Sample records for cacimbas-catu gas pipeline

  1. Environmental assessment on PETROBRAS pipeline projects: case study of Cacimbas-Catu gas pipeline; Engenharia de avaliacao ambiental no processo de concepcao de projetos de dutos da PETROBRAS - estudo de caso do Gasoduto Cacimbas (ES) - Catu (BA)

    Oliveira, Wilson Jose de; Pereira Junior, Edson R.; Fonseca, Renata A. Almeida; Rocha, Marcelo de Andrade; Soares, Luis Felipe [PETROBRAS Engenharia, RJ (Brazil). Engenharia de Avaliacao Ambiental


    The environmental assessment process is one of the most important phases in the implementation of pipeline projects. For that reason, new technologies and work procedures are used to perform the environmental assessment of areas where pipeways will be implemented. Since the quality of environmental assessment studies influences the social acceptance of projects and, consequently, the time required to obtain the environmental permits, PETROBRAS (Engenharia/IETEG/ETEG/EAMB) applies advanced technological tools to acquire remote sensing data (conventional / digital aero-surveys and satellite images), as well as software for digital image processing and integration and spatial analysis of information. Information about the physical, biological and socioeconomic environments are further verified and complemented through field trips using helicopters. This process makes it possible to identify environmentally favorable corridors to develop guidelines for the implementation of the pipeline, assuring its environmental feasibility, and produces relevant data to support the Environmental Impact Assessment Study, the Environmental Impact Assessment Report and the Risk Analysis Study. As an example of the application of this methodology, this paper presents results of the assessment of the Cacimbas / Catu gas pipeline, which is currently being permitted and is planned to be implemented in areas of high environmental complexity. (author)

  2. Analysis of the generation and monitoring of impact on fauna in the gas pipeline works in the current environmental legislation; Analise da geracao e monitoramento do impacto sobre a fauna silvestre em obras de gasodutos face a legislacao ambiental vigente

    Caldas, Flaviana V.; Serricchio, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil); Akahori, Lisa [TELSAN Engenharia e Servicos Ltda, Vitoria, ES (Brazil); Nascimento, Reinaldo R. [IMC Saste - Construcoes, Servicos e Comercio Ltda., Sao Paulo, SP (Brazil)


    The impacts to wildlife in areas where gas pipelines will be implemented are considerable, changing the existing balance. The main environmental measure adopted in the cases is the deployment of the Fauna Management Programme. This programme is sub - divided into two: Monitoring and Rescue of the fauna. The tracking step starts before the installation of the venture, with the completion of a first in order to identify the impacts before the venture, and finishes two years after the end of the works. These studies are based on guidelines set in the Normative Instruction of the environmental licensor agency, in which the criteria for implementation are restrictive, often without making a license agency distinction of methodology for enterprises with different characteristics. This article intended to review the criteria and the procedures established by the legislation and its real applicability in gas pipeline projects face to the environmental impacts identified to this activity. For this analysis, the methodology used was the case study of two gas pipelines: Cabiunas - Vitoria (GASCAV) and Cacimbas - Catu (GASCAC). The results allowed to conclude that the actions developed to the Sub-Programme of Rescue of the fauna are satisfactory to control environmental impacts and that the Sub-Programme of Monitoring of the fauna just confirm behaviors and information's previous detected. (author)

  3. Use of pipe saks on pipeline construction

    Ghio, Alberto F.M.; Caciatori, Angelo [Galvao Engenharia S.A., Sao Paulo, SP (Brazil); Ruschi, Allan A.; Santos, Felipe A. dos; Barros, Horacio B. de; Loureiro, Regis R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    The use of new technologies applied to pipeline construction and assembling, aimed at enhancing productivity has been searched by PETROBRAS, throughout its subcontractors, assemblers, by transference in the mentioned constructions. Along the construction of Cacimbas Catu Pipeline, Spread 1 A, placed between the Cacimbas Gas Treatment Station (Linhares, ES) and the future Compression Station of Sao Mateus (ES), one, by means of surveys, noticed that the length of flooded or prone to flooding areas was way superior to the ones foreseen in the basic design. One of the broadly used methods for assuring buoyancy control is concreting the pipes. Such method deeply impacts work's logistics in for instance, the pipe stringing work; in this one, a maximum load of two pipes can be transported until the area to applied, what leads to lower productivity and higher risk due to the increase of trips by heavy load trucks. As an alternative to regular concrete, the Pipe Sak System was adopted and such method improved productivity and decreased discontinuities. (author)

  4. 76 FR 53086 - Pipeline Safety: Safety of Gas Transmission Pipelines


    ... sufficient to protect the public in the event of a gas pipeline leak or rupture? Are there ways that PHMSA... pipeline operators. In 2003, similar IM regulations were enacted for gas pipelines (68 FR 69778; 12/15/2003... pipelines in the Natural Gas Pipeline Safety Act of 1968, Public Law 90-481, which has since been......

  5. Natural gas pipeline technology overview.

    Folga, S. M.; Decision and Information Sciences


    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  6. A Cheap Aerial Gas Pipeline

    Alexander A. Bolonkin


    Full Text Available Problem statement: At present time gas pipelines are designed from steel and located on ground surface. That is very expensive and building requests a lot of time. Research and utilization of an old author idea: Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude through neutral seas, for delivery of natural (fuel gas, water and other payload over a long distance is delineated. Approach: A lift force of 1 m3 of methane equals approximately 0.5 kg (1 pound. The lightweight film flexible pipeline can be located in air at high altitude and, as such, did not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. Results: Researcher showed: This aerial pipeline dramatically decreased the cost and time of construction relative to conventional pipelines of steel which saved energy and greatly lowers the capital cost of construction. Article contained a computed project for delivery 24 billion m3 of gas and tens of million tons of oil, water or other payload per year. Conclusion: Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel gas, water and other payload over a long distance (neutral sea was delineated. The offered idea an aerial pipe line was researched. It was shown new pipelines radically decreased pipeline cost and construction time. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This pipeline and wing devices also allowed to delivery the other goods.

  7. Regulating natural gas pipeline efficiency

    Proponents of gas pipeline capacity assignment---sometimes referred to as capacity brokering---would like a policy that would allow holders of gas pipeline capacity contact, usually firm transportation, to resell that capacity for short periods of time when it is not needed. In this paper the authors review the current U.S. policy towards capacity assignment in the context of FERC regulation of interstate pipelines and compare the U.S. debate with Canada's approach. The authors offer a modest proposal to institute a capacity assignment program experiment

  8. The Alaskan gas pipeline conflict

    Savich, P.; Fraser, N.M.; Hippel, K.W.


    A new conflict analysis technique is employed to study the dispute surrounding the selection of a natural gas pipeline route to transport gas from the American state of Alaska and also northern Canada to southern markets in the United States and Canada. The improved metagame analysis algorithm is the type of conflict analysis method that is used for providing a framework to study systematically the Alaskan gas pipeline controversy and to put the historical information into proper perspective. In addition, the methodology is utilized for predicting the possible feasible political solutions to the conflict.

  9. Nova Gas's pipeline to Asia

    The involvement of the Calgary-based company NOVA Gas International (NGI) in Malaysia's peninsular gas utilization (PGU) project, was described. Phase I and II of the project involved linking onshore gas processing plants with a natural gas transmission system. Phase III of the PGU project was a gas transmission pipeline that began midway up the west coast of peninsular Malaysia to the Malaysia-Thailand border. The complex 549 km pipeline included route selection, survey and soil investigation, archaeological study, environmental impact assessment, land acquisition, meter-station construction, telecommunication systems and office buildings. NGI was the prime contractor on the project through a joint venture with OGP Technical Services, jointly owned by NGI and Petronas, the Thai state oil company. Much of NGI's success was attributed to excellent interpersonal skills, particularly NGI's ability to build confidence and credibility with its Thai partners

  10. North Slope pipeline work strong; gas pipeline project deferred

    Hale, D.


    Over 225 miles of insulated pipelines will be installed on the North Slope as part of a 5-year, $10.5 billion program by Sohio and Arco to maintain output from the field to feed the trans-Alaska oil pipeline. New lines are for waterflood supply systems, low pressure production systems, produced water handling, and gas handling. Pipeline construction is quite active at both Prudhoe Bay and at Kuparuk Field. Future projects include an oil line to the Beaufort Sea, the Polar Gas Project, the Arctic Pilot project, and the Northern Tier Pipeline.



    @@ PetroChina West East Gas Pipeline & Sales Company, a regional company directly under PetroChina Company Limited (PetroChina), is responsible for the construction and operation of the West-East Gas Pipeline Project, and the gas marketing and sales of the natural gas market in China.

  12. California Natural Gas Pipelines: A Brief Guide

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  13. Future impact on natural gas pipelines

    Croom, J.H.


    The future for natural gas pipelines is forecast by examining the sources and uses of energy today and projecting respective changes. No significant changes are expected over the next 20 yr in natural gas usage, but regionally, some demand shift could impact certain gas transmission facilities. The conclusion is that natural gas will continue to displace oil in some stationary uses, while coal will displace natural gas in some power plant and feedstock applications. Although these shifts will result in some regional construction activity, they will probably not necessitate major arterial increases to the pipeline network. However, significant changes in supply sources may have a major impact on pipeline planning and construction.

  14. China Oil & Gas Pipeline Survey & Design Institute, Pipeline

    Bureau of CNPC; Zhao Surong


    @@ China Oil/Gas Pipeline Bureau(P.B) is the only professional organization in China specialized in oil/gas pipelines design and construction since 1980s. It has ever cooperated with certain number of well known companies from Japan,USA, Germany, Canada, as well as Italy in the designs of many large oil/gas pipeline projects, during the course of which, personnel from P.B accumulated much experience in international project designs. During the execution of each particular project, they strictly followed the common-use international codes and standards with computers as the auxiliary design system combined with the self-developed software. All its clients showed their trust in this organization and gave it high praise for its outstanding survey, design and technical service.

  15. Pipelines jockey to serve Florida gas market

    This paper reports that Florida Gas Transmission Corp. (FGT), Houston, appears to have taken the lead in competition to serve Florida's growing gas markets. Florida Power and Light (FPL), Miami, decided to reserve transportation capacity on FGT's proposed Phase III expansion rather than the Sun Coast pipeline proposed by United Gas Pipe Line Co. (UGPL), Houston, and Coastal Corp. unit ANR Pipeline Co., Detroit (OGJ, Aug. 31, p. 31). Withdrawal of FPL, Florida's largest electric utility, from Sun Coast left the proposed 560 mile, 400 MMcfd intrastate gas transmission pipeline with only one major prospective client, Florida Power Corp., St. Petersburg. That forces UGPL and ANR to dissolve the partnership

  16. Black powder in gas pipelines

    Sherik, Abdelmounam [Saudi Aramco, Dhahran (Saudi Arabia)


    Despite its common occurrence in the gas industry, black powder is a problem that is not well understood across the industry, in terms of its chemical and physical properties, source, formation, prevention or management of its impacts. In order to prevent or effectively manage the impacts of black powder, it is essential to have knowledge of its chemical and physical properties, formation mechanisms and sources. The present paper is divided into three parts. The first part of this paper is a synopsis of published literature. The second part reviews the recent laboratory and field work conducted at Saudi Aramco Research and Development Center to determine the compositions, properties, sources and formation mechanisms of black powder in gas transmission systems. Microhardness, nano-indentation, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) techniques were used to analyze a large number of black powder samples collected from the field. Our findings showed that black powder is generated inside pipelines due to internal corrosion and that the composition of black powder is dependent on the composition of transported gas. The final part presents a summary and brief discussion of various black powder management methods. (author)

  17. Australia's changing natural gas and pipeline industry

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  18. Stress Analysis of Shallow Sea Gas Pipelines

    Xiaonan Wu


    Full Text Available Shallow sea gas pipelines usually operate in complicated and changeable regional environments and can generate corresponding stresses and displacement under the influence of internal pressures, earthquakes, waves and other loadings. An unevenly distributed stress will lead to shallow sea gas pipeline failure easily. In order to ensure the safety of pipeline, it is necessary to research the stress conditions of the shallow sea gas pipeline and check whether it can meet the safety requirements or not. In this study, we analyze the stress conditions of shallow sea gas pipelines of two laying modes in XX areas using stress analysis software CAESAR II, discuss the loading conditions under the operating condition and determine the position of the key point where pipeline damage is most likely to happen, the bend pipe. The comprehensive experiments show that underground method more secure than the sea-bed method, it greatly improves the reliability of the shallow sea pipeline running. Our research provides a theoretical basis for the construction of shallow sea gas pipelines.

  19. Market Brief : Turkey oil and gas pipelines

    This report presented some quick facts about oil and gas pipelines in Turkey and presented opportunities for trade. The key players and customers in the oil and gas sector were described along with an export check list. Turkey is looking into becoming an energy bridge between oil and gas producing countries in the Middle East, Central Asia and Europe. The oil and gas sectors are dominated by the Turkish Petroleum Corporation, a public enterprise dealing with exploration and production, and the State Pipeline Corporation which deals with energy transmission. They are also the key buyers of oil and gas equipment in Turkey. There are several pipelines connecting countries bordering the Caspian Sea. Opportunities exist in the areas of engineering consulting as well as contracting services for oil and gas pipeline transmission and distribution. Other opportunities lie in the area of pipeline construction, rehabilitation, materials, equipment, installation, and supervisory control and data acquisition (SCADA) systems. Currently, the major players are suppliers from Italy, Germany, France, United States and Japan. Turkey has no trade barriers and imported equipment and materials are not subjected to any restriction. The oil and gas market in Turkey expected in increase by an average annual growth rate of 15 per cent from 2001 to 2003. A brief description of pipeline projects in Turkey was presented in this report along with a list of key contacts and support services. 25 refs., 1 append

  20. BC Alaska-Canada gas pipeline

    MacDonald, K. [BP Canada Energy Company, Calgary, AB (Canada). BP Alaska Canada Gas Pipelines


    The Alaska natural gas pipeline project was discussed in relation to the Canadian oil and gas industry and pipeline infrastructure. Total project costs for the pipeline were estimated at approximately $20 billion. Options out of Alberta include increasing existing capacity to the west coast, as well as expanding pipeline capacity to supply midwest and east coast markets. Existing pipeline systems will be expanded, and a new pipeline from Alaska to Chicago has been proposed. The gas pipeline project is expected to be the largest private construction project in the history of North America, and will provide 6500 jobs in both the United States and Canada. Project challenges to date have included the development of relationships with Aboriginals and First Nations groups in Canada and the United States, as well as ensuring access to efficient, competitive market-based regulatory processes. Project risks to date have included capital and operating cost over-runs, regulatory and legal delays, completion risks, and commodity price risks. Stranded gas act processes were discussed, as well as fiscal contracts related to the legislative and public process. Elements of the fiscal contract were provided, as well as details of First Nations relationships and Crown consultation processes. tabs., figs.

  1. Review of Oil and Gas Pipeline Construction in 2007

    Qu Hong


    @@ China's pipeline industry has developed for 50 years till 2008. In the past 10 years, more than 50,000 kilometers of long-distance oil and gas pipelines have been constructed,of which gas pipelines reached about 30,000 kilometers,crude oil pipelines about 17,000 kilometers, and product oil pipelines about 7,000 kilometers. Oil and gas pipeline networks across regions have taken shape.

  2. Seismic vulnerability of natural gas pipelines

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  3. Determination of radon in natural gas pipelines

    The aim of this study was to develop the methodology for collection and analysis of radon from a natural gas pipeline. Activated charcoal was used as collection media. Two methods were designed for collecting radon gas samples from onshore and offshore production sites. For onshore sites a continuous gas sampling method from the pipeline was developed. In case of offshore sites, a batch sampling method was designed. Gamma spectroscopy was utilized to determine the concentration of radon by analysis of radon daughters on the charcoal. (author)

  4. Shaan-Jing Gas Transmission Pipeline

    Deng Diqun


    @@ The gas transmission pipeline under construction from Shaan-Gan-Ning Gas Field, western China to Beijing,is of the longest transmission distance and the largest diameter of the kind so far in China. Under complex geomorphologic and geological conditions along its stretch, strict criteria are demanded for its engineering design and construction.

  5. A Cheap Levitating Gas/Load Pipeline

    Bolonkin, Alexander


    Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift ...

  6. Northwest Asia - gas market outlook: LNG vs. pipeline gas

    The share of natural gas in Northeast Asia's energy mix is quite low despite that the region currently dominates the world LNG trade. In the long term, the region's rapid expansion of gas demand in the coming decades looks very likely, but the LNG dominance in the region's gas market will collapse in parallel with the introduction of a long distance pipeline gas. The most likely timing of pipeline gas introduction in Northeast Asian gas market seems to be during the second half of the next decade. (Author)

  7. A Cheap Levitating Gas/Load Pipeline

    Bolonkin, Alexander


    Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

  8. Liquid holdup in wet-gas pipelines

    An experimental study of two-phase flow was conducted to investigate liquid holdup in wet-gas pipelines. The liquid-holdup data were obtained by passing spheres through a 1,333-ft [406.3-m] -long, 3.068-in. [77.93-mm] -ID horizontal pipe and measuring the liquid volumes removed. Three different two-phase mixtures were used. The holdup data were compared with predicted holdup values and were used to evaluate a mechanistic model for stratified flow. None of the methods could accuratly predict liquid holdup in this low-holdup region. Two new empirical liquid-holdup correlations for horizontal flow were proposed. The first is strictly for wet-gas pipelines (0< y/sub L/<0.35); the second is for any horizontal pipeline (0< y/sub L/<1.0)

  9. International Gas Trade : The Bolivia-Brazil Gas Pipeline

    Law, Peter L.; Franco, Nelson


    The Bolivia-Brazil natural gas pipeline, which will transport natural gas more than 3,000 kilometers, will cost US$2.1 billion to construct. Despite the substantial benefits for both Bolivia and Brazil and the involvement of reputable private partners, the perceived risks and complexities of this large project made financing it a major challenge. The pipeline will link supply in one countr...

  10. Gas supplies of interstate natural gas pipeline companies, 1991

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, ''Interstate Pipeline's Annual Report of Gas Supply.'' Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963

  11. Microwave Radar Detection of Gas Pipeline Leaks

    Gopalsami, N.; Kanareykin, D. B.; Asanov, V.; Bakhtiari, S.; Raptis, A. C.


    We are developing a microwave radar sensing and imaging system to detect and locate gas leaks in natural gas pipelines. The underlying detection principle is radar backscattering from the index-of-refraction inhomogeneities introduced by the dispersion of methane in air. An essential first step in the development effort is modeling to estimate the radar cross section. This paper describes the modeling results and the experimental efforts underway to validate the model. For the case of leaks from small holes in a pressurized gas pipeline, we modeled the gas dynamics of the leak jet to determine the plume geometry and the variation of methane concentration in air as a function of distance from the leak source. From the static and dynamic changes in the index of refraction in the turbulent plume, the radar backscatter cross sections were calculated. The results show that the radar cross sections of the leak plumes should be detectable by special-purpose radars.

  12. Research into the transmission of natural gas by gas pipeline

    Gadonneix, P.


    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  13. Natural radionuclides on natural gas pipeline scales

    Not well known as the scales observed in the petroleum industry, scales are found on gas pipelines. Its formation process is different from that of scales from the petroleum industry; redox reaction between substances existing in the natural gas and the pipeline walls gives rise to scales, sometimes called as lack powder. The differences between the petroleum industry scales and this kind of scales go further than only the formation process and color. While in the traditional scale barium sulfate and calcium carbonate are the main chemical component, iron and iron sulfite are here the main constituents. Also, the associated natural radionuclides are different, instead radium isotopes 210Pb is the principal radionuclide observed. Since the use of natural gas is ecologically more favorable than diesel or gasoline, a large pipeline network (3,000 km) was built in order to increase the percentage of the natural gas in the Brazilian energetic matrix from the actual 2.5% to 10% during the next years. To reduce the pipeline internal corrosion and, therefore, the scale production, pigging operation are carried out on semester or yearly basis. During this operation, black powder residues are generated and collected. In order to verify the existence of 210Pb, and also of 226Ra and 228Ra, on such kind of deposits, 15 samples were obtained and analyzed for these radionuclides. 210Pb concentrations up to 5 kBq/kg were found, but, generally, 226Ra and 228Ra were much lower than the 210Pb concentration. As expected, iron and iron sulfite were the main chemical constituents observed. (author)

  14. Social responsibility and educational communication in communities accessed by the works: a case study. IEGA - enterprise implementations for gasene

    Campos, Elisangela Assis de; Farias, Aline Marianne Magalhaes [LP Empreendimentos, Rio de janeiro, RJ (Brazil); Marques, Yanna Oliveira [Cia. Nacional de Dutos (Conduto S/A), Duque de Caxias, RJ (Brazil); Penido, Rita de Cassia [Sinopec Brasil, Rio de Janeiro, RJ (Brazil)


    Construction and assembly in a gas pipeline project is a constant study of realities and in some cases situations which involve interferences in communities, the company's interests must be wholly integrated with the primary need of the project which is to construct with Social-Environmental Responsibility, establish a good relationship, respect the communities values in which the project passes through and around and surround itself with measures guaranteeing safety, information about the activities and cause minimal impact in the day to day lives of the residents. At Spread 2A of the Pipeline project Cacimbas-Catu, the necessity to develop a specific project for the communities surrounding the access areas was elaborated principally because the topography only permitted the transportation of pipes, equipment and personnel to pass through these areas. This unique situation was drafted based on the transit of vehicles and heavy machinery, through communities with a low IDH (Human Development Index), dangerous living conditions and a high demographic density. Preventive and pacifying actions for Communities and Social responsibility were drafted and developed, involving a multidisciplinary collective effort with other sectors of the project, applying a global theme to ensure safety for the residents around the access areas, also to divulge information in regards to project activities, establish ethical and transparent communication and implement measures that assist in building a solid relationship between the enterprise and community, anticipating risky situations and possible conflicts. This Case Study has as an objective to present projects that were developed in the area of Communication and Social Responsibility in the Access Communities and that, proved effective, became standard within the entire work force's Trainings and Daily Safety, Environmental, and Occupational Health Dialoguing. During the development of the Project 'Street of Leisure

  15. Gas supplies of interstate/natural gas pipeline companies 1989


    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  16. Gas supplies of interstate natural gas pipeline companies 1990

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  17. Alaska gas pipeline and the global natural gas market

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  18. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)


    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  19. Real-time receding horizon optimisation of gas pipeline networks

    Aalto, Hans


    Real-time optimisation of gas pipelines in transient conditions is considered to be a challenging problem. Many pipeline systems are, however, only mildly non-linear. It is shown, that even the shutdown event of a compressor station can be described using a linear model. A dynamic, receding horizon optimisation problem is defined, where the free response prediction of the pipeline is obtained from a pipeline simulator and the optimal values of the decision variables are obtained solving a Qua...

