was 140 mg/day, range 0-1800 mg) and cognitive failures (errors of memory, attention and action) in a non-working sample. Associations between caffeine consumption and physical and mental health problems were also examined. The study involved secondary analyses of a database formed by combining the Bristol Stress and Health at Work and Cardiff Health and Safety at Work studies. Associations between caffeine consumption and frequency of cognitive failures and health outcomes were examined in a sample of non-workers. After controlling for possible confounding factors significant associations between caffeine consumption and fewer cognitive failures were observed. Initial analyses suggested that many health variables were associated with regular level of caffeine consumption. However, most of the significant effects of caffeine disappeared when demographic and lifestyle factors were controlled for. Consumption of caffeine was, however, associated with a reduced risk of depression. These effects were also observed in separate analyses examining the source of the caffeine (coffee and tea). Overall, the results show that caffeine consumption may benefit cognitive functioning in a non-working population. This confirms earlier findings from working samples. This beneficial effect of caffeine was not associated with negative health consequences. Indeed, consumption of

  20. Caffeine, creatine, GRIN2A and Parkinson's disease progression.

    Science.gov (United States)

    Simon, David K; Wu, Cai; Tilley, Barbara C; Lohmann, Katja; Klein, Christine; Payami, Haydeh; Wills, Anne-Marie; Aminoff, Michael J; Bainbridge, Jacquelyn; Dewey, Richard; Hauser, Robert A; Schaake, Susen; Schneider, Jay S; Sharma, Saloni; Singer, Carlos; Tanner, Caroline M; Truong, Daniel; Wei, Peng; Wong, Pei Shieen; Yang, Tianzhong

    2017-04-15

    Caffeine is neuroprotective in animal models of Parkinson's disease (PD) and caffeine intake is inversely associated with the risk of PD. This association may be influenced by the genotype of GRIN2A, which encodes an NMDA-glutamate-receptor subunit. In two placebo-controlled studies, we detected no association of caffeine intake with the rate of clinical progression of PD, except among subjects taking creatine, for whom higher caffeine intake was associated with more rapid progression. We now have analyzed data from 420 subjects for whom DNA samples and caffeine intake data were available from a placebo-controlled study of creatine in PD. The GRIN2A genotype was not associated with the rate of clinical progression of PD in the placebo group. However, there was a 4-way interaction between GRIN2A genotype, caffeine, creatine and the time since baseline. Among subjects in the creatine group with high levels of caffeine intake, but not among those with low caffeine intake, the GRIN2A T allele was associated with more rapid progression (p=0.03). These data indicate that the deleterious interaction between caffeine and creatine with respect to rate of progression of PD is influenced by GRIN2A genotype. This example of a genetic factor interacting with environmental factors illustrates the complexity of gene-environment interactions in the progression of PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The paradox of caffeine-zolpidem interaction: a network analysis.

    Science.gov (United States)

    Myslobodsky, Michael

    2009-10-01

    A widely prescribed and potent short-acting hypnotic, zolpidem has become the mainstay for the treatment of middle-of-the-night sleeplessness. It is expected to be antagonized by caffeine. Paradoxically, in some cases caffeine appears to slightly enhance zolpidem sedation. The pharmacokinetic and pharmacodynamic nature of this odd effect remains unexplored. The purpose of this study is to reproduce a hypothetical molecular network recruited by caffeine when co-administered with zolpidem using Ingenuity Pathway Analysis. Thus generated, network drew attention to several possible contributors to caffeine sedation, such as tachykinin precursor 1, cannabinoid, and GABA receptors. The present overview is centered on the possibility that caffeine potentiation of zolpidem sedation does not involve a centralized interaction of specific neurotransmitters, but rather is contributed by its antioxidant capacity. It is proposed that by modifying the cellular redox state, caffeine ultimately reduces the pool of reactive oxygen species, thereby increasing the bioavailability of endogenous melatonin for interaction with zolpidem. This side effect of caffeine encourages further studies of multiple antioxidants as an attractive way to potentially increasing somnolence.

  2. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Beetham, K.L.; Tolmach, L.J.

    1984-01-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and in caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage

  3. Role of cyclins in controlling progression of mammalian spermatogenesis

    OpenAIRE

    WOLGEMUTH, DEBRA J.; MANTEROLA, MARCIA; VASILEVA, ANA

    2013-01-01

    Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique ...

  4. [Caffeine--common ingredient in a diet and its influence on human health].

    Science.gov (United States)

    Wierzejska, Regina

    2012-01-01

    Caffeine is widely consumed by people of all ages. In the last period a market of caffeine-containing products, particularly energy drinks and food supplements increased. Caffeine for years is under discussion, whether has positive whether adverse impact on health. Children are a group of special anxieties. Caffeine is a stimulant of central nervous system and therefore is probably the most commonly used psychoactive substance in the world. The physiological effect of caffeine and the lack of nutrition value causes a great interest its impact on health, especially with reference to the risk of cardiovascular diseases. Results of scientific research are not clear. The influence of caffeine on the human body is conditioned with the individual metabolism of caffeine which also depends on many endogenic and environmental factors. According to the current knowledge moderate caffeine intake by healthy adults at a dose level of 400 mg a day is not associated with adverse effects, but it also depends on other health determinants of a lifestyle. Excessive caffeine consumption can cause negative health consequences such as psychomotor agitation, insomnia, headache, gastrointestinal complaints. Adverse effect of caffeine intoxication is classified in World Health Organization's International Classification of Diseases (ICD-10). Metabolism of caffeine by pregnant woman is slowed down. Caffeine and its metabolites pass freely across the placenta into a fetus. For this reason pregnant women should limit caffeine intake. Children and adolescents should also limit daily caffeine consumption. It results from the influence of caffeine on the central nervous system in the period of rapid growth and the final stage of brain development, calcium balance and sleep duration. Average daily caffeine consumption in European countries ranging from 280-490 mg. The highest caffeine intake is in Scandinavian countries what results from the great consumption of the coffee. As far as caffeine

  5. Caffeine Extraction from Raw and Roasted Coffee Beans.

    Science.gov (United States)

    Chiang, Donyau; Lin, Chih-Yang; Hu, Chen-Ti; Lee, Sanboh

    2018-04-01

    Coffee is a stimulant, psychoactive, popular daily beverage, and its caffeine affects human physiological health and behavior. These important issues prompted us to study caffeine extraction from both the raw and roasted coffee beans of 3 types at different temperatures. A hemispheric model is developed to simulate the extraction process of the caffeine from the coffee beans of hemisphere is proposed. The experimental data are in good agreement with the predicted model. The effective diffusivities of caffeine in both the raw and roasted beans increase with temperature in all 3 types. An incubation period, decreasing with increasing temperature, is observed in all samples studied. Caffeine extraction in roasted beans is more rapid than that for the raw beans and the time difference is significant at low temperatures. In both the raw and roasted samples, caffeine diffusion in the raw beans and the incubation behavior are thermally activated processes. Single activation energies are obtained for diffusion within the extraction temperature range for all beans tested with the exception of one type of the coffee beans, Mandheling, which exhibits 2 activation energies in raw samples. The surface energies of the epidermis of the raw beans and roasted beans obtained from the contact angle measurements are used to interpret the difference of incubation periods. This study has a potential application to the decaffeinated coffee industry.Caffeine affects human physiological health and behavior so that caffeine extraction from coffee beans of different types at different temperatures is important for product refining and customers. © 2018 Institute of Food Technologists®.

  6. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Akli, Said; Keyomarsi, Khandan

    2004-01-01

    Cyclin E, a key mediator of transition during the G 1 /S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  7. Caffeine Use Disorder: A Comprehensive Review and Research Agenda

    OpenAIRE

    Meredith, Steven E.; Juliano, Laura M.; Hughes, John R.; Griffiths, Roland R.

    2013-01-01

    Caffeine is the most commonly used drug in the world. Although consumption of low to moderate doses of caffeine is generally safe, an increasing number of clinical studies are showing that some caffeine users become dependent on the drug and are unable to reduce consumption despite knowledge of recurrent health problems associated with continued use. Thus, the World Health Organization and some health care professionals recognize caffeine dependence as a clinical disorder. In this comprehensi...

  8. Post-study caffeine administration enhances memory consolidation in humans.

    Science.gov (United States)

    Borota, Daniel; Murray, Elizabeth; Keceli, Gizem; Chang, Allen; Watabe, Joseph M; Ly, Maria; Toscano, John P; Yassa, Michael A

    2014-02-01

    It is currently not known whether caffeine has an enhancing effect on long-term memory in humans. We used post-study caffeine administration to test its effect on memory consolidation using a behavioral discrimination task. Caffeine enhanced performance 24 h after administration according to an inverted U-shaped dose-response curve; this effect was specific to consolidation and not retrieval. We conclude that caffeine enhanced consolidation of long-term memories in humans.

  9. Exercise and Sport Performance with Low Doses of Caffeine

    OpenAIRE

    Spriet, Lawrence L.

    2014-01-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5–13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (

  10. Caffeine: How Much Is Too Much?

    Science.gov (United States)

    Healthy Lifestyle Nutrition and healthy eating Caffeine has its perks, but it can pose problems too. Find out how much is too much and if you need to curb ... By Mayo Clinic Staff If you rely on caffeine to wake you up and keep you going, ...

  11. Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3

    International Nuclear Information System (INIS)

    Sun Maoyun; Wei Yuanyan; Yao Luyang; Xie Jianhui; Chen Xiaoning; Wang Hanzhou; Jiang Jianhai; Gu Jianxin

    2006-01-01

    Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation

  12. Molecular Dynamics Simulation Studies of Caffeine Aggregation in Aqueous Solution

    OpenAIRE

    Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E.; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W.

    2011-01-01

    Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly-developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molec...

  13. Caffeine Abolishes the Ultraviolet-Induced REV3 Translesion Replication Pathway in Mouse Cells

    Directory of Open Access Journals (Sweden)

    Kouichi Yamada

    2011-11-01

    Full Text Available When a replicative DNA polymerase stalls upon encountering a photoproduct on the template strand, it is relieved by other low-processivity polymerase(s, which insert nucleotide(s opposite the lesion. Using an alkaline sucrose density gradient sedimentation technique, we previously classified this process termed UV-induced translesion replication (UV-TLS into two types. In human cancer cells or xeroderma pigmentosum variant (XP-V cells, UV-TLS was inhibited by caffeine or proteasome inhibitors. However, in normal human cells, the process was insensitive to these reagents. Reportedly, in yeast or mammalian cells, REV3 protein (a catalytic subunit of DNA polymerase ζ is predominantly involved in the former type of TLS. Here, we studied UV-TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF. In the wild-type MEF, UV-TLS was slow (similar to that of human cancer cells or XP-V cells, and was abolished by caffeine or MG-262. In 2 cell lines of Rev3KO-MEF (Rev3−/− p53−/−, UV-TLS was not observed. In p53KO-MEF, which is a strict control for Rev3KO-MEF, the UV-TLS response was similar to that of the wild-type. Introduction of the Rev3 expression plasmid into Rev3KO-MEF restored the UV-TLS response in selected stable transformants. In some transformants, viability to UV was the same as that in the wild-type, and the death rate was increased by caffeine. Our findings indicate that REV3 is predominantly involved in UV-TLS in mouse cells, and that the REV3 translesion pathway is suppressed by caffeine or proteasome inhibitors.

  14. Caffeine and blood pressure response: sex, age, and hormonal status.

    Science.gov (United States)

    Farag, Noha H; Whitsett, Thomas L; McKey, Barbara S; Wilson, Michael F; Vincent, Andrea S; Everson-Rose, Susan A; Lovallo, William R

    2010-06-01

    The pressor effect of caffeine has been established in young men and premenopausal women. The effect of caffeine on blood pressure (BP) remains unknown in postmenopausal women and in relation to hormone replacement therapy (HRT) use. In a randomized, 2-week cross-over design, we studied 165 healthy men and women in 6 groups: men and premenopausal women (35-49 yrs) vs. men and postmenopausal women (50-64 yrs), with postmenopausal women divided into those taking no hormone replacements (HR), estrogen alone, or estrogen and progesterone. Testing during one week of the study involved 6 days of caffeine maintenance at home (80 mg, 3x/day) followed by testing of responses to a challenge dose of caffeine (250 mg) in the laboratory. The other week involved ingesting placebos on maintenance and lab days. Resting BP responses to caffeine were measured at baseline and at 45 to 60 min following caffeine vs placebo ingestion, using automated monitors. Ingestion of caffeine resulted in a significant increase in systolic BP in all 6 groups (4 +/- .6, p < 0.01). Diastolic BP significantly increased in response to caffeine in all (3 +/- .4, p < 0.04) but the group of older men (2 +/- 1.0, p = 0.1). The observed pressor responses to caffeine did not vary by age. Caffeine resulted in an increase in BP in healthy, normotensive, young and older men and women. This finding warrants the consideration of caffeine in the lifestyle interventions recommended for BP control across the age span.

  15. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  16. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  17. Effects of caffeine on DNA repair of UV-irradiated Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Ohnishi, T.; Okaichi, K.; Ohashi, Y.; Nozu, K.

    1981-01-01

    Caffeine enhances the UV-killing of amoeboid cells of NC-4, but UV-irradiated γs-13 is insensitive to caffeine. UV-irradiated NC-4 becomes insensitive to the effect of caffeine during a postirradiation incubation in buffer for about 90 min, but γs-13 remains unchanged in the sensitivity to caffeine throughout the incubation for 180 min. Amoeboid cells of γs-13 can remove pyrimidine dimers as well as NC-4 even in the presence of caffeine. Caffeine inhibits rejoining of strand-breaks of DNA in UV-irradiated NC-4, but the rejoining in γs-13 is insensitive to caffeine. (author)

  18. Chronic caffeine exposure attenuates blast-induced memory deficit in mice.

    Science.gov (United States)

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Zhao, Zi-Ai; Zhang, Xiu-Zhu; Chen, Xing-Yun; Li, Ping; Zhao, Yan; Zhou, Yuan-Guo

    2015-01-01

    To investigate the effects of three different ways of chronic caffeine administration on blast- induced memory dysfunction and to explore the underlying mechanisms. Adult male C57BL/6 mice were used and randomly divided into five groups: control: without blast exposure, con-water: administrated with water continuously before and after blast-induced traumatic brain injury (bTBI), con-caffeine: administrated with caffeine continuously for 1 month before and after bTBI, pre-caffeine: chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI, post-caffeine: chronically administrated with caffeine after bTBI. After being subjected to moderate intensity of blast injury, mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1, 4, and 8 weeks post-blast injury. Neurological deficit scoring, glutamate concentration, proinflammatory cytokines production, and neuropathological changes at 24 h, 1, 4, and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages. Adenosine A1 receptor expression was detected using qPCR. All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit, which is correlated with the neuroprotective effects against excitotoxicity, inflammation, astrogliosis and neuronal loss at different stages of injury. Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI; pre-bTBI and post-bTBI treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively. Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption. Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get, the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.

  19. The effects of caffeine and expectancy on attention and memory.

    Science.gov (United States)

    Oei, Adam; Hartley, Laurence R

    2005-04-01

    The present study contrasted caffeine's effects on individuals who expect caffeine to stimulate them and those who do not. Secondly, whether a message that caffeine rather than placebo was administered would also affect these two groups of subjects differently was investigated. The study was conducted single-blind in a 2x2x2 mixed design. The between subjects factor was whether they expected caffeine to stimulate them (E+) or not (E-) according to their self reports obtained before the experiment began. The within subjects factors were message (told caffeine vs told placebo) and beverage type (given caffeine vs placebo). Sixteen subjects in each group (n=32) performed on signal detection, memory scanning and delayed free recall tasks following ingestion of either caffeinated or decaffeinated coffee on two sessions each, a total of four experimental sessions. On each session, subjects were given a message regarding their drink (told caffeine vs told placebo). However, on two sessions there was a mismatch between the message and drink given. For signal detection, performance under caffeine was better than placebo in the E+ but not the E- group. However, subjects in the E+ group did not benefit more than the E- group in either message condition. On memory scanning, detections and false alarms did not differ for either beverage, nor was there a differential finding in the E+ and E- groups. However, reaction time under caffeine condition was shorter. No effects of message were found. Caffeine and message also did not have any effect on performance on the delayed free recall task. The hypothesis that caffeine and message would affect E+ and E- subjects differentially was partly supported. Copyright (c) 2005 John Wiley & Sons, Ltd.

  20. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    Science.gov (United States)

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  2. Effects of dilute aqueous NaCl solution on caffeine aggregation

    International Nuclear Information System (INIS)

    Sharma, Bhanita; Paul, Sandip

    2013-01-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl

  3. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    Science.gov (United States)

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that

  4. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    [eng] Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL a...

  5. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL and lymp...

  6. Hemodynamic mechanisms underlying the incomplete tolerance to caffeine's pressor effects.

    Science.gov (United States)

    Farag, Noha H; Vincent, Andrea S; McKey, Barbara S; Whitsett, Thomas L; Lovallo, William R

    2005-06-01

    Blood pressure (BP) and cardiovascular hemodynamics were assessed at baseline and after caffeine administration in a 4-week, placebo-controlled, double-blind, randomized, crossover trial of caffeine tolerance formation. Half of the subjects developed tolerance to the pressor effect of caffeine, whereas the other half continued to show increases in BP after caffeine ingestion (F = 16.7, p <0.0001). In the subjects who did not develop tolerance, peripheral resistance increased incrementally as the daily dose of caffeine increased (F = 2.8, p = 0.05).

  7. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  8. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  9. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA ...

  10. Caffeine ingestion enhances Wingate performance: a meta-analysis.

    Science.gov (United States)

    Grgic, Jozo

    2018-03-01

    The positive effects of caffeine ingestion on aerobic performance are well-established; however, recent findings are suggesting that caffeine ingestion might also enhance components of anaerobic performance. A commonly used test of anaerobic performance and power output is the 30-second Wingate test. Several studies explored the effects of caffeine ingestion on Wingate performance, with equivocal findings. To elucidate this topic, this paper aims to determine the effects of caffeine ingestion on Wingate performance using meta-analytic statistical techniques. Following a search through PubMed/MEDLINE, Scopus, and SportDiscus ® , 16 studies were found meeting the inclusion criteria (pooled number of participants = 246). Random-effects meta-analysis of standardized mean differences (SMD) for peak power output and mean power output was performed. Study quality was assessed using the modified version of the PEDro checklist. Results of the meta-analysis indicated a significant difference (p = .005) between the placebo and caffeine trials on mean power output with SMD values of small magnitude (0.18; 95% confidence interval: 0.05, 0.31; +3%). The meta-analysis performed for peak power output indicated a significant difference (p = .006) between the placebo and caffeine trials (SMD = 0.27; 95% confidence interval: 0.08, 0.47 [moderate magnitude]; +4%). The results from the PEDro checklist indicated that, in general, studies are of good and excellent methodological quality. This meta-analysis adds on to the current body of evidence showing that caffeine ingestion can also enhance components of anaerobic performance. The results presented herein may be helpful for developing more efficient evidence-based recommendations regarding caffeine supplementation.

  11. CORRELATION BETWEEN CAFFEINE CONTENTS OF GREEN ...

    African Journals Online (AJOL)

    AND ALTITUDES OF THE COFFEE PLANTS GROWN IN SOUTHWEST ETHIOPIA .... sublimation temperature of caffeine, during it only a small percentage of .... the tube and extracted for a second time with 5.00 mL of boiling water. ..... Sridevi, V.; Giridhar, P. Changes in caffeine content during fruit development in Coffea.

  12. THE EFFECT OF CAFFEINE ON TEAR FORMATION

    African Journals Online (AJOL)

    improvement in physical performance and other. Caffeine is of ... function is also influenced by other factors like age, menopause ... influence of such drugs on the lacrimal gland function .... Pharmacokinetic profile on caffeine in premature ...

