WorldWideScience

Sample records for c1esterase inhibitor human

  1. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia

    NARCIS (Netherlands)

    de Beer, F. M.; Aslami, H.; Hoeksma, J.; van Mierlo, G.; Wouters, D.; Zeerleder, S.; Roelofs, J. J. T. H.; Juffermans, N. P.; Schultz, M. J.; Lagrand, W. K.

    2014-01-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary

  2. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  3. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients.

    Science.gov (United States)

    Fronhoffs, S; Luyken, J; Steuer, K; Hansis, M; Vetter, H; Walger, P

    2000-10-01

    To evaluate the effect of adjunctive C1-esterase inhibitor substitution therapy on clinical characteristics and outcome of patients with streptococcal toxic shock syndrome (TSS). Observational. Medizinische Poliklinik, University of Bonn, Germany. Seven patients with direct or indirect evidence of streptococcal TSS. In addition to conventional and supportive therapy, all patients received 2-3 single doses of C1-esterase inhibitor totaling 6,000-10,000 U within the first 24 h after admission. All patients developed fulminant septic shock, multiorgan failure and/or capillary leak syndrome and necrotizing fasciitis within 10-72 h following the onset of first symptoms. Between 1 and 4 days following administration of C1-esterase inhibitor, a marked shift of fluid from extravascular to intravascular compartments took place in all but one patient, accompanied by a transient intra-alveolar lung edema and rapidly decreasing need for adrenergic agents. Six of seven patients survived. These clinical observations in a small series of patients and the favorable outcome point towards a positive effect of early and high-dose administration of C1-esterase inhibitor as adjunctive therapy in streptococcal TSS. The possible mechanism involved may be the attenuation of capillary leak syndrome (CLS) via early inactivation of complement and contact systems. Controlled studies are needed to establish an improvement of the survival rates of patients with streptococcal TSS following administration of C1-esterase inhibitor.

  4. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...... concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema...

  5. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Bregenholt, S; Nording, J A

    1998-01-01

    We have previously shown that activated C1s complement and activated T cells cleave beta2-microglobulin (beta2m) in vitro leading to the formation of desLys58 beta2m. This process can specifically be inhibited by C1-esterase inhibitor (C1-inh). Furthermore we showed that exogenously added desLys58...

  6. Evaluating the efficacy of subcutaneous C1-esterase inhibitor administration for use in rat models of inflammatory diseases

    NARCIS (Netherlands)

    Emmens, Reindert W.; Naaijkens, Benno A.; Roem, Dorina; Kramer, Klaas; Wouters, Diana; Zeerleder, Sacha; van Ham, Marieke S.; Niessen, Hans W.; Krijnen, Paul A.

    2014-01-01

    Context: C1-esterase inhibitor (C1-inh) therapy is currently administered to patients with C1-inh deficiency through intravenous injections. The possibility of subcutaneous administration is currently being explored since this would alleviate need for hospitalization and increase mobility and

  7. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  8. Isolated angioedema of the bowel due to C1 esterase inhibitor deficiency: a case report and review of literature

    Directory of Open Access Journals (Sweden)

    Kothari Shivangi T

    2011-02-01

    Full Text Available Abstract Introduction We report a rare, classic case of isolated angioedema of the bowel due to C1-esterase inhibitor deficiency. It is a rare presentation and very few cases have been reported worldwide. Angioedema has been classified into three categories. Case presentation A 66-year-old Caucasian man presented with a ten-month history of episodic severe cramping abdominal pain, associated with loose stools. A colonoscopy performed during an acute attack revealed nonspecific colitis. Computed tomography of the abdomen performed at the same time showed a thickened small bowel and ascending colon with a moderate amount of free fluid in the abdomen. Levels of C4 ( Conclusion In addition to a detailed comprehensive medical history, laboratory data and imaging studies are required to confirm a diagnosis of angioedema due to C1 esterase inhibitor deficiency.

  9. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure.