  20. Current Status and Prospects of Oil and Gas Pipelines in China

    Pu Ming


    @@ By the end of 2009,the total length of existing oil and gas pipelines in China had reached 75×103 km.The pipelines include 38×103 km of gas pipelines,20×103km of crude oil pipelines and 17×103 km of oil product pipelines,framing a trans-regional pipeline network for the oil and gas delivery.

  1. Managing changes of location classes of gas pipelines

    Cunha, Sergio B.; Sousa, Antonio Geraldo de [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)


    Most of the gas pipeline design codes utilize a class location system, where the design safety factor and the hydrostatic test factor are determined according to the population density in the vicinities of the pipeline route. Consequently, if an operator is requested or desires to maintain an existing gas pipeline in compliance with its design code, it will reduce the operational pressure or replace pipe sections to increase the wall thickness whenever a change in location class takes place. This article introduces an alternative methodology to deal with changes in location classes of gas pipelines. Initially, selected codes that utilize location class systems are reviewed. Afterwards, a model for the area affected by an ignition following a natural gas pipeline leak is described. Finally, a methodology to determine the MAOP and third part damage mitigation measures for gas transport pipelines that underwent changes in location class is presented. (author)

  2. Natural gas pipelines: emerging market challenges

    The Australian gas industry has come a long way in recent years. Most of the formerly government owned gas transmission, distribution and retail businesses have been privatised; major utility companies have been fundamentally restructured; the convergence of energy markets has seen many companies stepping outside the boundaries of their traditional businesses; and national competition policy has led to profound changes in the regulatory landscape. Yet despite the magnitude of these changes, it is clear that the journey of competitive reform has a long way to go. The Australian Gas Association's Industry Development Strategy identifies the potential for gas to increase its share of Australia's primary energy market, from around 18 percent at present to 22 percent by 2005, and 28 percent by 2015. Our analysis, using ACIL's Eastern Australian Gas Model, clearly shows that in the absence of major new sources of gas, these challenging targets will not be met and, indeed, there will be an increasing supply shortfall. However, with the emergence of new competitive supply sources such as Papua New Guinea and the Timor Sea, our modelling suggests that most of this demand can be satisfied at prices which will maintain gas' competitiveness in energy markets. Such developments provide both opportunities and challenges for the industry. In particular, they will profoundly affect the owners and operators of transmission pipeline systems. (Authors)

  3. Recompression of natural gas during pipeline repair

    Rotink, M.H.; Koppens, B.G. [N. V. Nederlandse Gasunie, Groningen (Netherlands)


    Gasunie is working to minimize the company's emission of greenhouse gases and set up a so-called (carbon) footprint reduction programme. Recompression of natural gas is a part of that programme, being the better alternative for flaring or venting when a pipeline must be emptied. To fully utilize the recompression concept, a unique recompression unit was designed to make recompression as easy as possible, what was considered to be of vital importance for successful implementation. The unit came into operation in 2006 and Gasunie has integrated recompression in its regular workflow. 30 gas evacuation jobs have since been done with recompression which resulted in a recompressed volume of 13.3 million m{sup 3}(n). This volume represents 238,000 t of CO{sub 2}-equivalents that are prevented of flowing into the atmosphere and a revenue of 3.7 million Euro from the gas that is saved from beingwasted by flaring or venting. The revenue is based on a commodity price of 0.28 Euro/m{sup 3}. The unit did cost 1.5 million Euro, so the return on investment is obvious. If all gas evacuation jobs are considered, there is still some recompression potential left. A limiting factor of recompression is the time it takes. In some cases the time to recompress exceeds the allowable down time of the pipeline. Therefore a second unit is delivered to Gasunie in 2010. With this extra capacity more gas can be recompressed. Gasunie has put in serious effort to get the recompression concept working in all its aspects and is therefore very pleased with the results so far. This is underlined by the fact that a second unit is bought. With recompression Gasunie has found a way to reduce greenhouse emissions in a cost effective way, or even better, in a cost saving way.

  4. Research on Optimization Operation of Urban Gas Pipeline Network

    田一梅; 迟海燕; 李鸿; 周颖


    The optimization operation of gas pipeline network is investigated in this paper. Based on the theories of system optimization and the multi-object decision, a mathematical model about the multi-object optimization operation of gas pipeline network is established, in line with the demand of urban gas pipeline network operation. At the same time, an effective solution of the mathematical model is presented. A calculating software about optimization operation is compiled, coupling the actual operation of gas pipeline network. It can be applied to the operation of the gas pipeline network. The software was examined by real examples. The results indicated that 2.13%00 energy consumption and 3.12%oo gas supply cost can be reduced through optimization operation.

  5. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...


    ... gas pipelines have relevant planning information to assist in maintaining the operational integrity... Operational Information Between Natural Gas Pipelines and Electric Transmission Operators, 78 FR 44900 (July... integrity of the transportation and transmission systems. In addition, interstate natural gas pipelines...

  6. Continuously Innovating Technology of Oil and Gas Pipeline in China

    Yao Shihong; Yang Tianbing


    @@ Through fifty years' development and effort,oil and gas pipeline industry in China has created a selfdevelopment way under the country's characteristics which relies on scientific and technological innovation and introduction,assimilation and re-innovation.Along with the completion and application of West-East Gas Transmission Pipeline Ⅰ and starting construction of Line West-East Gas Transmission Pipeline Ⅱ,in the main technology field such as design and construction,the whole oil and gas pipeline industry has reached the international advanced level,even some have reached the international top level at present.Thanks to the development process of current economic globalization and technology internationalization,scientific and technological innovation as the inevitable choice to realize continuous,effective,fast and harmonious development of China oil and gas pipeline technology.

  7. Black powder removal in a Mexico gas pipeline

    Morrow, John R. [TDW Services, Inc., New Castle, DE (United States); Drysdale, Colin; Warterfield, Bob D. [T.D.Williamson, Inc., Tulsa, OK (United States)


    This paper focuses on the cleaning methodology and operational constrains involved with the removal of black powder in a high pressure natural gas transmission pipeline. In this case, the accumulation of black powder along the pipeline system over the seven year period since it was put into service was creating significant problems in the areas of maintenance, customer relations, and cost to the pipeline operator due to clogging of filters, reduced gas flow, and penalties as result of non-compliant delivery contracts. The pipeline cleaning project consisted of running cleaning pigs or scrappers with batches of cleaning solution through each section of the pipeline while dealing with such factors as three (3) pipeline section lengths in excess of 160 kms (100 miles), gas flow velocity fluctuations, shutdowns, and gas delivery schedule requirements. The cleaning program for the entire pipeline system included the use of chemical and diesel based cleaning solution, running multiple cleaning pigs, liquid injection and separation system, mobile storage tanks, various equipment and personnel for logistical support. Upon completion of the cleaning program, the level of black powder and other solids in all pipeline sections was reduced to approximately 0.5% liquid/solid ratio and the pipeline system returned to normal optimum operation. (author.

  8. Environmental analysis for pipeline gas demonstration plants

    Stinton, L.H.


    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  9. Energy geopolitics and Iran-Pakistan-India gas pipeline

    With the growing energy demands in India and its neighboring countries, Iran-Pakistan-India (IPI) gas pipeline assumes special significance. Energy-deficient countries such as India, China, and Pakistan are vying to acquire gas fields in different parts of the world. This has led to two conspicuous developments: first, they are competing against each other and secondly, a situation is emerging where they might have to confront the US and the western countries in the near future in their attempt to control energy bases. The proposed IPI pipeline is an attempt to acquire such base. However, Pakistan is playing its own game to maximize its leverages. Pakistan, which refuses to establish even normal trading ties with India, craves to earn hundreds of millions of dollars in transit fees and other annual royalties from a gas pipeline which runs from Iran's South Pars fields to Barmer in western India. Pakistan promises to subsidize its gas imports from Iran and thus also become a major forex earner. It is willing to give pipeline related 'international guarantees' notwithstanding its record of covert actions in breach of international law (such as the export of terrorism) and its reluctance to reciprocally provide India what World Trade Organization (WTO) rules obligate it to do-Most Favored Nation (MFN) status. India is looking at the possibility of using some set of norms for securing gas supply through pipeline as the European Union has already initiated a discussion on the issue. The key point that is relevant to India's plan to build a pipeline to source gas from Iran relates to national treatment for pipeline. Under the principle of national treatment which also figures in relation to foreign direct investment (FDI), the country through which a pipeline transits should provide some level of security to the transiting pipeline as it would have provided to its domestic pipelines. This paper will endeavor to analyze, first, the significance of this pipeline for India

  10. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen


    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  11. Methodology for environmental audit of execution in gas-pipelines and pipelines

    In first instance the constructive aspects and the environmental impact related with the gas-pipes and pipelines construction are presented; then a methodology to make the environmental audit of execution in gas-pipes and pipelines, is showed. They contemplate four stages basically: planning, pre-auditory, execution and analysis, and post-auditory with their respective activities. Also, it is given to know, generalities of the practical case, to evaluate the applicability of the proposed methodology

  12. Pressure equivalents in industrial gas pipelines

    Metel' kov, V.P.


    Pressure equivalence is a mathematical concept used to explain action and load parameters for pipelines. These two parameters are congruent to pressures encountered in pipelines. The research examined pressure equivalence in 820 by 8 millimeter pipelines in the Samotlor region and took into account the influence of support jams during first and second category jamming. It was determined that the absolute dimensions to pressure pulsations were significantly larger than plus or minus ten percent from (Prab) and even exceeded (Prab) in certain instances. The ratios at which (Prab) can be exceeded vary with relation to the jam supports and the maximum variations stem from yield in the metal pipelines themselves. The above concepts can be used to study the effects of pressure equivalence upon loads and pressures of Samotlor field pipelines and to select appropriate pipeline planning and construction methods. The conclusions drawn are valid for industrial surface pipelines used at below limit pressures. Annular and daily temperature variations in the outside air are considered with regard to their effect upon the pressure equivalence within the lower sections of the pipeline. Deviations here have been noted to exceed (formula). It was observed that in the case of underground pipelines, operated at below limit pressures, pressure equivalence occured in the upper section of the pipeline.

  13. Numerical modeling of fires on gas pipelines

    When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.

  14. Risk from transport of gas by pipeline ''kokui-perm''

    Full text of publication follows: the length of gas pipelines in Russia is 142 thousands km, 62 % are pipelines of the large diameters. Annually on gas pipelines in Russia there are more than 70 large accidents, more than 50 % from them is accompanied by ignition of gas. The average ecological looses from accident is: destruction arable lands - 78 hectares; removing from consumption agricultural soils - 6,2 hectares; destruction forests - 47,5 hectares. In work the reasons of accidents on gas pipelines of different diameters are analyzed. So, for pipelines a diameter of 1220 mm by the reasons of accidents are: marriage of civil and erection works - 39, 1 %; outside corrosion - 35,9 %; mechanical damages - 9,4 %; defects of pipes - 6,2 %; defects of the factory equipment - 1,6 %; nature disasters and other reasons - 7,8 %. In work the results of risk analysis on a gas pipeline 'Kokui - Perm' are analysed. The gas pipeline 'Kokui - Perm' passes near 22 towns and countries, crosses 15 highways, 2 rail ways, 15 rivers. In work the concrete recommendations for management of risk and safety of the population are given. (author)

  15. Geotechnical risks affecting pipelines : the Bolivia-Brazil natural gas pipeline experience

    Geotechnical management practices for pipelines can minimize the risk of accidents caused by hazards such as landslides, foundation subsidence, settlement and erosion. This paper summarized the geotechnical risks affecting pipelines and presented some examples of practical work done by Transportadora Brasileira Gasoduto (TBG) along the longest pipeline in South America, the Bolivia-Brazil natural gas pipeline. TBG is also responsible for the maintenance and operation of the 2593 km long pipeline which spans from Rio Grande in Bolivia to Canoas in southern Brazil. The pipeline crosses a range of difficult topography where both natural and human hazards can lead to high stress levels that can reach the steel yield strength limit and result in ruptures. The traction, compression, inflection or strain depend on the direction of the movement and the pipe position. The area most prone to geotechnical hazards is in the south due to its hard topography and a variety of geological materials such as colluvium deposits and debris flows. The right-of-way geotechnical risks that affect the pipeline were presented along with some of the practical remedial work that has been done by TBG along the pipeline route. The integrity management plans and the adopted actions that prevent geotechnical accidents were also presented. It was concluded that geotechnical hazard mapping should be emphasized in the planning phase of pipelines. New technologies such as the GEOPIG inspection tool combined with traditional preventive measures can effectively detect landslide areas. 2 refs., 2 tabs., 18 figs

  16. Robotic inspection of unpiggable natural gas transmission and distribution pipeline

    Laursen, Paul [InvoDane Engineering Ltd., Toronto, Ontario (Canada); D' Zurko, Daphne [The Northeast Gas Association, Needham, MA (United States); Vradis, George [Department of Mechanical Engineering, Polytechnic Institute of New York University, Brooklyn, NY (United States); Swiech, Craig [National Fuel, Buffalo, NY (United States)


    This paper describes the development and pre-commercial use of Explorer II, a semi-autonomous robotic platform that carries a remote field eddy current (RFEC) sensor, to inspect unpiggable natural gas pipelines whose range is 6 to 8 inches, including pipelines with multiple diameters, short radius, mitered bends, and tees. The modular design of the system allows its deployment in various configurations for visual inspection and non-destructive evaluation of a pipeline. The essential part of this system is a RFEC sensor that can measure the pipeline's wall thickness. The robot is also equipped with two fisheye cameras (one at each end) that provide high-quality visual capabilities for locating and inspecting joints, tee-offs, and other pipeline features. The system can be launched, operated, and retrieved in live pipelines with pressures up to 750 psig. It should be commercially available in the fall of 2010.

  17. Gas Pipelines, LP and LNG, Published in unknown, DCP Midstream.

    NSGIC GIS Inventory (aka Ramona) — This Gas Pipelines, LP and LNG dataset, was produced all or in part from Field Survey/GPS information as of unknown. Data by this publisher are often provided in...

  18. Studying of acid-gas pipelines corrosion with impedance spectroscopy

    Neshati, J.; Fardi, M.R.; Ghassem, H. [Corrosion Department, NIOC-RIPI, Pazhooheshgah Bulevard, Khairabad Junction, Old Qom Road Tehran (Iran)


    In this research, the acid-gas pipelines of a gas refinery were simulated in laboratory. Acid gas is normally the feed of sulfur recovery plant (SRP) in a gas refinery. For studying corrosion kinetic and related mechanisms the impedance spectroscopy was used. Impedance diagrams were simulated by Boukamp1988 software. It was found that the simulated systems can be equated to a circuit with two time constants. For studying corrosion rate changes a type of inhibitor was utilized. The inhibitor used in this work was an imidazoline, an appropriate based inhibitor formulated with the commercial grade imidazoline and dimmer - trimer acid. It was shown that impedance spectroscopy technique can be used for corrosion monitoring of acid gas pipelines in gas refineries. The impedance spectroscopy will be tried in due course as a suitable technique in field for corrosion control of acid-gas pipelines. (authors)

  19. Gas pipeline optimization using adaptive algorithms

    Smati, A.; Zemmour, N. [INH, Boumerdes (Algeria)


    Transmission gas pipeline network consume significant amounts of energy. Then, minimizing the energy requirements is a challenging task. Due to the nonlinearity and poor knowledge of the system states, several results, based on the optimal control theory, are obtained only for simple configurations. In this paper an optimization scheme in the face of varying demand is carried out. It is based on the use of a dynamic simulation program as a plant model and the Pareto set technique to sell out useful experiments. Experiments are used for the identification of regression models based on an original class of functions. The nonlinear programming algorithm results. Its connection with regression models permits the definition off-line, and for a long time horizon, of the optimal discharge pressure trajectory for all the compressor stations. The use of adaptive algorithms, with high frequency, permits one to cancel the effect of unknown disturbances and errors in demand forecasts. In this way, an on-line optimization scheme using data of SCADA system is presented.

  20. Current Status and Prospects of Oil and Gas Pipelines in China


    @@ By the end of 2008,the total length of existing oil and gas pipelines in China had reached 6.3×104 km.These pipelines include 3.2×104 km of natural gas pipelines,1.8×104 km of crude oil pipelines and 1.3×104 km of oil products pipelines,laying the foundation for establishing a network of trans-regional oil and gas pipelines.

  1. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard


    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

  2. Deliverability on the interstate natural gas pipeline system



    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.


    O. N. Medvedevа


    Full Text Available Problem statement. Selection of gas pipeline route exercises significant influence on the func-tioning of gas distribution system. The optimal solution of this problem would substantially reduce costs for construction and operation of gas supply system.Results and conclusions. In this paper, we give some recommendations on design of branch gas pipelines to increase the effectiveness of their operation. The results of technical and economic studies of gas distribution systems are presented. To determine the optimal variant of the gas pipe-line, we designed software package which allows to optimize simultaneously the pressure distribu-tion over the gas network and geometrical parameters.

  4. Energy geopolitics and Iran-Pakistan-India gas pipeline

    Verma, Shiv Kumar [Political Geography Division, Center for International Politics, Organization and Disarmament, School of International Studies, Jawaharlal Nehru University, New Delhi 110067 (India)]. E-mail:


    With the growing energy demands in India and its neighboring countries, Iran-Pakistan-India (IPI) gas pipeline assumes special significance. Energy-deficient countries such as India, China, and Pakistan are vying to acquire gas fields in different parts of the world. This has led to two conspicuous developments: first, they are competing against each other and secondly, a situation is emerging where they might have to confront the US and the western countries in the near future in their attempt to control energy bases. The proposed IPI pipeline is an attempt to acquire such base. However, Pakistan is playing its own game to maximize its leverages. Pakistan, which refuses to establish even normal trading ties with India, craves to earn hundreds of millions of dollars in transit fees and other annual royalties from a gas pipeline which runs from Iran's South Pars fields to Barmer in western India. Pakistan promises to subsidize its gas imports from Iran and thus also become a major forex earner. It is willing to give pipeline related 'international guarantees' notwithstanding its record of covert actions in breach of international law (such as the export of terrorism) and its reluctance to reciprocally provide India what World Trade Organization (WTO) rules obligate it to do-Most Favored Nation (MFN) status. India is looking at the possibility of using some set of norms for securing gas supply through pipeline as the European Union has already initiated a discussion on the issue. The key point that is relevant to India's plan to build a pipeline to source gas from Iran relates to national treatment for pipeline. Under the principle of national treatment which also figures in relation to foreign direct investment (FDI), the country through which a pipeline transits should provide some level of security to the transiting pipeline as it would have provided to its domestic pipelines. This paper will endeavor to analyze, first, the significance of this

  5. Corrosion behavior of API 5L-X80 Pipeline steel for natural gas pipeline

    Natural energy problem, including the environmental aspects had changes into certain circumstances in recent years and natural gas has been a focus of constant attention from the viewpoint of energy efficiency and pollution free. From that kind of background, pipeline construction for petroleum and natural gas were considerate as energy infrastructure maintenance plan. Based on the clarification of Asian Pipeline Project (1997-2007) centered in Japan, international pipeline is needed as the natural gas is mainly transported from gas field in Russia and Middle East to consumer country such as Japan etc. It used in severe condition such as cold district and sea. In the meantime, pipeline steel is not just received damages by earth crust fluctuation and corrosion, but also suffered from the corrosion caused by anions that were dissolved in sea and groundwater. The diversification of dispersion and consumption structure of natural gas supply acceptance base are seen regarding, that made the needs of the storing are rising and dealt with the quantitative spatial expansion of the demand. By that, corrosion resistance, not only the hardness, tough, weldability, corrosiveness gas environment is extremely required. (author)

  6. Polish Standard of the Technical Safety of Transmission Gas Pipelines

    The document is presenting the idea of the CNGI Norm called The Polish Standard of the Technical Safety of Transmission Gas Pipelines and the way of using it by companies associated in the Chamber of the Natural Gas Industry in the business activity. It will be applied to improve the quality and reliability of gas transmission after full opening of Polish natural gas market. (author)

  7. 78 FR 77444 - Natural Gas Pipeline Company of America LLC; Stingray Pipeline Company, L.L.C.; Notice of...