  13. Beliefs, Behaviors, and Contexts of Adolescent Caffeine Use: A Focus Group Study.

    Science.gov (United States)

    Ludden, Alison B; O'Brien, Elizabeth M; Pasch, Keryn E

    2017-07-29

    Caffeinated products are widely available to adolescents, and consumption of caffeine products-energy drinks and coffee in particular-is on the rise in this age group (Branum, Rossen, & Schoendorf, 2014). Yet, little is known about the psychosocial context of caffeine use. Previous studies on adolescent caffeine use have focused on caffeine's acute physiological effects, rather than the psychosocial contexts and beliefs regarding different types of caffeinated beverages (e.g., coffee, energy drinks, soda). The current research examines the contexts and beliefs associated with adolescents' use of caffeinated beverages (e.g., coffee, energy drinks, soda) using a focus group approach. Eleven focus group interviews (49 total participants) addressed adolescents' motivations for and patterns of caffeine use; they were transcribed and axial coding was used to identify common themes. Coffee and energy drinks were perceived to be the most popular caffeinated beverages. Reasons for consuming caffeine included the effect of caffeine as a stimulant, the pleasant feelings experienced when drinking it, and the fact that caffeine was available. As for contexts, coffee was consumed in more diverse social contexts than other caffeinated beverages. Friends and sports were the most popular contexts for energy drink use. The present findings inform adolescent health promotion efforts and provide researchers and practitioners alike detailed information in adolescents' own words about how and why they use caffeine. Adolescents' beliefs about caffeinated products are not uniform; the reasons adolescents articulate regarding their use of coffee, soda, and energy drinks are different across contexts and beverage type.

  14. Protonation of caffeine: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Hamed [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, Mahmoud, E-mail: m-tabriz@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, Hossein [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-03-29

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M{sup +} ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  15. Protonation of caffeine: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-01-01

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M + ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule

  16. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A.

    Science.gov (United States)

    Dong, X; Zavitz, K H; Thomas, B J; Lin, M; Campbell, S; Zipursky, S L

    1997-01-01

    In the developing eye of Drosophila melanogaster, cells become synchronized in the G1 phase of the cell cycle just prior to the onset of cellular differentiation and morphogenesis. In roughex (rux) mutants, cells enter S phase precociously because of ectopic activation of a Cyclin A/Cdk complex in early G1. This leads to defects in cell fate and pattern formation, and results in abnormalities in the morphology of the adult eye. A screen for dominant suppressors of the rux eye phenotype led to the identification of mutations in cyclin A, string (cdc25), and new cell cycle genes. One of these genes, regulator of cyclin A (rca1), encodes a novel protein required for both mitotic and meiotic cell cycle progression. rca1 mutants arrest in G2 of embryonic cell cycle 16 with a phenotype very similar to cyclin A loss of function mutants. Expression of rca1 transgenes in G1 or in postmitotic neurons promotes Cyclin A protein accumulation and drives cells into S phase in a Cyclin A-dependent fashion.

  17. Effect of caffeine on prospective and retrospective duration judgements.

    Science.gov (United States)

    Gruber, Ronald P; Block, Richard A

    2003-07-01

    The effects of caffeine on prospective and retrospective duration judgements were evaluated in a double-blind placebo-controlled experiment. After taking either 200 mg caffeine or a placebo, participants touched a 17-sided polygon for 15 s. Then they verbally estimated the number of angles and the duration. Participants in the prospective group were told in advance they would be making a duration estimate, whereas those in the retrospective group were not told. Caffeine reduced duration estimates in the prospective condition but not in the retrospective condition. The effect of caffeine on very long duration comparisons (the past year compared with a year at one-half and one-quarter of one's age) was also evaluated, but none was found. The findings do not support the hypothesis that caffeine affects duration experience by increasing the internal clock rate as a result of its dopamine D(2) agonist properties. The hypothesis that caffeine produces its effect by enhancing memory was considered and rejected. The most parsimonious explanation is that caffeine increased arousal level, which led to a narrowing of the focus of attention to the most salient task. Copyright 2003 John Wiley & Sons, Ltd.

  18. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  19. Energy drink ingredients. Contribution of caffeine and taurine to performance outcomes.

    Science.gov (United States)

    Peacock, Amy; Martin, Frances Heritage; Carr, Andrea

    2013-05-01

    While the performance-enhancing effects of energy drinks are commonly attributed to caffeine, recent research has shown greater facilitation of performance post-consumption than typically expected from caffeine content alone. Consequently, the aim of the present study was to investigate the independent and combined effect of taurine and caffeine on behavioural performance, specifically reaction time. Using a double-blind, placebo-controlled, crossover, within-subjects design, female undergraduates (N=19) completed a visual oddball task and a stimulus degradation task 45min post-ingestion of capsules containing: (i) 80mg caffeine, (ii) 1000mg taurine, (iii) caffeine and taurine combined, and (iv) matched placebo. Participants completed each treatment condition, with sessions separated by a minimum 2-day washout period. Whereas no significant treatment effects were recorded for reaction time in the visual oddball task, facilitative caffeine effects were evident in the stimulus degradation task, with significantly faster reaction time in active relative to placebo caffeine conditions. Furthermore, there was a trend towards faster mean reaction time in the caffeine condition relative to the taurine condition and combined caffeine and taurine condition. Thus, treatment effects were task-dependent, in that independent caffeine administration exerted a positive effect on performance, and co-administration with taurine tended to attenuate the facilitative effects of caffeine in the stimulus degradation task only. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  1. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  2. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  3. Caffeine dependence in rats: effects of exposure duration and concentration.

    Science.gov (United States)

    Dingle, Rachel N; Dreumont-Boudreau, Sarah E; Lolordo, Vincent M

    2008-09-03

    Groups of rats were chronically exposed to a 1.0-g/L caffeine solution for 5, 10, 15 or 20 days. Upon removal of caffeine, rats were given brief exposure to a novel flavour CS (withdrawal CS) followed by 12 days of plain water and then brief exposure to a second flavour CS (neutral CS). Only rats exposed to 20 days of caffeine strongly preferred the neutral CS to the withdrawal CS in a 2-bottle test. In Experiment 2, groups of rats were chronically exposed to caffeine at one of four concentrations (1.0, 0.5, 0.25, or 0.125 g/L) for 21 days, after which withdrawal and neutral CSs were established. Only rats that drank the highest caffeine concentration, 1.0 g/L, preferred the neutral CS to the withdrawal CS. This suggests that long exposure to a strong caffeine solution is required in order to induce dependence in rats such that a CS associated with the withdrawal of caffeine becomes avoided.

  4. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance.

    Science.gov (United States)

    Richardson, Darren L; Clarke, Neil D

    2016-10-01

    Richardson, DL and Clarke, ND. Effect of coffee and caffeine ingestion on resistance exercise performance. J Strength Cond Res 30(10): 2892-2900, 2016-The aim of the present study was to determine the effect of ingesting caffeine dose-matched anhydrous caffeine, coffee, or decaffeinated coffee plus anhydrous caffeine during resistance exercise on performance. Nine resistance-trained men (mean ± SD: age, 24 ± 2 years; weight, 84 ± 8 kg; height, 180 ± 8 cm) completed a squat and bench press exercise protocol at 60% 1 repetition maximum until failure on 5 occasions consuming 0.15 g·kg caffeinated coffee (COF), 0.15 g·kg decaffeinated coffee (DEC), 0.15 g·kg decaffeinated coffee plus 5 mg·kg anhydrous caffeine (D + C), 5 mg·kg anhydrous caffeine (CAF), or a placebo (PLA). Felt arousal and rating of perceived exertion (RPE) were used to assess perceptual variables and heart rate (HR) to assess physiological responses between trials. There were significant differences in total weight lifted for the squat between conditions (p caffeine have the ability to improve performance during a resistance exercise protocol, although possibly not over multiple bouts.

  5. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  6. The Interaction of Sorbitol with Caffeine in Aqueous Solution

    OpenAIRE

    Tavagnacco, Letizia; Brady, John W.; Cesàro, Attilio

    2013-01-01

    Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine mole...

  7. Prenatal Caffeine Exposure Impairs Pregnancy in Rats

    Directory of Open Access Journals (Sweden)

    Maryam Yadegari

    2016-12-01

    Full Text Available Background: In recent years, concerns have been raised about human reproductive disorders. Caffeine consumption is increasing by the world’s population and there is a relationship between caffeine intake and adverse reproductive outcomes. The aim of this study was to evaluate the effects of caffeine on implantation sites, number of live births, birth weight, crown-rump length (CRL and abnormality in pregnant rats. Materials and Methods: In this experimental study, 40 female albino rats (170-190 g were randomly divided into two experimental and two control groups (n=10/each group. In both experimental groups, animals received caffeine intraperitoneally (IP: 150 mg/kg/day on days 1-5 of pregnancy. In experimental group 1, treated animals were euthanized on day 7of pregnancy and the number of implantation sites was counted. In experimental group 2, treated animals maintained pregnant and after delivery, the number of live births, birth weight, CRL and abnormality of neonates were investigated. In control group, animals received IP injections of distilled water. Data were analyzed by independent t test. Results: Results showed that administration of caffeine significantly decreased the number of implantation sites, number of live births and CRL as compared with control group (P<0.05. There were no significant differences regarding birth weight and abnormality of neonate rats between experimental and control groups. Conclusion: These results suggest that caffeine caused anti-fertility effect and significantly decreased CRL in neonate rats.

  8. Evaluation of the Reproductive and Developmental Risks of Caffeine

    Science.gov (United States)

    Brent, Robert L; Christian, Mildred S; Diener, Robert M

    2011-01-01

    A risk analysis of in utero caffeine exposure is presented utilizing epidemiological studies and animal studies dealing with congenital malformation, pregnancy loss, and weight reduction. These effects are of interest to teratologists, because animal studies are useful in their evaluation. Many of the epidemiology studies did not evaluate the impact of the “pregnancy signal,” which identifies healthy pregnancies and permits investigators to identify subjects with low pregnancy risks. The spontaneous abortion epidemiology studies were inconsistent and the majority did not consider the confounding introduced by not considering the pregnancy signal. The animal studies do not support the concept that caffeine is an abortafacient for the wide range of human caffeine exposures. Almost all the congenital malformation epidemiology studies were negative. Animal pharmacokinetic studies indicate that the teratogenic plasma level of caffeine has to reach or exceed 60 µg/ml, which is not attainable from ingesting large amounts of caffeine in foods and beverages. No epidemiological study described the “caffeine teratogenic syndrome.” Six of the 17 recent epidemiology studies dealing with the risk of caffeine and fetal weight reduction were negative. Seven of the positive studies had growth reductions that were clinically insignificant and none of the studies cited the animal literature. Analysis of caffeine's reproductive toxicity considers reproducibility and plausibility of clinical, epidemiological, and animal data. Moderate or even high amounts of beverages and foods containing caffeine do not increase the risks of congenital malformations, miscarriage or growth retardation. Pharmacokinetic studies markedly improve the ability to perform the risk analyses. Birth Defects Res (Part B) 92:152–187, 2011. © 2011 Wiley-Liss, Inc. PMID:21370398

  9. Synergistic effects of radiation and caffeine on embryonic development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Tomoko; Yoshizawa, Yasuo (Tokyo Univ. (Japan). Faculty of Medicine)

    1984-09-01

    The combined action of radiation with caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on day 7 of gestation, at which time the embryos were in the early stage of organogenesis. Intrauterine death, gross malformation, body weight and sex ratio were selected as indicators of effects. Doses of gamma irradiation were 0.5, 1.0 and 2.0 Gy and those of caffeine were 0.10 and 0.25 mg/g of body weight. Intrauterine mortality increased with increasing radiation dose and this trend was more remarkable in combination with caffeine. The malformation such as parietal hernia, exencephalia, hydrocephalia and cleft palate appeared frequently in the fetuses treated with both radiation and caffeine compared to the fetuses treated with each agent separately. Fetal body weight was a sensitive indicator of the effects on growth retardation of radiation and/or caffeine. The sex ratio of live fetuses did not change by means of treatment with radiation and/or caffeine. Intrauterine mortality and frequency of malformations in mice treated with both radiation and caffeine were higher than the sum of those induced by radiation and those by caffeine separately. The results demonstrated that the combined effects of radiation and caffeine were synergistic.

  10. Caffeine Inhibits Fluid Secretion by Interlobular Ducts From Guinea Pig Pancreas.

    Science.gov (United States)

    Mochimaru, Yuka; Yamamoto, Akiko; Nakakuki, Miyuki; Yamaguchi, Makoto; Taniguchi, Ituka; Ishiguro, Hiroshi

    2017-04-01

    Caffeine is contained in coffee, tea, and numerous beverages and foods. We examined the direct effects of caffeine on the physiological function of pancreatic duct cells by using interlobular duct segments isolated from guinea pig pancreas. The rate of fluid secretion was continuously measured by monitoring the luminal volume of isolated duct segments. Changes in intracellular Ca concentration ([Ca]i) were estimated by microfluorometry in ducts loaded with Fura-2. Both secretin-stimulated and acetylcholine (ACh)-stimulated fluid secretions were substantially and reversibly inhibited by relatively low concentrations of caffeine as low as 0.03 mM relevant to blood levels after ingestion of caffeine-containing beverages. Caffeine inhibited ACh-induced elevation of [Ca]i and secretin-induced fluctuation of [Ca]i. Caffeine abolished thapsigargin-induced intracellular Ca release but did not affect the entry of extracellular Ca. Caffeine (0.05 mM) abolished ethanol (1 mM)-induced fluid hypersecretion in secretin-stimulated pancreatic duct. Low concentrations of caffeine directly inhibit pancreatic ductal fluid secretion stimulated by secretin or ACh and also ethanol-induced fluid hypersecretion. The inhibition by caffeine seems to be mediated by the blockade of intracellular Ca mobilization. Daily intake of caffeine may reduce the volume of pancreatic juice secretion.

  11. Caffeine use in sports. A pharmacological review.

    Science.gov (United States)

    Sinclair, C J; Geiger, J D

    2000-03-01

    Caffeine is the most widely ingested psychoactive drug in the world. As many know, chronic use of caffeine leads to dependence, tolerance, drug craving, and upon abrupt cessation unpleasant withdrawal symptoms. Thus, caffeine fulfills pharmacological criteria by which agents are classified as drugs of abuse. Nevertheless, its use is legal and only at high, but readily attainable, levels is it banned from sport. Its use is widespread by athletes as young as 11 years of age who are seeking athletic advantage over fellow competitors. It is likely that its use will not decline any time soon because it is inexpensive, readily available, medically quite safe, socially acceptable, and by most measures legal. However, at levels allowed in sport, caffeine through its wide-ranging physiological and psychological effects increases endurance in well-trained athletes. If the goal of drug-testing and education programs in sport is to protect the health of athletes, prevent unfair advantage (cheating) and encourage ethical behavior then it seems obvious that the allowable levels of caffeine ingestion should be decreased. The alternative is to continue with policies designed largely to punish only those that get caught.

  12. Caffeinated alcohol beverages: a public health concern.

    Science.gov (United States)

    Attwood, Angela S

    2012-01-01

    Consumption of alcohol mixed with caffeinated energy drinks is becoming popular, and the number of pre-mixed caffeinated alcohol products on the worldwide market is increasing. There is public health concern and even occasional legal restriction relating to these drinks, due to associations with increased intoxication and harms. The precise nature and degree of the pharmacological relationship between caffeine and alcohol is not yet elucidated, but it is proposed that caffeine attenuates the sedative effects of alcohol intoxication while leaving motor and cognitive impairment unaffected. This creates a potentially precarious scenario for users who may underestimate their level of intoxication and impairment. While legislation in some countries has restricted production or marketing of pre-mixed products, many individuals mix their own energy drink-alcohol 'cocktails'. Wider dissemination of the risks might help balance marketing strategies that over-emphasize putative positive effects.

  13. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  14. Caffeine's influence on gambling behavior and other types of impulsivity.

    Science.gov (United States)

    Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Young adulthood is a developmental period frequently associated with occurrence of impulsive behaviors including gambling. It is estimated that 73% of children and 87% of adults in the United States regularly use caffeine. Questions remain, however, concerning the role of caffeine in the development and maintenance of impulsive behaviors such as gambling. Sixty-one young adults with at least some degree of disordered gambling were recruited from two Mid-Western university communities in the United States using media advertisements. Caffeine intake over the preceding month was quantified using the Caffeine Use Questionnaire. Clinician rating scales, questionnaires, and cognitive tests germane to impulsivity were completed. Relationships between caffeine intake and demographic, gambling symptom, and neurocognitive measures were evaluated using the statistical technique of partial least squares (PLS). Average weekly caffeine intake in the gamblers was 1218.5mg (a figure higher than previously reported in the general population). PLS yielded an optimal model with one latent factor, which explained 14.8% of variation in demographic/clinical/cognitive measures and 32.3% of variation in caffeine intake. In this model, higher caffeine intake was significantly associated with earlier age at first gambling, higher personality-related impulsiveness, more nicotine consumption, older age, and more impulsive decision-making. These data suggest a particularly strong relationship between caffeine intake, earlier age of first gambling, and certain types of impulsivity in gamblers. Providing education about healthy caffeine use may be especially valuable in gamblers. Future work should explore whether the relationship between caffeine use and gambling is due to a common predisposing factor (impulsive tendencies) or, rather, constitutes a form of self-medication in gamblers (or a means of sustaining gambling habits for longer). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Serum caffeine levels after 24 hours of caffeine abstention: observations on clinical patients undergoing myocardial perfusion imaging with dipyridamole or adenosine

    International Nuclear Information System (INIS)

    Jacobson, A.F.; Cerqueira, M.D.; Raisys, V.; Shattuc, S.

    1994-01-01

    Although caffeine attenuates the vasodilatation produced by dipyridamole and adenosine, and is therefore contraindicated when these agents are used for myocardial perfusion scintigraphy, caffeine levels in clinical patients undergoing standard imaging protocols have not been studied. Eighty-six patients undergoing clinically indicated intravenous dipyridamole (n=75) or adenosine (n=11) thallium-201 myocardial perfusion scintigraphy, all of whom reported abstention from products containing caffeine for 24 h, were studied prospectively. Blood samples were drawn prior to initiation of the pharmacologic infusion, and serum caffeine levels were determined using an enzyme immunoassay technique. Results of these determinations were correlated with maximum pulse and blood pressure changes measured during and immediately after the stressor infusion, and thallium imaging findings. Detectable caffeine levels were found in 34 patients (40%), ranging from 0.1 to 5.0 mg/l. There was no significant difference in mean systolic blood pressure decrease or mean pulse increase between patients with caffeine levels > 1.0 mg/l (20.4 ± 18.2 mmHg, 11.0 ± 8.9 BPM; n=5) and those with lower (0.1 to 0.9 mg/l) (15.4 ± 9.5 mmHg, 14.4 ± 8.2 BPM; n=29) or no detectable caffeine levels (18.0 ± 11.5 mmHg, 16.6 ± 10.1 BPM; n=52). Redistribution on thallium imaging was also identified with a similar frequency in these three groups (2/5, 40%; 8/29, 28%; 22/52, 42% respectively). (orig.)

  16. Serum caffeine levels after 24 hours of caffeine abstention: observations on clinical patients undergoing myocardial perfusion imaging with dipyridamole or adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, A.F. (Nuclear Medicine Section, Dept. of Veterans Affairs Medical Center, Seattle, WA (United States) Univ. of Washington, Seattle, WA (United States)); Cerqueira, M.D. (Nuclear Medicine Section, Dept. of Veterans Affairs Medical Center, Seattle, WA (United States) Univ. of Washington, Seattle, WA (United States)); Raisys, V. (Dept. of Lab. Medicine, Harborview Medical Center, Seattle, WA (United States) Univ. of Washington, Seattle, WA (United States)); Shattuc, S. (Univ. of Washington, Seattle, WA (United States))

    1994-01-01

    Although caffeine attenuates the vasodilatation produced by dipyridamole and adenosine, and is therefore contraindicated when these agents are used for myocardial perfusion scintigraphy, caffeine levels in clinical patients undergoing standard imaging protocols have not been studied. Eighty-six patients undergoing clinically indicated intravenous dipyridamole (n=75) or adenosine (n=11) thallium-201 myocardial perfusion scintigraphy, all of whom reported abstention from products containing caffeine for 24 h, were studied prospectively. Blood samples were drawn prior to initiation of the pharmacologic infusion, and serum caffeine levels were determined using an enzyme immunoassay technique. Results of these determinations were correlated with maximum pulse and blood pressure changes measured during and immediately after the stressor infusion, and thallium imaging findings. Detectable caffeine levels were found in 34 patients (40%), ranging from 0.1 to 5.0 mg/l. There was no significant difference in mean systolic blood pressure decrease or mean pulse increase between patients with caffeine levels > 1.0 mg/l (20.4 [+-] 18.2 mmHg, 11.0 [+-] 8.9 BPM; n=5) and those with lower (0.1 to 0.9 mg/l) (15.4 [+-] 9.5 mmHg, 14.4 [+-] 8.2 BPM; n=29) or no detectable caffeine levels (18.0 [+-] 11.5 mmHg, 16.6 [+-] 10.1 BPM; n=52). Redistribution on thallium imaging was also identified with a similar frequency in these three groups (2/5, 40%; 8/29, 28%; 22/52, 42% respectively). (orig.)