    Science.gov (United States)

    Krijnen, Paul A J; Kupreishvili, Koba; de Vries, Margreet R; Schepers, Abbey; Stooker, Wim; Vonk, Alexander B A; Eijsman, Leon; Van Hinsbergh, Victor W M; Zeerleder, Sacha; Wouters, Diana; van Ham, Marieke; Quax, Paul H A; Niessen, Hans W M

    2012-01-01

    Arterial pressure induced vein graft injury can result in endothelial loss, accelerated atherosclerosis and vein graft failure. Inflammation, including complement activation, is assumed to play a pivotal role herein. Here, we analyzed the effects of C1-esterase inhibitor (C1inh) on early vein graft remodeling. Human saphenous vein graft segments (n=8) were perfused in vitro with autologous blood either supplemented or not with purified human C1inh at arterial pressure for 6h. The vein segments and perfusion blood were analyzed for cell damage and complement activation. In addition, the effect of purified C1inh on vein graft remodeling was analyzed in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. Application of C1inh in the in vitro perfusion model resulted in significantly higher blood levels and significantly more depositions of C1inh in the vein wall. This coincided with a significant reduction in endothelial loss and deposition of C3d and C4d in the vein wall, especially in the circular layer, compared to vein segments perfused without supplemented C1inh. Administration of purified C1inh significantly inhibited vein graft intimal thickening in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. C1inh significantly protects against early vein graft remodeling, including loss of endothelium and intimal thickening. These data suggest that it may be worth considering its use in patients undergoing coronary artery bypass grafting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Refractory Abdominal Pain in a Patient with Chronic Lymphocytic Leukemia: Be Wary of Acquired Angioedema due to C1 Esterase Inhibitor Deficiency

    Directory of Open Access Journals (Sweden)

    Abdullateef Abdulkareem

    2018-01-01

    Full Text Available Acquired angioedema due to C1 inhibitor deficiency (C1INH-AAE is a rare and potentially fatal syndrome of bradykinin-mediated angioedema characterized by episodes of angioedema without urticaria. It typically manifests with nonpitting edema of the skin and edema in the gastrointestinal (GI tract mucosa or upper airway. Edema of the upper airway and tongue may lead to life-threatening asphyxiation. C1INH-AAE is typically under-diagnosed because of its rarity and its propensity to mimic more common abdominal conditions and allergic reactions. In this article, we present the case of a 62-year-old male with a history of recently diagnosed chronic lymphocytic leukemia (CLL who presented to our hospital with recurrent abdominal pain, initially suspected to have Clostridium difficile colitis and diverticulitis. He received a final diagnosis of acquired angioedema due to C1 esterase inhibitor deficiency due to concomitant symptoms of lip swelling, cutaneous nonpitting edema of his lower extremities, and complement level deficiencies. He received acute treatment with C1 esterase replacement and icatibant and was maintained on C1 esterase infusions. He also underwent chemotherapy for his underlying CLL and did not experience further recurrence of his angioedema.

  11. Potentiation of C1-esterase inhibitor by heparin and interactions with C1s protease as assessed by surface plasmon resonance.

    Science.gov (United States)

    Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena

    2012-01-01

    Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.

  12. Functional C1-inhibitor diagnostics in hereditary angioedema: assay evaluation and recommendations

    DEFF Research Database (Denmark)

    Wagenaar-Bos, Ineke G A; Drouet, Christian; Aygören-Pursun, Emel

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent episodes of potentially life-threatening angioedema. The most widespread underlying genetic deficiency is a heterozygous deficiency of the serine protease inhibitor C1 esterase inhibitor (C1-Inh). In addition ...

  13. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    Science.gov (United States)

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  14. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  15. Functional C1-inhibitor diagnostics in hereditary angioedema: Assay evaluation and recommendations

    NARCIS (Netherlands)

    Wagenaar-Bos, Ineke G. A.; Drouet, Christian; Aygoeren-Pursun, Emel; Bork, Konrad; Bucher, Christoph; Bygum, Anette; Farkas, Henriette; Fust, George; Gregorek, Hanna; Hack, C. Erik; Hickey, Alaco; Joller-Jemelka, Helen I.; Kapusta, Maria; Kreuz, Wolfhart; Longhurst, Hilary; Lopez-Trascasa, Margarita; Madalinski, Kazimierz; Naskalski, Jerzy; Nieuwenhuys, Ed; Ponard, Denise; Truedsson, Lennart; Varga, Lilian; Nielsen, Erik Waage; Wagner, Eric; Zingale, Lorenza; Cicardi, Marco; van Ham, S. Marieke

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent episodes of potentially life-threatening angioedema. The most widespread underlying genetic deficiency is a heterozygous deficiency of the serine protease inhibitor Cl esterase inhibitor (C1-Inh). In addition to

  16. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  17. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    International Nuclear Information System (INIS)

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-01-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of 14 C-cholesteryl oleate with an I 50 of approximately 150 μM. The inactivation was time-dependent and characteristic of a suicide mechanism. The α pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM

  18. Safety of C1-Esterase Inhibitor in Acute and Prophylactic Therapy of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Busse, Paula; Bygum, Anette; Edelman, Jonathan

    2014-01-01

    BACKGROUND: The plasma-derived, pasteurized C1-inhibitor (C1-INH) concentrate, Berinert has a 4-decade history of use in hereditary angioedema (HAE), with a substantial literature base that demonstrates safety and efficacy. Thromboembolic events have rarely been reported with C1-INH products......, typically with off-label use or at supratherapeutic doses. OBJECTIVES: Active surveillance of safety and clinical usage patterns of pasteurized C1-inhibitor concentrate and the more recent pasteurized, nanofiltered C1-INH, with a particular interest in thromboembolic events. METHODS: A registry...

  19. Cholesterol esterase activity of human intestinal mucosa

    International Nuclear Information System (INIS)

    Ponz de Leon, M.; Carubbi, F.; Di Donato, P.; Carulli, N.

    1985-01-01

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14 C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  20. [Anaesthesic management of vaginal delivery in a parturient with C1 esterase deficiency].

    Science.gov (United States)

    Libert, N; Schérier, S; Dubost, C; Franck, L; Rouquette, I; Tortosa, J-C; Rousseau, J-M

    2009-04-01

    Hereditary and acquired angioedema (HAE/AAE) are the clinical translation of a qualitative or a quantitative deficit of C1 esterase inhibitor (C1 INH). The frequency and severity of clinical manifestations vary greatly, ranging from a moderate swelling of the extremities to obstruction of upper airway. Anaesthesiologists and intensivists must be prepared to manage acute manifestations of this disease in case of life-threatening laryngeal edema. Surgery, physical trauma and labour are classical triggers of the disease. The anaesthesiologists should be aware of the drugs used as prophylaxis and treatment of acute attacks when considering labour and caesarean section. Androgens are contraindicated during pregnancy. If prophylaxis is required, tranexamic acid may be used with caution. The safest obstetric approach appears to be to administer a predelivery infusion of C1 INH concentrate. It is important to avoid manipulation of the airway as much as possible by relying on regional techniques. We report the case of a patient suffering from an HAE discovered during pregnancy. The management included administration of C1 INH during labor and early epidural analgesia for pain relief. A short review of the pathophysiology and therapeutic options follows.

  1. New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds

    DEFF Research Database (Denmark)

    Heng, Sabrina; Tieu, William; Hautmann, Stephanie

    2011-01-01

    We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on 'priviledged' 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified in...

  2. [Acquired angioedema – clinical characteristic of the patients diagnosed in 2012-2016 with acquired C1 inhibitor deficiency].

    Science.gov (United States)

    Stobiecki, Marcin; Czarnobilska, Ewa; Obtułowicz, Krystyna

    Acquired angioedema is a rare disease caused by a deficiency of C1 esterase inhibitor with recurrent swelling symptoms. It may occur in the course of lymphoproliferative disorders or autoimmune diseases. Symptoms resemble hereditary angioedema, and the only differentiating features is negative family history, late onset of symptoms and accompanying lymphoproliferative disorder. The aim of the study was to analyze the cases of acquired angioedema. The retrospective analysis of 341 patients from the registry of patients with C1 inhibitor deficiency. Results: We identified 4 patients among 119 with HAE (3.57%) diagnosed in this same period of time 2012-2016 who fulfilled the criteria of acquired edema. In two cases the primary reason of angioedema was lymphoproliferive disease, in two monoclonal gammapathy of unknown reason. We analyzed also the results of laboratory tests C4, C1 inhibitor, C1q. In all cases the face was dominated localization. After the treatment of primary lymphoproliferive disease, in two cases, we observed total remission of angioedema. Only one patient with gammapathy require treatment with C1 inhibitor during the attacks. In these case we observed both plasma deriver, and recombinant C1 inhibitor were effective.

  3. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans

    NARCIS (Netherlands)

    Pouvreau, L.A.M.; Jonathan, M.C.; Kabel, M.A.; Hinz, S.W.A.; Gruppen, H.; Schols, H.A.