    ... Energy Regulatory Commission Natural Gas Pipeline Company of America LLC; Stingray Pipeline Company, L.L... America LLC (Natural), 3250 Lacey Road, 7th Floor, Downers Grove, Illinois 60515-7918 and Stingray Pipeline Company, L.L.C. (Stingray), 110 Louisiana Street, Suite 3300, Houston, Texas 77002, filed a...


    This project was undertaken to provide information on North Sea offshore pipelines and the processes used in route selection decision-making. It is designed to be used by persons involved in offshore oil and gas pipeline planning, including pipeline corridors and landfalls. A bri...

  9. Stress limitation of rehabilitation overloading of a gas pipeline

    Gajdoš, Lubomír

    Praha: Czech Gas and Oil Association, 1996, s. 9/1-9/4. [International Colloquium on Reliability of High-Pressure Gas Pipelines /5./. Praha (CZ), 00.03.1996] R&D Projects: GA AV ČR GA103/95/1320; GA AV ČR IAA2071601

  10. Statistics of interstate natural gas pipeline companies, 1991

    This report, presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1991. This report is used by the Federal Energy Regulatory Commission (FERC), State utility commissions, other government agencies, and the general public. The information is taken from FERC Form 2, ''Annual Report of Major Natural Gas Companies,'' as filed with FERC

  11. Regulatory reform for natural gas pipelines: The effect on pipeline and distribution company share prices

    Jurman, Elisabeth Antonie


    The natural gas shortages in the 1970s focused considerable attention on the federal government's role in altering energy consumption. For the natural gas industry these shortages eventually led to the passage of the Natural Gas Policy Act (NGPA) in 1978 as part of the National Energy Plan. A series of events in the decade of the 1980s has brought about the restructuring of interstate natural gas pipelines which have been transformed by regulators and the courts from monopolies into competitive entities. This transformation also changed their relationship with their downstream customers, the LDCs, who no longer had to deal with pipelines as the only merchants of gas. Regulatory reform made it possible for LDCs to buy directly from producers using the pipelines only for delivery of their purchases. This study tests for the existence of monopoly rents by analyzing the daily returns of natural gas pipeline and utility industry stock price data from 1982 to 1990, a period of regulatory reform for the natural gas industry. The study's main objective is to investigate the degree of empirical support for claims that regulatory reforms increase profits in the affected industry, as the normative theory of regulation expects, or decrease profits, as advocates of the positive theory of regulation believe. I also test Norton's theory of risk which predicts that systematic risk will increase for firms undergoing deregulation. Based on a sample of twelve natural gas pipelines, and 25 utilities an event study concept was employed to measure the impact of regulatory event announcements on daily natural gas pipeline or utility industry stock price data using a market model regression equation. The results of this study provide some evidence that regulatory reforms did not increase the profits of pipeline firms, confirming the expectations of those who claim that excess profits result from regulation and will disappear, once that protection is removed and the firms are operating in

  12. 75 FR 72877 - Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements


    ... reporting further would impact safety trending capability, therefore, we have chosen to maintain the... LNG facilities should be integrated into 49 CFR Parts 192 and 193 respectively. At present, reporting... Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements; Final Rule...

  13. Research on airborne infrared leakage detection of natural gas pipeline

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie


    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  14. Design for internal corrosion resistance of sales gas pipelines

    Kolts, Juri [ConocoPhillips, Bartlesville, OK (United States)


    Three aspects of internal corrosion of sales gas pipelines are discussed, especially for use during the design phases of a project. These include corrosion by salts at water contents less than saturation, corrosion by glycol solutions at water contents less than saturation, and by short term wetting of the pipeline by upsets or commissioning. Water salt, but especially sea-salt, promotes corrosion of pipeline steel at water contents significantly less than saturation. At relative humidity between 23 and 100%, sea-salt absorbs water from 'dry' gas and promotes corrosion. The corrosion rate increases with increasing relative humidity. The corrosion measured in the laboratory is low, but can be significant for pipelines with a long design life. One method of reducing likelihood of such corrosion is by specifying clean water slugs after hydro-testing. Corrosion by glycol/water mixtures has been well investigated by the industry. This paper describes the corrosion in humid environments. The glycol concentration remains in equilibrium with the gas phase, thus the water/glycol ratio in a pipeline varies with temperature and pressure. The corrosion rate increases with decreasing temperature, because the greater water dilution of glycol with decreasing temperature overcomes the increasing corrosion rate from elevating temperature. Short-term exposure of internal pipeline surfaces can occur during upsets or from certain aspects of commissioning. The duration of exposure in wet environments can be estimated, sometimes, by measuring the degree of water saturation in pipeline gas. At low temperatures, iron supersaturation can play an important role in reducing corrosion after water exposure under stagnant conditions. (author)

  15. Real gas flow simulation in damaged distribution pipelines

    The paper discusses chosen issues concerning damaged gas pipelines. Attention is paid to modelling the steady-state flow of natural gas in distribution pipelines, and the most commonly applied models of isothermal and adiabatic flow are evaluated for both the ideal and the real gas properties. A method of accounting for a leakage by means of a reference flow equation with a discharge coefficient is presented, and the dependency of the discharge coefficient on pressure is demonstrated both with literature data and the authors' experimental results. A relevant computational study of a pipeline failure is presented for a high- and a medium pressure pipeline. The importance of an appropriate choice of the flow model (isothermal or adiabatic flow of real or ideal gas) is demonstrated by the results of the study. It is shown that accounting for the variability of the discharge coefficient is required if medium pressure pipelines are analysed. However, it is eventually shown that the impact of the discharge coefficient on the predicted outflow rate is of lesser importance than that of the applied flow model. -- Highlights: ► Comparison of real/ideal gas, isothermal/adiabatic gas flow in a damaged pipeline. ► Variability of the discharge coefficient with pressure is demonstrated. ► Isothermal model predicts wrong values of downstream pressure, not just temperature. ► Isothermal model may cause significant error (for 2 case studies is >20%). ► Error in the discharge coefficient has a weak influence on the predicted flow rate.

  16. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Melaina, M. W.; Antonia, O.; Penev, M.


    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  17. Video Mosaicking for Inspection of Gas Pipelines

    Magruder, Darby; Chien, Chiun-Hong


    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable

  18. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)


    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  19. Stress analysis of parallel oil and gas steel pipelines in inclined tunnels

    Wu, Xiaonan; Lu, Hongfang; Wu, Shijuan


    Geological conditions along long distance pipelines are complex. In consideration of differences in elevation and terrain obstacles, long distance pipelines are commonly laid through tunnels. Oil and gas pipelines are often laid side by side to reduce construction costs and minimize geological impact. The layout and construction of parallel oil and gas pipelines are more complex than those of single pipelines. In order to reduce safety hazards, it is necessary to carry out stress analysis of ...

  20. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    Melaina, M. W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Antonia, O. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  1. Application of Dry Air Drying Techniques on West-East Gas Pipeline Project

    GaoJianguo; XieLigong; DaiZongyu


    Based on the pre-eommissioning requirements of gas pipeline, the basic principles and influential factors of dry air drying adopted in long distance gas pipelines, and states in detail the technological flow and the equipment required, etc. are introduced, which will have practical significance in drying operation on gas pipeline.

  2. 78 FR 18968 - Natural Gas Pipeline Company of America LLC; Notice of Application


    ... Energy Regulatory Commission Natural Gas Pipeline Company of America LLC; Notice of Application Take notice that on March 8, 2013, Natural Gas Pipeline Company of America LLC (Natural), 3250 Lacey Road, 7th... directed to Bruce H. Newsome, Vice President, Natural Gas Pipeline Company of America LLC, 3250 Lacey...

  3. 77 FR 65508 - Annual Charge Filing Procedures for Natural Gas Pipelines


    ... Energy Regulatory Commission 18 CFR Part 154 Annual Charge Filing Procedures for Natural Gas Pipelines... filing requirements for natural gas pipelines that choose to recover Commission-assessed annual charges through an annual charge adjustment (ACA) clause. Currently, natural gas pipelines utilizing an ACA...

  4. Residual stresses evaluation in a gas-pipeline crossing

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  5. Upgrading Algeria-Italy trans-Mediterranean natural gas pipeline

    The first trans-Mediterranean pipeline system, which went into service in 1983, had to be doubled in capacity in order to meet increased European demand for Algerian natural gas. After a brief review of the contractual, planning and construction history of the first pipeline, this paper discusses the strategies taken which led to the decision to double the line's capacity. Descriptions are then given of the different construction phases realized in Tunisia, the Sicilian Channel and Italian mainland. Focus is on construction schedules, problems and solutions. The report comes complete with details of project financing, organizing, materials supply programs, innovative technology applications, design philosophy and construction techniques

  6. Elements of Market Power in the Natural Gas Pipeline Industry

    Broadman, Harry G.


    As a result of the distortions that have beset natural gas markets in the wake of partial wellhead deregulation under the Natural Gas Policy Act of 1978 (NGPA)-the most visible problem being the existence of increased prices amid a glut of deliverable supplies-concern has mounted about whether the natural gas pipeline industry will perform in a socially efficient manner in the long run when field prices are completely decontrolled. In addition to transporting natural gas from the field to the...

  7. Satellite Radar Interferometry For Risk Management Of Gas Pipeline Networks

    Ianoschi, Raluca; Schouten, Mathijs; Bas Leezenberg, Pieter; Dheenathayalan, Prabu; Hanssen, Ramon


    InSAR time series analyses can be fine-tuned for specific applications, yielding a potential increase in benchmark density, precision and reliability. Here we demonstrate the algorithms developed for gas pipeline monitoring, enabling operators to precisely pinpoint unstable locations. This helps asset management in planning, prioritizing and focusing in-situ inspections, thus reducing maintenance costs. In unconsolidated Quaternary soils, ground settlement contributes to possible failure of brittle cast iron gas pipes and their connections to houses. Other risk factors include the age and material of the pipe. The soil dynamics have led to a catastrophic explosion in the city of Amsterdam, which triggered an increased awareness for the significance of this problem. As the extent of the networks can be very wide, InSAR is shown to be a valuable source of information for identifying the hazard regions. We monitor subsidence affecting an urban gas transportation network in the Netherlands using both medium and high resolution SAR data. Results for the 2003-2010 period provide clear insights on the differential subsidence rates in the area. This enables characterization of underground motion that affects the integrity of the pipeline. High resolution SAR data add extra detail of door-to-door pipeline connections, which are vulnerable due to different settlements between house connections and main pipelines. The rates which we measure represent important input in planning of maintenance works. Managers can decide the priority and timing for inspecting the pipelines. The service helps manage the risk and reduce operational cost in gas transportation networks.

  8. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Braga, T.G.; Asperger, R.G.


    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  9. Safety distance between underground natural gas and water pipeline facilities

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  10. U.S. natural gas pipeline flow and demand trends

    It is no surprise that regional natural gas supply and demand patterns in North America are constantly changing. A consensus of forecasters agree that the natural gas resource base is larger than envisaged in the early 1980s due to advances in exploration and production technology. In addition, on the demand side more gas will be burned by US power generators to meet growth in electricity. Gas consumption is up in the commercial sector, and natural gas is correctly seen as environmentally protective. But how much more natural gas does the US need? This paper reports that new pipeline projects are springing up all over the nation --- 43 to be exact, with most of them connecting gas deliverability out of basins west of the Mississippi to new markets along the Atlantic and Pacific coasts

  11. Economics of LNG and pipeline gas export from GC C

    This paper briefly reviews the economic and non-economic considerations underlying gas exports from the GC C and the Arabian Peninsula in general. It addresses four themes: policy issues, political risks, technical risks and economics. It examines the distance between the regional resource areas and the major gas markets in the Far East and Europe, and examines the implications for moving gas to those markets in liquid form or by pipeline, in terms of number of LNG vessels required, and capital costs. (Author)

  12. A comparison of natural gas pipeline options for the North

    High prices and high demand for natural gas in the North American market, combined with a more positive investment climate, have renewed interest in the development of natural gas reserves in the Mackenzie Delta region of the Northwest Territories and Prudhoe Bay in Alaska. A prerequisite to developing these resources is construction of a pipeline. This report describes the results of an analysis of five of the six pipeline options which have been considered in recent years. The options considered are: (1) Mackenzie Valley Stand Alone, (2) a combination onshore Alaska North Slope with Mackenzie Valley, (3) a combination offshore Alaska North Slope with Mackenzie Valley, (4) the Alaska Natural Gas Transmission System (ANGTS) and (5) a combination of ANGTS and Dempster Lateral. The Mackenzie Valley with the Prudhoe Bay Onshore route was not included because benefits and costs are considered to be very similar to those of the Mackenzie Valley with Prudhoe Bay Offshore route. Both these would connect Alaska gas with gas from the Mackenzie Delta and ship both down the Mackenzie Valley. The report presents results of an analysis which focused on capital costs, employment and fiscal benefits to the Northwest Territories, employment and fiscal benefits to Canada, pipeline tolls and producer revenues. Results show that both the Northwest Territories and Canada as a whole would benefit most from a Mackenzie Valley and Offshore Prudhoe Bay Pipeline route because economic, employment and fiscal impacts are the highest. Tolls are also projected to be the lowest with this option; this would result in higher revenues to producers. Although all routes have the potential to affect the geology, hydrology, climate and biological aspects of the areas surrounding them, the environmental impacts for all routes appear to be moderate for the construction phase and low to negligible for the operation. Environmental implications are discussed in detail in Appendix B. 25 refs., 43 tabs., 9

  13. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...


    ... Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline.... Williamson, Inc. (TDW) Leak Repair Clamp (LRC) recall issued by TDW on June 17, 2013. The recall covers all... subject to the recall by reviewing their records and equipment for installation of these LRCs....

  14. 78 FR 44900 - Communication of Operational Information Between Natural Gas Pipelines and Electric Transmission...


    ... natural gas pipelines for the purpose of promoting reliable service or operational planning is reasonable... flow rates.'' \\40\\ In addition, this standard ensures that natural gas pipelines have relevant planning information to assist in maintaining the operational integrity and reliability of pipeline service, as well...

  15. 77 FR 10415 - Standards for Business Practices for Interstate Natural Gas Pipelines


    ... pipelines have relevant planning information to assist in maintaining the operational integrity and... natural gas pipelines.\\1\\ The Commission also proposes to provide guidance on the standards the Commission...) applicable to natural gas pipelines. The Commission also proposes to provide guidance on the standards...

  16. Pipelines update : new tolls and new opportunities in gas gathering

    An overview of the new TransCanada energy transmission system was given. TransCanada has ownership interests in seven other North American natural gas pipelines and the integration of former NOVA Gas Transmission, TransCanada Energy Transmission and ANG Pipeline organizations into a single organization is nearing completion. Integration efforts have been driven by TransCanada's commitment to provide customers with lower costs and improved service levels. The service enhancements will include one-stop shopping, customer advisory councils, harmonized design criteria, optimized operations/maintenance, and consistent billing processes. The new toll design which will replace the current postage-stamp pricing regime offered by NGTL was also reviewed, emphasizing key features such as pricing, term linked tolls, interruptible/short term tolls, renewal incentive, risk/reward collar, transition period and new services

  17. Integrated diagnostics of northern gas pipelines; Diagnostic integre des gazoducs septentrionaux

    Volsky, E.; Dedikov, E.; Ananenkov, A.; Salchov, Z.; Yakupov, Z. [Joint-Stock Company, Gazprom (Russian Federation)


    The main part of gas joint - stock company 'Gazprom' extracts from the northern deposits, which are situated in the permafrost zone. Ensuring of gas transporting pipeline's safety operation is a very complex and priority problem. On the basis of usage of this complex of methods the problem to ensure the safety operation is solved systematically: gas-mine - plant IV - derivation pipelines (condensate pipeline Yamburg Novy Urengoy, gas pipeline IV - GCS with negative temperature of transported products) taking into account 'co-ordination' dynamics of changes in pipeline GTS and technological modes of equipment operation. All researches was executed on the high professional level. (authors)

  18. Optimization methods for pipeline transportation of natural gas

    Borraz-Sanchez, Conrado


    Within three research projects on the optimization of natural gas transport in transmission pipeline systems, a number of various mathematical models, algorithms, and numerical experiments have been presented and discussed in this thesis. The proposed optimization methods are composed of NLP and MINLP models, as well as of exact and heuristic methods. In addition, the experimental analyses conducted on each project were devoted to gain insight into three major issues: 1) the assessment of the computability of the mathematical models, 2) the performance of the proposed optimization techniques, and 3) comparison of the proposed techniques with existing optimization algorithms and tools. Project 1 focused on minimizing the total fuel consumption incurred by compressor stations installed in a gas pipeline system. The project was mainly devoted to tackle large natural gas pipeline systems with cyclic structures. After conducting a painstaking study on the NLP model introduced in Section 4.3, three different methodologies were proposed to effectively overcome both the difficulties encountered in the steady-state flow model, namely the non-linearity and non-convexity, as well as the weaknesses found in previously suggested optimization approaches. As discussed in Chapter 4, the key to success in this project was to apply the strategic idea of discretizing the feasible operating domain of compressor stations, which in turn allowed the implementation of hybrid solution methods based on powerful optimization techniques such as DP, tabu search, and tree decomposition. The idea of working within a discretized space has been successfully applied since the liquid pipeline optimization conducted in the late 1960s by Jefferson, until the non-traditional optimization technique suggested by Carter in 1998. The computational experiments conducted on each proposed optimization method, coupled with comparisons with typical approaches found in the literature, indicated that a continual

  19. Foam for Flow Assurance in Gas-Condensate Pipelines

    Karam, Thereza


    Use of foam in the oil industry is employed for lifting cuttings in drilling operations, for removal of liquid loading in vertical wells and for increasing oil recovery. Limited researches discussed the foam applicability as a flow assurance practice. This study is an initial attempt to investigate the possibility of using foam to remove or reduce liquid accumulations in horizontal gas-condensate pipelines. The different rheological models of foam had been examined along with the correspondin...

  20. Essays on the economics of natural gas pipelines

    Oliver, Matthew E.

    The natural gas pipeline transportation industry is comprised of a primary market and a secondary market. In the primary market, pipelines sell 'firm' transport capacity contracts to gas traders, local distribution companies, and other parties. The (per unit) secondary market value of transport is rarely comparable to the regulated primary market two-part tariff. When and where available capacity in the secondary market is scarce, its value can far exceed the primary market tariffs paid by firm contract holders, generating scarcity rents. The following essays demonstrate that this phenomenon has predictable effects on natural gas spot prices, firm capacity reservations, the pipeline's capacity construction and expansion decisions, and the economic welfare of producers and consumers at the market hubs connected by the pipeline. Chapter 1 provides a theoretical framework for understanding how pipeline congestion affects natural gas spot prices within the context of the current regulatory environment, and empirically quantifies this effect over a specific regional pipeline network. As available pipeline capacity over a given route connecting two hubs becomes scarce, the spot prices for gas at the hubs are driven apart---a phenomenon indicative of some market friction that inhibits the ability of spot price arbitrage to fully integrate the two prices, undermining economic efficiency. The theoretical component of Chapter 1 illuminates a potential source of this friction: the deregulated structure of the secondary market for gas transportation services. To support and quantify the predictions of the theoretical model, the empirical component demonstrates that the effect of congestion on the secondary market value of transport---the key factor in driving apart spot prices---can be quite strong. Coefficient estimates indicate that dramatic increases in transport costs are likely to result from marginal increases in congestion. This result has important implications because




    Characterization of External Induced corrosion degradation of Ajaokuta- Abuja gas pipeline system was successfully carried out. The objective of this work is to analyze the mechanism of corrosion, analyze the effect of the corrosion on oil and gas pipeline and to evaluate the corrosion potential of a pipeline route. These were achieved by carrying out resistivity experiment on every one kilometer on the right of way (ROW) of the pipeline. Soil and water aggressiveness test was also carried ou...

  2. The research on natural gas pipeline transportation price formulation method

    YU Wenjia


    Full Text Available This paper will introduce a method of natural gas pipeline transportation price on the basis of two-part tariff.Distance,investment and income have been taken into consideration.The total fee is divided into three parts:reservation fee,usage fee and peak-load regulation fee.Because there are different types of users in the natural gas market who show great difference in the continuity and reliability of gas supply,capacity of bearing price,elastic demand and balance use of gas,according to the method,the different types of users can pay reasonable fee.This method not only considers the investment income recovery but also considers the different types of users paying a reasonable fee.We hope the new pricing model can give a reference to the development of China's natural gas industry.