  17. Cyclin D1 Expression and Its Correlation with Histopathological Differentiation in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Swati Saawarn

    2012-01-01

    Full Text Available Background. Cyclin D1 regulates the G1 to S transition of cell cycle. Its deregulation or overexpression may lead to disturbance in the normal cell cycle control and tumour formation. Overexpression of cyclin D1 has been reported in various tumors of diverse histogenesis. This case control retrospective study was carried out to study the immunohistochemical reactivity and expression of cyclin D1 and its association with site, clinical staging, and histopathological differentiation of oral squamous cell carcinoma (OSCC. Methods. Forty formalin-fixed paraffin-embedded tissue blocks of biopsy specimens of oral squamous cell carcinoma were immunohistochemically evaluated for expression of cyclin D1. Results. Cyclin D1 expression was seen in 45% cases of OSCC. It did not correlate with site and clinical staging. Highest expression was seen in well-differentiated, followed by moderately differentiated, and poorly differentiated squamous cell carcinomas, with a statistically significant correlation. Conclusion. Cyclin D1 expression significantly increases with increase in differentiation.

  18. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients

    DEFF Research Database (Denmark)

    Heeran, Mel C; Høgdall, Claus K; Kjaer, Susanne K

    2012-01-01

    The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using...... tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E......-off value showed that cyclin E had no independent prognostic value. In conclusion, we found cyclin E expression in tumour tissue to be of limited prognostic value to Danish OC patients....

  19. Caffeine Concentrations in Coffee, Tea, Chocolate, and Energy Drink Flavored E-liquids.

    Science.gov (United States)

    Lisko, Joseph G; Lee, Grace E; Kimbrell, J Brett; Rybak, Michael E; Valentin-Blasini, Liza; Watson, Clifford H

    2017-04-01

    Most electronic cigarettes (e-cigarettes) contain a solution of propylene glycol/glycerin and nicotine, as well as flavors. E-cigarettes and their associated e-liquids are available in numerous flavor varieties. A subset of the flavor varieties include coffee, tea, chocolate, and energy drink, which, in beverage form, are commonly recognized sources of caffeine. Recently, some manufacturers have begun marketing e-liquid products as energy enhancers that contain caffeine as an additive. A Gas Chromatography-Mass Spectrometry (GC-MS) method for the quantitation of caffeine in e-liquids was developed, optimized and validated. The method was then applied to assess caffeine concentrations in 44 flavored e-liquids from cartridges, disposables, and refill solutions. Products chosen were flavors traditionally associated with caffeine (ie, coffee, tea, chocolate, and energy drink), marketed as energy boosters, or labeled as caffeine-containing by the manufacturer. Caffeine was detected in 42% of coffee-flavored products, 66% of tea-flavored products, and 50% of chocolate-flavored e-liquids (limit of detection [LOD] - 0.04 µg/g). Detectable caffeine concentrations ranged from 3.3 µg/g to 703 µg/g. Energy drink-flavored products did not contain detectable concentrations of caffeine. Eleven of 12 products marketed as energy enhancers contained caffeine, though in widely varying concentrations (31.7 µg/g to 9290 µg/g). E-liquid flavors commonly associated with caffeine content like coffee, tea, chocolate, and energy drink often contained caffeine, but at concentrations significantly lower than their dietary counterparts. Estimated daily exposures from all e-cigarette products containing caffeine were much less than ingestion of traditional caffeinated beverages like coffee. This study presents an optimized and validated method for the measurement of caffeine in e-liquids. The method is applicable to all e-liquid matrices and could potentially be used to ensure regulatory

  20. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    Science.gov (United States)

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  1. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  2. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling

    Science.gov (United States)

    O’Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K.

    2016-01-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3 g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24 h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24 h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence

  3. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling.

    Science.gov (United States)

    O'Neill, Casey E; Newsom, Ryan J; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C; Spencer, Robert L; Campeau, Serge; Bachtell, Ryan K

    2016-05-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased

  4. Cyclin D1 in well differentiated thyroid tumour of uncertain malignant potential.

    Science.gov (United States)

    Lamba Saini, Monika; Weynand, Birgit; Rahier, Jacques; Mourad, Michel; Hamoir, Marc; Marbaix, Etienne

    2015-04-18

    Encapsulated follicular tumours with equivocal papillary thyroid carcinoma (PTC) type nuclear features continue to remain a challenge despite the recent attempts to classify these borderline lesions. The term 'well differentiated tumour of uncertain malignant potential (WDT-UMP)' was introduced to classify these tumours. The present study aimed to evaluate the role of a cell cycle regulator like cyclin D1 in these tumours along with assessment of other well established PTC markers like galectin-3, HBME-1, CK19. Thirteen cases of metastatic PTC, papillary microcarcinoma and follicular variant of PTC (FVPTC) were identified from a histological review of 510 cases. In addition, 13 cases of a subset of follicular adenomatoid nodules with focal areas showing nuclear features characteristic of PTC, identified as WDT-UMP, were also analyzed. Immunohistochemical analysis of galectin-3, HBME-1, CK19 and the proliferation markers Ki67 and cyclin D1 was performed. Lesions were analyzed for cyclin D1 gene amplification by fluorescent in-situ hybridization. All WDT-UMP lesions showed immunolabelling of cyclin D1, Ki67; 11/ 13 cases showed immunolabelling of CK19; 10/13 cases showed immunolabelling of HBME-1 and 4/13 cases showed immunolabelling of galectin-3. Surrounding benign adenomatoid areas showed no to faint focal staining in all thirteen cases of cyclin D1, HBME-1 and galectin-3. A low rate of cyclin D1 gene amplification was identified in a significant proportion of cells in the WDT-UMP lesions as compared to surrounding benign adenomatoid areas. Increased expression of cyclin D1 and amplification of its gene along with immunolabelling of HBME-1 in WDT-UMP lesions showing cytological features of papillary thyroid carcinoma within follicular adenomatoid nodules suggest that these areas could correspond to a precursor lesion of follicular variant of PTC. Overexpression of cyclin D1, associated with the amplification of the gene suggests that these WDT-UMP lesions are an

  5. Effect of Melatonin and Caffeine Interaction on Caffeine Induced ...

    African Journals Online (AJOL)

    Chigo Okwuosa

    Caffeine Induced Oxidative Stress and Sleep Disorders. Obochi G. O., Amali ... pregnancy, and use of oral contraceptives slow the ..... a shaking water bath at 37oC for 48 hours. The tubes .... availability and delivery of energy to all cells of the.

  6. Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.

    Science.gov (United States)

    Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M

    2018-03-28

    Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.

  7. Effects of theobromine and caffeine on mood and vigilance.

    Science.gov (United States)

    Judelson, Daniel A; Preston, Amy G; Miller, Debra L; Muñoz, Colleen X; Kellogg, Mark D; Lieberman, Harris R

    2013-08-01

    Like caffeine, theobromine crosses the blood-brain barrier and binds to adenosine receptors, suggesting it might share caffeine's beneficial effects on mood and vigilance. Therefore, the purpose of this study was to assess the effect of theobromine doses commonly found in foods on mood and vigilance parameters sensitive to caffeine. Caffeine was tested as a positive control. Twenty-four men (age, 23 [3] years) completed 6 double-blind trials during which they consumed experimental beverages, assessed their mood using standardized self-report questionnaires, and completed a 2-hour visual vigilance task. Three experimental doses (100, 200, and 400 mg theobromine) were delivered in a cocoa-based beverage; 3 matched control treatments (0 mg theobromine, 400 mg theobromine, and 100 mg caffeine) were delivered in a non-cocoa beverage. Mean salivary concentrations of theobromine exhibited significant dose-dependent differences (400 mg trials > 200 mg trial > 100 mg trial > 0 mg trials; P affect mood state or vigilance (P > 0.05), but 100-mg caffeine significantly decreased lethargy/fatigue and increased vigor (P = 0.006 and 0.011, respectively). These findings indicate theobromine does not influence mood and vigilance when administered in nutritionally relevant doses, despite sharing many of caffeine's structural characteristics.

  8. Caffeine intake and its sources: A review of national representative studies.

    Science.gov (United States)

    Verster, Joris C; Koenig, Juergen

    2018-05-24

    Aim of this review is to summarize current daily caffeine intake of children, adolescents, and adults, and trends in caffeine intake over the past decade. A literature search was conducted (1997-2015) which yielded 18 reports on nationally representative studies, describing caffeine consumption of over 275,000 children, adolescents and adults. The data revealed that mean total daily caffeine intake in children, adolescents, and adults is below caffeine intake recommendations such as those stated by Health Canada (2.5 mg/kg bw/day for children and adolescents, and 400 mg/day for adults) and the European Food Safety Authority, EFSA (3 mg/kg bw/day for children and adolescents, and 400 mg/day for adults). Total daily caffeine intake has remained stable in the last 10-15 years, and coffee, tea and soft drinks are the most important caffeine sources. Across all age groups, energy drinks contribute little to total caffeine intake. The highest potential for reducing daily caffeine intake is by limiting coffee consumption, and in some countries and age groups, by reducing tea and soft drink consumption.

  9. Effects of blue light and caffeine on mood.

    Science.gov (United States)

    Ekström, Johan G; Beaven, C Martyn

    2014-09-01

    Both short wavelength (blue) light and caffeine have been studied for their mood enhancing effects on humans. The ability of blue light to increase alertness, mood and cognitive function via non-image forming neuropathways has been suggested as a non-pharmacological countermeasure for depression across a range of occupational settings. This experimental study compared blue light and caffeine and aimed to test the effects of blue light/placebo (BLU), white light/240-mg caffeine (CAF), blue light/240-mg caffeine (BCAF) and white light/placebo (PLA), on mood. A randomised, controlled, crossover design study was used, in a convenience population of 20 healthy volunteers. The participants rated their mood on the Swedish Core Affect Scales (SCAS) prior to and after each experimental condition to assess the dimensions of valence and activation. There was a significant main effect of light (p = 0.009), and the combination of blue light and caffeine had clear positive effects on core effects (ES, ranging from 0.41 to 1.20) and global mood (ES, 0.61 ± 0.53). The benefits of the combination of blue light and caffeine should be further investigated across a range of applications due to the observed effects on the dimensions of arousal, valence and pleasant activation.

  10. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  11. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p a CO 2 and increased systolic blood pressure significantly; the change in p a CO 2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  12. Caffeine and human cerebral blood flow: A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, O.G.; Modell, J.G.; Hariharan, M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  13. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  14. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of caffeine on sleep and cognition

    NARCIS (Netherlands)

    Snel, Jan; Lorist, Monicque M.; van Dongen, H.P.A.; Kerkhof, G.A.

    2011-01-01

    Caffeine can be used effectively to manipulate our mental state. It is beneficial in restoring low levels of wakefulness and in counteracting degraded cognitive task performance due to sleep deprivation. However, caffeine may produce detrimental effects on subsequent sleep, resulting in daytime

  16. Caffeine Use among Active Duty Navy and Marine Corps Personnel

    Science.gov (United States)

    Knapik, Joseph J.; Trone, Daniel W.; McGraw, Susan; Steelman, Ryan A.; Austin, Krista G.; Lieberman, Harris R.

    2016-01-01

    Data from the National Health and Nutrition Examination Survey (NHANES) indicate 89% of Americans regularly consume caffeine, but these data do not include military personnel. This cross-sectional study examined caffeine use in Navy and Marine Corps personnel, including prevalence, amount of daily consumption, and factors associated with use. A random sample of Navy and Marine Corps personnel was contacted and asked to complete a detailed questionnaire describing their use of caffeine-containing substances, in addition to their demographic, military, and lifestyle characteristics. A total of 1708 service members (SMs) completed the questionnaire. Overall, 87% reported using caffeinated beverages ≥1 time/week, with caffeine users consuming a mean ± standard error of 226 ± 5 mg/day (242 ± 7 mg/day for men, 183 ± 8 mg/day for women). The most commonly consumed caffeinated beverages (% users) were coffee (65%), colas (54%), teas (40%), and energy drinks (28%). Multivariable logistic regression modeling indicated that characteristics independently associated with caffeine use (≥1 time/week) included older age, white race/ethnicity, higher alcohol consumption, and participating in less resistance training. Prevalence of caffeine use in these SMs was similar to that reported in civilian investigations, but daily consumption (mg/day) was higher. PMID:27735834

  17. Caffeine and human DNA metabolism: the magic and the mystery

    International Nuclear Information System (INIS)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-01-01

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21 Cip1/Waf1 post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase η, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol η protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine

  18. Caffeine and human DNA metabolism: the magic and the mystery

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-11-27

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21{sup Cip1/Waf1} post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase {eta}, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol {eta} protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.

  19. International society of sports nutrition position stand: caffeine and performance

    Directory of Open Access Journals (Sweden)

    Wildman Robert

    2010-01-01

    Full Text Available Abstract Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1. Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg. 2. Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3. It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4. Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5. Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6. The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7. The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.

  20. Caffeine Use among Active Duty Navy and Marine Corps Personnel

    Directory of Open Access Journals (Sweden)

    Joseph J. Knapik

    2016-10-01

    Full Text Available Data from the National Health and Nutrition Examination Survey (NHANES indicate 89% of Americans regularly consume caffeine, but these data do not include military personnel. This cross-sectional study examined caffeine use in Navy and Marine Corps personnel, including prevalence, amount of daily consumption, and factors associated with use. A random sample of Navy and Marine Corps personnel was contacted and asked to complete a detailed questionnaire describing their use of caffeine-containing substances, in addition to their demographic, military, and lifestyle characteristics. A total of 1708 service members (SMs completed the questionnaire. Overall, 87% reported using caffeinated beverages ≥1 time/week, with caffeine users consuming a mean ± standard error of 226 ± 5 mg/day (242 ± 7 mg/day for men, 183 ± 8 mg/day for women. The most commonly consumed caffeinated beverages (% users were coffee (65%, colas (54%, teas (40%, and energy drinks (28%. Multivariable logistic regression modeling indicated that characteristics independently associated with caffeine use (≥1 time/week included older age, white race/ethnicity, higher alcohol consumption, and participating in less resistance training. Prevalence of caffeine use in these SMs was similar to that reported in civilian investigations, but daily consumption (mg/day was higher.

  1. Caffeine: cognitive and physical performance enhancer or psychoactive drug?

    Science.gov (United States)

    Cappelletti, Simone; Piacentino, Daria; Daria, Piacentino; Sani, Gabriele; Aromatario, Mariarosaria

    2015-01-01

    Caffeine use is increasing worldwide. The underlying motivations are mainly concentration and memory enhancement and physical performance improvement. Coffee and caffeine-containing products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects. Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore, caffeine abuse and dependence are becoming more and more common and can lead to caffeine intoxication, which puts individuals at risk for premature and unnatural death. The present review summarizes the main findings concerning caffeine's mechanisms of action (focusing on adenosine antagonism, intracellular calcium mobilization, and phosphodiesterases inhibition), use, abuse, dependence, intoxication, and lethal effects. It also suggests that the concepts of toxic and lethal doses are relative, since doses below the toxic and/or lethal range may play a causal role in intoxication or death. This could be due to caffeine's interaction with other substances or to the individuals' preexisting metabolism alterations or diseases.

  2. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor

    Science.gov (United States)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.

    2000-01-01

    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  3. Caffeine adsorption of montmorillonite in coffee extracts.

    Science.gov (United States)

    Shiono, Takashi; Yamamoto, Kenichiro; Yotsumoto, Yuko; Yoshida, Aruto

    2017-08-01

    The growth in health-conscious consumers continues to drive the demand for a wide variety of decaffeinated beverages. We previously developed a new technology using montmorillonite (MMT) in selective decaffeination of tea extract. This study evaluated and compared decaffeination of coffee extract using MMT and activated carbon (AC). MMT adsorbed caffeine without significant adsorption of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs), dicaffeoylquinic acids (di-CQAs), or caffeoylquinic lactones (CQLs). AC adsorbed caffeine, chlorogenic acids (CGAs) and CQLs simultaneously. The results suggested that the adsorption selectivity for caffeine in coffee extract is higher in MMT than AC. The caffeine adsorption isotherms of MMT in coffee extract fitted well to the Langmuir adsorption model. The adsorption properties in coffee extracts from the same species were comparable, regardless of roasting level and locality of growth. Our findings suggest that MMT is a useful adsorbent in the decaffeination of a wide range of coffee extracts.

  4. Niclosamide suppresses hepatoma cell proliferation via the Wnt pathway

    Directory of Open Access Journals (Sweden)

    Tomizawa M

    2013-11-01

    Full Text Available Minoru Tomizawa,1 Fuminobu Shinozaki,2 Yasufumi Motoyoshi,3 Takao Sugiyama,4 Shigenori Yamamoto,5 Makoto Sueishi,4 Takanobu Yoshida6 1Department of Gastroenterology, 2Department of Radiology, 3Department of Neurology, 4Department of Rheumatology, 5Department of Pediatrics, 6Department of Internal Medicine, National Hospital Organization Shimoshizu Hospital, Yotsukaido City, Chiba, Japan Background: The Wnt pathway plays an important role in hepatocarcinogenesis. We analyzed the association of the Wnt pathway with the proliferation of hepatoma cells using Wnt3a and niclosamide, a drug used to treat tapeworm infection. Methods: We performed an MTS assay to determine whether Wnt3a stimulated proliferation of Huh-6 and Hep3B human hepatoma cell lines after 72 hours of incubation with Wnt3a in serum-free medium. The cells were subjected to hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL after 48 hours of incubation. RNA was isolated 48 hours after addition of Wnt3a or niclosamide, and cyclin D1 expression levels were analyzed by real-time quantitative polymerase chain reaction. The promoter activity of T-cell factor was analyzed by luciferase assay 48 hours after transfection of TOPflash. Western blot analysis was performed with antibodies against β-catenin, dishevelled 2, and cyclin D1. Results: Cell proliferation increased with Wnt3a. Niclosamide suppressed proliferation with or without Wnt3a. Hematoxylin and eosin and TUNEL staining suggested that apoptosis occurred in cells with niclosamide. Cyclin D1 was upregulated in the presence of Wnt3a and downregulated with addition of niclosamide. The promoter activity of T-cell factor increased with Wnt3a, whereas T-cell factor promoter activity decreased with niclosamide. Western blot analysis showed that Wnt3a upregulated β-catenin, dishevelled 2, and cyclin D1, while niclosamide downregulated them. Conclusion: Niclosamide is a potential

  5. Association of caffeine intake and histological features of chronic hepatitis C.

    Science.gov (United States)

    Costentin, Charlotte E; Roudot-Thoraval, Françoise; Zafrani, Elie-Serge; Medkour, Fatiha; Pawlotsky, Jean-Michel; Mallat, Ariane; Hézode, Christophe

    2011-06-01

    The severity of chronic hepatitis C (CHC) is modulated by host and environmental factors. Several reports suggest that caffeine intake exerts hepatoprotective effects in patients with chronic liver disease. The aim of this study was to evaluate the impact of caffeine consumption on activity grade and fibrosis stage in patients with CHC. A total of 238 treatment-naïve patients with histologically-proven CHC were included in the study. Demographic, epidemiological, environmental, virological, and metabolic data were collected, including daily consumption of alcohol, cannabis, tobacco, and caffeine during the six months preceding liver biopsy. Daily caffeine consumption was estimated as the sum of mean intakes of caffeinated coffee, tea, and caffeine-containing sodas. Histological activity grade and fibrosis stage were scored according to Metavir. Patients (154 men, 84 women, mean age: 45±11 years) were categorized according to caffeine consumption quartiles: group 1 (678 mg/day, n=60). There was a significant inverse relationship between activity grade and daily caffeine consumption: activity grade>A2 was present in 78%, 61%, 52%, and 48% of patients in group 1, 2, 3, and 4, respectively (pA2 (OR=0.32 (0.12-0.85). Caffeine intake showed no relation with fibrosis stage. Caffeine consumption greater than 408 mg/day (3 cups or more) is associated with reduced histological activity in patients with CHC. These findings support potential hepatoprotective properties of caffeine in chronic liver diseases. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Interaction of Caffeine Molecular Associates with Water: Theory and Experiment

    OpenAIRE

    Shestopalova, Anna V.

    1990-01-01

    Results of a Monte Carlo simulation of the association process of caffeine (1,3,7-trimethyl-2,6-dioxipurine) in water are presented. Simulation was performed in a cluster approximation ; the system contained 200 water molecules. The nature of the stabilization of caffeine stacking associates in water was considered. Hydrophobic behaviour of methyl group s during association of caffeine molecules in water is shown. The peculiarity of interaction of caffeine associates with wa...

  7. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes

    International Nuclear Information System (INIS)

    Downs, R.M.; Hughes, M.A.; Kinsey, S.T.; Johnson, M.C.; Baumgarner, B.L.

    2016-01-01

    Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release. - Highlights: • Caffeine

  8. Cyclin D1-AR Crosstalk: Potential Implications for Therapeutic Response in Prostate Cancer

    Science.gov (United States)

    2013-06-01

    metastatic androgen-independent prostate cancer. Clin Cancer Res 2004; 10: 924–928. 12 Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H et...al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 2005; 48: 2388–2406. 13 Fry DW, Harvey PJ, Keller PR...cyclin- dependent kinase 6 specific inhibition. J Med Chem 2006; 49: 3826–3831. 58 Lim JT, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6

  9. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okabe

    2006-12-01

    Full Text Available Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively.

  10. Effect of caffeine ingestion on anaerobic capacity quantified by different methods

    Science.gov (United States)

    Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim

    2017-01-01

    We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848

  11. Disrupted G1 to S phase clearance via cyclin signaling impairs liver tissue repair in thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2005-01-01

    Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G 0 to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G 1 to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes

  12. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms.

    Science.gov (United States)

    Mustard, Julie A

    2014-04-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine's ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.

  13. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells.

    Science.gov (United States)

    Bindra, Ranjit S; Vasselli, James R; Stearman, Robert; Linehan, W Marston; Klausner, Richard D

    2002-06-01

    Renal cell carcinoma is associated with mutation of the von Hippel-Lindau (VHL) tumor suppressor gene. Cell lines derived from these tumors cannot exit the cell cycle when deprived of growth factors, and the ability to exit the cell cycle can be restored by the reintroduction of wild-type protein VHL (pVHL). Here, we report that cyclin D1 is overexpressed and remains inappropriately high in during contact inhibition in pVHL-deficient cell lines. In addition, hypoxia increased the expression of cyclin D1 specifically in pVHL-negative cell lines into which pVHL expression was restored. Hypoxic-induction of cyclin D1 was not observed in other pVHL-positive cell lines. This suggests a model whereby in some kidney cell types, pVHL may regulate a proliferative response to hypoxia, whereas the loss of pVHL leads to constitutively elevated cyclin D1 and abnormal proliferation under normal growth conditions.

  14. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela B Ortiz

    Full Text Available The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52% of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010. Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001, with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9% and correlated significantly with high tumor grade (p = 0.038, high Ki-67 protein expression (p = 0.002, and the Luminal B subtype (p = 0.002. Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01. These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.

  15. The effect of caffeine on repair in chlamydomonas reinhardtii. Pt. 1

    International Nuclear Information System (INIS)

    Rosen, H.; Rehn, M.M.; Johnson, B.A.

    1980-01-01

    The effect of caffeine on repair was studied in the green alga Chlamydomonas reinhardtii. Treatment of UV-irradiated wild-type (UVS + ) cells with a sublethal level of caffeine caused a significant increase in survival compared to untreated UV-irradiated cells. Caffeine did not affect survival in the repair-deficient strain UVSE1, which is deficient in repair of UV-induced damage carried out by enzymes associated with recombination during meiosis. A significant increase in survival in the presence of caffeine was observed in the repair-deficient strain UVSE4 in which recombination during meiosis is not affected. Treatment of zygotes homozygous for UVS + , UVSE1, or UVSE4 with sublethal levels of caffeine caused marked increases in recombination frequency in UVS + and UVSE4 zygotes and no increase in recombination in UVSE1 zygotes. These results indicate that caffeine increases recombination in normal strains. Increased opportunity for recombination caused by caffeine would not result in increased recombination frequency in the UVSE1 strain, assuming limited-recombination enzyme activity in this strain. The observed increase in survival following UV-irradiation in the presence of caffeine in strains having normal recombination would therefore be associated with a caffeine-induced increase in opportunities for recombination repair. (orig.)

  16. Load dependence of left ventricular contraction and relaxation. Effects of caffeine.

    Science.gov (United States)

    Leite-Moreira, A F; Correia-Pinto, J; Gillebert, T C

    1999-08-01

    Load dependence of left ventricular (LV) contraction and relaxation was investigated at baseline and after alteration of intracellular calcium handling by caffeine. Afterload was increased by aortic clamp occlusions (n = 281) in anesthetized open-chest dogs (n = 7). Control and first heartbeat after the intervention were considered for analysis. Caffeine (50 mg/kg, iv) had no inotropic effect. The systolic LV pressure (LVP), developed in response to aortic occlusion, decreased as ejection proceeded and this pressure generating capacity was not affected by caffeine. Late-systolic aortic occlusions induced premature onset and accelerated rate of initial LVP fall at baseline and similarly after caffeine. Graded diastolic aortic occlusions induced systolic LVP elevations of various magnitudes. Smaller LVP elevations prolonged ejection and accelerated LVP fall, while larger elevations had opposite effects. The transition from acceleration to deceleration was observed at 83.1 +/- 1.1% of peak isovolumetric LVP at baseline and at lower loads, at 77.6 +/- 1.2%, after caffeine (p caffeine (p dependence of relaxation, was also modified by caffeine. Caffeine affected LV relaxation without altering contractility. As a consequence contraction-relaxation coupling was modified by caffeine. These results might help to understand load dependence of relaxation in conditions where intracellular calcium handling is altered.

  17. Psychostimulant and other effects of caffeine in 9- to 11-year-old children.

    Science.gov (United States)

    Heatherley, Susan V; Hancock, Katie M F; Rogers, Peter J

    2006-02-01

    Recent research on adults suggests that "beneficial" psychostimulant effects of caffeine are found only in the context of caffeine deprivation; that is, caffeine improves psychomotor and cognitive performance in habitual caffeine consumers following caffeine withdrawal. Furthermore, no net benefit is gained because performance is merely restored to "baseline" levels. The effects of caffeine in children is an under-researched area, with only a handful of studies being carried out in the US where children's consumption of caffeine appears to be lower on average than in the UK. Twenty-six children aged between 9 and 11 years completed a double-blind, placebo-controlled study. Habitual caffeine consumers (mean daily caffeine intake = 109 mg) and non/low-consumers (12 mg) were tested on two separate days following overnight caffeine abstinence. On each day measures of cognitive performance (a number search task), and self-rated mood and physical symptoms, including alertness and headache, were taken before and after administration of 50 mg of caffeine, or placebo. At baseline (before treatment), the habitual consumers showed poorer performance on the cognitive test than did the non/low-consumers, although no significant differences in mood or physical symptoms were found between the two groups. There were significant habit by treatment (caffeine vs. placebo) interactions for accuracy of performance and headache, and a significant main effect of treatment for alertness. Post hoc comparisons showed that caffeine administration improved the consumers' accuracy on the cognitive test (to near the level displayed by the non/low-consumers at baseline), but that it had no significant effect on the non/low-consumers' performance. In the consumers, caffeine prevented an increase in headache that occurred after placebo, and it increased alertness relative to placebo. Again, however, caffeine did not significantly affect levels of headache or alertness in the non

  18. Development and initial validation of a caffeine craving questionnaire.

    Science.gov (United States)

    West, Oliver; Roderique-Davies, Gareth

    2008-01-01

    Craving for caffeine has received little empirical attention, despite considerable research into the potential for caffeine dependence. The main aim of this study was to develop, and initially validate, a multi-item, multidimensional instrument to measure cravings for caffeine. Participants were 189 caffeine consumers who completed the Questionnaire of Caffeine Cravings, which was based on the Questionnaire of Smoking Urges (QSU), in one of five naturally occurring periods of abstinence; 1-15 min; 16-120 mins; 3-7 h; 12-48 h and +48 h. Exploratory factor analysis suggested a three-factor solution best described the data; Factor 1 reflected strong desires, intentions and positive reinforcement; Factor 2 reflected mild/general positive and negative reinforcement and Factor 3 reflected functional/mood-based negative reinforcement. Significantly higher Factor 1 and Factor 2 scores were recorded for high frequency users; significantly higher Factor 1 and Factor 3 scores were recorded as a function of increased levels of dependence. Duration of abstinence did not significantly effect cravings across all three factors. Regression analyses suggested level of dependence best predicted both current cravings and frequency of daily use. These findings suggest caffeine cravings may be conceptualized multidimensionally and further validates the use of multidimensional, multi-item instruments. Cravings for caffeine may manifest and be detected across varying levels of dependence and, frequency of use and independently of duration of abstinence.

  19. Caffeine use in the neonatal intensive care unit.

    Science.gov (United States)

    Abu-Shaweesh, Jalal M; Martin, Richard J

    2017-10-01

    Caffeine is the most frequently used medication in the neonatal intensive care unit. It is used for the prevention and treatment of apnea, although this has been associated with lower incidence of bronchopulmonary dysplasia (BPD) and patent ductus arteriosus as well as intact survival at 18-21 months of life. Although neurodevelopmental advantage was no longer statistically significant at age 5 years, caffeine was associated with sustained improvement in co-ordination and less gross motor impairment than placebo. The mechanism of action of caffeine on prevention of apnea and activation of breathing seems to be through central inhibition of adenosine receptors. However, its impact on BPD and neurodevelopmental outcomes might be induced through its effects as anti-inflammatory mediator, protection of white matter, and induction of surfactant protein B. Whereas long-term studies have documented the safety of caffeine as used in current practice, further studies are clearly needed to identify optimum dosing, and time of starting and discontinuing caffeine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Coffee and caffeine intake and male infertility: a systematic review.

    Science.gov (United States)

    Ricci, Elena; Viganò, Paola; Cipriani, Sonia; Somigliana, Edgardo; Chiaffarino, Francesca; Bulfoni, Alessandro; Parazzini, Fabio

    2017-06-24

    Semen quality, a predictor of male fertility, has been suggested declining worldwide. Among other life style factors, male coffee/caffeine consumption was hypothesized to influence semen parameters, but also sperm DNA integrity. To summarize available evidence, we performed a systematic review of observational studies on the relation between coffee/caffeine intake and parameters of male fertility including sperm ploidy, sperm DNA integrity, semen quality and time to pregnancy. A systematic literature search was performed up to November 2016 (MEDLINE and EMBASE). We included all observational papers that reported the relation between male coffee/caffeine intake and reproductive outcomes: 1. semen parameters, 2. sperm DNA characteristics, 3. fecundability. All pertinent reports were retrieved and the relative reference lists were systematically searched in order to identify any potential additional studies that could be included. We retrieved 28 papers reporting observational information on coffee/caffeine intake and reproductive outcomes. Overall, they included 19,967 men. 1. Semen parameters did not seem affected by caffeine intake, at least caffeine from coffee, tea and cocoa drinks, in most studies. Conversely, other contributions suggested a negative effect of cola-containing beverages and caffeine-containing soft drinks on semen volume, count and concentration. 2. As regards sperm DNA defects, caffeine intake seemed associated with aneuploidy and DNA breaks, but not with other markers of DNA damage. 3. Finally, male coffee drinking was associated to prolonged time to pregnancy in some, but not all, studies. The literature suggests that caffeine intake, possibly through sperm DNA damage, may negatively affect male reproductive function. Evidence from epidemiological studies on semen parameters and fertility is however inconsistent and inconclusive. Well-designed studies with predefined criteria for semen analysis, subject selection, and life style habits

  1. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0297 TITLE: The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma PRINCIPAL INVESTIGATOR: Vu Ngo...AND SUBTITLE The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma 5a. CONTRACT NUMBER The Role of Cyclin D1 in the Chemoresistance of...Mantle Cell Lymphoma 5b. GRANT NUMBER GRANT1173 9905 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Vu Ngo 5e. TASK NUMBER E

  2. Blood biochemistry, thyroid hormones, and performance in broilers with ascites caused by caffeine.

    Science.gov (United States)

    Kamely, Mohammad; Karimi Torshizi, Mohammad Amir; Rahimi, Shaban

    2016-11-01

    Previously, we demonstrated that caffeine, a natural alkaloid, stimulates increased incidences of pulmonary hypertension syndrome (ascites) in broilers. The present study was designed to evaluate the ergogenic effects of caffeine on broiler performance and blood parameters. One-hundred-and-ninety-two Ross 308 male broiler chicks were randomly assigned at one d of age to 16 pens with 4 treatment groups. On d 3, the drinking water was supplemented with caffeine at levels of zero, 12.5, 25, and 50 mg/kg BW/day. Caffeine supplementation linearly improved (P caffeine (P > 0.05). On d 28, increasing caffeine supplementation caused linear reductions in plasma albumin, total protein, globulin, and triglyceride concentrations, and caffeine supplementation increased plasma uric acid concentrations (P caffeine did not consistently affect plasma albumin, globulin, triglyceride, total protein, uric acid, or urea concentrations (P > 0.05), whereas plasma glucose concentrations increased linearly with increasing caffeine levels (P caffeine (P > 0.05), but plasma T 3 concentrations were reduced by caffeine supplementation on d 28 and 42 (P caffeine supplementation on d 42. Skin temperature was not influenced by caffeine supplementation (P > 0.05). There was a negative correlation between thyroid hormone concentrations and BW on d 42 (P caffeine supplementation at the levels of 12.5 to 25 mg/kg BW/day increased BWG, decreased FCR and T 3 , and significantly altered blood biochemistry parameters. © 2016 Poultry Science Association Inc.

  3. Patterns of caffeine consumption in psychiatric patients. An Italian study.

    Science.gov (United States)

    Ciapparelli, A; Paggini, R; Carmassi, C; Taponecco, C; Consoli, G; Ciampa, G; Ramacciotti, C E; Marazziti, D; Dell'Osso, L

    2010-05-01

    The aim of the present study was to explore and compare the caffeine intake, intoxication, withdrawal and dependence prevalence in Italian psychiatric patients and healthy subjects. Three hundred and sixty-nine out- and inpatients, suffering from different psychiatric disorders, and 104 healthy subjects were included in the study. They were assessed by the SCID and by a structured interview for caffeine intoxication and withdrawal and for substance dependence applied to caffeine use. Patients and healthy subjects did not differ in terms of current caffeine intake (mg/day, mean+/-SD: 281+/-325 vs. 288+/-148, respectively), while the maximum lifetime intake of caffeine was significantly higher in the first group (mg/day, mean SD: 630+/-549 vs. 504+/-344, respectively; F=4.897, p=.03) where it was significantly related to the CGI severity item scores (rho=.107; p=.04). In both patients and healthy subjects, a lower age was related to a higher current caffeine intake, while both current and maximum lifetime caffeine intake in the healthy subjects were significantly higher in men than in women. The patients suffering from eating disorders reported higher current caffeine intake than those with anxiety or mood disorders. The prevalence of dependence and intoxication was significantly higher in the patients than in the healthy subjects, without inter-group differences. Healthy subjects showed a trend towards a higher prevalence of withdrawal. Our study highlights the need that a more accurate attention should be paid to the caffeine use which seems to be strongly, although generically, related to different psychiatric disorders. (c) 2009 Elsevier Masson SAS. All rights reserved.

  4. Spectrophotometric determination of caffeine using polyaniline films

    International Nuclear Information System (INIS)

    Monlinong, Jason Paul C.; Portilla, Ma. Cristina B.; Agustin, Katrina Jane D.; Pascual, Cherrie B.

    2015-01-01

    Polyaniline (PANI) films were fabricated by chemical oxidative polymerization of aniline monomers using ammonium persulfate (APS). The effects of varying oxidant concentration, oxidant solvent and washing solution in the PANI film deposition were first evaluated. 0.250 M APS in 0.200 M HCl and 0.200 M aniline in 0.200 M HCl were used to produce the emeraldine PANI (green) films which were deposited onto commercially available acctate films. The fabricated PANI film acts as an optical sensor baed on its redox-dependent switching of polyaniline from emeraldine (green) to pernigranilline (blue) form. The change in absorbance of blue PANI films immerse in caffeine-containing solution vs green fabricated PANI films were utilized in analysis of caffeine at 829 nm using a UV-VIS spectrophotometer. Repeatable results were obtained in intra-branch and inter-branch repeatability studies, with coefficient of variation (CV) values ranging rom 9.8-13.9% and 5.1-14.5%, respectively. Linear response was obtained over the concentration of 10.0-50.0 μg/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were determined to be 2.5 and 8.5μg/mL, respectively. The obtained % recovery values of caffeine spiked in aqueous solution ranged from 84.9-107%. Three pharmaceutical formulations containing 20.0 or 25.0 μg/Ml caffeine where analyzed using PANI films by external calibration method. The obtained average caffeine values were 25.2 mg/tablet, 22.4 mg/tablet and 15.4 mg/capsule for Fevadol®, Fevergan® and Alaxan®FR, respectively. These values were 77.0% to 101% of the label claims. Human urine samples spiked with caffeine were also analyzed, after sample pre-treatment. Obtained percent recovery values ranged from 79.1 to 105%. This method demonstrated the potential of laboratory-fabricated PANI films as a low-cost rapid, reliable, simple and accurate method for caffeine quantification in pharmaceutical and clinical specimens. (author)

  5. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    Science.gov (United States)

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  6. The Cumulative Neurobehavioral and Physiological Effects of Chronic Caffeine Intake: Individual Differences and Implications for the Use of Caffeinated Energy Products

    Science.gov (United States)

    Spaeth, Andrea M; Goel, Namni; Dinges, David F

    2014-01-01

    The use of caffeine-containing energy products (CCEP) has increased worldwide in recent years and research shows that CCEP can improve cognitive and physical performance. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in CCEP. Presumably, individuals consume CCEP to counteract feelings of ‘low-energy’ in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia and the time-on-task effect as causes of ‘low energy’ and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment on healthy adults undergoing three nights of total sleep deprivation (with or without 2 hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. We conclude with future directions for research on this important and evolving topic. PMID:25293542

  7. Caffeine-Not just a stimulant.

    Science.gov (United States)

    Glade, Michael J

    2010-10-01

    The beneficial effects of human caffeine consumption deserve clarification. A detailed literature review was conducted and summarized. A large body of scientific evidence describes the beneficial effects of human caffeine consumption on a number of physiologic systems. The consumption of moderate amounts of caffeine 1) increases energy availability, 2) increases daily energy expenditure, 3) decreases fatigue, 4) decreases the sense of effort associated with physical activity, 5) enhances physical performance, 6) enhances motor performance, 7) enhances cognitive performance, 8) increases alertness, wakefulness, and feelings of "energy," 9) decreases mental fatigue, 10) quickens reactions, 11) increases the accuracy of reactions, 12) increases the ability to concentrate and focus attention, 13) enhances short-term memory, 14) increases the ability to solve problems requiring reasoning, 15) increases the ability to make correct decisions, 16) enhances cognitive functioning capabilities and neuromuscular coordination, and 17) in otherwise healthy non-pregnant adults is safe. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The validity of immunocytochemical expression of cyclin D1 in fine needle aspiration cytology of breast carcinoma

    International Nuclear Information System (INIS)

    Ezzat, N.; Hafez, N.