  3. Mechanical properties of steel for construction of gas transfer pipelines and their modification resulting from expanding of gas pipelines during hydraulic pressure testing

    There are discussed the mechanical properties of the new generation of steel as per European Standard EN 10208.2: 1996. on the basis of the mechanical parameters of steel the normalized graphs of steel tensioning are presented. Analysis of influence of expanding gas pipelines on changes of steel tensioning graphs were performed. Advantages, resulting from expanding of gas pipelines, were shown. (author)

  4. Remote laser detection of natural gas leakages from pipelines

    A differential absorption lidar based on a tunable TEA CO2 laser emitting at 42 lines of the 'hot' 0111 - 1110 band in the range from 10.9 to 11.4 μm is developed for detecting natural gas leakages from oil pipelines by measuring the ethane content in the atmosphere. The ethane detection sensitivity is 0.9 ppm km. The presence of methane does not distort the measurement results. The developed lidar can detect the natural gas leakage from kilometre heights at the flying velocities up to 200 km h-1 and a probe pulse repetition rate of 5 Hz. (laser applications and other topics in quantum electronics)

  5. Gas elephants: Arctic projects revived by expanding markets and pipelines

    The revival of interest in Arctic natural gas and the developing competition to extend the pipeline grid to Alaska and the Yukon and the Northwest territories are the subject of this report. Substantial agreement between competing interest groups is reported with respect to the need for Arctic gas and the willingness of the market to pay for bringing it south to consumers. The discussion centers on the construction of the Alliance Pipeline Project that will reportedly bring two billion cubic feet per day of excess capacity to transport natural gas from northeastern British Columbia to Chicago, and the 2,400 km long Foothills Pipelines System that carries about one-third of Canadian gas exports to middle-western states and California. Plans are to extend the line to 5,240 km by laying pipe in a giant Y pattern between Prudhoe Bay and the Mackenzie delta in the north, and the start of the Foothills System at Caroline in central Alberta. The estimated cost of the line is about $US 6 billion, using a 36-inch diameter line at increased pressures in place of the 56-inch diameter pipe used in the 1970s. Construction plans are similar for the rest of the big Y, the Dempster Lateral beside the Dempster Highway between Whitehorse and Inuvik. A competing project, the Northern Gas Pipeline Project is also discussed. This line would run east of Prudhoe Bay under the Beaufort Sea to the Mackenzie Delta; then south along the Mackenzie Valley to Alberta. Cost of this line is also estimated at $US 6 billion, however, it would have a capacity of four billion cubic feet per day, including 2.5 billion cubic feet from Alaska and 1.5 billion cubic feet from Canada. Strong revival of interest is also reported from the supply side, with BP Amoco, ARCO, Chevron Canada Resources, Ranger 0il Ltd., Paramount Resources, Berkley Petroleum Corporation, Canadian Forest Oil, Alberta Energy Company, Petro-Canada, Anderson Resources, and Poco Petroleum Ltd., all showing interest to mount new

  6. Practical approach on gas pipeline compression system availability analysis

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)


    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  7. Leak in spiral weld in a 16 inches gas pipeline

    Fazzini, Pablo G.; Bona, Jeremias de [GIE S.A., Mar del Plata (Argentina); Otegui, Jose L. [University of Mar del Plata (Argentina)


    This paper discusses a failure analysis after a leak in the spiral weld of a 16 inches natural gas pipeline, in service since 1974. The leak was the result of the coalescence of two different defects, on each surface of the pipe wall, located in the center of the inner cord of the helical DSAW weld. Fractographic and metallographic studies revealed that the leak was a combination of three conditions. During fabrication of the pipe, segregation in grain boundary grouped in mid weld. During service, these segregations underwent a process of selective galvanic corrosion. One of these volumetric defects coincided with a tubular pore in the outer weld. Pigging of the pipeline in 2005 for cleaning likely contributed to the increase of the leak flow, when eliminating corrosion product plugs. Although these defects are likely to repeat, fracture mechanics shows that a defect of this type is unlikely to cause a blowout. (author)

  8. Field validation of a dynamic model for an MFL ILI tool in gas pipelines

    Botros, K. K. [Nova Chemical Research and Technology Centre, Calgary, Alberta, (Canada); Golshan, H. [TransCanada Pipelines Ltd, Calgary, Alberta, (Canada)


    The pipeline industry uses pigs for numerous operations such as dewatering, cleaning and inspection. Pigs used on gas pipelines are subject to stringent parameters. For example, the inclination in the section of the pipeline affects driving pressure and velocity. The study investigated the behaviour and performance of pigs in gas pipelines. A dynamic model was developed for the movement of pigs in an inclined pipeline section, taking into consideration the effects of gas properties, wall friction, by-pass flow for speed control, differential pressure across the pig, seal efficiency and gap flows. Field data from pigging a 158 km NPS 18 gas pipeline on TransCanada's pipeline system in Alberta are used for field validation of the model. It is found that the developed model is stable. The comparison between field data and model results demonstrated the accuracy of the model, within +/- 8% of St. Deviation.

  9. GASDUC-3: a gas pipeline with neutralization of greenhouse gases

    D' Oliveira, Celso A.; Paula, Eliane H. de; Freire, Dilian A.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    PETROBRAS seeks to develop its projects following the contemporary premises of sustainable development. The Cabiunas-REDUC-3 Gas Pipeline (GASDUC-3), an undertaking from the Transportadora Associada de Gas - TAG (Associated Gas Transporter) in progress by PETROBRAS, is an example showing that interfacing with the environment can overcome legal questions to reach the realm of awareness and community spirit. In addition to the many programs directed specifically towards the fulfillment of environmental regulations, as defined by competent agencies, the GASDUC-3 is also inserted in the Carbon Free Program. In the Carbon Free Program, all the GHG emissions into the atmosphere during the construction of the gas pipeline will be compensated for with the neutralization of carbon through reforestation. Such initiative is considered unheard of in works with pipelines worldwide. An inventory that quantified the emission of GHG during the implementation of GASDUC-3 made it possible to quantify the reforestation to be implemented and to calculate the number of native species to be planted for absorption - during the course of their growth - of this same amount of carbon dioxide from the atmosphere. The trees are being planted especially in Permanent Preservation Areas (PPA), located in the Unidades de Conservacao do Bioma Mata Atlantica (Conservation Units of the Atlantic Forest Biome), inside the influence region of the gas pipeline, in accordance with the competent environmental agencies and owners. In this way, in addition to fixing carbon and contributing to the deceleration of global warming, the project also cooperates with the preservation of hydro and soil resources and the local and regional biodiversity. The recapturing of the already emitted GHG through reforestation faces bureaucratic and economic difficulties in order to be implemented, different from the emission reduction projects which are widely disseminated by means of Clean Development Mechanisms (CDM

  10. 76 FR 8293 - Natural Gas Pipelines; Project Cost and Annual Limits


    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... practice and procedure, Natural Gas, Reporting and recordkeeping requirements. Jeff C. Wright,...

  11. 75 FR 8245 - Natural Gas Pipelines; Project Cost and Annual Limits


    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... Part 157 Administrative practice and procedure, Natural gas, Reporting and recordkeeping...

  12. 75 FR 35700 - Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines


    ... for Natural Gas Pipelines June 17, 2010. AGENCY: Federal Energy Regulatory Commission, DOE. ACTION... Natural Gas Pipelines, Order No. 710, FERC Stats. & Regs. ] 31,267 (2008), order on reh' g and... revised its financial forms, statements, and reports for natural gas companies, contained in FERC Form...

  13. 77 FR 8724 - Natural Gas Pipelines; Project Cost and Annual Limits


    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits... (OEP) computes and publishes the project cost and annual limits for natural gas pipelines blanket..., Natural gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director, Office of Energy...

  14. 75 FR 36376 - Natural Gas Pipeline Company of America LLC; Notice of Application


    ... Federal Energy Regulatory Commission Natural Gas Pipeline Company of America LLC; Notice of Application June 17, 2010. Take notice that on June 8, 2010, Natural Gas Pipeline Company of America LLC (Natural..., pursuant to sections 7(b) and 7(c) of the Natural Gas Act (NGA), an application to abandon two...

  15. Numerical simulation of wall temperature on gas pipeline due to radiation of natural gas during combustion

    Ilić Marko N.


    Full Text Available This paper presents one of the possible hazardous situations during transportation of gas through the international pipeline. It describes the case when at high-pressure gas pipeline, due to mechanical or chemical effect, cracks and a gas leakage appears and the gas is somehow triggered to burn. As a consequence of heat impingement on the pipe surface, change of material properties (decreasing of strength at high temperatures will occur. In order to avoid greater rapture a reasonable pressure relief rate needs to be applied. Standards in this particular domain of depressurizing procedure are not so exact (DIN EN ISO 23251; API 521. This paper was a part of the project to make initial contribution in defining the appropriate procedure of gas operator behaving during the rare gas leakage and burning situations on pipeline network. The main part of the work consists of two calculations. The first is the numerical simulation of heat radiation of combustible gas, which affects the pipeline, done in the FLUENT software. The second is the implementation of obtained results as a boundary condition in an additional calculation of time resolved wall temperature of the pipe under consideration this temperature depending on the incident flux as well as a number of other heat flow rates, using the Matlab. Simulations were done with the help of the “E.ON Ruhrgas AG” in Essen.

  16. Application of a Fracture-Mechanics Approach to Gas Pipelines

    Gajdoš, Lubomír; Šperl, Martin

    Dubai , UAE : WASET, 2011 - (Ardil, C.), s. 676-683 ISBN N. [World Academy of Science, Engineering and Technology - International onference on Oil, Gas and Petrochemical Engineering - ICOGPE 2011. Dubai (AE), 25.01.2011-27.01.2011] R&D Projects: GA ČR(CZ) GAP105/10/2052; GA ČR(CZ) GPP105/10/P555; GA MPO(CZ) FT-TA5/076 Institutional research plan: CEZ:AV0Z20710524 Keywords : constraint factor * pipelines * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Condition prediction models for oil and gas pipelines using regression analysis

    El-Abbasy, M.; Senouci, A; Zayed, T.; Mirahadi, F.; Parvizsedghy, L.


    Although they are the safest means of transporting oil and gas products, pipelines can sometimes fail with hazardous consequences and large business losses. The decision to replace, repair, or rehabilitate depends mainly on the condition of the pipeline. Assessing and predicting its condition is therefore a key step in the maintenance plan of a pipeline. Several models have recently been developed to predict pipeline failures and conditions. However, most of these models were limited to the u...

  18. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    Woodhead, Stephen; Denham, John; Armour-Chelu, David


    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powder...

  19. Fatigue assessment of a double submerged arc welded gas pipeline

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)


    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  20. Decision and risk assessment in natural gas pipeline planning

    Craig, R.L. [Nova Gas Transmission Ltd., Calgary, Alberta (Canada). Business Development


    This paper will document the application and benefits of using a rigorous decision making and risk assessment process in a gas pipeline planning environment. A comprehensive step by step decision making procedure has been developed to disaggregate decision making into discrete stages and to apply tools and processes to each stage. The analyst and the decision maker work through each of the decision stages together and develop a thorough joint understanding of the problem. The result is better decisions. The risk assessment process forces the analyst to focus not only on facts or readily calculable variables but also on unknowns or uncertainties. Uncertainties invariably creep into the decision making process and serve to cloud and complicate the decision process. Risk assessment involves undertaking probabilistic assessments of uncertainties in order to understand their potential influence or impact on the decision. In this way, the decision maker understands the true range of risk and reward that accompanies each decision. This paper highlights this risk assessment process, and describes a risk assessment of a large scale gas pipeline decision involving $200 million in capital expenditures.

  1. Multi objective optimization of line pack management of gas pipeline system

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  2. Corrosion Prevention And Control In High Pressure Oil And Gas Transmission Pipelines

    At the start of the 1990s there were concerns over the increasing threat of corrosion to the integrity of high-pressure oil and gas transmission pipelines. For example: corrosion was the major cause of reportable incidents in North America (1]. Corrosion was the major cause of pipeline failure in the Gulf of Mexico [2]. Corrosion in a North American onshore oil pipeline had required over $1 billion in repairs(3]. Internal corrosion along the complete length of pipelines had resulted in replacement[4] . However, the worldwide published failure statistics indicate that the incidents of corrosion are not increasing year on year(5-9]. Indeed, CONCA WE[8,9] statistics (for pipelines In Western Europe) show that the failure rate from corrosion (the most likely failure mode with increasing age) has not increased with pipeline age (Figure 1). In fact the statistics for gas pipelines in Europe

  3. 75 FR 10242 - Tennessee Gas Pipeline Company; Notice of Availability of the Environmental Assessment for the...


    ... Energy Regulatory Commission Tennessee Gas Pipeline Company; Notice of Availability of the Environmental... proposed by Tennessee Gas Pipeline Company (TGP) in the above referenced docket. TGP requests authorization... your computer's hard drive. You will attach that file as your submission. New eFiling users must...


    A. A. Abrazovsky


    The paper contains an analysis that reveals an influence of technological parameters of a cross-country pipeline on operational indices of a compressor station. An actual dependence of the gas pipeline capacity and consumed power of the compressor station and real indices of power efficiency of gas compressor units have been determined in the paper.

  5. The Technical Specification and Physical Performance Level of Line Pipes for West-East Gas Pipeline

    FengBin; WangMaotang; LiuFangming; XiaoLiming


    The west-east gas transmission engineering is an important project attracting domestic and foreign attention. The gas pipeline used in this project is a gas pipeline with the longest distance, largest pipe diameter and highest transmission pressure in the history of petroleum pipeline construction of China. For the construction of top-rank gas pipeline in the world with high standard, high speed and high benefit, the key of specifying production of metallurgical and pipe-making enterprises and ensuring quality performance of the steel and steel pipe is to research and formulate a feasible and satisfactory technical Specification for engineering steel and steel pipe with international level. In this paper the author introduces the establishment of the technical specification for West-East gas pipeline project, and lays emphasis on the analysis and discussion of principle and method determining major technical indexes related to line pipes for West-East gas pipeline. The author also introduces actual material selection of gas pipeline home and abroad, and presents examination and application of the technical specification for West-East gas pipeline.

  6. 77 FR 43711 - Standards for Business Practices of Interstate Natural Gas Pipelines


    ... Gas Pipelines, Notice of Proposed Rulemaking, 77 FR 10415 (Feb. 22, 2012), FERC Stats. & Regs. ] 32... Natural Gas Pipelines, 77 FR 28331 (May 14, 2012). II. Discussion A. Incorporation by Reference of the... relevant planning information to assist in maintaining the operational integrity and reliability...

  7. 77 FR 28331 - Standards for Business Practices for Interstate Natural Gas Pipelines


    ... Business Practices for Interstate Natural Gas Pipelines, notice of proposed rulemaking, 77 FR 10415 (Feb... Natural Gas Pipelines AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Request for additional... Proposed Rulemaking (77 FR 10415) (NOPR) proposing to amend its regulations to incorporate by reference...

  8. Natural gas markets and the creation of an export gas pipeline system in Eastern Russia

    The world natural gas markets are analysed, with a special focus on the countries of Northeast Asia (NEA). The natural gas demands of China, Japan and South Korea, until the year 2020, is projected, considering a possible share of Russian gas. The resource potential of natural gas from the Siberian platform and the Sakhalin shelf is given as a sound basis for fuelling Russia's position in the natural gas market of NEA countries. Development of the powerful gas industry in the East of Russia faces some particular conditions that can decrease the effectiveness of investments. The eastern geopolitical direction is very important for Russia and the necessity to create a favourable political and economic environment for oil and gas export is of prime interest, as stressed in Energy Strategy for Russia till the Year 2020. In this context, the long-term market for natural gas in East Siberia and the Far East of Russia is investigated. Possible routes of natural gas export from Russia to NEA countries include three main directions: to the west of China with connection to the 'West-East gas pipeline', a route through and/or round Mongolia and, finally, a route along the Trans-Siberian or Baikal-Amur railroads to Russian ports in the Far East. As a result of complex studies, three stages in the creation of the unified gas pipeline system are suggested. Evaluation of the investments required for construction of such a natural gas pipeline system, expected gas volumes and prices on the markets show its high economic efficiency. In conclusion, the most valuable ideas are stressed. (author)

  9. Geohazard assessment lifecycle for a natural gas pipeline project

    Lekkakis, D.; Boone, M. D.; Strassburger, E.; Li, Z.; Duffy, W. P.


    This paper is a walkthrough of the geohazard risk assessment performed for the Front End Engineering Design (FEED) of a planned large-diameter natural gas pipeline, extending from Eastern Europe to Western Asia for a total length of approximately 1,850 km. The geohazards discussed herein include liquefaction-induced pipe buoyancy, cyclic softening, lateral spreading, slope instability, groundwater rise-induced pipe buoyancy, and karst. The geohazard risk assessment lifecycle was comprised of 4 stages: initially a desktop study was carried out to describe the geologic setting along the alignment and to conduct a preliminary assessment of the geohazards. The development of a comprehensive Digital Terrain Model topography and aerial photography data were fundamental in this process. Subsequently, field geohazard mapping was conducted with the deployment of 8 teams of geoprofessionals, to investigate the proposed major reroutes and delve into areas of poor or questionable data. During the third stage, a geotechnical subsurface site investigation was then executed based on the results of the above study and mapping efforts in order to obtain sufficient data tailored for risk quantification. Lastly, all gathered and processed information was overlain into a Geographical Information database towards a final determination of the critical reaches of the pipeline alignment. Input from Subject Matter Experts (SME) in the fields of landslides, karst and fluvial geomorphology was incorporated during the second and fourth stages of the assessment. Their experience in that particular geographical region was key to making appropriate decisions based on engineering judgment. As the design evolved through the above stages, the pipeline corridor was narrowed from a 2-km wide corridor, to a 500-m corridor and finally to a fixed alignment. Where the geohazard risk was high, rerouting of the pipeline was generally selected as a mitigation measure. In some cases of high uncertainty in

  10. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection

    Tabkhi, Firooz; Azzaro-Pantel, Catherine; Pibouleau, Luc; Domenech, Serge


    This article presents the framework of a mathematical formulation for modelling and evaluating natural gas pipeline networks under hydrogen injection. The model development is based on gas transport through pipelines and compressors which compensate for the pressure drops by implying mainly the mass and energy balances on the basic elements of the network. The model was initially implemented for natural gas transport and the principle of extension for hydrogen-natural gas mixtures is presente...

  11. Fiber Optics: Safety Measures on Oil & Gas Pipeline Monitoring in Lagos State Region

    Johnson, Oluseye


    The objective of this thesis work is to research and implement the use of an optical communication system (fiber optics) as a safe and reliable monitoring system for the oil and gas pipeline industry in Lagos region of Nigeria. These optical fiber cables are laid parallel to oil and gas buried pipelines to monitor and indicate ad-vanced warning in real time situation once leakages occur in these pipelines, thereby allowing pipeline operators to take immediate and strategic actions to re-solve...

  12. Crossing of a rail section during the natural gas pipeline construction; Querung einer Bahnstrecke beim Gasleitungsbau

    Doetsch, Andreas [PPS Pipeline Systems GmbH, Quakenbrueck (Germany)


    The construction of a new, about 68 km long natural gas pipeline between Sannerz in Hessen (Federal Republic of Germany) and Rimpar in Bavaria (Federal Republic of Germany) facilitates an extension of the existing natural gas distribution system so that South Germany is optimal supplied with natural gas furthermore. As a parallel pipeline, this natural gas pipeline unburdens the existing MEGAL and increases their total capacity. The realization of this project also satisfies the increasing energy demand of the European neighbours in Italy and Austria.

  13. Facilitating major additions to gas pipeline capacity: innovative approaches to financing, contracting, and regulation

    The North American gas pipeline industry is in the process of changing from a highly regulated merchant business to a less-regulated, more competitive, transportation industry. This has changed the risk profiles of many companies. This study examined various innovative approaches to successfully financing major pipeline projects emphasizing pipeline capacity financing, contractual terms between shippers and pipelines, and regulatory developments. Besides suggesting options to enhance prospects for financing major pipeline expansion projects, the study also aimed at creating a better understanding of the regulatory market and commercial changes in the pipeline industry and their financing implications. The study also includes a review of the evolution in gas markets and a record of consultations with lenders, producers, marketers and users. Innovative financing, contracting and regulatory solutions are identified and assessed. 25 refs., 17 tabs., 16 figs

  14. Ultrasonic semi-batch pigging of a gas pipeline; Ultraschallmolchung einer Gasleitung im Halbbatchverfahren

    Erfurth, Jens; Stratmann, Jochen; Hille, Christian [Open Grid Europe GmbH, Essen (Germany)


    Ultrasonic inspections of pipelines need a contact fluid (e.g. water) between the sensor and pipe wall and can therefore not be carried out during operation of a gas pipeline. Further, in the project described sufficient spatial resolution of the data was only possible by semi-batch pigging in a completely water-filled pipeline. The inspection therefore had to be planned carefully on the basis of simulations.

  15. Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests

    Arthur De Vany; W. David Walls


    This research seeks to determine the extent to which the Federal Energy Regulatory Commission's policy of "Open Access" to natural gas pipelines has created competition in natural gas markets. We argue that recently developed cointegration techniques are the natural way to evaluate competition between natural gas spot markets at dispersed points in the national transmission network. We test daily spot prices between 190 market-pairs located in 20 producing fields and pipeline interconnections...