    2012-01-01

    Purpose: The aim of this work is to study the validity of cyclin D1 expression, a cell Fenac; cycle regulatory protein, on (fine needle aspiration cytology) FNAC samples in patients with breast Breast carcinoma; carcinoma using immunostaining technique. Cyclin D1 Patient and methods: This is a study done on 70 patients with primary breast carcinoma, presented to Cytology Unit, Pathology Department, National Cancer Institute, Cairo University. They underwent preoperative FNAC and diagnosed as breast carcinoma. The cytologic and tissue section slides were subjected to cyclin D1 immunocytochemical staining. Only the nuclear immunoreactivity for cyclin D1 was considered specific. The rate of concordance, and discordance, and kappa value were calculated. Relation between cytologic expression of cyclin D1 and different clinico pathologic parameters was evaluated. Results: Cyclin D1 immunocytochemical expression was observed in 53/70 cases (75.7%) in cytologic smears. In histologic sections of the corresponding cases, cyclin D1 was detected in 48/70 cases (68.6%). The concordance rate of cyclin D1 expression in the FNA and histologic sections was 87.1% while the discordance rate was 12.9%. Kappa showed a value of 0.65. A statistically significant relation was found between cyclin D1 immunocytochemical expression and hormonal status as well as nuclear grade. Conclusion: Cyclin D1 immunocytochemical expression can be performed successfully on cytologic samples with a high concordance rate and agreement with histologic results. This can help in determining tumor biology, and plan for patients treatment. The marker showed a significant relation with hormone receptor status and nuclear grade

  9. Cyclin G1 inhibits the proliferation of mouse endometrial stromal cell in decidualization

    Directory of Open Access Journals (Sweden)

    Xu Qian

    2017-01-01

    Full Text Available Uterine stromal cell decidualization is a dynamic physiological process in which cell proliferation, differentiation and apoptosis are orchestrated and occur in a temporal and cell-specific manner. This process is important for successful embryo implantation. Many cell-cycle regulators are involved in decidualization. The protein cyclin G1 is a unique regulator of the cell cycle with dual functions in cell proliferation. It was reported that cyclin G1 is expressed in mouse uterine stromal cells during the period of peri-implantation. To prove the function of cyclin G1 in mouse uterine stromal cells during this period, immunohistochemistry was used to stain mouse uterine tissues on days 4-8 of pregnancy. The results showed obvious spatial and temporal expression of cyclin G1 in uterine stromal cells, and that it is expressed in the cells of the primary decidual zone (PDZ on day 5 and secondary decidual zone (SDZ on days 6 and 7, when the stromal cells experienced active proliferation and differentiation was initiated. Applying the decidualization model of cultured primary stromal cells in vitro, we further revealed that the expression of cyclin G1 is associated with decidualization of stromal cells induced by medroxyprogesterone acetate (MPA and estradiol-17β (E2. RNA interference was used for the knockdown of cyclin G1 in the induced decidual cells. Flow cytometry analysis indicated that the proportion of cells in the S stage was increased, and decreased in the G2/M phase. Our study indicates that cyclin G1, as a negative regulator of the cell cycle, plays an important role in the process of decidualization in mouse uterine stromal cells by inhibiting cell-cycle progression.

  10. Understanding adolescent caffeine use: connecting use patterns with expectancies, reasons, and sleep.

    Science.gov (United States)

    Bryant Ludden, Alison; Wolfson, Amy R

    2010-06-01

    Little is known about adolescents' caffeine use, yet caffeinated soda, and more recently coffee and energy drinks, are part of youth culture. This study examines adolescents' caffeine use and, using cluster analysis, identifies three groups of caffeine users who differed in their reasons for use, expectancies, and sleep behaviors. In this high school student sample (N = 197), 95% of participants reported recent caffeine use-most often soda-where typical first use of the day was in the evening. Results reveal that adolescents in the mixed use and high soda use groups consumed similar amounts of soda, reporting significantly more use than the low caffeine use group. In contrast with high soda users, mixed users drank more coffee, expected more dependence symptoms and energy enhancement from caffeine, and were more likely to report getting up early, daytime sleepiness, and using caffeine to get through the day.

  11. Molecular dynamics simulation studies of caffeine aggregation in aqueous solution.

    Science.gov (United States)

    Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W

    2011-09-22

    Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molecules, which was not sensitive to the water model used. As expected, extensive aggregation of the caffeine molecules was observed, with the molecules stacking their flat faces against one another like coins, with their methylene groups staggered to avoid steric clashes. A dynamic equilibrum was observed between large n-mers, including stacks with all eight solute molecules, and smaller clusters, with the calculated osmotic coefficient being in acceptable agreement with the experimental value. The insensitivity of the results to water model and the congruence with experimental thermodynamic data suggest that the observed stacking interactions are a realistic representation of the actual association mechanism in aqueous caffeine solutions.

  12. False-negative dipyridamole-thallium-201 myocardial imaging after caffeine infusion

    International Nuclear Information System (INIS)

    Smits, P.; Corstens, F.H.; Aengevaeren, W.R.; Wackers, F.J.; Thien, T.

    1991-01-01

    The vasodilator effect of intravenously administered dipyridamole may be caused by an increase in endogenous plasma adenosine levels. The authors evaluated the effect of caffeine, an adenosine receptor antagonist, on the diagnostic results of dipyridamole-201Tl myocardial imaging in eight patients with coronary artery disease. Caffeine infusion significantly attenuated the dipyridamole-induced fall in blood pressure and the accompanied increase in heart rate. The infusion of dipyridamole alone resulted in chest pain and ST-segment depressions on the electrocardiogram in four patients, whereas none of these problems occurred when the tests were repeated after caffeine. In six of eight patients, caffeine was responsible for false-negative dipyridamole-201Tl tests. Semiquantitive scores of the dipyridamole-induced 201Tl perfusion defects were decreased by caffeine from 9.0 ± 0.9 to 2.0 ± 1.1 points (p less than 0.05). Computerized analysis revealed a caffeine-mediated reduction in the percent reversibility of the images from 46% ± 16% to 6% ± 10% (p less than 0.05). They conclude that the use of caffeinated products prior to dipyridamole-201Tl testing may be responsible for false-negative findings

  13. False-negative dipyridamole-thallium-201 myocardial imaging after caffeine infusion

    Energy Technology Data Exchange (ETDEWEB)

    Smits, P.; Corstens, F.H.; Aengevaeren, W.R.; Wackers, F.J.; Thien, T. (University Hospital Nijmegen (Netherlands))

    1991-08-01

    The vasodilator effect of intravenously administered dipyridamole may be caused by an increase in endogenous plasma adenosine levels. The authors evaluated the effect of caffeine, an adenosine receptor antagonist, on the diagnostic results of dipyridamole-201Tl myocardial imaging in eight patients with coronary artery disease. Caffeine infusion significantly attenuated the dipyridamole-induced fall in blood pressure and the accompanied increase in heart rate. The infusion of dipyridamole alone resulted in chest pain and ST-segment depressions on the electrocardiogram in four patients, whereas none of these problems occurred when the tests were repeated after caffeine. In six of eight patients, caffeine was responsible for false-negative dipyridamole-201Tl tests. Semiquantitive scores of the dipyridamole-induced 201Tl perfusion defects were decreased by caffeine from 9.0 {plus minus} 0.9 to 2.0 {plus minus} 1.1 points (p less than 0.05). Computerized analysis revealed a caffeine-mediated reduction in the percent reversibility of the images from 46% {plus minus} 16% to 6% {plus minus} 10% (p less than 0.05). They conclude that the use of caffeinated products prior to dipyridamole-201Tl testing may be responsible for false-negative findings.

  14. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms

    OpenAIRE

    Mustard, Julie A.

    2013-01-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion an...

  15. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  16. Caffeine and oocyte vitrification: Sheep as an animal model

    Directory of Open Access Journals (Sweden)

    Adel R. Moawad

    Full Text Available Oocyte cryopreservation is valuable way of preserving the female germ line. Vitrification of immature ovine oocytes decreased the levels of both maturation promoting factor (MPF and mitogen-activated protein kinase (MAPK in metaphase II (MII oocytes after IVM. Our aims were 1 to evaluate the effects of vitrification of ovine GV-oocytes on spindle assembly, MPF/MAP kinases activities, and preimplantation development following IVM and IVF, 2 to elucidate the impact of caffeine supplementation during IVM on the quality and development of vitrified/warmed ovine GV-oocytes. Cumulus-oocyte complexes (COCs from mature ewes were divided into vitrified, toxicity and control groups. Oocytes from each group were matured in vitro for 18 h in caffeine free IVM medium and denuded oocytes were incubated in maturation medium supplemented with 10 mM (+ or without (− caffeine for another 6 h. At 24 h.p.m., oocytes were evaluated for spindle configuration, MPF/MAP kinases activities or fertilized and cultured in vitro for 7 days. Caffeine supplementation did not significantly affect the percentages of oocytes with normal spindle assembly in all the groups. Caffeine supplementation during IVM did not increase the activities of both kinases in vitrified groups. Cleavage and blastocyst development were significantly lower in vitrified groups than in control. Caffeine supplementation during the last 6 h of IVM did not significantly improve the cleavage and blastocyst rates in vitrified group. In conclusion, caffeine treatment during in vitro maturation has no positive impact on the quality and development of vitrified/warmed ovine GV-oocytes after IVM/IVF and embryo culture. Keywords: Caffeine, GV, MPF/MAPK, Oocytes, Ovine, Vitrification

  17. Mechanisms of the psychostimulant effects of caffeine: Implications for substance use disorders

    Science.gov (United States)

    Ferré, Sergi

    2016-01-01

    Background The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants, able to cause substance use disorders (SUD). Caffeine produces psychomotor activating, reinforcing and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. Objectives A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. Highlights The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives and synthetic cathinones and energy drinks with alcohol; and the higher sensitivity of children and adolescents to the psychostimulants effects of caffeine and its possible increase in the vulnerability to develop SUD. Conclusions The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants. PMID:26786412

  18. Caffeine intake and fecundability

    DEFF Research Database (Denmark)

    Jensen, Tina Kold; Henriksen, T B; Hjollund, N H

    1998-01-01

    and caffeine intake from different sources on the probability of conception. From 1992 to 1995, a total of 430 couples were recruited after a nationwide mailing of a personal letter to 52,255 trade union members who were 20 to 35 years old, lived with a partner, and had no previous reproductive experience...... of menstrual cycle. No dose-response relationship was found among smokers. Among males, the same decline in point estimates of the FR was present. Smoking women whose only source of caffeine was coffee (>300 mg/d) had a reduced fecundability odds-ratio (FR = 0.34; 95% CI 0.12-0.98). An interaction between...

  19. Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast

    International Nuclear Information System (INIS)

    Bertomeu, Thierry; Morse, David

    2004-01-01

    Dinoflagellates are parasite with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with ∼5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68 kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms

  20. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Directory of Open Access Journals (Sweden)

    Lu Jin

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine and theobromine (3, 7-dimethylxanthine are the major purine alkaloids in plants, e.g., tea (Camellia sinensis and coffee (Coffea arabica. Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT and Camellia sinensis caffeine synthase (TCS in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  1. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Science.gov (United States)

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  2. The effects of caffeine abstinence on sleep: a pilot study.

    Science.gov (United States)

    Ho, Shuk Ching; Chung, Joanne Wai Yee

    2013-05-01

    The aim of this study was to examine whether caffeine abstinence in the evening could improve the sleep quality of those who habitually consume coffee. A double-blind control group design (caffeine and caffeine-free groups). A university. A convenience sampling of 10 students (mean age 21.4 years). It was a 14-day experiment. For the first 7 days, all participants consumed caffeinated coffee. In the following 7 days, subjects consumed caffeinated or decaffeinated coffee according to their assigned group. Sleep-wake parameters, self-reported sleep quality and level of refreshment. There were no significant differences (p>.05) among the data of the two groups identified. No significant changes (p>.05) were found in the sleep quality of either group during the study. This study confirms that caffeine abstinence in the evening might not be helpful in sleep promotion. It highlights the need to implement evidence-based practice in health promotion. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  4. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali; Wall, Richard J.; Douglass, Alexander P.; Ramaprasad, Abhinay; Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, ‍ Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  5. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    Science.gov (United States)

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  6. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  7. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    Science.gov (United States)

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  8. The synergistic effects of radiation and caffeine on embryonic development in mice

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Yoshizawa, Yasuo

    1984-01-01

    The combined action of radiation with caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on day 7 of gestation, at which time the embryos were in the early stage of organogenesis. Intrauterine death, gross malformation, body weight and sex ratio were selected as indicators of effects. Doses of gamma irradiation were 0.5, 1.0 and 2.0 Gy and those of caffeine were 0.10 and 0.25 mg/g of body weight. Intrauterine mortality increased with increasing radiation dose and this trend was more remarkable in combination with caffeine. The malformation such as parietal hernia, exencephalia, hydrocephalia and cleft palate appeared frequently in the fetuses treated with both radiation and caffeine compared to the fetuses treated with each agent separately. Fetal body weight was a sensitive indicator of the effects on growth retardation of radiation and/or caffeine. The sex ratio of live fetuses did not change by means of treatment with radiation and/or caffeine. Intrauterine mortality and frequency of malformations in mice treated with both radiation and caffeine were higher than the sum of those induced by radiation and those by caffeine separately. The results demonstrated that the combined effects of radiation and caffeine were synergistic. (author)

  9. Caffeine effects on learning, performance, and anxiety in normal school-age children.

    Science.gov (United States)

    Bernstein, G A; Carroll, M E; Crosby, R D; Perwien, A R; Go, F S; Benowitz, N L

    1994-01-01

    The purpose of this investigation was to study the acute effects of caffeine on learning, performance, and anxiety in normal prepubertal children. Twenty-one children were evaluated in a double-blind, placebo-controlled crossover design. Subjects were studied during four sessions, 1 week apart, under the following conditions: baseline, placebo, 2.5 mg/kg caffeine, and 5.0 mg/kg caffeine. Subjects were randomized to order of placebo and the two dosages of caffeine. Dependent measures included tests of attention, manual dexterity, short-term memory, and processing speed. Anxiety rating scales were also administered. Saliva samples were analyzed for caffeine levels. Caffeine improved performance on two of four measures of the Test of Variables of Attention and on a test of manual dexterity in the dominant hand. There was a trend toward increased current level of self-reported anxiety after caffeine on a visual analogue measure of anxiety. Children reported feeling significantly less "sluggish" after caffeine ingestion than after placebo ingestion. In a small sample size, there was indication that caffeine enhanced performance on a test of attention and on a motor task. Children also reported feeling less "sluggish" but somewhat more anxious. Because caffeine is so widely available and frequently consumed by children, these results are important and need replication.

  10. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.

    Science.gov (United States)

    Ogita, Shinjiro; Uefuji, Hirotaka; Morimoto, Masayuki; Sano, Hiroshi

    2004-04-01

    The caffeine biosynthetic pathway in coffee plants has been proposed to involve three distinct N -methyltransferases, xanthosine methyltransferase (XMT), 7- N -methylxanthine methyltransferase (MXMT; theobromine synthase), and 3,7-dimethylxanthine methyltransferase (DXMT; caffeine synthase). We previously isolated all corresponding cDNAs designated as CaXMT1 , CaMXMT1 , CaMXMT2 and CaDXMT1 , respectively, and showed that caffeine was indeed synthesized in vitro by the combination of their gene products. In order to regulate caffeine biosynthesis in planta , we suppressed expression of CaMXMT1 by the double stranded RNA interference (RNAi) method. For this purpose, we first established a protocol for efficient somatic embryogenesis of Coffea arabica and C. canephora , and then Agrobacterium -mediated transformation techniques. The RNAi transgenic lines of embryogenic tissues derived from C. arabica and transgenic plantlets of C. canephora demonstrated a clear reduction in transcripts for CaMXMT1 in comparison with the control plants. Transcripts for CaXMT1 and CaDXMT1 were also reduced in the most cases. Both embryonic tissues and plantlets exhibited a concomitant reduction of theobromine and caffeine contents to a range between 30% and 50% of that of the control. These results suggest that the CaMXMT1 -RNAi sequence affected expression of not only CaMXMT1 itself, but also CaXMT1 and CaDXMT1 , and that, since the reduction in theobromine content was proportional to that for caffeine, it is involved in the major synthetic pathway in coffee plants. The results also indicate that the method can be practically applied to produce decaffeinated coffee plants.

  11. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C-Cdc20 regulation during...... this window of the cell cycle, if any, is unknown. Here we show that cyclin A2-Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C-Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C-Cdc20 and several substrates, including cyclin B1 and A2......, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2-Cdk2 inhibition of interphase APC/C-Cdc20 to allow further cyclin A2 accumulation...

  12. Caffeine increases the velocity of rapid eye movements in unfatigued humans.

    Science.gov (United States)

    Connell, Charlotte J W; Thompson, Benjamin; Turuwhenua, Jason; Hess, Robert F; Gant, Nicholas

    2017-08-01

    Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued. Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg -1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography. Caffeine was associated with higher peak saccade velocities (472 ± 60° s -1 ) compared to placebo (455 ± 62° s -1 ). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine. These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine's action as an adenosine antagonist, even when participants are not fatigued.

  13. Central and peripheral effects of sustained caffeine use: tolerance is incomplete

    Science.gov (United States)

    Watson, Joanne; Deary, Ian; Kerr, David

    2002-01-01

    Aims It is widely held that tolerance develops to the effects of sustained caffeine consumption. This study was designed to investigate the effects of chronic, staggered caffeine ingestion on the responses of an acute caffeine challenge, during euglycaemia. Methods Twelve healthy volunteers were randomized using a double-blind, cross-over design to take either 200 mg caffeine (C-replete) or placebo (C-naïve) twice daily for 1 week. Following baseline measurements being made, the responses to 200 mg caffeine (blood-pressure, middle cerebral artery velocity, mood and cognitive performance) were examined over the subsequent 120 min. Blood glucose was not allowed to fall below 4.0 mmol l−1. Results After the caffeine challenge, middle cerebral artery blood velocity decreased in both conditions but was greater in the C-naïve condition (−8.0 [-10.0, −6.1] cm s−1 vs −4.9 [-6.8, −2.9] cm s−1 C-replete, P Mood was adversely affected by regular caffeine consumption with tense aspect of mood significantly higher at baseline in C-replete 11.6 ± 0.6 C-naïve vs 16.3 ± 1.6 C-replete, P affected by previous caffeine exposure. Conclusions Overall these results suggest that tolerance is incomplete with respect to both peripheral or central effects of caffeine. PMID:12392588

  14. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug?

    OpenAIRE

    Cappelletti, Simone; Daria, Piacentino; Sani, Gabriele; Aromatario, Mariarosaria

    2015-01-01

    Caffeine use is increasing worldwide. The underlying motivations are mainly concentration and memory enhancement and physical performance improvement. Coffee and caffeine-containing products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects. Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore, caffeine a...

  15. Requirements of cyclin a for mitosis are independent of its subcellular localization.

    Science.gov (United States)

    Dienemann, Axel; Sprenger, Frank

    2004-06-22

    Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.

  16. PARK2 orchestrates cyclins to avoid cancer

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 46, č. 6 (2014), s. 527-528 ISSN 1061-4036 Institutional support: RVO:68378050 Keywords : PARK2 * G1/S-phase cyclin * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.352, year: 2014

  17. Caffeine Content Labeling: A Missed Opportunity for Promoting Personal and Public Health

    OpenAIRE

    Kole, Jon; Barnhill, Anne

    2013-01-01

    Current regulation of caffeine-containing products is incoherent, fails to protect consumers' interests, and should be modified in multiple ways. We make the case for one of the regulatory reforms that are needed: all consumable products containing added caffeine should be required by the Food and Drug Administration (FDA) to include caffeine quantity on their labels. Currently, no foods or beverages that contain caffeine are required to include caffeine content on their labels. Strengthening...

  18. Caffeine increases the motivation to obtain non-drug reinforcers in rats

    Science.gov (United States)

    Sheppard, A. Brianna; Gross, Skyler C.; Pavelka, Sarah A.; Hall, Melanie J.; Palmatier, Matthew I.

    2012-01-01

    BACKGROUND Caffeine is widely considered to be a reinforcer in humans, but this effect is difficult to measure in non-human animals. We hypothesized that caffeine may have dual reinforcing effects comparable to nicotine - limited primary reinforcing effects, but potent reinforcement enhancing effects. The present studies tested this hypothesis by investigating the effect of caffeine on responding for non-drug rewards. METHODS In two experiments, rats were shaped to respond on a progressive ratio (PR) schedule for sucrose solution (20% w/v; Experiment 1) or a fixed ratio 2 (FR2) schedule for a moderately reinforcing visual stimulus (VS; Experiment 2). Pretreatment with various doses of caffeine (0–50 mg/kg, intraperitoneal injection) were administered prior to tests over successive week days (M-F). In Experiment 1, acute administration of low-moderate caffeine doses (6.25–25 mg/kg) increased responding for sucrose under the PR schedule. This effect of caffeine declined over the initial 15 test days. In Experiment 2, only acute pretreatment with 12.5 mg/kg caffeine increased responding for the visual stimulus and complete tolerance to this effect of caffeine was observed over the 15 days of testing. In follow up tests we found that abstinence periods of 4 and 8 days resulted in incomplete recovery of the enhancing effects of caffeine. CONCLUSION The findings suggest that caffeine enhances the reinforcing effects of non-drug stimuli, but that the pharmacological profile of these effects may differ from other psychomotor stimulants. PMID:22336397

  19. Role of post irradiation growth delay in chemical radioprotection by caffeine

    International Nuclear Information System (INIS)

    Gangabhagirathi, R.; Rao, B.S.; Bhat, N.N.