  16. The Second International Conference on Northeast Asia Natural Gas Pipeline Held in Beijing

    Chen Ying


    @@ The Second International Conference on Northeast Asia Natural Gas Pipeline co-sponsored by the National Pipeline Research Society of Japan, the Korea Pan-Asia Natural Gas Pipeline Association and China National Petroleum Corporation was held in Beijing, during September 23-24,1996. The 145 participants were from 13 countries, i.e.,Japan, South Korea, China, Russia, Mongolia, North Korea,Thailand, the USA, UK, Canada, Australia, Germany and Italy. The Conference mainly aimed at providing an opportunity for making a discussion on the Northeast Asia Pipeline and acted as a preparatory meeting to establish an organization for joint study on an international natural gas pipeline network in the Northeast Asia region.

  17. Efficiency estimation of electrical protection in the underground oil and gas pipelines

    Full text : The method of determination damage, caused by installation of protectors unsufficient quantity in underground oil and gas pipelines group, is offered in this article. The method is based in comparison the pipeline protection zones among themselyes with a choice of protectors number

  18. 77 FR 58616 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...


    ... definitions match the definitions listed in the gas distribution annual report, except for the threat of... ``Incidents in HCA's'' column in Part M of the Gas Transmission Annual Report form. The definitions that serve... Activities, Revision to Gas Transmission and Gathering Pipeline Systems Annual Report, Gas Transmission...

  19. Integrity management of Brazil-Bolivia gas pipeline to reduce risks due third party damage

    Vasconcellos, Carlos Renato Aragonez de; Monte, Oswaldo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Colen, Eustaquio; Cunha, Roberto de Souza; Oliveira, Hudson Regis de [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Lima, Rogerio de Souza [RSL Consultoria Geoprojetos (Brazil); Schultz Neto, Walter [Milton Braga Assessoria Tecnica (Brazil)


    The Bolivia-Brazil Natural Gas Pipeline has 2.600 kilometers from Rio Grande City in Bolivia to Canoas City, in the south of Brazil. The right-of-way crosses a lot of types of topography and areas subjected to various kinds of anthropological actions, like areas in class locations 3, locals under agricultural activities, forests and minerals explorations, and near constructions of highway and railway, industrial constructions, new pipelines in the same right-of -way, channels, dams, that requires special projects to avoid that the gas pipeline could be subject to strengths that were not consider in the original design. The aim of this paper is to present the jobs developed by TBG during seven years of gas pipeline operations, as public awareness program, procedures to design, construct and inspect specials constructions along and near the right-of -way, control of mineral and forest explorations, monitoring and controlling of excavations on the right-of-way to install new pipelines and optical cables, to reduce risks of gas pipeline damage due third party, as a component of TBG' Managing Integrity Gas Pipeline Program. (author)

  20. 2001 in review: recent Canadian regulatory developments affecting natural gas pipelines

    The natural gas delivery system witnessed unprecedented bottlenecks and frenzied markets as a result of the unprecedented prices for natural gas at the beginning of 2001. This situation was especially serious in Western Canada. It brought to light, to both producers and consumers, that transportation constraints have a major impact on the industry. The importance of the regulatory framework governing natural gas transmission was re-emphasized with this heightened awareness. The author reviewed and outlined the significant regulatory decisions and the events of 2001 and early 2002 which had an impact on the regulation of natural gas pipelines in Canada. Some important federal decisions made by the National Energy Board, which in turn led to provincial decisions, are summarized in this paper, with special emphasis placed on the situation of both British Columbia and Alberta. On the federal side, the author reviewed pipeline harmonization; guidelines for negotiated traffic, tolls, and tariffs; and consultation with Aboriginal Peoples. The major gas pipelines applications and decisions mentioned are: Multi-pipeline cost of capital, Maritimes and North-East Pipeline Limited, TransCanada, Westcoast, and Petro-Canada Medicine Hat Pipeline. The next section of the presentation deals with potential Northern pipelines and the last section deals with the provincial picture in Alberta and British Columbia. refs., figs

  1. GASVOL 18'' gas pipeline - risk based inspection study

    Bjoernoey, Ola H.; Etterdal, Birger A. [Det Norske Veritas (DNV), Oslo (Norway); Guarize, Rosimar; Oliveira, Luiz F.S. [Det Norske Veritas (DNV) (Brazil); Faertes, Denise; Dias, Ricardo [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)


    This paper describes a risk based approach and inspection planning as part of the Pipeline Integrity Management (PIM) system for the 95.5 km long 18'' GASVOL gas pipeline in the South eastern region of Brazil transporting circa 5 000 000 m3 dry gas per day. Pipeline systems can be subject to several degradation mechanisms and inspection and monitoring are used to ensure system integrity. Modern pipeline regulations and codes are normally based on a core safety or risk philosophy. The detailed design requirements presented in design codes are practical interpretations established so as to fulfill these core objectives. A given pipeline, designed, constructed and installed according to a pipeline code is therefore the realization of a structure, which, along its whole length, meets the applicable safety objectives of that code. The main objective of Pipeline Integrity Management (PIM) is to control and document the integrity of the pipeline for its whole service life, and to do this in a cost-effective manner. DNV has a specific approach to RBI planning, starting with an initial qualitative assessment where pipelines and damage type are ranked according to risk and potential risk reduction by an inspection and then carried forward to a quantitative detailed assessment where the level of complexity and accuracy can vary based on availability of information and owner needs. Detailed assessment requires significant effort in data gathering. The findings are dependent upon the accuracy of the inspection data, and on DNV's interpretation of the pipeline reference system and simplifications in the inspection data reported. The following specific failure mechanisms were investigated: internal corrosion, external corrosion, third party interference, landslides and black powder. RBI planning, in general words, is a 'living process'. In order to optimize future inspections, it is essential that the analyses utilize the most recent information regarding

  2. Outer Continental Shelf Oil and Natural Gas Pipelines - Gulf of Mexico Region NAD 27

    Bureau of Ocean Energy Management, Department of the Interior — This polyline data set contains the locations of oil and gas pipelines in the Gulf of Mexico Outer Continental Shelf federal waters that are associated with the oil...

  3. Cracking resistance study of steel for gas pipelines; Badania odpornosci stali przeznaczonej na rurociagi gazowe

    Wasiak, J.; Bilous, W.; Hajewska, E.; Szteke, W.; Wagner, T. [Institute of Atomic Energy, Otwock-Swierk (Poland)


    The results of cracking resistance of steel tubes for gas pipelines have been performed. The temperature dependence of mechanical properties of X56 steel used as tube material have been shown. 2 refs, 6 figs, 4 tabs.

  4. Social and Economic Benefits of the West-East Gas Pipeline Project

    Li Xiangyang


    @@ On July 4 2002, a project attracting world attention, i.e., the West-East Gas Pipeline Project was declared in full-scale commencement. The project will write history with its enormous social and economic benefits.

  5. Use of GRASS for routing gas pipeline rights-of-way

    This study, sponsored by the Gas Research Institute (GRI), was conducted to illustrate how a GIS (Geographic Information System) can be used to assess alternative routes for new gas pipeline rights-of-way (ROWs). The results show that a least-cost analysis using GRASS (Geographic Resources Analysis and Support System) is a good method for siting new gas pipeline ROWs on the basis of environmental and engineering constraints to pipeline construction and maintenance. The cost and time needed to use this least-cost approach compare favorably with the current methods used by gas pipeline company planners and engineers. The types of criteria used, as well as the costs or weights given to the criteria, can be changed easily. This provides the flexibility to assess several alternatives quickly and easily

  6. Oil and Gas Pipelines in the Gulf of Mexico from BOEM

    National Oceanic and Atmospheric Administration, Department of Commerce — A line file representing locations of the pipeline infrastructure in the Gulf of Mexico associated with the oil and gas industry is presented. These layers were...

  7. The tightness of the globe valves in the exploitations practice of the gas pipe-lines

    Technological units of the Transit Gas Pipeline (i.e. Compressor Stations, Valve Stations, Stations or National Network Service Installations) have been fitted with Ball Valves as shut-off devices (block valves). Internal tightness of the valves' seat becomes major factor in securing proper service conditions during normal pipeline operation as well as for isolating of pipeline sections in emergency situations (loss of pipeline integrity or uncontrolled gas escape). Internal tightness of the valves is being inspected during scheduled maintenance of the pipeline units. Any leak revealed during inspection is being repaired, following instructions provided in the Manufacturer's Valve Manual. After a time, some cases have been identified, when repair of the revealed leak was found to be difficult, despite close following of the repair manuals. The paper presents analysis of the issue and corrective actions taken accordingly. (authors)

  8. Alarm management in gas pipeline plant: a case study

    Araujo, Juliano; Lima, Marcelo; Leitao, Gustavo; Guedes, Luiz Affonso [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Branco, Nicolau; Coelho, Robson; Elias, Gustavo Passos; Nunes, Marcelo [Transportadora Brasileira Gasoduto Bolivia-Brasil (TBG), Rio de Janeiro, RJ (Brazil)


    In order to improve the requirements of industrial processes, many decision support systems have been introduced in recent years. In this context, the alarm management systems have great relevance. On the other hand, the informatics revolution allowed a great increase of information concerning the operation of the industrial processes. Currently, process operators handle an excessive number of about 1.500 alarms per day. Thus, this overdose of information implies in the discredit of alarms. Then, in order to improve the operation activities of industrial processes, it is mandatory to incorporate procedures to evaluate and rationalize alarms. Since the EMMUA191 Standard is the reference guide to alarm management, but it does not specify how to execute an alarm management procedure, in this paper, a systematic procedure to evaluate alarms configurations in industrial processes is proposed. This procedure is in line with EMMUA191 and is composed by the following steps: to use statistics analyses to identify problematic alarms, such as occurrence, intermittency, correlation, and flooding calculation; to indicate problematic alarm group; and to propose a set of actions to be implemented. To validate our proposal, we present a case study in a gas pipeline plant using the BR-AlarmExpert software. (author)

  9. Seismic/geologic risks as factors in prioritizing gas pipeline system replacement

    During the past decade, Pacific Gas and Electric Company (PG and E) has intensified efforts to evaluate earthquake hazards and their potential effects on gas and electric power systems, with the goals of implementing reduction of earthquake vulnerability and increasing post-earthquake reliability. The earthquake lifeline engineering approach applied to the gas pipeline system involves identifying potential locations of high-probability, large-magnitude scenario earthquakes; developing seismic zonation maps for surface fault rupture, liquefaction potential, and slope-failure potential; evaluating the condition of the existing gas pipeline system and the consequences of the scenario earthquakes in order to assess and implement mitigations. This paper describes an example of application of this approach to modify the PG and E Gas Pipeline Replacement Program (GPRP), which is a long-term replacement of aging and leak-prone installed pipelines. An additional pipeline prioritization factor is defined and applied to accelerate the replacement of GPRP pipeline segments in areas subject to earthquake effects that are likely to increase gas leak potential

  10. Pipeline politics—A study of India′s proposed cross border gas projects

    India′s energy situation is characterized by increasing energy demand, high fossil fuel dependency, large import shares, and significant portion of population deprived of modern energy services. At this juncture, natural gas, being the cleanest fossil fuel with high efficiency and cost effectiveness, is expected to play an important role. India, with only 0.6% of proven world reserves, is not endowed with adequate natural gas domestically. Nevertheless, there are gas reserves in neighbouring regions which gives rise to the prospects of three cross border gas pipeline projects, namely, Iran–Pakistan–India, Turkmenistan–Afghanistan–Pakistan–India, and Myanmar–Bangladesh–India. This study is a political analysis of these pipeline projects. First, it provides justification on use of natural gas and promotion of cross border energy trade. Then it examines these three pipeline projects and analyses the security concerns, role of different actors, their positions, shifting goals, and strategies. The study develops scenarios on the basis of changing circumstances and discusses some of the pertinent issues like technology options for underground/underwater pipelines and role of private players. It also explores impact of India′s broader foreign relations and role of SAARC on the future of pipelines and proposes energy induced mutually assured protection (MAP) as a concept for regional security. -- Highlights: •We justify the need for cross border energy trade through gas pipelines for India. •We examine prospective pipeline projects—IPI, TAPI, MBI and their security issues. •We develop scenarios and analyze role of actors, their positions, and strategies. •We discuss technology and policy options for realizing these gas pipelines. •We propose energy induced mutually assured protection (MAP) for regional security

  11. 78 FR 19409 - Annual Charge Filing Procedures for Natural Gas Pipelines


    ... Federal Energy Regulatory Commission 18 CFR Part 154 Annual Charge Filing Procedures for Natural Gas... revise the filing requirements for natural gas pipelines that choose to recover Commission-assessed annual charges through an annual charge adjustment (ACA) clause. Currently, natural gas...

  12. Utilisation of gas pipelines - Application of new codes

    Bjoernsen, T. [Norske Veritas Industri Norge A/S, Hoevik (Norway)


    Current design codes are based upon requirements and safety philosophies introduced many decades ago. Few updates have been done compared to code development in other industries. The changes in the pipeline industry with new pipeline scenarios, standardisation and requirements to cost reduction have forced the industry to reconsider the current codes and look for improvements. Topics in this paper cover: Historical background on codes and standards; pipeline failure statistics; motivation for changes in current codes; limit state based design and safety, risk and reliability; status and standardisation and code development; discussion. 5 figs.

  13. Analyzing of Stray Current Interference on Buried Gas Pipeline from Shanghai Urban Rail Transit

    Chen Zhiguang


    Full Text Available With the fast development of urban transit system and natural gas industry, the Stray Current Corrosion (SCC for buried gas pipeline has become more frequent in china. In this study, principle and characteristic of Stray Current (SC resulting from rail transit system were introduced. Presently available SC testing methods, equipment and determination standards in china were summarized. For an underground gas pipeline located in the neighboring area and parallel to the rail transit in Shanghai, pipe-to-soil potential, potential gradient of soil, current within pipeline were measured during different operation time of rail transit with a self-made SC monitoring system based upon virtual instrument. Result shows that pipe-to-soil potential fluctuation of the tested gas pipeline is 200 mV, current within pipeline and potential gradient of soil is 100 mA and 62 mV/m, respectively, which is consistent with the operation of rail transit, serious corrosion of the buried gas pipeline may occur. Through theoretical Analysis, several protective measures were introduced.

  14. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)


    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  15. Case Study - internal corrosion in natural gas pipelines; Estudo de caso - corrosao interna em dutos transportadores de gas natural

    Nobrega, A.C.V. da; Barbosa, A.F.F.; Silva, D.R. da [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Quimica. Lab. de Corrosao]. E-mail:;;; Pimenta, G.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Peixoto, D.G. [PETROBRAS S.A., Natal/Fortaleza, RN/CE (Brazil). Unidade de Negocios


    One of the aspects what more characterize the gas natural is the possibility of your state physical can be adapted the conditions of transport , since the zone where is producing until the region where it is consumer (distant only one from another), you can stand out this three principal alternatives: gas pipelines; in the form of liquefied, in cryogenic ships; in the form of derive compounds that can be liquids or solid. For susceptibilities to the corrosion of the carbons steels used in the equipment and natural gas pipelines of the production reservoirs until the denominated city gates, it makes be necessary to identify the acting corrosive agents and monitoring them along time, because, the failures for internal corrosion in natural gas pipelines can carry serious environmental problems, damages to the image of the distributors companies and prejudices related to operational continuity. Some aspects of the processing of the natural gas are argued, as well as your effect regarding the internal corrosion in natural gas pipelines. To leave of this analysis, it tries establishing a monitoring and controlling methodology of the internal corrosion in field for natural gas pipelines. For chemical characterization of the samples of the black powder were used analyses for Scanning Electron Microscopy, X-Ray Diffraction, X-Ray Fluorescence. (author)

  16. Coalbed methane : evaluating pipeline and infrastructure requirements to get gas to market

    This Power Point presentation evaluated pipeline and infrastructure requirements for the economic production of coalbed methane (CBM) gas. Reports have suggested that capital costs for CBM production can be minimized by leveraging existing oil and gas infrastructure. By using existing plant facilities, CBM producers can then tie in to existing gathering systems and negotiate third party fees, which are less costly than building new pipelines. Many CBM wells can be spaced at an equal distance to third party gathering systems and regulated transmission meter stations and pipelines. Facility cost sharing, and contracts with pipeline companies for compression can also lower initial infrastructure costs. However, transmission pressures and direct connect options for local distribution should always be considered during negotiations. The use of carbon dioxide (CO2) commingling services was also recommended. A map of the North American gas network was provided, as well as details of Alberta gas transmission and coal pipeline overlays. Maps of various coal zones in Alberta were provided, as well as a map of North American pipelines. refs., tabs., figs

  17. Optimization of the steady operation of Shaanxi to Beijing gas pipeline

    Changchun Wu [China University of Petroleum, Beijing (China); Peng Zhang [Beijing Huayou Gas Company (China); Hongsheng Cui [PetroChina, Beijing (China)


    Shaanxi to Beijing gas pipeline is the first one with intermediate compressor stations in China. With one reciprocating compressor station and three centrifugal compressor stations, the pipeline has an annual capacity of about 36..10{sup 8}m{sup 3}. Increasing gas demand in Beijing and commissioning of the three underground gas storage facilities connected to the pipeline make it to operate near to the capacity for most time of a year, which can be approximately considered as steady state. With the goal to minimize the energy cost of the pipeline, a dynamic programming model was established for its optimal steady operation, in which outlet pressures of each compressor station were defined as state variables and compression ratios as decision variables. The optimal solutions of the model showed that the energy cost could be reduced to different extent by means of optimal operation for the different flow-rates of the pipeline, and that the savings of the energy cost from optimal operation may be over 20% compared to the operation schemes specified by traditional experience in some cases. Furthermore, the guidelines for the optimal operation of gas pipelines were revealed from the analysis of the optimal solutions of the model. (author)

  18. An evaluation of the economic impacts associated with the Mackenzie Valley gas pipeline and Mackenzie Delta gas development : an update

    The government of the Northwest Territories (NWT) and TransCanada PipeLines Ltd. requested an assessment of economic impacts associated with the development and production of gas reserves in the Mackenzie Delta and the construction and operation of a proposed pipeline running from the Mackenzie Delta down the Mackenzie Valley to an interconnect with the TransCanada system in northern Alberta. This study presents an evaluation from the period 2002-2035 for three volume scenarios. The first assumes that only gas from the Anchor fields will be available. The second scenario assumes that other known gas discoveries are sufficient to operate the pipeline for 15 years. The third scenario assumes that other known gas plus new discoveries are sufficient to operate the pipeline for 25 years. The analysis also considered 2 gas price scenarios and 3 gas and natural gas liquid volume cases. The report concludes that the overall Canadian impacts would be substantial and spread across all regions of Canada and major sectors including: business services; transportation and utilities; wholesale and retail trade; construction; manufacturing; the oil and gas sector; and mining. The development and production of natural gas reserves in the Mackenzie Delta would increase Canada's Gross Domestic Product, government revenues, investment revenues, and labour income. It would also increase total employment across Canada and offer opportunities for economic development in Canada's north. An added value of $80 to 230 million annually is possible due to avoided greenhouse gas emissions. 25 tabs., 28 figs

  19. A numerical study of liquid film distribution in wet natural gas pipelines

    Gao, X. Q.; Zhao, Y. L.; Xu, W. W.; Guan, X. R.; Wang, J. J.; Jin, Y. H.


    The software of FLUENT was used to simulate the gas-liquid turbulent flow in wet natural gas pipeline of the Puguang gas field. The RNG k- ɛ model was used to simulate the turbulent flow, the Mixture model was used to simulate gas-liquid mixed phase, and the Eulerian wall film model was used to simulate the formation and development of liquid film. The gas phase flow field characteristics, the distribution of the axial and circumferential film thickness, and the droplet distribution in the pipeline were studied when the gas Reynolds number is 7.72 × 106(10.8m/s). The results can be concluded as followed: Liquid film distributes unevenly along the circumferential direction and mostly distributes under the pipeline wall because of gravity. The impact of the dean vortex and centrifugal force in the straight section can also influence the liquid film distribution. The wall shear stress distributions in horizontal straight pipeline is concerned with liquid membrane volatility, and consistent with the film volatility period, the wall shear stress reached the maximum value in a certain position of wave front. The influence of the wall shear stress on the film fluctuation in inclined pipeline is weakened by gravity and other factors.

  20. Justification for internal coating of natural gas pipelines

    Asante, B. [NOVA Gas Transmission Ltd., Calgary, Alberta (Canada). System Design Dept.


    One of the major considerations in the design of a pipeline is the decision to coat or not to coat the pipe internally. This decision is essentially an economic one. It requires a detailed evaluation of the costs and benefits of internal coating over the projected life of the pipeline. Some of the benefits of internal coating have been confirmed by experimental studies conducted by various pipeline companies. These studies established, among other things, that coating pipes internally could increase pipeline capability by up to 15%. For lines with fixed capacities, this could mean substantial savings in associated compressor fuel and consequently, lower operating cost of transmission. There are also some intangible benefits associated with internal coating. For example, internal coating offers protection against corrosion due to atmospheric oxidation during storage and also due to the presence of corrosive components in the transported material during service. Coated pipes are also easier to inspect for defects such as dents, cracks, quench marks and weld undercuts, which may result in catastrophic failure of the line if undetected. A survey of some major pipeline companies in North America which employ internal coating indicated that most of these patrons regard it as merely ``good practice``. Thus, very few had a defensible procedure for adequately quantifying and justifying the application of internal coating. This paper outlines a procedure for adequately evaluating the costs and benefits of internal coating.




    Full Text Available Characterization of External Induced corrosion degradation of Ajaokuta- Abuja gas pipeline system was successfully carried out. The objective of this work is to analyze the mechanism of corrosion, analyze the effect of the corrosion on oil and gas pipeline and to evaluate the corrosion potential of a pipeline route. These were achieved by carrying out resistivity experiment on every one kilometer on the right of way (ROW of the pipeline. Soil and water aggressiveness test was also carried out on soil and water sample of the pipeline route respectively. The resistivity result was considerably high, chemical analysis revealed that the soil and wateracidity is between the pH of 6.7 and 8.2 respectively, which is moderately alkaline in nature, which makes the soil environment not conducive for pipelines due to potential for corrosion attack. The chloride content of the soil and water were also high. Based on the experimental results, it was proposed that the pipe should be laid on2-5m below the ground and that the galvanic anode for cathodic protection be located 1m below the ground, in order to avoid corrosion. It is therefore necessary to note that characterization of external corrosion is quite different from internal pipeline corrosion characterization.

  2. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)


    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  3. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    Ning Yu; Renjian Feng; Jiangwen Wan; Yinfeng Wu; Yang Yu


    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initia...




    Full Text Available Bearing in mind the considerable distances between natural gas fields and consumers’ appliances, transport by gas pipelines remains the most competitive means. These gas pipelines which are generally made of steel pipes may contain however several types of defects of various origins and which are susceptible to initiate cracks which may grow under some circumstances to such extent as to lead to fracture. Failures of gas pipelines may have serious consequences and may lead to catastrophes from ecological and financial viewpoints. It is therefore interesting to study the defect admissibility so as to maximize safety and minimize exploitation costs through a simplified method based on the Failure Assessment Diagram (FAD. The latter is used in conjunction with Finite Element Analysis (FEM applied to fracture mechanics to help decision making as to whether a given defect present in a pipe is acceptable or not.

  5. Experimental research on biomimetic drag-reducing surface application in natural gas pipelines

    Luo, Yuehao; Zhang, Deyuan [Beihang Univ., Beijing (China). School of Mechanical Engineering and Automation


    In the context of natural gas pipelines the application of biomimetic drag-reducing technology has been proposed for the purpose of reducing wall resistance and increasing the transportation capacity by virtue of smooth internal coating. In this article, in order to validate the drag reduction effect, the precured micro-rolling technology (PCMRT) was adopted to fabricate the biomimetic drag-reducing pipes, and the field testing experiment with natural gas was performed for the first time, achieving a maximum drag reduction of 8.68%, which proves the feasibility of the application of this new technology in natural gas pipelines. (orig.)

  6. Development of natural gas and pipeline capacity markets in the United States

    Juris, Andrej


    Deregulation of the U.S. natural gas industry has been under way since the late 1970s. The industry was deregulated to create competitive markets in natural gas and its pipeline transportation, in the expectation that competition would guide transactions toward a more efficient outcome. The author provides an overview of the deregulation process and its effect on the development and functioning of natural gas and gas transportation markets in the United States. He analyzes the trading of pipe...

  7. Mathematical model of a multi-loop network of gas pipelines at various modes of current

    Orifjon Sh. Bozorov


    Full Text Available A method of hydraulic calculation of a multi-loop network of gas pipelines based on Kirchhoff’s laws is offered. As completing relations, the formula for the change of pressure on elementary sites of the horizontal gas pipe, received on the basis of Leybenzon’s generalized formula of resistance is used.

  8. Comparison of fracture tougness of curved and flat CT specimens for the gas pipeline integrity management

    Gajdoš, Lubomír; Šperl, Martin; Crha, P.

    Kodaň : International Gas Union, 2014, WP3-44. [IGRC. International Gas Union Research Conference. Kodaň (DK), 17.09.2014-19.09.2014] R&D Projects: GA ČR(CZ) GAP105/10/2052 Institutional support: RVO:68378297 Keywords : pipelines * fracture toughness * CT specimens Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. The use of the internal epoxy coating in the gas pipelines

    The subject of the presentation is to show the impact of internal pipe coating on capacity of the gas transit system. There are technical and economical aspects of internal coating application in the presentation. The technical attributes and the results of economical factors prove the benefit of the use the internal coating in the gas pipelines. (author)

  10. 77 FR 22387 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...


    ... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or visit http... transmission annual report) to provide a mechanism for owners and operators to identify those segments of..., Revision to Gas Transmission and Gathering Pipeline Systems Annual Report, Gas Transmission and...


    Motomura, Masumi

    The Russian oil and gas industry earns more than half of the Russian tax revenue and foreign currency, and has been playing the role of the backbone of the state economy through the eras of the Soviet Union and the Russian Federation. With the elongation of distance to the European market from the oil producing regions, starting from Baku in the era of Imperial Russia to the Second Baku (Volga-Ural) and the third Baku (West Siberia) in turn, the role of the oil pipeline system as the transportation infrastructure became more and more important and the deployment of pipelines has become one of the indispensable pillars of oil strategy. Now, the oil pipeline network is to reach the Pacific Ocean, which will enable Northeast Asia to be added as a destination for Russian oil, with a result of expanding influence for Russia in these regions. On the other hand, gas exports from the Soviet Union to Eastern Europe started in 1967 by constructing a trunk pipeline from Ukraine, which was extended to West Germany in 1973, overcoming the confrontation between the East and the West and becoming a regional stabilizer. The United States considered this pipeline as an energy weapon and criticized this deal by saying that when Soviet gas flows to Western Europe, its political influence must flow like the gas itself. However, the Soviet Union collapsed in 1991, while gas transportation continued without any disruption. This is evidence that the gas pipeline from the Soviet Union was purely for a business purpose and was not politicized. Recently, Russia is aiming to export gas to northeastern Asia, which is expected to be a new stabilizer in this region, although different types of diffi culties (especially about the method of determination of the gas price) still need to be resolved.

  12. Remote monitoring of a natural gas pipeline using fiber optic sensors

    Cauchi, Sam; Morison, William Donald [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)


    The pipeline network referred to herein transports natural gas from the NE part of British Columbia through Western Canada into the US Mid-West. Across over 2000 km of the operator's large diameter transmission pipeline system are numerous river crossings and other geotechnical hazards that are continuously identified and risk ranked using a variety of methods, including in line inspection and geotechnical surveys. One particular section of the operator's mainline near Edmonton, Alberta, where railway tracks have recently been installed overtop this vital natural gas transport pipeline, will be the focus of this paper. In order to protect the pipeline from soil stresses to be imposed by heavy cyclic loading during construction of the railway tracks and when trains begin passing overtop, protective concrete structures were constructed around the pipeline within the vicinity of the tracks. While these structures assist in maintaining the integrity of the pipeline in the presence of heavy loading forces, they simultaneously prevent any subsequent access to the pipeline for general inspection and repair. As a result, prior to the construction of the protective concrete structures, the operator made multiple modifications to the pipeline's integrity system within the area of the proposed tracks. This included the enhancement of the cathodic protection to further prevent external corrosion, and the installation of fiber optic strain gauges at multiple sites to ensure that strain levels remain within tolerable limits under the inaccessible area. Background information on operator's pipeline and the layout of the protective concrete structures and railways will be presented in addition to field data obtained using the fiber optic strain monitoring system. An introduction to fiber optic strain gauges will be given, followed by a discussion on the design and installation of the sensors themselves. The particular method used to analyze the strain data is

  13. Research on Gas Hydrate Plug Formation under Pipeline-Like Conditions

    Florian Stephan Merkel


    Full Text Available Hydrates of natural gases like methane have become subject of great interest over the last few decades, mainly because of their potential as energy resource. The exploitation of these natural gases from gas hydrates is seen as a promising mean to solve future energetic problems. Furthermore, gas hydrates play an important role in gas transportation and gas storage: in pipelines, particularly in tubes and valves, gas hydrates are formed and obstruct the gas flow. This phenomenon is called “plugging” and causes high operational expenditure as well as precarious safety conditions. In this work, research on the formation of gas hydrates under pipeline-like conditions, with the aim to predict induction times as a mean to evaluate the plugging potential, is described.

  14. Gas Pipeline Transportation: Competing within Ex-Ante Increasing Returns to Scale and Sunk Costs Gas Pipeline Transportation: Competing within Ex-Ante Increasing Returns to Scale and Sunk Costs

    Ricardo Raineri


    In the present decade the Chilean economy has witnessed a vigorous development in the natural gas industry, with cruel battles among competing corporations that look for the success of their gas pipeline projects. This paper analyzes industrial organization implications of gas pipeline transportation technology providing a theoretical foundation for what current believes on natural monopoly's saw as impossible: three gas wars and one gas-electric war. There are two key components that determi...

  15. A Simulation Method of Voltages and Currents on a Gas Pipeline and its Fault Location

    Ametani, Akihiro; Kanba, Junsuke; Hosokawa, Yuji

    The present paper develops a numerical simulation method of steady-state and transient voltages and currents on a gas pipeline by applying a generalized circuit analysis program EMTP which is realized as a worldwide standard software. A buried gas pipeline is represented as an underground cable consisting of a tubular core and its outer insulator. The series impedance and the shunt admittance are easily evaluated by the EMTP supporting routine Cable Parameters. The paper has carried out simulations of steady-state and transient voltages and currents along the buried gas pipeline by EMTP. Based on the simulation results, it has become clear that the distributions of the voltages and the currents along the pipeline differ notably in the front and in the rear of a fault position. Thus, a detecting method is developed by observing a difference of a voltage amplitude between sound and fault states. The proposed techniques are investigated on real gas pipelines based on EMTP simulations, and it has been confirmed that the technique can be used in practice.

  16. Detection of gas leaks along pipelines by spectrally tuned infrared imaging

    Gross, Werner; Hierl, Thomas; Scheuerpflug, H.; Schirl, U.; Schulz, Max J.


    We present a novel method developed for the localization of leaks along natural gas pipelines. Methane distributions in the atmosphere around the leaky pipeline are detected and visualized by spectrally tuned IR imaging. In contrast to conventional techniques which utilize laser radiation sources or scanning, we irradiate the overall region under investigation by 1 kW halogen lamps. The scene background is subtracted by a real-time computer evaluation of the image. The methane gas emitted from the leak creates a flickering cloud in the image which is easily recognized. Methane concentrations as low as 0.03 percent by volume are visible. The method was successfully tested under realistic conditions on a buried pipeline by a natural gas provider.

  17. For the North, from the North : Enbridge perspectives on a Mackenzie Valley gas pipeline

    The increase in natural gas demand and strong gas prices are the main driving forces behind northern pipeline development. While Western Canada can supply much of the demand growth to key markets in the Pacific Northwest, California, Eastern Canada, as well as the Eastern and Midwestern U.S. it is not expected to supply all the growth. Producers are acquiring land in the Northwest Territories (NWT) and planning to increase drilling activity. In February 2000, Imperial, Gulf, Shell and Mobil entered into an agreement to study the feasibility of developing Mackenzie Delta gas, a study in which Enbridge Inc. participated. Enbridge is the major transporter of Canadian crude oil and liquids and they have a growing involvement in natural gas transmission. They also own and operate the largest gas distribution company in Canada. They have extensive Northern experience and already operate two pipelines in the NWT. The proposed 2,100 km, 36 inch pipeline will transport 1.2 bcf/d of natural gas increasing to 1.7 bcf/d with more compression. Its estimated cost is $4.2 billion. Some of the economic risks of such a project include the need for large amounts of equity, timing of market development, competing sources of gas, and stability of gas prices. The multitude of regulatory processes are also complex. Clarity is needed in many jurisdictional processes. Support of indigenous people is also crucial. A historic January 25, 2000 meeting of Aboriginal leaders of the Northwest Territories resulted in a declaration of support for a Mackenzie Valley pipeline. Protecting the permafrost is also a priority when constructing and operating a pipeline in the North. It is unlikely that Mackenzie Delta gas will flow before 7 years .13 figs

  18. Safety appraisement on building natural gas pipeline over coal mining subsidence area

    GUO Wei-jia; LIU Jin-xiao; WEN Xing-lin


    The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.

  19. Applications of ZigBee Technology in the Safety Monitoring System of Low Gas Pipeline Transportation

    Wei Deyu


    Full Text Available The existing safety monitoring system of low gas pipeline transportation establishes a wired communication network monitoring system mainly on the basis of industrial bus. It has problems such as large transmission signal attenuation, complex wiring, high-labor intensity, inconvenient installation and maintenance, high maintenance cost, and so on. Featuring low cost, power-saving, reliability, stability and flexibility, the wireless sensor network established by ZigBee wireless communication technology can realize the real-time all-dimensional dynamic monitoring on parameters of low gas pipeline transportation system and overcome the shortcomings and deficiencies of wired network system.

  20. Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

    Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a 'pig' is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing

  1. Rehabilitation and certification of the PGPB Cactus-San Fernando gas pipeline system

    Graciano, L.S. [Permex Gas y Petroquimica Basica, Mexico City (Mexico); Clyne, A. [GE Energy PII Pipeline Solutions, Buenos Aires (Argentina); Cazenave, P.; Willis, S. [GE Energy PII Pipeline Solutions, Houston, TX (United States); Kania, R. [GE Energy Pipeline Solutions, Calgary, AB (Canada)


    The Cactus-San Fernando gas pipeline system is 650 km in length and was constructed in the late 1970s. The system transports more than 1100 million standard cubic feet per day of dry natural gas to electricity generators in Mexico. This paper described a project undertaken to re-validate the pipeline and demonstrate the future integrity of the pipeline system and ensure that it was suitable for operation to 1219 psig. Pipeline sections were inspected using high resolution magnetic flux leakage (MFL) in-line inspection (ILI) tools, and inertial mapping unit vehicles equipped with global positioning surveys (GPS). The combined inspections allowed the project team to accurately identify features of the pipeline that required repairs. External and internal corrosion were identified as the most prevalent defects. RSTRENG methodologies were used to investigate the interaction of individual corrosion anomalies. Corrosion patterns were compared, and above-ground survey data were used to establish the causes of both the external and internal corrosion, as well as to establish future corrosion growth rates. Decision tree analysis was then used to analyze the growth rates and to identify statistical differences between corrosion growth rates as a function of distance along the pipeline. After the ILI reports were generated, an integrity assessment was then conducted to identify necessary repair options. Repairs plans were then developed along with recommended re-inspection intervals for each section. After the integrity assessments were accepted by a certification company, field work was conducted to locate and measure defects. Defects characteristic of major volumetric welding flaws introduced during pipeline construction were identified and repaired with an epoxy sleeve technique. It was concluded that repairs needed to operate the pipeline at the requested pressure were accomplished within a period of 8 months. 7 refs., 2 tabs., 4 figs.

  2. Application of Fracture-Mechanics Approach to Gas Pipelines

    Gajdoš, Lubomír; Šperl, Martin

    VII, č. 73 (2011), s. 480-487. ISSN 2010-376X R&D Projects: GA ČR(CZ) GAP105/10/2052; GA ČR(CZ) GPP105/10/P555 Grant ostatní: GAMPO(CZ) FT-TA5/076 Institutional research plan: CEZ:AV0Z20710524 Keywords : axial crack * fracture-mechanics * J integral * pipeline wall Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. North SEa pipelines: a survey of technology, regulation and use conflicts in oil and gas pipeline operation. Final report, Aug-Dec 78

    Nothdurft, W.E.


    This project was undertaken to provide information on North Sea offshore pipelines and the processes used in route selection decision-making. It is designed to be used by persons involved in offshore oil and gas pipeline planning, including pipeline corridors and landfalls. A brief overview of offshore activity in both the United Kingdom and Norwegian sectors of the North Sea is presented, with special emphasis on the transportation systems established or proposed for the major commercial fields. The report then focuses on the specific issues arising from the installation and operation of each of these transportation systems. These issues include: regulations affecting pipeline placement, criteria for route selection, pipeline trenching and burial, and conflicts with the fishing industry in the North Sea.

  4. Competition in the natural gas pipeline industry: An economic policy analysis

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed

  5. The Trans-Saharan Gas Pipeline: an illusion or a real prospect?; Le trans Saharan Gas Pipeline Mirage ou reelle opportunite?

    Auge, B.


    The African continent holds 8% of global natural gas reserves. Its relative economic weakness and the almost total absence of natural gas networks means there is very limited internal gas consumption - almost none outside of Algeria and Egypt - giving it considerable exporting capabilities. A pipeline joining up Sub-Saharan Africa with the European Union (EU) is therefore a reasonably logical project in economic terms. The two interested blocks have been discussing this with increasing intensity since early 2000. On the face of it the strategy seems obvious, the European area has three important gas producers: Norway (a non-EU member but closely associated with its energy policy), Great Britain and the Netherlands, with respective outputs of 99.2, 69.5 and 67.5 billion m{sup 3} in 2008. However, Norwegian and Dutch production will begin to decrease in several years time; and British production has already fallen considerably since 2000. Britain currently imports one-third of its gas for domestic consumption (93.9 billion m3 in 2008). Logically EU imports are going to increase progressively. And yet, a fear of dependency on Russian natural gas - currently the average rate of Russian gas supply amongst the EU 27 is 25% - in the near future, is leading the EU to consider diversifying its supply source. Without this diversification Russia could be supplying around 70% of the European market (27 countries) by 2050. Presently some EU countries clearly favour an increase in 're-gasification' plants in order to import more liquefied natural gas (LNG): France, Italy, Spain, the United Kingdom, the Netherlands, and Poland. The Persian Gulf countries, Egypt and Algeria and the U.S. will supply these new plants. The Trans-Saharan Gas Pipeline (TSGP) which would link Nigeria to Niger and Algeria, itself connected to Spain and Italy by existing pipelines or those currently under construction, could turn out to be an additional supply option in the long term. However

  6. The gas century: worldwide LNG developments may deal death blow to Alaskan pipeline dream

    The growing interest in liquefied natural gas (LNG), which casts doubt on the viability of the Alaska gas pipeline, and the potential impacts on Canadian gas exports to the United States are discussed. There is currently a proposal before Congress for an Alaskan LNG project, and consensus appears to be building among American energy experts and law-makers that building a multitude of LNG facilities would be more flexible and cheaper than building the proposed Alaska pipeline. As further proof of the growing popularity of LNG, U.S. industry lobbyists are said to be rapidly gaining congressional support for the idea of building eight to ten billion cubic feet per day of LNG capacity along the U. S. coast. Either development, -- LNG facilities or the Alaska pipeline -- have the potential to seriously impact Canadian natural gas exports. If the Alaska pipeline is built, the addition of five billion cubic feet per day of new gas on the market would cause gas prices to fall; if the U.S. decides to subsidize its gas industry, Canadian gas would be put at a serious disadvantage. Conversely, if the Alaskan LNG proposal were to succeed, the potential demise of the Alaska pipeline would mean the loss of about 12,000 jobs that would be created during the Canadian construction phase of the pipeline, as well as the loss of tariffs. Industry experts predict that by 2005 LNG terminals will dot the periphery of the U. S. coast line; to prepare for these eventualities, Canadian companies, such as Irving Oil, TransCanada Pipelines and EnCana are taking note, and are scrambling not to be left out of the game. As proof of the seriousness of their concern, Irving Oil is adding a Can$500 million LNG facility to its Canaport terminal on the Scotian shelf; TCPL is working to supply an LNG terminal offshore Massachusetts, and EnCana is refurbishing a Louisiana salt cavern to prepare for storage of gas delivered to the Gulf Coast


    Jerry Myers


    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  8. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators

    SELEZNEV Vadim


    This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator).The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enterprise.

  9. Compared economic and energy analysis of natural gas transport chains with on-shore pipelines, off-shore pipelines and by liquefaction

    Montellanico, P.; Maineri, M.


    The report is relative to a detailed computer code which allows to state, starting from the physical data of the gas to be transported just as the throughput and the distance to be travelled over, in one hand the technical characteristics of the most economic pipeline and in the other hand the least gross energy requirement for pipeline construction and operation. The programme deals with on-shore pipelines as well as off-shore pipelines including compressor platforms. The analyses comparison is made in order to establish what are the practical possibilities to spare energy in the gas transportation sector. Both economic and energy analyses are then applied to LNG seaborne transportation. As a result it is possible to recover a part of the liquefaction energy for electricity production with very high efficiency. Finally the various transportation chains are compared in order to find out the economic break-even points. 68 refs.

  10. Numerical forecasting surge in a piping of compressor shops of gas pipeline network


    This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies.

  11. North American natural gas pipeline and supply update

    A series of overhead viewgraphs accompanied this presentation which presented an update of North American natural gas supply. Some of the graphs depicted the following: (1) natural gas consumption in the United States, (2) U.S. imports of Canadian natural gas, (3) natural gas prices differential: Henry Hub versus Empress, (4) natural gas production in the U.S., and (5) Baker Hughes active rig count, U.S. gas rigs. First Energy's view of U.S. natural gas supply is that the estimate of 50.0 Bcf/d for U.S. domestic production is looking too high. The first quarter 1999 exit production rates are behind expectations. U.S. domestic natural gas expenditure budgets are still down by more than 40 per cent compared to 1998 levels. The impact that this will have on prices was discussed. 21 figs




    N this article is described the most common ways of associated petroleum gas utilization, is conducted a brief analysis, is selected method of disposal when using gas turbines and is suggested ways to improve their efficiency.