    2004-01-01

    Post irradiation treatment with caffeine enhanced the survival of wild type diploid yeast strain, Saccharomyces cerevisiae X2180. The presence of caffeine during gamma irradiation also affected a similar enhancement in survival. These observations suggest that caffeine imparted significant protection against radiation. Effectiveness of caffeine, even when present only during the post irradiation period, suggests that it modulates the post irradiation recovery process in yeast cells. (author)

  20. Coinciding exercise with peak serum caffeine does not improve cycling performance.

    Science.gov (United States)

    Skinner, Tina L; Jenkins, David G; Taaffe, Dennis R; Leveritt, Michael D; Coombes, Jeff S

    2013-01-01

    To investigate whether coinciding peak serum caffeine concentration with the onset of exercise enhances subsequent endurance performance. Randomised, double-blind, crossover. In this randomised, placebo-controlled, double-blind crossover study, 14 male trained cyclists and triathletes (age 31±5year, body mass 75.4±5.7 kg, VO₂max 69.5±6.1 mL kg⁻¹ min⁻¹ and peak power output 417±35W, mean±SD) consumed 6 mg kg(-1) caffeine or a placebo either 1h (C(1h)) prior to completing a 40 km time trial or when the start of exercise coincided with individual peak serum caffeine concentrations (C(peak)). C(peak) was determined from a separate 'caffeine profiling' session that involved monitoring caffeine concentrations in the blood every 30 min over a 4h period. Following caffeine ingestion, peak serum caffeine occurred 120 min in 12 participants and 150 min in 2 participants. Time to complete the 40 km time trial was significantly faster (2.0%; p=0.002) in C(1h) compared to placebo. No statistically significant improvement in performance was noted in the C(peak) trial versus placebo (1.1%; p=0.240). Whilst no differences in metabolic markers were found between C(peak) and placebo conditions, plasma concentrations of glucose (p=0.005), norepinephrine and epinephrine (p≤0.002) were higher in the C(1h) trial 6 min post-exercise versus placebo. In contrast to coinciding peak serum caffeine concentration with exercise onset, caffeine consumed 60 min prior to exercise resulted in significant improvements in 40 km time trial performance. The ergogenic effect of caffeine was not found to be related to peak caffeine concentration in the blood at the onset of endurance exercise. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Caffeine challenge test and panic disorder: a systematic literature review.

    Science.gov (United States)

    Vilarim, Marina Machado; Rocha Araujo, Daniele Marano; Nardi, Antonio Egidio

    2011-08-01

    This systematic review aimed to examine the results of studies that have investigated the induction of panic attacks and/or the anxiogenic effect of the caffeine challenge test in patients with panic disorder. The literature search was performed in PubMed, Biblioteca Virtual em Saúde and the ISI Web of Knowledge. The words used for the search were caffeine, caffeine challenge test, panic disorder, panic attacks and anxiety disorder. In total, we selected eight randomized, double-blind studies where caffeine was administered orally, and none of them controlled for confounding factors in the analysis. The percentage of loss during follow-up ranged between 14.3% and 73.1%. The eight studies all showed a positive association between caffeine and anxiogenic effects and/or panic disorder.

  2. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.

    Science.gov (United States)

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Kamimori, Gary H; Moon, James E; Balkin, Thomas J; Reifman, Jaques

    2016-10-01

    Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. © 2016 Associated Professional Sleep Societies, LLC.

  3. Radioprotective and antioxidant action of caffeine: mechanistic considerations

    International Nuclear Information System (INIS)

    Devasagayam, T.P.A.; Kesavan, P.C.

    1996-01-01

    Caffeine, a major constituent of coffee and other beverages has significant abilities to scavenge highly reactive free radicals and excited states of oxygen and to protect crucial biological molecules against these species. This is one of the possible reasons why caffeine acts as a radioprotector against oxygen-dependent (oxic) pathway of radiation damage and as an anti mutagen/anti carcinogen under certain conditions. The possible physicochemical and molecular mechanisms of caffeine action are briefly reviewed in the light of the recent finding. (author). 69 refs., 1 fig

  4. Acute caffeine effect on repeatedly measured P300

    OpenAIRE

    Pan, Jingbo; Takeshita, Tatsuya; Morimoto, Kanehisa

    2000-01-01

    The acute effect of a single-dose of caffeine on the P300 event-related brain potential (ERP) was assessed in a study using a repeatedly presented auditory oddball button-press task. A dose (5mg/kg body-weight) of either caffeine or placebo lactose, dissolved in a cup of decaffeinated coffee, was administered double-blindly to coffee drinkers who had abstained from coffee for 24hrs, with the presentation order of the sessions counterbalanced and separated by 2–4 weeks. The caffeine-treatment ...

  5. [Caffeine as adjuvant analgeticum for treating acute pain].

    Science.gov (United States)

    Nikolajsen, Lone; Haroutiunian, Simon

    2013-10-14

    Based on 19 studies (7,238 participants) a Cochrane review concludes that the addition of caffeine to an analgesic drug provides superior analgesia compared with the analgesic drug alone. The benefit is small, with a number needed to treat of approx. 16. The use of analgesics containing caffeine is associated with an increased risk of the development of physical dependence, overuse headache, and withdrawal symptoms upon abrupt discontinuation. Combination analgesics with caffeine should only be used temporarily and exclusively for the treatment of acute pain conditions.

  6. Caffeine in an Urbanized Estuary: Past and Present Influence ...

    Science.gov (United States)

    Caffeine has been identified by previous research as a potential tracer of sanitary wastewater. To further assess the utility of caffeine as a tracer of wastewater sources, samples from 25 sites throughout Boston Harbor were collected and analyzed for caffeine by LC-MS/MS. Caffeine concentrations in Boston Harbor ranged from 15 ng/L in the outer harbor to a high of 185 ng/L in the inner harbor; mean concentrations and median concentrations were 51 ng/L were 33 ng/L respectively. These data were visualized by a simple inverse distance weighting model to improve the understanding of transport and fate dynamics of wastewater derived contaminants. Elevated concentrations of caffeine in the inner harbor during the sampling period were determined to be the result of a combined sewage overflow (CSO) event as well as illicit discharge of sanitary sewage into municipal storm drains. A comparison of contemporary results to data from 1998 to 1999 shows significant reductions in caffeine levels within the harbor. For instance, concentrations were reduced by a factor of approximately 20 at the site of the former wastewater effluent discharge outfall in Boston Harbor. Lower present-day concentrations throughout the harbor were attributed to the relocation of effluent discharge from within the harbor to Massachusetts Bay, and a reduction in the number and discharge volume of CSOs. Spatial distributions of caffeine identified CSOs as the major contemporary source of con

  7. DETERMINATION OF CAFFEINE CONTENTS OF COFFEE BRANDS IN THE VIETNAMESE MARKET

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2012-02-01

    Full Text Available In this study, the caffeine contents in five certain Vietnamese coffee (Dak Tin, Di Linh, Nam Nguyen, Origin and Vinacafe found in the Vietnamese market were determined using UV/vis spectrophotometry. The quantification of caffeine sample was calculated by standard addition method. Our results showed that the caffeine contents in coffee brewing were influenced by temperature of water used to brew, time of brewing, and independent on the volume of water, respectively. In general, higher concentrations of caffeine were found in all samples prepared at temperature 100°C for 5 minutes. The order of caffeine contents in coffee samples was Dak Tin, Di Linh, Nam Nguyen, Origin and Vinacafe, respectively. This study can contribute to a better knowledge of caffeine contents in Vietnamese coffee of Vietnamese consumers.

  8. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells.

    Directory of Open Access Journals (Sweden)

    Laetitia Kurzawa

    Full Text Available Cyclin-dependant kinases play a central role in coordinating cell growth and division, and in sustaining proliferation of cancer cells, thereby constituting attractive pharmacological targets. However, there are no direct means of assessing their relative abundance in living cells, current approaches being limited to antigenic and proteomic analysis of fixed cells. In order to probe the relative abundance of these kinases directly in living cells, we have developed a fluorescent peptide biosensor with biligand affinity for CDKs and cyclins in vitro, that retains endogenous CDK/cyclin complexes from cell extracts, and that bears an environmentally-sensitive probe, whose fluorescence increases in a sensitive fashion upon recognition of its targets. CDKSENS was introduced into living cells, through complexation with the cell-penetrating carrier CADY2 and applied to assess the relative abundance of CDK/Cyclins through fluorescence imaging and ratiometric quantification. This peptide biosensor technology affords direct and sensitive readout of CDK/cyclin complex levels, and reports on differences in complex formation when tampering with a single CDK or cyclin. CDKSENS further allows for detection of differences between different healthy and cancer cell lines, thereby enabling to distinguish cells that express high levels of these heterodimeric kinases, from cells that present decreased or defective assemblies. This fluorescent biosensor technology provides information on the overall status of CDK/Cyclin complexes which cannot be obtained through antigenic detection of individual subunits, in a non-invasive fashion which does not require cell fixation or extraction procedures. As such it provides promising perspectives for monitoring the response to therapeutics that affect CDK/Cyclin abundance, for cell-based drug discovery strategies and fluorescence-based cancer diagnostics.

  9. Do caffeine-containing analgesics promote dependence? A review and evaluation.

    Science.gov (United States)

    Feinstein, A R; Heinemann, L A; Dalessio, D; Fox, J M; Goldstein, J; Haag, G; Ladewig, D; O'Brien, C P

    2000-11-01

    Debates about the suspected association between kidney disease and use of analgesics have led to concern about whether caffeine could stimulate an undesirable overuse of phenacetin-free combined analgesics. A committee was asked to critically review the pertinent literature and to suggest guides for clinical practice and for consideration of international regulatory authorities. A group of international scientists, jointly selected by the regulatory authorities of Germany, Switzerland, and Austria and the pharmaceutical industry. All invited experts evaluated relevant literature and reports and added further information and comments. Caffeine has a synergistic effectiveness with analgesics. Although caffeine has a dependence potential, the potential is low. Experimental data regarding dependence potential for caffeine alone may not correspond to the conditions in patients with pain. Withdrawal is not likely to cause stimulation or sustainment of analgesic intake. For drug-induced headache, no single or combined analgesic was consistently identified as causative, and no evidence exists for a special role of caffeine. Strong dependence behavior was observed only in patients using phenacetin-containing preparations, coformulated with antipyretics/analgesics and caffeine. This finding may have led to the impression that caffeine stimulates overuse of analgesics. Although more experimental and long-term data would be desirable to show possible mechanisms of dependence and to offer unequivocal proof of safety, the committee concluded that the available evidence does not support the claim that analgesics coformulated with caffeine, in the absence of phenacetin, stimulate or sustain overuse.

  10. Cyclin Y Is Involved in the Regulation of Adipogenesis and Lipid Production.

    Directory of Open Access Journals (Sweden)

    Weiwei An

    Full Text Available A new member of the cyclin family cyclin Y (CCNY is involved in the regulation of various physiological processes. In this study, the role of CCNY in energy metabolism was characterized. We found that compared with wild-type (WT mice, Ccny knockout (KO mice had both lower body weight and lower fat content. The Ccny KO mice also had a higher metabolic rate, resisted the stress of a high-fat diet, and were sensitive to calorie restriction. The expression levels of UCP1 and PGC1α were significantly higher in the brown adipose tissue (BAT of the Ccny KO mice than that of the WT littermate controls, whereas there was no significant difference in BAT weight between the WT and the Ccny KO mice. In addition, the down-regulation of Ccny resulted in suppression of white adipocyte differentiation both in vivo and in vitro, while the expression of Ccny was up-regulated by C/EBPα. Furthermore, both hepatocytes and HepG2 cells that were depleted of Ccny were insensitive to insulin stimulation, consistent with the significant inhibition of insulin sensitivity in the liver of the Ccny KO mice, but no significant changes in WAT and muscle, indicating that CCNY is involved in regulating the hepatic insulin signaling pathway. The hepatic insulin resistance generated by Ccny depletion resulted in down-regulation of the sterol-regulatory element-binding protein (SREBP1 and fatty acid synthase (FASN. Together, these results provide a new link between CCNY and lipid metabolism in mice, and suggest that inhibition of CCNY may offer a therapeutic approach to obesity and diabetes.

  11. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine

    Science.gov (United States)

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Kamimori, Gary H.; Moon, James E.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. Methods: We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). Results: The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. Conclusions: The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. Citation: Ramakrishnan S, Wesensten NJ, Kamimori GH, Moon JE, Balkin TJ, Reifman J. A unified model of performance for predicting the effects of sleep and caffeine. SLEEP 2016;39(10):1827–1841. PMID:27397562

  12. Effects of caffeine on alcohol reinforcement: Beverage choice, self-administration, and subjective ratings

    Science.gov (United States)

    Sweeney, Mary M.; Meredith, Steven E.; Evatt, Daniel P.; Griffiths, Roland R.

    2017-01-01

    Rationale Combining alcohol and caffeine is associated with increased alcohol consumption, but no prospective experimental studies have examined whether added caffeine increases alcohol consumption. Objectives This study examined how caffeine alters alcohol self-administration and subjective reinforcing effects in healthy adults. Methods Thirty-one participants completed six double-blind alcohol self-administration sessions: three sessions with alcohol only (e.g., Beverage A) and three sessions with alcohol and caffeine (e.g., Beverage B). Participants chose which beverage to consume on a subsequent session (e.g., Beverage A or B). Effects of caffeine on overall beverage choice, number of self-administered drinks, subjective ratings (e.g., Biphasic Alcohol Effects Scale), and psychomotor performance were examined. Results A majority of participants (65%) chose to drink the alcohol beverage containing caffeine on their final self-administration session. Caffeine did not increase the number of self-administered drinks. Caffeine significantly increased stimulant effects, decreased sedative effects, and attenuated decreases in psychomotor performance attributable to alcohol. Relative to nonchoosers, caffeine choosers reported overall lower stimulant ratings, and reported greater drinking behavior prior to the study. Conclusions Although caffeine did not increase the number of self-administered drinks, most participants chose the alcohol beverage containing caffeine. Given the differences in subjective ratings and pre-existing differences in self-reported alcohol consumption for caffeine choosers and nonchoosers, these data suggest decreased stimulant effects of alcohol and heavier self-reported drinking may predict subsequent choice of combined caffeine and alcohol beverages. These predictors may identify individuals who would benefit from efforts to reduce risk behaviors associated with combining alcohol and caffeine. PMID:28108773

  13. Excessive oral intake caffeine altered cerebral cortex ...

    African Journals Online (AJOL)

    Caffeine is commonly consumed in an effort to enhance speed in performance and wakefulness. However, little is known about the deleterious effects it can produce on the brain, this study aimed at determining the extents of effects and damage that can be caused by excessive consumption of caffeine on the cerebral cortex ...

  14. Cardiovascular impact of intravenous caffeine in preterm infants.

    Science.gov (United States)

    Huvanandana, Jacqueline; Thamrin, Cindy; McEwan, Alistair L; Hinder, Murray; Tracy, Mark B

    2018-05-03

    To evaluate the acute effect of intravenous caffeine on heart rate and blood pressure variability in preterm infants. We extracted and compared linear and non-linear features of heart rate and blood pressure variability at two timepoints: prior to and in the two hours following a loading dose of 10 mg/kg caffeine base. We studied 31 preterm infants with arterial blood pressure data and 25 with electrocardiogram data, and compared extracted features prior to and following caffeine administration. We observed a reduction in both scaling exponents (α 1 , α 2 ) of mean arterial pressure from detrended fluctuation analysis and an increase in the ratio of short- (SD1) and long-term (SD2) variability from Poincare analysis (SD1/SD2). Heart rate variability analyses showed a reduction in α 1 (mean (SD) of 0.92 (0.21) to 0.86 (0.21), p < 0.01), consistent with increased vagal tone. Following caffeine, beat-to-beat pulse pressure variability (SD) also increased (2.1 (0.64) to 2.5 (0.65) mmHg, p < 0.01). This study highlights potential elevation in autonomic nervous system responsiveness following caffeine administration reflected in both heart rate and blood pressure systems. The observed increase in pulse pressure variability may have implications for caffeine administration to infants with potentially impaired cerebral autoregulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Caffeine Improves Basketball Performance in Experienced Basketball Players

    Directory of Open Access Journals (Sweden)

    Carlos Puente

    2017-09-01

    Full Text Available The aim of this study was to determine the effect of caffeine intake on overall basketball performance in experienced players. A double-blind, placebo-controlled, randomized experimental design was used for this investigation. In two different sessions separated by one week, 20 experienced basketball players ingested 3 mg of caffeine/kg of body mass or a placebo. After 60 min, participants performed 10 repetitions of the following sequence: Abalakov jump, Change-of-Direction and Acceleration Test (CODAT and two free throws. Later, heart rate, body impacts and game statistics were recorded during a 20-min simulated basketball game. In comparison to the placebo, the ingestion of caffeine increased mean jump height (37.3 ± 6.8 vs. 38.2 ± 7.4 cm; p = 0.012, but did not change mean time in the CODAT test or accuracy in free throws. During the simulated game, caffeine increased the number of body impacts (396 ± 43 vs. 410 ± 41 impacts/min; p < 0.001 without modifying mean or peak heart rate. Caffeine also increased the performance index rating (7.2 ± 8.6 vs. 10.6 ± 7.1; p = 0.037 during the game. Nevertheless, players showed a higher prevalence of insomnia (19.0 vs. 54.4%; p = 0.041 after the game. Three mg of caffeine per kg of body mass could be an effective ergogenic substance to increase physical performance and overall success in experienced basketball players.

  16. Adolescent Caffeine Consumption and Self-Reported Violence and Conduct Disorder

    Science.gov (United States)

    Kristjansson, Alfgeir L.; Sigfusdottir, Inga Dora; Frost, Stephanie S.; James, Jack E.

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and currently the only one legally available to children and adolescents. The sale and use of caffeinated beverages has increased markedly among adolescents during the last decade. However, research on caffeine use and behaviors among adolescents is scarce. We investigate the…

  17. Cyclin H expression is increased in GIST with very-high risk of malignancy

    International Nuclear Information System (INIS)

    Dorn, Julian; Spatz, Hanno; Schmieder, Michael; Barth, Thomas FE; Blatz, Annette; Henne-Bruns, Doris; Knippschild, Uwe; Kramer, Klaus

    2010-01-01

    Risk estimation of gastrointestinal stromal tumours (GIST) is based on tumour size and mitotic rate according to the National Institutes of Health consensus classification. The indication for adjuvant treatment of patients with high risk GIST after R 0 resection with small molecule inhibitors is still a controversial issue, since these patients represent a highly heterogeneous population. Therefore, additional prognostic indicators are needed. Here, we evaluated the prognostic value of cyclin H expression in GIST. In order to identify prognostic factors of GIST we evaluated a single centre cohort of ninety-five GIST patients. First, GISTs were classified with regard to tumour size, mitotic rate and localisation according to the NIH consensus and to three additional suggested risk classifications. Second, Cyclin H expression was analysed. Of ninety-five patients with GIST (53 female/42 male; median age: 66.78a; range 17-94a) risk classification revealed: 42% high risk, 20% intermediate risk, 23% low risk and 15% very low risk GIST. In patients with high risk GIST, the expression of cyclin H was highly predictive for reduced disease-specific survival (p = 0.038). A combination of cyclin H expression level and high risk classification yielded the strongest prognostic indicator for disease-specific and disease-free survival (p ≤ 0.001). Moreover, in patients with tumour recurrence and/or metastases, cyclin H positivity was significantly associated with reduced disease-specific survival (p = 0.016) regardless of risk-classification. Our data suggest that, in addition to high risk classification, cyclin H expression might be an indicator for 'very-high risk' GIST

  18. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1.

    Directory of Open Access Journals (Sweden)

    Anna Pakula

    Full Text Available OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD. METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

  19. Caffeine and Sugars Interact in Aqueous Solutions: A Simulation and NMR Study

    OpenAIRE

    Tavagnacco, Letizia; Engström, Olof; Schnupf, Udo; Saboungi, Marie-Louise; Himmel, Michael; Widmalm, Göran; Cesàro, Attilio; Brady, John W.

    2012-01-01

    Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 molal solution of α-D-glucopyranose, at a caffeine concentration of 0.083 molal; a single caffeine in a 3 molal solution of β-D-glucopyranose, and a single caffeine molecule in a 1.08 molal solution of sucrose (table sugar). Parallel Nuclear Magnetic Resonance titration experiments were carried out on the same solutions under similar c...

  20. Combined effects of radiation and caffeine on embryonic development in mice

    International Nuclear Information System (INIS)

    Kusama, T.; Sugiura, N.; Kai, M.; Yoshizawa, Y.

    1989-01-01

    The combined effect of radiation and caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on Day 11 of gestation. Intrauterine death, gross malformation, and fetal body weight were selected as indicators of effects. Doses of whole-body gamma irradiation were 0.5 to 2.5 Gy and those of caffeine were 100 and 250 mg/kg maternal body wt. Intrauterine mortality increased with increasing radiation dose; this trend was more remarkable in combination with caffeine. Gross malformations such as cleft palate and defects of forelegs and hindlegs appeared frequently in the fetuses treated with both radiation and caffeine. Decreased fetal weight was observed even in mice treated with 0.5 Gy of radiation or 100 mg/kg caffeine. There was a linear relationship between dose and reduction of fetal weight. The fetal weight was a sensitive, precise, and easy-to-handle indicator for the effects of growth retardation. Intrauterine mortality and frequencies of cleft palate and defects of forelegs and hindlegs were higher than the sum of those induced by radiation and by caffeine separately. The results indicated that the combined action of radiation and caffeine on intrauterine death and malformations was synergistic

  1. Combined effects of radiation and caffeine on embryonic development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, T.; Sugiura, N.; Kai, M.; Yoshizawa, Y.

    1989-02-01

    The combined effect of radiation and caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on Day 11 of gestation. Intrauterine death, gross malformation, and fetal body weight were selected as indicators of effects. Doses of whole-body gamma irradiation were 0.5 to 2.5 Gy and those of caffeine were 100 and 250 mg/kg maternal body wt. Intrauterine mortality increased with increasing radiation dose; this trend was more remarkable in combination with caffeine. Gross malformations such as cleft palate and defects of forelegs and hindlegs appeared frequently in the fetuses treated with both radiation and caffeine. Decreased fetal weight was observed even in mice treated with 0.5 Gy of radiation or 100 mg/kg caffeine. There was a linear relationship between dose and reduction of fetal weight. The fetal weight was a sensitive, precise, and easy-to-handle indicator for the effects of growth retardation. Intrauterine mortality and frequencies of cleft palate and defects of forelegs and hindlegs were higher than the sum of those induced by radiation and by caffeine separately. The results indicated that the combined action of radiation and caffeine on intrauterine death and malformations was synergistic.

  2. Effects of dietary caffeine on mood when rested and sleep restricted.

    Science.gov (United States)

    James, Jack E; Gregg, M Elizabeth

    2004-07-01

    Prolonged use of caffeine can lead to physical dependence evidenced by characteristic withdrawal symptoms during abstinence. Debate exists as to whether mood enhancement by caffeine represents a net effect or merely the restoration of abstinence-induced mood decrements. One aim of this study was to determine the net effects on mood of dietary caffeine compared with prolonged abstinence. In addition, the study aimed to determine whether caffeine restores mood degraded by a non-caffeine source, namely, sleep restriction. A double-blind placebo-controlled cross-over design was employed in which 48 male and female volunteers alternated weekly between ingesting placebo and caffeine (1.75 mg/kg) three times daily for 4 consecutive weeks, while being either rested or sleep restricted. Mood was assessed using a computerized version of the profile of mood states (POMS), giving scores for overall mood and six mood dimensions. Gender had small effects on mood, whereas all mood dimensions were markedly adversely affected by sleep restriction. Caffeine had no significant net enhancing effects on mood when participants were rested, and produced no net restorative effects when mood was degraded by sleep restriction. On the contrary, caffeine-induced decrements in mood were observed during both conditions of rest and sleep restriction. Copyright 2004 John Wiley & Sons, Ltd.

  3. Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats.

    Science.gov (United States)

    Carney, J. M.

    1982-01-01

    1 Rats were trained to respond under a variable interval 30 s (VI 30) schedule of food reinforcement. Caffeine (0.32-32 mg/kg), theophylline (1.0-56 mg/kg) and theobromine (10-320 mg/kg) in general produced dose-related decreases in operant responding. At relatively low doses, caffeine (1.0 mg/kg) and theophylline (3.2 mg/kg) produced slight but nonsignificant increases in VI 30 responding. 3 The rank order of potency for producing decreases in responding was caffeine greater than theophylline greater than theobromine. 4 Daily caffeine injections (32 mg/kg, i.p.) resulted in the development of caffeine tolerance. This tolerance was characterized by a 6 fold shift to the right in the caffeine dose-effect curve. Saline substitution for the 32.0 mg/kg caffeine maintenance dose resulted in a substantial decrease in responding. PMID:7066599

  4. Pregnancy-Induced Changes in the Pharmacokinetics of Caffeine and Its Metabolites

    Science.gov (United States)

    Yu, Tian; Campbell, Sarah C.; Stockmann, Chris; Tak, Casey; Schoen, Katherine; Clark, Erin A. S.; Varner, Michael W.; Spigarelli, Michael G.; Sherwin, Catherine M. T.

    2017-01-01

    This study sought to assess the pharmacokinetic (PK) changes of caffeine and its CYP1A2 metabolites across the 3 trimesters of pregnancy. A prospective, multicenter PK study was conducted among 59 pregnant women (93.2% white) who were studied once during a trimester. One beverage with 30–95 mg caffeine was consumed, and a blood/urine sample was collected within 1 hour postingestion. Concentrations of caffeine and its primary metabolites were quantified from serum and urine by LC-MS/MS. There was a significant increase in dose-normalized caffeine serum and urine concentrations between the first and third trimesters (Ptheobromine concentrations. This study identified decreased caffeine metabolism and an increase in the active metabolite theophylline concentrations during pregnancy, especially in the third trimester, revealing evidence of the large role that pregnancy plays in influencing caffeine metabolism. PMID:26358647

  5. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine.

    Science.gov (United States)

    Azam, Sonish; Hadi, Naghma; Khan, Nizam Uddin; Hadi, Sheikh Mumtaz

    2003-09-01

    Caffeine, along with its catabolic products theobromine and xanthine, is a key component of tea and coffee. These compounds are structurally similar to uric acid, a known antioxidant which is present in blood at relatively high concentrations, but also shows prooxidant activity. In view of the structural similarity between uric acid and caffeine and its metabolites, we studied the antioxidant and prooxidant properties of these compounds. Antioxidant activity was determined by measuring the quenching effect of the compounds on oxidative DNA degradation by a hydroxyl radical generating system. Prooxidant activity was studied by measuring the ability of the compounds to oxidatively degrade DNA in the presence of copper ions. Caffeine, theobromine and xanthine have a quenching effect on the production of hydroxyl radicals, as well as on oxidative DNA breakage by hydroxyl radicals. Consistent with previous observations that many known antioxidants of plant origin are also capable of prooxidant action, the purine alkaloids also show oxidative DNA breakage in the presence of transition metal ions. The alkaloid caffeine and its catabolic products theobromine and xanthine exhibit both antioxidant and prooxidant properties. The results lead to the observation that caffeine and its metabolites may also contribute to the overall antioxidant and chemopreventive properties of caffeine-bearing beverages, such as tea.

  6. Effects of caffeine on the preterm brain: An observational study.

    Science.gov (United States)

    Dix, Laura M L; van Bel, Frank; Baerts, Willem; Lemmers, Petra M A

    2018-05-01

    Caffeine improves neurodevelopmental outcome of preterm infants. This study analyses the effects of caffeine on the neonatal brain. We hypothesized that caffeine has a neuroprotective effect through an increase in oxygen metabolism; reflected by increased cerebral oxygen extraction, electrical function, and perfusion. Preterm infants <32 weeks gestation (GA) receiving their primary dose caffeine-base (10 mg/kg) were included. Ten minutes of stable monitoring were selected before, during, and every hour up to 6 h after caffeine. Near-infrared spectroscopy monitored regional cerebral oxygenation (rScO 2 ) and extraction (FTOE). Amplitude-integrated electroencephalogram (aEEG) monitored minimum, mean and maximum amplitudes. Spontaneous activity transients (SAT) rate and the interval between SATs (ISI) were calculated. Mean arterial blood pressure (MABP), heart rate (HR) and arterial oxygen saturation (SaO 2 ) were monitored. Arterial pCO 2 's were collected before and 4 h after caffeine. Brain perfusion was assessed 1 h before and 3 h after caffeine by Doppler-measured resistance-index (RI), peak systolic velocity (PSV) and end-diastolic velocity (EDV), in the anterior cerebral artery (ACA) and internal carotid artery (ICA). Results were presented in mean ± SD. 34 infants, mean GA 28.8 ± 2.1 wk, were included. rScO 2 significantly decreased from 69 ± 11 to 63 ± 12 1 h after caffeine, and recovered at 6 h (66 ± 10). FTOE increased correspondingly. MABP and HR increased significantly. PSV in the ACA decreased slightly. Other Doppler variables, aEEG parameters, and SaO 2 were unaffected. Caffeine increases oxygen extraction, suggesting a (transient) stimulating effect on brain metabolism. However, no substantial changes were found in brain perfusion and in electrical brain activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The Combined Effects of Alcohol, Caffeine and Expectancies on Subjective Experience, Impulsivity and Risk-Taking

    Science.gov (United States)

    Heinz, Adrienne J.; de Wit, Harriet; Lilje, Todd C.; Kassel, Jon D.

    2013-01-01

    Caffeinated alcoholic beverage (CAB) consumption is a rapidly growing phenomenon among young adults and is associated with a variety of health-risk behaviors. The current study examined whether either caffeinated alcohol or the expectation of receiving caffeinated alcohol altered affective, cognitive and behavioral outcomes hypothesized to contribute to risk behavior. Young adult social drinkers (N=146) participated in a single session where they received alcohol (peak Breath Alcohol Content = .088 g/dL, SD = .019; equivalent to about 4 standard drinks) and were randomly assigned to one of four further conditions 1) no caffeine, no caffeine expectancy, 2) caffeine and caffeine expectancy, 3) no caffeine but caffeine expectancy, 4) caffeine but no caffeine expectancy. Participants’ habitual CAB consumption was positively correlated with measures of impulsivity and risky behavior, independently of study drugs. Administration of caffeine (mean dose = 220 mg, SD = 38; equivalent to about 2.75 Red Bulls) in the study reduced subjective ratings of intoxication and reversed the decrease in desire to continue drinking, regardless of expectancy. Caffeine also reduced the effect of alcohol on inhibitory reaction time (faster incorrect responses). Participants not expecting caffeine were less attentive after alcohol, whereas participants expecting caffeine were not, regardless of caffeine administration. Alcohol decreased response accuracy in all participants except those who both expected and received caffeine. Findings suggest that CABs may elevate risk for continued drinking by reducing perceived intoxication, and by maintaining the desire to continue drinking. Simply expecting to consume caffeine may reduce the effects of alcohol on inattention, and either expecting or consuming caffeine may protect against other alcohol-related performance decrements. Caffeine, when combined with alcohol, has both beneficial and detrimental effects on mechanisms known to contribute to

  8. HIGHER SERUM CAFFEINE IN SMOKERS WITH SCHIZOPHRENIA COMPARED TO SMOKING CONTROLS

    OpenAIRE

    Gandhi, Kunal K; Williams, Jill M; Menza, Matthew; Galazyn, Magdalena; Benowitz, Neal L.

    2010-01-01

    Previous studies of high dietary caffeine intake in individuals with schizophrenia have not demonstrated biological evidence of higher intake or controlled smoking behavior. This study aimed to examine differences in serum caffeine levels in 104 smokers with schizophrenia/schizoaffective disorder (SCZ/SA) and compare them to 63 smokers without any mental illness (CON). Since we were interested in measuring caffeine levels, we excluded all non caffeine users from the study. Blood draws were st...

  9. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    Science.gov (United States)

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  10. The Combined Effect of Caffeine and Ornithine on the Mood of Healthy Office Workers

    Science.gov (United States)

    Misaizu, Akane; Kokubo, Takeshi; Tazumi, Kyoko; Kanayama, Masaya; Miura, Yutaka

    2014-01-01

    Caffeine is widely consumed and well known for stimulating the central nervous system. When developing new foods and beverages that contain caffeine, it is important to explore the potential synergistic effects of consuming amino acids and other food ingredients with caffeine on humans. Given the physiological pathways affected by the amino acid ornithine, consumption of ornithine with caffeine may have synergistic effects. The purpose of the present study was to examine the effect of consuming caffeine with ornithine in humans. The study used a randomized, placebo-controlled, double-blinded crossover design. The subjects were all healthy office workers who ingested the placebo, 100 mg caffeine, or 100 mg caffeine plus 200 mg ornithine in the morning and completed questionnaires about their mood. Office workers who consumed the combination of caffeine and ornithine had higher mood ratings 8 h after consumption than office workers who consumed caffeine alone. The results of the present study suggest that there is a unique synergistic effect between caffeine and ornithine on the mood of healthy office workers and that ornithine may potentiate the effects of caffeine. PMID:25580405

  11. Effects of caffeine in chewing gum on mood and attention.

    Science.gov (United States)

    Smith, Andrew

    2009-04-01

    Recent research has shown that even small doses (attention tasks. Previous studies have given the caffeine in a variety of beverages or in capsules and it was of interest to see whether similar effects could be observed when the caffeine was given in gum. In addition, chewing gum has been shown to have behavioural effects and the present study extended our knowledge of this topic. To compare the effects of caffeinated gum (40 mg), placebo gum and no gum conditions on mood and attention. A double blind placebo controlled study was conducted with volunteers being randomly assigned to one of the three conditions. Baseline measures of mood and attention were taken prior to chewing and a test session was then conducted. One hundred and eighteen young adults participated in the study. Caffeinated gum was associated with a more positive mood and better performance on tasks requiring sustained attention. The caffeine improved the speed of encoding of new information which is consistent with previous findings. Chewing placebo gum was also found to be associated with more positive mood, both shortly after chewing and at the end of the study. The implications of the present study are that chewing caffeinated gum has been shown to improve performance efficiency and mood by its alerting and energising effects. The profile of caffeine effects is what one would predict from the existing caffeine literature and such effects may be extremely beneficial in real-life situations. Prior chewing of placebo gum was associated with a more positive mood and this also confirms previous findings.

  12. effect of caffeine -coconut products interactions on induction of ...

    African Journals Online (AJOL)

    INDUCTION OF MICROSOMAL DRUG-METABOLIZING ENZYMES IN ... examine several biochemical parameters, ie, total protein and RNA levels, ... Caffeine also acts to increase alertness, ... Mechanisms of action of caffeine involve.

  13. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Carlée, L.; Kerkhoven, R.M.; Bernards, R.A.

    1995-01-01

    The orderly progression through the cell cycle is mediated by the sequential activation of several cyclin/cyclin-dependent kinase (cdk) complexes. These kinases phosphorylate a number of cellular substrates, among which is the product of the retinoblastoma gene, pRb. Phosphorylation of pRb in late

  14. Molecular Dynamics and Neutron Scattering Studies of Mixed Solutions of Caffeine and Pyridine in Water.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Neilson, George W; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W

    2018-05-31

    Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.

  15. Radiation enhaced reactivation of herpes simplex virus: effect of caffeine

    International Nuclear Information System (INIS)

    Hellman, K.B.; Lytle, C.D.; Bockstahler, L.E.

    1976-01-01

    Ultraviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since caffeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation

  16. Role of state-dependent learning in the cognitive effects of caffeine in mice.

    Science.gov (United States)

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Fernandes-Santos, Luciano; Oliveira, Larissa C; Longo, Beatriz M; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2013-08-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.

  17. Effects of caffeine or maternal repair systems in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Osgood, C.; Zimmering, S.

    1979-01-01

    Drosophila melanogaster females were treated with 1% caffeine, mated with X-rayed males and the frequencies of induced sex-chromosome loss, translocations between the major autosomes and between the Y-chromosome and the major autosomes determined. In a reversal of the results obtained previously with 0.2% caffeine by Mendelson and Sobels, treatment of females with 1% caffeine led to a decrease in sex-chromosome loss, confirming preliminary data of Zimmering and Osgood and in increase in autosome-autosome translocations. It is suggested that the higher concentration of caffeine inhibits replication permitting more time available for chromosome-type restitutions by means of caffeine-insensitive repair mechanisms. In contrast with results for autosome-autosome translocation, the fequency of Y-autosome translocations was depressed below controls suggesting an isolation (by any one of several means) of Y-chromosome breaks from those in the autosomes. (Auth.)

  18. Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.

    Science.gov (United States)

    Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen

    2012-04-01

    Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.

  19. Caffeine, postmenopausal estrogen, and risk of Parkinson's disease.

    Science.gov (United States)

    Ascherio, A; Chen, H; Schwarzschild, M A; Zhang, S M; Colditz, G A; Speizer, F E

    2003-03-11

    Men who regularly consume caffeinated drinks have a lower risk of PD than do nondrinkers, but this relation has not been found in women. Because this sex difference could be due to hormonal effects, the authors examined prospectively the risk of PD according to use of postmenopausal hormones and caffeine intake among participants in the Nurses' Health Study. The study population comprised 77,713 women free of PD, stroke, or cancer at baseline, who were postmenopausal at baseline or reached menopause before the end of the study. During 18 years of follow-up the authors documented 154 cases of PD. Overall, the risk of PD was similar in women using hormones and women who never used hormones (relative risk 1.02, 95% CI 0.69 to 1.52). Use of hormones, however, was associated with a reduced risk of PD among women with low caffeine consumption (RR 0.39, 95% CI 0.13 to 1.17), and with increased risk among women with high caffeine consumption (RR 2.44, 95% CI 0.75 to 7.86; p for interaction = 0.01). Among hormone users, women consuming six or more cups of coffee per day had a fourfold higher risk of PD (RR 3.92, 95% CI 1.49 to 10.34; p = 0.006) than did women who never drink coffee. These results suggest that caffeine reduces the risk of PD among women who do not use postmenopausal hormones, but increases risk among hormone users. Clinical trials of caffeine or estrogens in women should avoid the combined use of these agents.

  20. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    Science.gov (United States)

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  1. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Perrone, Daniel; Donangelo, Carmen Marino; Farah, Adriana

    2008-10-15

    A rapid liquid chromatography-mass spectrometry method for the simultaneous quantification of caffeine, trigonelline, nicotinic acid and sucrose in coffee was developed and validated. The method involved extraction with hot water, clarification with basic lead acetate and membrane filtration, followed by chromatographic separation using a Spherisorb(®) S5 ODS2, 5μm chromatographic column and gradient elution with 0.3% aqueous formic acid/methanol at a flow rate of 0.2mL/min. The electrospray ionization source was operated in the negative mode to generate sucrose ions and in the positive mode to generate caffeine, trigonelline and nicotinic acid ions. Ionization suppression of all analytes was found due to matrix effect. Calibrations curves prepared in green and roasted coffee extracts were linear with r(2)>0.999. Roasted coffee was spiked and recoveries ranged from 93.0% to 105.1% for caffeine, from 85.2% to 116.2% for trigonelline, from 89.6% to 113.5% for nicotinic acid and from 94.1% to 109.7% for sucrose. Good repeatibilities (RSDcoffee samples (regular or decaffeinated green, ground roasted and instant) gave results in agreement with the literature. The method showed to be suitable for different types of coffee available in the market thus appearing as a fast and reliable alternative method to be used for routine coffee analysis. Copyright © 2008 Elsevier Ltd. All rights reserved.