  13. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines

    By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility. (authors)

  14. Research & Development of Grade X70 LSAW Steel Pipes for West-East Gas Pipeline

    WangXiaoxiang; SunQi


    In this article the research and development of X70 large diameter longitudinal seam submerged arc welded (LSAW) steel pipes for West-East Gas Transportation Pipeline project (WEGTP) in China are introduced, including the key technique, fabrication of pipe production line, mass production and the latest progress of LSAW steel pipe technique.

  15. The strategic priorities of the national oil and gas pipeline transport system development

    Ірина Миколаївна Ісаєва


    Full Text Available The retrospective analysis of legal documents governing relations between Ukraine, Russia and the European Union as part of their energy policies was performed. The strategic interests of participating countries and the strategic priorities of the governance with national oil and gas pipeline transport system development in particular were designated

  16. 12th International corrosion congress: Preceedings. Volume 4: Oil/gas/pipeline

    Volume 4 of these proceedings contain 65 papers divided into the following sections: Cathodic protection (7 papers); Hydrogen effects (10); Oil and gas production and refining workshop (33); Pipeline corrosion (6); and Reliability and corrosion control of weldments/corrosion resistant alloys (9). All papers have been processed separately for inclusion on the data base

  17. 76 FR 52253 - Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines


    ... the required accounting systems necessary to allocate fuel costs to negotiated, discounted and... Reporting Requirements for Natural Gas Pipelines, Order No. 710-B, 76 FR 4516 (Jan. 26, 2011), 134 FERC ] 61... functions, including transportation, storage, gathering, and exploration/production, and should include,...

  18. 75 FR 36615 - Pipeline Safety: Information Collection Gas Distribution Annual Report Form


    ... incident report form and instructions. NAPSR also proposed a revision of the definition of ``excavation... Collection Gas Distribution Annual Report Form AGENCY: Pipeline and Hazardous Materials Safety Administration... Annual Report Form (PHMSA F 7100.1-1). PHMSA F 7100.1-1 is covered under the PHMSA information...

  19. New method of leak detecting in diagnostic of gas pipeline system

    This report describes new directions in gas transmission pipelines diagnostics as well as new methods and equipment used to detect leaks. It was also shown that efficient and functional diagnostics system is the necessary condition to keep the exploitation of transmission systems safe. (author)

  20. A wandering probe for tightness testing of the gas pipelines by means of the radiotracer method

    The report deals with the problem of the application of radiotracer techniques in the examination of the gas pipelines tightness. In particular, it gives a concise description of the construction of a special ''wandering probe'' for the localization of radiotracer leaks extorted in course of the measurements. (author)

  1. Integral diagnostic in the failure causes of external corrosion of a natural gas transport pipeline

    Mora-Mendoza, J.L.; Saucedo-Robles, L.C.; Rodriguez-Clemente, H. [PEMEX Gas y Petroquimica Basica, Subdireccion de Ductos; Marina Nacional 329, Edificio B-1, Piso 8, Col. Huasteca, D.F., CP 11311 (Mexico); Gonzalez-Nunez, M.A. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Cuernavaca, Morelos, CP 62490 (Mexico); Zavala-Olivares, G.; Hernandez-Gayosso, M.J. [Instituto Mexicano del Petroleo, Direccion de Exploracion y Produccion, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, D.F., CP 07730 (Mexico)


    The objective of this study consisted in investigating the possible causes which give rise to the presence of low wall pipe thicknesses on a 16'' natural gas transport pipeline, even though during the last 12-year period cathodic protection (CP) potentials were kept in the protection range at which external corrosion should not occur. Results from in-line inspection from a 16'' natural gas transport pipeline showed 46 indications with more than 80% wall thickness lost due to external corrosion in the second segment of the pipeline. Direct inspection at the indication locations, review of the CP system performance, pipeline maintenance programs and studies, allowed to make an integral diagnostic where it was found out that the main cause of external corrosion was an inappropriate coating application since the pipeline construction, this situation has originated the increase of CP shielding effects through time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. An evaluation of the economic impacts associated with the Mackenzie Valley gas pipeline and Mackenzie Delta gas development

    The government of the Northwest Territories (NWT) and TransCanada PipeLines Ltd. signed a Memorandum of Understanding on July 28, 1999 identifying a mutual desire to develop the natural gas reserves of the NWT and to construct a pipeline. Both parties have requested an assessment of economic impacts associated with the development and production of gas reserves in the Mackenzie Delta and the construction and operation of a pipeline running from the Mackenzie Delta down the Mackenzie Valley to an interconnect with the TransCanada system in northern Alberta. This study presents an evaluation from the period 2002-2033, for two gas price scenarios. The report concludes that the overall Canadian impacts would be substantial and spread across all regions of Canada plus major sectors including: business services; transportation, communication, and utilities; wholesale and retail trade; construction; manufacturing; the oil and gas sector; and, services associated with mining. The development and production of natural gas reserves in the Mackenzie Delta would result in increases in: Canada's Gross Domestic Product, government revenues, investment revenues, and labour income. It would also result in an increase in total employment across Canada. Other benefits associated with the project include: significant opportunities for economic development in Canada's north; value added from upgrading of incremental gas liquids to petrochemical products; potential increased in discoveries in other areas along the route of the pipeline; potential savings to households in northern communities; savings to gas users in Canada because the incremental gas supply would keep prices low; and gains valued at up to $2.1 billion annually because of avoided greenhouse gas emissions. 38 refs., 14 tabs., 11 figs

  3. Oil and gas wells and pipelines on U.S. wildlife refuges: challenges for managers.

    Pedro Ramirez

    Full Text Available The increased demand for oil and gas places a burden on lands set aside for natural resource conservation. Oil and gas development alters the environment locally and on a much broader spatial scale depending on the intensity and extent of mineral resource extraction. The current increase in oil and gas exploration and production in the United States prompted an update of the number of pipelines and wells associated with oil and gas production on National Wildlife Refuge System (NWRS lands. We obtained geospatial data on the location of oil and gas wells and pipelines within and close to the boundaries of NWRS lands (units acquired as fee simple (i.e. absolute title to the surface land by the U.S. Fish and Wildlife Service. We found that 5,002 wells are located in 107 NWRS units and 595 pipelines transect 149 of the 599 NWRS units. Almost half of the wells (2,196 were inactive, one-third (1,665 were active, and the remainder of the wells were either plugged and abandoned or the status was unknown. Pipelines crossed a total of 2,155 kilometers (1,339 miles of NWRS fee simple lands. The high level of oil and gas activity warrants follow up assessments for wells lacking information on production type or well status with emphasis on verifying the well status and identifying abandoned and unplugged wells. NWRS fee simple lands should also be assessed for impacts from brine, oil and other hydrocarbon spills, as well as habitat alteration associated with oil and gas, including the identification of abandoned oil and gas facilities requiring equipment removal and site restoration.

  4. Application of flash setting material for temporary earthquake disaster restoration of gas pipelines using fly ash cement mixtures

    Shimada, H.; Sasaoka, T.; Fujita, S.; Matsui, K. [Kyushu Univ., Nishi-ku, Fukuoka (Japan). Dept. of Earth Resources Engineering; Yoshida, Y. [Kyushu Univ., Nishi-ku, Fukuoka (Japan). Dept. of Earth Resources Engineering; Sankyo Material Co. Ltd., Chuo-ku, Fukuoka (Japan); Araki, K. [Kyushu Univ., Nishi-ku, Fukuoka (Japan). Dept. of Earth Resources Engineering; Fuso Technologh Co. Ltd., Sumida-ku, Tokyo (Japan); Satake, S.; Ishikawa, M. [Tokyo Gas Co. Ltd., Tsurumi-ku, Yokohama (Japan)


    Earthquakes are common in Japan. In the event of a large earthquake, gas, sewage, and telecommunications pipelines would require immediate restoration. Since gas leaks from damaged pipelines pose a fire hazard, gas companies would stop the supply of gas to houses, possibly over a large area. A considerable amount of time is also required to repair the pipelines once the gas supply is stopped. As such, a quick method for restoring damaged gas pipelines would be useful following an earthquake. This paper discussed the feasibility of using a new flash setting material for the damaged gas pipeline. The method involves injecting a swelling agent into the home's gas connection when the gas supply is turned off during an emergency. Different combinations of fly ash, chemical agents and water were considered in several experiments, in order to clarify to what degree the contents of flash settling material affected the properties of the injected fly ash mixture causing heavy damage to the gas pipeline in an earthquake. Specifically, the paper discussed the disaster of gas leakage after earthquake; the characteristics of fly ash; the requirements of flash setting material for restoration; and the development of flash setting material. It was concluded that the mixture of A agent, which was a 30 per cent solution of silicic acid sodium, and the B agent of cement, fly ash, the adhesive, the swelling agents were able to accomplish the objective of the study. 13 refs., 7 tabs., 5 figs.

  5. Urucu-Manaus gas pipeline: challenges and solutions; Gasoduto Urucu-Manaus: desafios e solucoes

    Loureiro, Mauro de O.; Machado, Otto Luiz de M.; Moura, Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    The challenge of building and develop a gas pipeline such as Urucu-Manaus, in the middle of Amazon rain forest, it is beyond to conventional engineering solutions that is common used in this kind of contract. The development of this venture join a large variety of activities since the several techniques of pipeline construction to the improvement the skills of the local workers but never to leave out important points such as integrated management of work, for instance, safety, environment care, health, communication with the involved parts, archaeology, goods and services acquisition, telecommunications and the mean of transportation to equipment and workers. (author)

  6. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails:;;


    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  7. Energy saving in the process of gas pipeline overhaul

    Mitrokhin, Alexey


    The problem of energy saving during overhaul of a linear part of gas trunkline is regarded in this paper. This issue has been analyzed from different perspectives. Thermodynamic analysis of gas evacuation from a string that is off operation for the overhaul to a parallel or adjacent string with the use of mobile compressor systems was made. Economical attractiveness of mobile compressor systems applications was proved. Various methods of gas trunklines linear parts overhaul have been consider...

  8. Auction design for gas pipeline transportation capacity-The case of Nabucco and its open season

    As a response to the Russian dominance of the EU's natural gas supplies and the EU's increasing gas demands, major gas pipeline projects are currently under way to enhance the EU's energy supply security. Oftentimes to raise financing and to allocate gas transportation capacities, auctions are carried out to allow gas shippers to book transportation rights. In recent years, auctions have emerged as one of the most successful allocation mechanisms in the microeconomic theory. However, different auction designs can lead to different outcomes making the choice of auction design a decisive one, especially for divisible-good auctions. This paper seeks to give a formulation of an optimal auction design for gas pipeline transportation capacity. Specifically three different mechanisms are tested: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. In addition, Nabucco is taken as a case study to empirically show results of such auction designs. Results show that a trade-off between revenue optimization and fair allocation can be observed: allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central. - Research highlights: → Auction design for gas pipeline transportation capacity. → Empirical market-survey of Nabucco pipeline project auction as input data. → Testing of three different allocation mechanisms: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. → Results show a trade-off between revenue optimization and fair allocation. → Allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. → On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central.

  9. The redefinition of the american and british gas industries: the regulation of the access load to the gas pipelines networks

    The transport and distribution networks regulation is the main stakes of the regulation reform of the gas industries. This thesis analyzes the models applied in The Usa and in the United Kingdom. The first part deals with the gas industries deregulation in these two countries, the impacts on the economy and the organization of the gas industries. The second part presents a theoretical approach of the regulation applied to the prices of the natural ags transport by gas pipelines. Regulation by the service cost price and by price cap are compared. (A.L.B.)

  10. Application Summary of Remote Sensing Technique of the West-East Gas Transportation Pipeline



    The West-East Gas Transportation Pipeline (WEGTP) is a strategic project for the energy source transport, which is about 3900km long. The remote sensing technique has the unique superiority to obtain the geographic information. The remote sensing technique is used in WEGTP to interpret comprehensively the information of geology, landform and humane geography along the route of pipeline, and to update the topographic map along the route of Zhengzhou-Shanghai section pipeline, and to interpret finely the crossing point of the Nanjing Changjiang river crossing section. Through the overlap of TM image and the DEM, the complicated landform information can be grasped by the three dimensional flight over the section of complicated geography. The application achievements are managed with RS-GIS service system.

  11. Trans-Caspian gas pipeline feasibility study. Volume 1

    This study, conducted by Enron Engineering and Construction Company, was funded by the US Trade and Development Agency. The study provides detailed information concerning natural gas demand in Turkey and Southern Europe. The purpose of the study is to estimate the rate at which new gas can be absorbed in the Turkish market and be re-exported to the markets in Europe, as well as to forecast Turkish natural gas demand for the period up to 2020. The study also evaluates gas demand and pricing for the market in the 2002--2005 time frame. This is Volume 1 of a 3-volume report, and is divided into the following sections: (1) Task A: Gas Sales; (2) Task B: Initial Economic Screening; (3) Task D: Project Cost Analysis

  12. China's modern day Great Wall : the 40 inch West to East Gas Pipeline Project

    In order to fuel China's economic growth, PetroChina began construction of the West to East Natural Gas Pipeline Project (WEPP) in 2001 to transport large quantities of natural gas reserves from the Tarim Basin in the Xinjiang Autonomous Region in far western China to markets in eastern China. The WEPP is the first large diameter, cross-country pipeline project ever constructed in China, and was the first to use automatic welding and automatic ultrasonic inspection on pipelines in China. This paper addressed the management, engineering, procurement and construction challenges of the WEPP. Upon completion of the 3,800 km, 1.016 mm mainline pipeline, construction will begin on other major facilities, such 294 km of lateral line, dual fiber optic conduits with the mainline, 1,100 km of access roads, 23 metering stations, 18 pigging stations, 10 compressor stations, 16 mountain tunnels, 16 aerial crossings, 1 crossing of the Yangtze River, 3 crossings of the Yellow River, a gas control center, and SCADA system. Houston-based Universal Ensco Inc. was awarded a contract to perform a feasibility study as well as a construction supervision contract by PetroChina for the WEPP. Universal also designed a gas turbine drive compressor station at Lunnan and an electric drive compressor station at Zhengzhou. This paper demonstrated that business in China for foreign companies in the pipeline industry is evolving and several changes can be expected as the state planned economy is reformed to a free market economy. 4 refs., 5 tabs., 17 figs.

  13. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar


    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  14. Algorithms for near real-time detection of gas leaks from buried pipelines using hyperspectral imagery

    Hoffmann, G. D.; Silver, E. A.; Pickles, W.; Male, E.


    Gas leaks from buried pipelines can directly impact the health of overlying vegetation. The leak can produce patches of highly stressed or dead vegetation. Plant health can be assessed remotely by measuring the depth of the chlorophyll absorption, which is located between 550 nm and 700 nm in reflectance imagery. Chlorophyll absorption is readily recognizable in multispectral and hyperspectral imagery as a strong absorption band centered on red light (typically 680 nm wavelength). We have examined several methods of measuring chlorophyll absorption with the goal of automating vegetation stress detection above underground pipelines in order to facilitate same-day detection of potential pipeline leak locations. One method, in which we measure vegetation stress as the ratio of the measured reflectance at peak absorption to the spectral continuum, was particularly successful. We compare the results of this measurement with a manual analysis of 0.18 m resolution imagery of several controlled CO2 leaks, finding the automatic analysis to be robust. High spatial resolution is shown to greatly increase the quality of the results, however, we show that this method works in even 3 m resolution imagery of an underground pipeline methane leak. This algorithm runs very quickly for large images. We are developing the image analysis algorithm to operate in real-time while flying buried pipeline right of way with hyperspectral sensors.

  15. Development of a Neural Fuzzy System for Advanced Prediction of Gas Hydrate Formation Rate in Pipeline

    Mohammad Javad JALALNEZHAD


    Full Text Available With the development of the natural gas industry in the 20th century, the production, processing and distribution of natural gas under high-pressure conditions has become necessary. Under these conditions, it was found that the production and transmission pipelines were becoming blocked with what looked like to be ice. Hammerschmidt determined that hydrates were the cause of plugged natural gas pipelines. Gas hydrates and difficulties related to their formation in production and transmission pipelines and equipment, are the major concerns of the gas industry. The main objective of this study was to present a novel approach to access more accurate hydrate formation rate predicting models based on a combination of flow loop experimental data with learning power of adaptive neural-fuzzy inference systems and more than 900 data points of the , , , and i-  hydrate formation rate. Using this data set different predictive models were developed. It was found that such models can be used as powerful tools, with total errors less than 6 % for the developed models, in predicting hydrate formation rate in these cases.

  16. Evaluation of the sources of error in the linepack estimation of a natural gas pipeline

    Marco, Fabio Capelassi Gavazzi de [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A. (TBG), Rio de Janeiro, RJ (Brazil)


    The intent of this work is to explore the behavior of the random error associated with determination of linepack in a complex natural gas pipeline based on the effect introduced by the uncertainty of the different variables involved. There are many parameters involved in the determination of the gas inventory in a transmission pipeline: geometrical (diameter, length and elevation profile), operational (pressure, temperature and gas composition), environmental (ambient / ground temperature) and those dependent on the modeling assumptions (compressibility factor and heat transfer coefficient). Due to the extent of a natural gas pipeline and the vast amount of sensor involved it is infeasible to determine analytically the magnitude of resulting uncertainty in the linepack, thus this problem has been addressed using Monte Carlo Method. The approach consists of introducing random errors in the values of pressure, temperature and gas gravity that are employed in the determination of the linepack and verify its impact. Additionally, the errors associated with three different modeling assumptions to estimate the linepack are explored. The results reveal that pressure is the most critical variable while the temperature is the less critical. In regard to the different methods to estimate the linepack, deviations around 1.6% were verified among the methods. (author)

  17. GIS (Geographic Information Systems) based automatic tool for selection of gas pipeline corridors

    Matos, Denise F.; Menezes, Paulo Cesar P.; Paz, Luciana R.L.; Garcia, Katia C.; Cruz, Cristiane B.; Pires, Silvia H.M.; Damazio, Jorge M.; Medeiros, Alexandre M.


    This paper describes a methodology developed to build total accumulated surfaces in order to better select gas pipelines corridor alternatives. The methodology is based on the minimization of negative impacts and the use of Geographic Information Systems (GIS), allowing an automatic method of construction, evaluation and selection of alternatives, that will contribute to the decision making process. It is important to emphasize that this paper follows the assumptions presented on the research reports of a project sponsored by the Ministry of Mines and Energy (MME) and elaborated at the Electric Power Research Center (CEPEL), called 'Development of a Geographic Information System to Oil and Gas Sectors in Brazil', and also the studies d GTW Project (Gas to Wire). Gas pipelines, as for their linear characteristic, may cross a variety of habitats and settlements, increasing the complexity of their environmental management. Considering this reality, this paper presents a methodology that takes into account different environmental criteria (layers), according to the area impacted. From the synthesis of the criteria it is presented the total accumulated surface. It is showed an example of a hypothetical gas pipeline connection between two points using the total accumulated surface. To select the 'impact scores' of the features, the gas pipeline was considered as a linear feature, but the result is a region, formed by pixels, each pixel with an accumulated impact score lower than some arbitrary measure. This region is called 'corridor', and it is the final result obtained using the proposed methodology. (author)

  18. 长输天然气管道泄漏回收研究%Research on Recovery of Natural Gas in Pipeline During Long-Distance Pipeline Leakage

    马焱; 刘德俊; 李小月; 高钊; 王芙; 高吉庆; 孙皓


    长输天然气管道作为重要的能源运输工具,在保障安全高效性输送的同时,全面拉动了我国天然气城市化进程。国内处理管道泄露问题时,通常先放空管道内天然气再进行抢修工作,这样就造成了对天然气的大量浪费。设计了一套对长输管道放空天然气进行回收的车载压缩机组,并进行经济可行性分析。当发生泄露后,车量迅速到达截断阀室现场,将泄露段天然气回收注入至下一段管道,既节约能源,又减少了由于放空天然气带来的环境污染。%As important energy transportation means, the long-distance natural gas pipeline promotes the natural gas urbanization process in China as it can ensure safe efficiency natural gas transmission. When dealing with the problem of pipeline leak in China, natural gas in the pipeline is usually vented before carrying out the repair work,which can cause a lot of waste of natural gas. A set of vehicle compressor was designed, it can recover natural gas in long distance pipeline, and its economic feasibility was analyzed. When a leak occurs, recycling car will quickly reach the cut-off valve room scene, recycle natural gas of leak section and inject it into the next section of pipeline. It can save energy, and reduce the environmental pollution caused by venting natural gas.