  2. EFFECT OF CAFFEINE ON OXIDATIVE STRESS DURING MAXIMUM INCREMENTAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Guillermo J. Olcina

    2006-12-01

    Full Text Available Caffeine (1,3,7-trimethylxanthine is an habitual substance present in a wide variety of beverages and in chocolate-based foods and it is also used as adjuvant in some drugs. The antioxidant ability of caffeine has been reported in contrast with its pro- oxidant effects derived from its action mechanism such as the systemic release of catecholamines. The aim of this work was to evaluate the effect of caffeine on exercise oxidative stress, measuring plasma vitamins A, E, C and malonaldehyde (MDA as markers of non enzymatic antioxidant status and lipid peroxidation respectively. Twenty young males participated in a double blind (caffeine 5mg·kg- 1 body weight or placebo cycling test until exhaustion. In the exercise test, where caffeine was ingested prior to the test, exercise time to exhaustion, maximum heart rate, and oxygen uptake significantly increased, whereas respiratory exchange ratio (RER decreased. Vitamins A and E decreased with exercise and vitamin C and MDA increased after both the caffeine and placebo tests but, regarding these particular variables, there were no significant differences between the two test conditions. The results obtained support the conclusion that this dose of caffeine enhances the ergospirometric response to cycling and has no effect on lipid peroxidation or on the antioxidant vitamins A, E and C

  3. Design, formulation and evaluation of caffeine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2013-01-01

    Conclusion: In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  4. Tobacco Metabolites and Caffeine in Human Milk Purchased via the Internet.

    Science.gov (United States)

    Geraghty, Sheela R; McNamara, Kelly; Kwiek, Jesse J; Rogers, Lynette; Klebanoff, Mark A; Augustine, Molly; Keim, Sarah A

    2015-11-01

    Chemicals inhaled or ingested by mothers can be present in their milk. Our objective was to determine levels of nicotine, cotinine, and caffeine in human milk purchased via the Internet. We purchased human milk (n=102) via the Internet and abstracted seller advertisements for information volunteered about tobacco and caffeine use. Nicotine, cotinine, and caffeine levels in the milk were quantified by mass spectrometry according to published protocols. No sellers indicated smoking in their advertisement. Many of the milk samples (58%) had detectable nicotine or cotinine; four (4%) of the samples had nicotine or cotinine levels high enough to indicate active smoking. Twelve (12%) sellers said in their advertisements that they specifically limit (4%) or avoid (8%) caffeine entirely. Five (5%) of the samples had caffeine levels consistent with consuming at least 1 cup of coffee 2 hours prior to milk expression. Detectable amounts of caffeine were found in almost all of the samples (97%). In 102 milk samples, we detected evidence of active smoking, secondhand smoke exposure, and almost ubiquitous caffeine consumption. Buyers of human milk on the Internet should be aware that advertisements do not always include accurate information as to what substances may be present. Sellers may misrepresent their health behaviors or be unaware of lifestyle factors that can lead to exposure to nicotine and caffeine.

  5. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  6. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.

    Science.gov (United States)

    Muntean, Andrew G; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F; Blobel, Gerd A; Crispino, John D

    2007-06-15

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.

  7. Cyclin D–Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization

    Science.gov (United States)

    Muntean, Andrew G.; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F.; Blobel, Gerd A.

    2007-01-01

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1–deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1–deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity. PMID:17317855

  8. Aminophylline and caffeine for reversal of adverse symptoms associated with regadenoson SPECT MPI.

    Science.gov (United States)

    Doran, Jesse A; Sajjad, Waseem; Schneider, Marabel D; Gupta, Rohit; Mackin, Maria L; Schwartz, Ronald G

    2017-06-01

    Aminophylline shortages led us to compare intravenous (IV) aminophylline with IV and oral (PO) caffeine during routine pharmacologic stress testing with SPECT MPI. We measured presence, duration, and reversal of adverse symptoms and cardiac events following regadenoson administration in consecutive patients randomized to IV aminophylline (100 mg administered over 30-60 seconds), IV caffeine citrate (60 mg infused over 3-5 minutes), or PO caffeine as coffee or diet cola. Of 241 patients, 152 (63%) received regadenoson reversal intervention. Complete (CR), predominant (PRE), or partial (PR) reversal was observed in 99%. CR by IV aminophylline (87%), IV caffeine (87%), and PO caffeine (78%) were similar (P = NS). Time to CR (162 ± 12.6 seconds, mean ± SD) was similar in treatment arms. PO caffeine was inferior to IV aminophylline for CR + PRE. IV aminophylline and IV caffeine provide rapid, safe reversal of regadenoson-induced adverse effects during SPECT MPI. Oral caffeine appeared similarly effective for CR but not for the combined CR + PRE. Our results suggest PO caffeine may be an effective initial strategy for reversal of regadenoson, but IV aminophylline or IV caffeine should be available to optimize symptom reversal as needed.

  9. Blood pressure response to caffeine shows incomplete tolerance after short-term regular consumption.

    Science.gov (United States)

    Lovallo, William R; Wilson, Michael F; Vincent, Andrea S; Sung, Bong Hee; McKey, Barbara S; Whitsett, Thomas L

    2004-04-01

    Caffeine acutely raises blood pressure (BP). The clinical significance of this effect depends on whether BP responses persist in persons who consume caffeine on a daily basis. Accordingly, the ability of caffeine to raise BP after 5 days of regular daily intake was tested in a randomized controlled trial. Individual differences in tolerance formation were then examined. Men (n=49) and women (n=48) completed a double-blind, crossover trial conducted over 4 weeks. During each week, subjects abstained for 5 days from dietary caffeine and instead used capsules totaling 0 mg, 300 mg, and 600 mg of caffeine per day in 3 divided doses. On day 6, in the laboratory, they used capsules with either 0 mg or 250 mg of caffeine at 9:00 am and 1:00 pm. Systolic/diastolic BP increases as a result of 250 mg of caffeine remained significant (P7.90, P <0.001). The sexes did not differ in degree of tolerance formation. Daily caffeine consumption failed to eliminate the BP response to repeated challenge doses of caffeine in half of the healthy adults who were tested. Caffeine may therefore cause persistent BP effects in persons who are regular consumers, even when daily intake is at moderately high levels.

  10. Levels of caffeine and its metabolites among U.S. smokers and nonsmokers.

    Science.gov (United States)

    Jain, Ram B

    2015-03-01

    Data from National Health and Nutrition Examination Survey for the years 2009-2010 were used to estimate the levels of caffeine and 14 of its metabolite among U.S. smokers and nonsmokers after adjustments were made for other factors that affect observed caffeine levels. In this study, when adjusted for daily caffeine intake, adjusted levels (AGM) of caffeine and its metabolites were not found to be statistically significantly different between smokers and nonsmokers. AGMs for caffeine and all of its metabolites were found to be statistically significantly higher (p whites > Hispanics > non-Hispanic blacks and most of the differences were statistically significant, at least between non-Hispanic whites and non-Hispanic blacks (p < 0.01). In general, there was a statistically significant positive association between the levels of caffeine and its metabolites and body mass index as well as daily caffeine intake. However, the levels of 7-methylxanthine were negatively associated with body mass index. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characteristics of caffeine intoxication-related death in Tokyo, Japan, between 2008 and 2013.

    Science.gov (United States)

    Suzuki, Hideto; Tanifuji, Takanobu; Abe, Nobuyuki; Maeda, Masako; Kato, Yukihisa; Shibata, Mikiyoshi; Fukunaga, Tatsushige

    2014-10-01

    Caffeine is widely available in beverages and over-the-counter products; however, in large doses, it can lead to lethal arrhythmia. This study aims to clarify the characteristics of caffeine intoxication-related deaths in Tokyo, Japan. Among the 4754 forensic autopsy cases between 2008 and 2013 in which a toxicological investigation was performed, cases in which the blood concentration of caffeine exceeded toxic levels (15 μg/ml) were selected (N = 22). We examined subjects' ages, medical histories, direct/underlying causes of death, and manner of death. We also assessed concurrent drug substance detection and identified the origin of the caffeine. More than 60% of the subjects were between the ages of 20 and 49 years (n = 14, 63.6%). Sixteen cases (72.7%) showed a history of psychiatric diseases such as depression and sleep disorders. The underlying cause of death for all cases except two was caffeine intoxication, and manner of death was classified as undetermined (n = 11), accidental (n = 7), suicide (n = 2), or others (n = 2). Toxicological analysis revealed the presence of ingredients common to analgesics/cold remedies in 12 cases (54.5%). The origin of the caffeine was identified in 11 cases (50.0%); the proportion of identification was significantly lower among the cases in which analgesic/cold remedy ingredients were not detected (20.0%). Caffeine intoxication-related deaths mainly occurred in young and middle-aged persons with common psychiatric diseases. Psychiatrists should take note of caffeine dependence while diagnosing common psychiatric symptoms. In half of the cases, the origin of the caffeine was unidentified; nevertheless, dietary sources or over-the-counter drugs containing caffeine were suspected. As it becomes easier to obtain caffeinated products, continuous monitoring of the number of deaths from caffeine intoxication, in addition to detailed investigations of the caffeine's origin, will be necessary.

  12. Caffeine-containing beverages, total fluid consumption, and premenstrual syndrome.

    Science.gov (United States)

    Rossignol, A M; Bonnlander, H

    1990-09-01

    The main objective of this study was to evaluate whether daily consumption of caffeine-containing beverages is related to the prevalence and severity of premenstrual syndrome apart from any effects of daily total fluid consumption. A secondary objective was to determine whether daily total fluid consumption itself is related to premenstrual syndrome. The study is based on 841 responses to a questionnaire probing menstrual and premenstrual health, and daily fluid consumption, which was mailed to female university students in Oregon. Analysis of the data revealed that consumption of caffeine-containing beverages was strongly related to the prevalence of premenstrual syndrome. Among women with more severe symptoms, the relation between consumption of caffeine-containing beverages and premenstrual syndrome was dose-dependent, with prevalence odds ratios equal to 1.3 for consumers of one cup of a caffeine-containing beverage per day and increasing steadily to 7.0 for consumers of eight to 10 cups per day. The effects were apparent among both caffeine-containing tea/coffee consumers and caffeine-containing soda consumers. The observed effects were only slightly reduced when daily total fluid consumption was controlled. Daily total fluid consumption also was related to the prevalence of premenstrual symptoms although the effects were large only for consumers of 13-19 cups of fluid per day (the largest amount studied).

  13. Caffeine and sugars interact in aqueous solutions: a simulation and NMR study.

    Science.gov (United States)

    Tavagnacco, Letizia; Engström, Olof; Schnupf, Udo; Saboungi, Marie-Louise; Himmel, Michael; Widmalm, Göran; Cesàro, Attilio; Brady, John W

    2012-09-27

    Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 m solution of α-D-glucopyranose, at a caffeine concentration of 0.083 m, a single caffeine in a 3 m solution of β-D-glucopyranose, and a single caffeine molecule in a 1.08 m solution of sucrose (table sugar). Parallel nuclear magnetic resonance titration experiments were carried out on the same solutions under similar conditions. Consistent with previous thermodynamic experiments, the sugars were found to have an affinity for the caffeine molecules in both the simulations and experiments, and the binding in these complexes occurs by face-to-face stacking of the hydrophobic triad of protons of the pyranose rings against the caffeine face, rather than by hydrogen bonding. For the disaccharide, the binding occurs via stacking of the glucose ring against the caffeine, with a lesser affinity for the fructose observed. These findings are consistent with the association being driven by hydrophobic hydration and are similar to the previously observed binding of glucose rings to various other planar molecules, including indole, serotonin, and phenol.

  14. Effects of 2 adenosine antagonists, quercetin and caffeine, on vigilance and mood.

    Science.gov (United States)

    Olson, Craig A; Thornton, Jennifer A; Adam, Gina E; Lieberman, Harris R

    2010-10-01

    Quercetin, a phenolic flavonoid found in small quantities in some fruits and vegetables, is an adenosine receptor antagonist in vitro marketed as a dietary supplement for purported caffeine-like effects. A double-blind, placebo-controlled, between-subjects study was conducted to compare the behavioral effects of quercetin to a central adenosine receptor antagonist, caffeine. Fifty-seven volunteers received either 2000 mg of quercetin dihydrate (a dose estimated based on in vitro receptor binding to be equivalent in potency to 200 mg of caffeine), placebo, or 200 mg of caffeine. One hour later, a 45-minute visual vigilance task was administered. The Profile of Mood States questionnaire was completed before treatment and immediately after vigilance testing. On the vigilance task, caffeine increased the number of stimuli detected (P mood disturbance Profile of Mood States scores compared with placebo. Quercetin did not significantly alter any parameter, but values were typically intermediate between caffeine and placebo on those tests affected by caffeine. Quercetin is unlikely to have any effects when consumed by humans in quantities present in the diet or in dietary supplements. Caffeine (200 mg) administration resulted in the expected effects on vigilance and mood.

  15. Effects of caffeine on X-irradiated synchronous, asynchronous and plateau phase mouse ascites cells: the importance of progression through the cell cycle for caffeine enhancement of killing

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1983-01-01

    Caffeine potentiated the killing effect of X-rays on exponentially growing cells giving rise to exponential curves (D 0 =(0.8+-0.05)Gy) at 4mM and 14 hours treatment. Irradiated plateau phase cells were less sensitive. Exponentially growing cells also became less sensitive to the effects of caffeine when they were incubated in the conditioned medium of plateau phase cells(C-medium) in which cell growth was considerably inhibited. Low caffeine concentrations(2mM) enhanced X-ray induced killing of cells irradiated in G 1 -,G 1 /S- or S-phase, but more effectively G 2 -phase cells. High caffeine concentrations (6mM) enhanced killing of cells in all phases of the cell cycle. Incubation of synchronized populations in C-medium during treatment with caffeine (2mM and 6mM) resulted in less potentiation than in cells treated in fresh medium. The expression of X-ray induced potentially lethal damage caused by 6mM caffeine in cells irradiated in various phases resulted in an exponential survival curve with a mean lethal dose of (0.8+-0.05)Gy, but the time of caffeine treatment necessary to reach this curve was different for cells irradiated in different phases. PLD repair, measured as loss of sensitivity to 6mM caffeine (4 hours treatment) was of 1-2 hours duration. (author)

  16. Role of state-dependent learning in the cognitive effects of caffeine in mice

    OpenAIRE

    Sanday, Leandro [UNIFESP; Zanin, Karina Agustini [UNIFESP; Patti, Camilla de Lima [UNIFESP; Fernandes-Santos, Luciano [UNIFESP; Oliveira, Larissa C. [UNIFESP; Longo, Beatriz Monteiro [UNIFESP; Andersen, Monica Levy [UNIFESP; Tufik, Sergio [UNIFESP; Frussa-Filho, Roberto [UNIFESP

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine be...

  17. Neurobehavioral Outcomes 11 Years After Neonatal Caffeine Therapy for Apnea of Prematurity.

    Science.gov (United States)

    Mürner-Lavanchy, Ines M; Doyle, Lex W; Schmidt, Barbara; Roberts, Robin S; Asztalos, Elizabeth V; Costantini, Lorrie; Davis, Peter G; Dewey, Deborah; D'Ilario, Judy; Grunau, Ruth E; Moddemann, Diane; Nelson, Harvey; Ohlsson, Arne; Solimano, Alfonso; Tin, Win; Anderson, Peter J

    2018-05-01

    Caffeine is effective in the treatment of apnea of prematurity. Although caffeine therapy has a benefit on gross motor skills in school-aged children, effects on neurobehavioral outcomes are not fully understood. We aimed to investigate effects of neonatal caffeine therapy in very low birth weight (500-1250 g) infants on neurobehavioral outcomes in 11-year-old participants of the Caffeine for Apnea of Prematurity trial. Thirteen academic hospitals in Canada, Australia, Great Britain, and Sweden participated in this part of the 11-year follow-up of the double-blind, randomized, placebo-controlled trial. Measures of general intelligence, attention, executive function, visuomotor integration and perception, and behavior were obtained in up to 870 children. The effects of caffeine therapy were assessed by using regression models. Neurobehavioral outcomes were generally similar for both the caffeine and placebo group. The caffeine group performed better than the placebo group in fine motor coordination (mean difference [MD] = 2.9; 95% confidence interval [CI]: 0.7 to 5.1; P = .01), visuomotor integration (MD = 1.8; 95% CI: 0.0 to 3.7; P prematurity improved visuomotor, visuoperceptual, and visuospatial abilities at age 11 years. General intelligence, attention, and behavior were not adversely affected by caffeine, which highlights the long-term safety of caffeine therapy for apnea of prematurity in very low birth weight neonates. Copyright © 2018 by the American Academy of Pediatrics.

  18. Low-dose caffeine discrimination and self-reported mood effects in normal volunteers.

    Science.gov (United States)

    Silverman, K; Griffiths, R R

    1992-01-01

    A caffeine versus placebo discrimination procedure was used to determine the lowest caffeine dose that could produce discrimination and self-reported mood effects in normal volunteers. During daily sessions under double-blind conditions, caffeine-abstinent subjects orally ingested a capsule containing 178 mg caffeine or placebo. Before beginning discrimination training, the compounds were identified to subjects by letter codes. Fifteen, 30, and 45 min after capsule ingestion, subjects guessed the capsule's letter code. Correct guesses at 45 min earned money. After each session, subjects received a supplementary capsule containing caffeine or placebo to ensure that, within each phase of the study, subjects received the same daily dose of caffeine equal to the training dose. Five of the 15 subjects acquired the caffeine versus placebo discrimination within the first 20 sessions (greater than or equal to 75% correct); 6 other subjects acquired the discrimination with additional training. Nine subjects who acquired the discrimination were subsequently trained at progressively lower caffeine doses. In general, the lowest dose to produce discrimination (greater than or equal to 75% correct) was also the lowest dose to produce self-reported mood effects: 4 subjects showed discrimination and self-reported mood effects at 100 mg caffeine, 2 at 56 mg, 1 at 32 mg, and 1 at 18 mg. One of these subjects also showed self-reported mood effects at 10 mg. The present study documents discriminative stimulus and self-reported mood effects of caffeine at doses below those previously shown to affect any behavior in normal volunteers. PMID:1548451

  19. Effect of caffeine on information processing: evidence from stroop task.

    Science.gov (United States)

    Dixit, Abhinav; Goyal, Abhishek; Thawani, Rajat; Vaney, Neelam

    2012-07-01

    Caffeine is a pyschostimulant present in various beverages and known to alter alertness and performance by acting on the central nervous system. Its effects on central nervous system have been studied using EEG, evoked potentials, fMRI, and neuropsychological tests. The Stroop task is a widely used tool in psychophysiology to understand the attention processes and is based on the principle that processing of two different kinds of information (like the word or colour) is parallel and at different speeds with a common response channel. To study the effect of caffeine on classical color word Stroop task. This study was conducted on 30 male undergraduate students by performing a test before and 40 minutes after consuming 3 mg/Kg caffeine and evaluating the effect of caffeine on Stroop interference and facilitation. The results revealed that practice has no effect on the performance in a Stroop task. However, there was reduction in Stroop interference and increase in facilitation after consumption of caffeine as was evident by changes in the reaction times in response to neutral, incongruent, and congruent stimuli. We hypothesize that caffeine led to faster processing of relevant information.

  20. Caffeine-Related Deaths: Manner of Deaths and Categories at Risk.

    Science.gov (United States)

    Cappelletti, Simone; Piacentino, Daria; Fineschi, Vittorio; Frati, Paola; Cipolloni, Luigi; Aromatario, Mariarosaria

    2018-05-14

    Caffeine is the most widely consumed psychoactive compound worldwide. It is mostly found in coffee, tea, energizing drinks and in some drugs. However, it has become really easy to obtain pure caffeine (powder or tablets) on the Internet markets. Mechanisms of action are dose-dependent. Serious toxicities such as seizure and cardiac arrhythmias, seen with caffeine plasma concentrations of 15 mg/L or higher, have caused poisoning or, rarely, death; otherwise concentrations of 3⁻6 mg/kg are considered safe. Caffeine concentrations of 80⁻100 mg/L are considered lethal. The aim of this systematic review, performed following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement for the identification and selection of studies, is to review fatal cases in which caffeine has been recognized as the only cause of death in order to identify potential categories at risk. A total of 92 cases have been identified. These events happened more frequently in infants, psychiatric patients, and athletes. Although caffeine intoxication is relatively uncommon, raising awareness about its lethal consequences could be useful for both clinicians and pathologists to identify possible unrecognized cases and prevent related severe health conditions and deaths.