  19. Trans-Caspian gas pipeline feasibility study. Volume 3

    This study, conducted by Enron Engineering and Construction Company, was funded by the US Trade and Development Agency. The study provides detailed information concerning natural gas demand in Turkey and Southern Europe. The purpose of the study is to estimate the rate at which new gas can be absorbed in the Turkish market and be re-exported to the markets in Europe, as well as to forecast Turkish natural gas demand for the period up to 2020. The study also evaluates gas demand and pricing for the market in the 2002--2005 time frame. This is Volume 3 of a 3-volume report, and it is divided into the following sections: (1) Executive Summary; (2) Task C: Technical Feasibility and Preliminary Design; (3) Task F: Project Implementation Strategy

  20. Trans-Caspian gas pipeline feasibility study. Volume 2

    This study, conducted by Enron Engineering and Construction Company, was funded by the US Trade and Development Agency. The study provides detailed information concerning natural gas demand in Turkey and Southern Europe. The purpose of the study is to estimate the rate at which new gas can be absorbed in the Turkish market and be re-exported to the markets in Europe, as well as to forecast Turkish natural gas demand for the period up to 2020. The study also evaluates gas demand and pricing for the market in the 2002--2005 time frame. This is Volume 2 of a 3-volume report, and it is divided into the following sections: (1) Executive Summary; (2) Policy, Legal and Administrative Framework; (3) Assessment of Alternatives; (4) Baseline Conditions in the Project Area; (5) Potential (Unmitigated) Environment, Health and Safety Impacts; (6) Proposed Environmental Prevention and Mitigation; (7) Projected Net Environmental Impacts; (8) Bibliography

  1. Investigations of pipeline reactions to detonations of radiolysis gas

    As a case of damage in a head spray cooling piping of a boiling-water reactor showed, detonations of radiolysis gas in safety-relevant tubes of nuclear power plants cannot be excluded in all cases. Radiolysis gas is a mixture of gaseous hydrogen and oxygen in stoichiometric ratio which is generated by dissociation of water under the influence of gamma and neutron radiation. Within the scope of a research project funded by the Federal Ministry of Economics and Technology (BMWi) the basis for the assessment of the related risk potential for plant operation shall, among others, be provided. Due to the high-rate response of the pipe to the detonation, multiple longitudinal cracks and fragmentation can occur. Detonation tests and numerical evaluations are performed to simulate detonations of radiolysis gas in thin-walled pipes. The radiolysis gas is simulated by mixing hydrogen and oxygen from gas bottles. Pipes made of austenitic steel with the nominal dimensions of OD x t = 114,30 mm x 6,02 mm are used for the tests. The internal pressure is 70 bar in all cases. In different tests, which are carried out at room temperature, the ratio of radiolysis gas in the pipe is varied and for the simulation of steam nitrogen is used as another filling medium. Next to the results of three detonation tests with a radiolysis gas ratio of 60% and 80% the results of tests, carried out for the experimental evaluation of the radiolysis gas reactions, with thick-walled vessels are presented. (orig.)

  2. 18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.


    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Reports by natural gas..., NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.9 Reports by natural gas pipeline companies on service interruptions and damage to facilities. (a)(1) Every natural gas company must report to...

  3. Leak detection in gas pipeline by acoustic and signal processing - A review

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.


    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  4. Multi-attribute risk assessment for risk ranking of natural gas pipelines

    The paper presents a decision model for risk assessment and for risk ranking of sections of natural gas pipelines based on multi-attribute utility theory. Pipeline hazard scenarios are surveyed and the reasons for a risk assessment model based on a multi-attribute approach are presented. Three dimensions of impact and the need to translate decision-makers' preferences into risk management decisions are highlighted. The model approaches these factors by using a multi-attribute utility function, in order to produce multi-dimensional risk measurements. By using decision analysis concepts, this model quantitatively incorporates the decision-maker's preferences and behavior regarding risk within clear and consistent risk measurements. In order to support the prioritizing of critical sections of pipeline in natural gas companies, this multi-attribute model also allows sections of pipeline to be ranked into a risk hierarchy. A numerical application based on a real case study was undertaken so that the effectiveness of the decision model could be verified

  5. Designing a reliable leak bio-detection system for natural gas pipelines

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  6. Designing a reliable leak bio-detection system for natural gas pipelines.

    Batzias, F A; Siontorou, C G; Spanidis, P-M P


    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. PMID:21177031

  7. Method and measuring device for checking the support and/or covering of a pipeline for oil or gas

    The previous invention was for a device which was propelled along the pipeline by the oil or gas flow and measured the background radiation. By comparing the radiation profile with a reference profile made when the pipeline was new, changes in the support of the pipeline on the sea bed, or in its sand cover, can be detected, and to a certain degree, measured. The present invention is that by placing similar detectors at different positions in the same cross-section of the pipeline, and processing the signals comparatively, the need for a reference profile is obviated. (JIW)

  8. Bolivia-Brazil gas-pipeline implantation. The employment generation according to Leontief's matrix

    During the past 15 years, a strong evolution in the concept of the use of energy for industrial purpose was brought in step by step by the Governments and users themselves. The progress within the fields of energy savings, thermal control and reduction of air pollution must be pointed out. Within this scheme the natural gas technology has overcome many technical difficulties and the solutions using natural gas rank among the most efficient to tackle current problems. The aim of this work is to analyse Bolivia-Brazil gas-pipeline implantation and it influences in the Brazilian economy

  9. Risk analysis for construction and operation of gas pipeline projects in pakistan

    In order to cater for its high energy demand, Pakistan is planning to import natural gas through pipelines from neighboring countries. For fully utilizing the imported gas, providing it to end customers, the infrastructure of gas pipeline needs to be developed. Therefore, huge investment has been done and proposed in this sector in coming future. Considering geological, topographical, geopolitical and climatic conditions of the country, there is added risk of earthquake, landslides and floods. Due to current geopolitical situation there is a persistent threat of unrest and terrorism in the country. Instable Government policies, high rate of inflation, rapid change in material prices are also important risk factors. All these factors make the situation very complex in quantifying the risk especially for a project in which the risk impact factor rises exponentially in case of risk occurrence. In this paper, most appropriate risk classification is made based on technological, organizational, political, natural climatic, security and environmental risk factors. Effort has been made to device a simpler risk management methodology to analyze and manage risks of gas pipeline project. In the proposed risk management model Monte Carlo simulation has been used to identify critical risks. (author)

  10. Study and Application of Internal Coating Technique to Drag Reduction of the Trunk Pipeline for the West-East Gas Pipeline

    HuShixin; QuShenyang; LinZhu


    Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000km trunk pipeline in West-East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own-decided knowledge property right at home.

  11. Friction factor in smooth and rough gas pipelines. An experimental study

    Sletfjerding, Elling


    Flow of high pressure natural gas in pipelines has been studied experimentally. Pipeline flow of natural gas is characterized by high Reynolds numbers due to the low viscosity and relatively high density of pressurized gas. Friction factor correlations for high Reynolds number flow in smooth and rough pipes were developed. To study the effect of wall roughness on pipe flow at high Reynolds numbers 8 test pipes with different wall roughness were fabricated. The wall roughness in 6 of the test pipes was varied by adding glass beads in an epoxy coating applied on the pipe wall. One test pipe was treated with a smooth epoxy coating and one was left untreated. The inner diameter of the test pipes was 150 mm. Measurements of the pressure drop in the pipes were made in a closed flow loop at line pressures of 25, 70, 95 and 120 bar. The Reynolds number of the flow was varied in the range 2-30 million. The wall roughness of the test pipes was measured with a stylus instrument. Correlations between the directly measured wall roughness and the friction factor at fully rough flow conditions were presented. To characterize the wall roughness of the test pipes a parameter combining a measure of the roughness height (R{sub q}) and the texture of the wall roughness was used. Due to the high Reynolds number of the flow, minute irregularities of the pipe wall had significant effect on the friction factor in the pipe. The measured wall roughness of the test pipes was in the range 1.4 < R{sub q} <31 (my)m. The flow experiments in test pipes was compared with data from operating pipelines in the North Sea. The offshore pipelines are coated with the same epoxy coating as used in the test pipes. The friction factor in coated offshore gas pipelines showed smooth behavior when the additional pressure drop due to welds were accounted for. The study of coated gas pipelines showed that the friction factor was significantly lower than predicted by standard correlations.

  12. Considerations about the Urucu-Manaus gas pipeline design; Consideracoes sobre o projeto do gasoduto Urucu-Manaus

    Villela, Claudio Henrique Lobianco G.; Correia, Luiz de Carvalho Dias [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    The main purpose of this job is to present the characteristics that influenced the elaboration of the Urucu-Manaus Gas Pipeline Project and the difference between this pipeline and other pipelines already installed on the Amazon region. In this project were emphasized the aspects related to the route definition, mapping technologies that had not been utilized in our pipeline projects, the crossing of vast flooded areas, requiring specific studies, as well the minimization of the environment impacts, in this case the existence of animal species present only in this region. Other differential factor was the Rio Negro crossing, where the pipeline will be installed in the riverbed. The know-how attained with this project consolidates ever so the activity of building pipelines in tropical forest regions. (author)

  13. Application of four dimensional matrix for thermal analysis of Slovak transit gas pipeline by program FENIX

    Széplaky, Dávid; Varga, Augustín


    The contribution describes the principle of the FENIX program operation, which was designed to determine the temperature field of the transit pipeline for the transportation of natural gas. The program itself consists of several modules which are reciprocally linked. The basis of the program is the elementary balance method by means of which the unsteady heat transfer is assigned in several layers in different directions. The first step was to assess both the pressure and temperature of the natural gas mode, the second step is to determine the heat transfer through the walls of the pipes, and the last one is to determine the distribution of the temperature field in the surroundings of the pipeline.

  14. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail:; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail:


    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  15. Fuzzy Reliability Analysis for Seabed Oil-Gas Pipeline Networks Under Earthquakes

    刘震; 潘斌


    The seabed oil-gas pipeline network is simplified to a network w i th stochastic edge-weight by means of the fuzzy graphics theory. With the help o f network analysis, fuzzy mathematics, and stochastic theory, the problem of rel iability analysis for the seabed oil-gas pipeline network under earthquakes is t ransformed into the calculation of the transitive closure of fuzzy matrix of the stochastic fuzzy network. In classical network reliability analysis, the node i s supposed to be non-invalidated; in this paper, this premise is modified by in t roducing a disposal method which has taken the possible invalidated node into a ccount. A good result is obtained by use of the Monte Carlo simulation analysis.

  16. Gas Pipelines, LP and LNG, pipedigitized, Published in 2000, 1:24000 (1in=2000ft) scale, Carbon County GIS.

    NSGIC GIS Inventory (aka Ramona) — This Gas Pipelines, LP and LNG dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2000. It is described as...

  17. 78 FR 65637 - Sierrita Gas Pipeline LLC; Notice of Availability of the Draft Environmental Impact Statement for...


    ...-inch-diameter natural gas pipeline in Pima County, Arizona; two meter stations; two pig launchers and two pig receivers; \\1\\ and \\1\\ A pig is an internal tool that can be used to clean and dry a...

  18. Interpreting concentration indices in the secondary market for natural gas transportation: The implication of pipeline residual rights

    In 1992, the U.S. Federal Energy Regulatory Commission created a secondary market for natural gas transportation whereby shippers holding firm transportation capacity on interstate natural gas pipelines can compete with the pipeline in the provision of transportation services. However, if a shipper does not use some of its contracted firm transportation capacity, the pipeline can resell that capacity as interruptible transportation. That is, the pipeline has residual rights with respect to firm transportation capacity contracted for by shippers. We demonstrate that these residual rights can have a significant effect on the competitiveness of the secondary market for natural gas transportation. A consequence of these residual rights is that the secondary market for natural gas transportation may be considerably more competitive than indicated by measures of concentration like the widely used Herfindahl-Hirschman Index. (author)

  19. Gas Pipelines, LP and LNG, Published in 1997, 1:4800 (1in=400ft) scale, County of Lexington.

    NSGIC GIS Inventory (aka Ramona) — This Gas Pipelines, LP and LNG dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Orthoimagery information as of 1997. Data by this...

  20. Dry Hyperbaric Gas Metal Arc Welding of Subsea Pipelines : Experiments and Modeling

    Azar, Amin S.


    Ambitions in exploration of oil and gas fields at deeper water depth require continuous investigation and maintenance. The transportation pipelines laid in deep waters are both subjected to corrosion and buckling due to environmental phenomena. They may also often undergo branching (namely hot tapping) to redirect (or add to) the transportation paths. Mechanical joints and welding are both considered as available alternatives when sectioning and replacement of the pipes at shallow waters is n...

  1. Combined CFD/Population Balance Model for Gas Hydrate Particle Size Prediction in Turbulent Pipeline Flow

    Balakin, Boris V.; Hoffmann, Alex C.; Kosinski, Pawel; Istomin, Vladimir A.; Chuvilin, Evgeny M.


    A combined computational fluid dynamics/population balance model (CFD-PBM) is developed for gas hydrate particle size prediction in turbulent pipeline flow. The model is based on a one-moment population balance technique, which is coupled with flow field parameters computed using commercial CFD software. The model is calibrated with a five-moment, off-line population balance model and validated with experimental data produced in a low-pressure multiphase flow loop.

  2. Russian energy imperialism : the world maped along the gas pipelines

    Baločkaitė, Rasa


    Energy imperialism refers to the use of natural resources for political purposes, i.e. weaponization of energy. At the state level, it means specific institutional structure, as the state building is predetermined by oil led developments. At the international level, it means international nets of energy dependency, centered around the mother state possessing oil, gas and other natural resources. In a paradox way, the so called Western world (Western Europe and North America) becomes increasin...

  3. Odourisation of CO2 pipelines in the UK: historical and current impacts of smell during gas transport

    Kilgallon, Rachel; Gilfillan, Stuart; Haszeldine, Stuart; McDermott, Christoper


    Commercial scale Carbon Capture and Storage (CCS) will require CO2 to be transported from industrial point sources to storage sites, potentially over distances of hundreds of kilometres. One of the most efficient means of transporting fluids over large distances is via pipeline. Pipeline leaks can be problematic, especially when transporting colourless and odourless gases such as natural gas and CO2. One of the current methods of risk mitigation for natural gas transport is odourisation. The ...

  4. Application of groundwater aggressiveness assessment method for estimation of the karst process at main gas pipeline construction

    Ermolaeva, A. V.


    Main pipelines maintenance is connected with hazard engineering and geological working conditions. The article deals with the use of groundwater aggressiveness assessment method to estimate the karst processes development during the construction of main gas pipelines. The possibility of using this method is analyzed on the example of the initial section of the designed gas pipeline “Power of Siberia” (section “Chayanda-Lensk"). The calculation of the nonequilibrium index Ca was made in accordance with the geotechnical survey data. The dependencies between the geomorphological features of the terrain and the natural waters aggressiveness were determined.

  5. Rejection of seamless pipe noise in magnetic flux leakage data obtained from gas pipeline inspection

    Afzal, Muhammad; Udpa, Satish; Udpa, Lalita; Lord, William


    Natural gas is traditionally transmitted from production facilities to customer locations through a vast pipeline network. A major segment of this network employs seamless pipes. This is especially true for smaller diameter transmission and distribution lines. Manufacturing process associated with the production of seamless pipes contribute to a helical variation in the pipe along the axis. The deformation introduces an artifact in the data obtained from MFL inspection of these pipelines. This seamless pipe noise is usually correlated with signals generated by defects and other elements (joints, tees, etc.) in pipelines, and can therefore, mask their indications in MFL data. This warrants the need for methods to improve signal-to-noise ratio (SNR) in MFL data from seamless pipes. This paper presents a technique for detecting signals in MFL data from seamless pipes. The approach processes the data in various steps. First, a wavelet based denoising technique is applied to reduce the noise due to instrumentation and other sources. An adaptive filtering approach is then applied to reject seamless noise in the data. Since the inspection of pipelines typically generates vast amounts of data, it is imperative that the algorithm be computationally efficient. The processing method has to be robust in that it should be data independent. The approach described in this paper meet these criteria. Results from application of the approach to data from field tests are presented.

  6. A Robust Bayesian Approach to an Optimal Replacement Policy for Gas Pipelines

    José Pablo Arias-Nicolás


    Full Text Available In the paper, we address Bayesian sensitivity issues when integrating experts’ judgments with available historical data in a case study about strategies for the preventive maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are interested in replacement priorities, as determined by the failure rates of pipelines deployed under different conditions. We relax the assumptions, made in previous papers, about the prior distributions on the failure rates and study changes in replacement priorities under different choices of generalized moment-constrained classes of priors. We focus on the set of non-dominated actions, and among them, we propose the least sensitive action as the optimal choice to rank different classes of pipelines, providing a sound approach to the sensitivity problem. Moreover, we are also interested in determining which classes have a failure rate exceeding a given acceptable value, considered as the threshold determining no need for replacement. Graphical tools are introduced to help decisionmakers to determine if pipelines are to be replaced and the corresponding priorities.

  7. Rock removal under gas pipeline with expanded cement technique and repair with composite sleeve

    Souza Filho, Byron Goncalves de; Frota, Cristiane Souto [PETROBRAS, Rio de Janeiro, RJ (Brazil); Matsuo, Fabio Massatoshi Ferreira [Transportadora Brasileira Gasoduto Bolivia-Brasil (TBG), Rio de Janeiro, RJ (Brazil)


    Amid the great challenges of transporting natural gas to the major cities in Brazil, TBG (Transportadora Brasileira Gasoduto Bolivia-Brasil), which owns and operates the largest pipeline in Latin America, with a length of approximately 2,600 km of pipelines (from 32 inches o 16 inches), built between 1998 and 2000 and started commercial operation in July 1999. During its maintenance inspection, using geometric pigs and pigs MFL / Inertial, located a dent in the pipe with approximately 4.7% of deformation with dimensions of 670 mm x 600 mm, caused by accommodation of the pipeline on a rock about 5 m of width. With the pipeline in operation and and 10% lowering the historic pressure, as the internal procedure of the TBG, the rock was removed using the technique of expansive cement, which is to perforate several roles on the rock and then apply the expansive cement which after 24 hours cause cracks, splitting the rock into slabs. The visual, ultrasonic and liquid penetrant inspections were made and repair with sleeve of composite material was achieved. This paper describes the whole methodology and experience of execution, including the results of inspection with pig, removal of the rock with the expansive cement, execution of repair and report photography. (author)

  8. Automation and high-efficiency of welding in pipeline; Gas pipeline ni okeru yosetsu no jidoka to konoritsuka

    Kawanishi, N.; Masuda, H.; Hara, Y.; Kimura, M. [Osaka Gas Co. Ltd., Osaka (Japan); Iimura, M. [Tokyo Gas Co. Ltd., Tokyo (Japan); Hayashi, K. [Toho Gas Co. Ltd., Nagoya (Japan); Mori, K.; Suesawa, S. [Japan Gas Association, Tokyo (Japan)


    With objectives to develop technologies which can perform a welding work automatically at ultra-high speed, improve efficiency in construction works of building town gas transporting pipelines, and make the welding quality uniform, a program that will last for six years has been established to make necessary discussions. Using a horizontally fixed pipe, AP15L-X65, with a diameter of 750 mm and a plate thickness of 19 mm as the object of the discussions, the following four welding processes were selected to implement the development on each process in parallel: high-speed TIG welding, high-speed oscillating MAG welding, plasma welding, and electron beam welding. In March 1997 by which the former half of the project has been completed, an arc time of less than 30 minutes has been achieved as one of the development targets. Using sizes of problems in innovativeness in technologies, welding quality, and practical application as criteria for an interim evaluation, focuses were directed on four technologies. As a result, the electron beam welding was selected, which has achieved an epoch-making result in arc time while maintaining good quality. In the latter half of the project which will end in March 2000, promotion efforts will be continued for discussing how to solve problems in electron beam welding machines, and making developments and field tests thereon. 7 refs., 20 figs., 5 tabs.

  9. North-European gas pipeline: revealing sign of a new Russia-EU geopolitics

    The North-European gas pipeline (NEGP), between Germany and Russia, shades light on the Russia-European Union energy partnership, mainly based on a bilateral agreement. Moreover, this agreement is at the evidence in contradiction with the interests of some member states who were not explicitly invited at the table of negotiations. Russia has now in her hands a lever arm strong enough to oblige any European gas-dependent country to bow in front of any of Russia's future requirements. The NEGP, which practically passed unnoticed in Western Europe, appears as a powerful revealer of the new Russian relations with Europe. (J.S.)

  10. Geological, geotechnical and hydrogeological setting of a gas pipeline failure near Brandon, Manitoba

    Penner, L.; Mollard, G. [J.D. Mollard and Associates Ltd., Regina, SK (Canada); Holm, M. [AMEC, Regina, SK (Canada); Sutherby, R. [TransCanada PipeLines Ltd., Calgary, AB (Canada)


    An in-service pipeline failure occurred on the TransCanada main line gas pipeline approximately 50 kilometres northeast of Brandon, Manitoba, on April 14, 2002. After a metallurgical analysis was performed, it was determined that the likely cause of the failure was stress corrosion cracking (SCC) of the near-neutral pH form, with the failure occurring on a 36-inch diameter high pressure natural gas pipeline. In addition, failures on the pipe and a failure location near the boundary between a till plain and a glaciodeltaic sand plain, seemed to indicate that the local environment influenced the failure mechanism. A study was initiated in June 2002 to help define the geoenvironmental conditions associated with the failure site and to investigate possible links between the failure mechanism and the site conditions. The study involved an airphoto and map study, a field study, and an assessment of geological and hydrogeological factors. The results of the study were presented and discussed. 7 refs., 1 tab., 10 figs.