    2011-01-01

    Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated

  4. Discovery of potential cholesterol esterase inhibitors using in silico docking studies

    Directory of Open Access Journals (Sweden)

    Thirumalaisamy Sivashanmugam

    2013-08-01

    Full Text Available New drug discovery is considered broadly in terms of two kinds of investiga-tional activities such as exploration and exploitation. This study deals with the evaluation of the cholesterol esterase inhibitory activity of flavonoids apigenin, biochanin, curcumin, diosmetin, epipervilline, glycitein, okanin, rhamnazin and tangeritin using in silico docking studies. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -7.08 kcal/mol to -5.64 kcal/mol when compared with that of the standard compound gallic acid (-4.11 kcal/mol. Intermolecular energy (-9.13 kcal/mol to -7.09 kcal/mol and inhibition constant (6.48 µM to 73.18 µM of the ligands also coincide with the binding energy. All the selected flavonoids contributed cholesterol esterase inhibitory activity, these molecular docking analyses could lead to the further develop-ment of potent cholesterol esterase inhibitors for the treatment of obesity.

  5. Characterisation of a New Family of Carboxyl Esterases with an OsmC Domain.

    Directory of Open Access Journals (Sweden)

    Mai-Britt V Jensen

    Full Text Available Proteins in the serine esterase family are widely distributed in bacterial phyla and display activity against a range of biologically produced and chemically synthesized esters. A serine esterase from the psychrophilic bacterium Pseudoalteromonas arctica with a C-terminal OsmC-like domain was recently characterized; here we report on the identification and characterization of further putative esterases with OsmC-like domains constituting a new esterase family that is found in a variety of bacterial species from different environmental niches. All of these proteins contained the Ser-Asp-His motif common to serine esterases and a highly conserved pentapeptide nucleophilic elbow motif. We produced these proteins heterologously in Escherichia coli and demonstrated their activity against a range of esterase substrates. Two of the esterases characterized have activity of over two orders of magnitude higher than other members of the family, and are active over a wide temperature range. We determined the crystal structure of the esterase domain of the protein from Rhodothermus marinus and show that it conforms to the classical α/β hydrolase fold with an extended 'lid' region, which occludes the active site of the protein in the crystal. The expansion of characterized members of the esterase family and demonstration of activity over a wide-range of temperatures could be of use in biotechnological applications such as the pharmaceutical, detergent, bioremediation and dairy industries.

  6. Interactions between resin monomers and commercial composite resins with human saliva derived esterases.

    Science.gov (United States)

    Jaffer, F; Finer, Y; Santerre, J P

    2002-04-01

    Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.

  7. Identification of a Marine Bacillus Strain C5 and Parathion-Methyl Degradation Characteristics of the Extracellular Esterase B1

    Directory of Open Access Journals (Sweden)

    Jianhua Hao

    2014-01-01

    Full Text Available A bacterial strain C5 that can produce new type of marine esterase was isolated and screened from marine sludge. According to 16S rRNA sequence analysis and physiological and biochemical experiments, the strain was identified as Bacillus subtilis. A single isozyme with a molecular weight of 86 kDa was observed by SDS-PAGE and native-PAGE. On this basis, the mechanism of esterase B1 secreted by strain C5 degrading parathion-methyl was explored, and the effects of temperature and pH on the degradation rate were investigated. From the results, p-nitrophenol was one of the degradation products of B1 degrading parathion-methyl, and the best degradation effect could be achieved at the temperature of 40°C and the neutral pH value.

  8. Exposure‐Response Model of Subcutaneous C1Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema

    Science.gov (United States)

    Tortorici, Michael A.; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev

    2018-01-01

    Subcutaneous C1inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)‐approved, highly concentrated formulation of a plasma‐derived C1esterase inhibitor (C1‐INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low‐Volume Subcutaneous C1inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time‐to‐event model to characterize the timing and frequency of HAE attacks as a function of C1‐INH activity, and then develop an exposure–response model to assess the relationship between C1‐INH functional activity levels (C1‐INH(f)) and the risk of an attack. The C1‐INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1‐INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1‐INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. PMID:29316335

  9. Esterase Isoenzyme Variants in Barley

    DEFF Research Database (Denmark)

    Hvid, S.; Nielsen, G.

    1977-01-01

    Gene symbols are proposed for 27 esterase isoenzyme alleles representing 10 loci in barley. Two new esterase loci, Est 9 and Est 10, each with an active and a silent allele, and three new alleles in previously described loci were found. A few chemical and physical characteristics of the different...... esterase isoenzyme systems were studied. The heat inactivation temperature differed for the isoenzymes coded by most of the loci, whereas the substrate and inhibitor specificity of the isoenzymes was less distinct. A possible relationship between some of the systems is discussed....

  10. In vitro comparison of rat and chicken brain neurotoxic esterase

    International Nuclear Information System (INIS)

    Novak, R.; Padilla, S.

    1986-01-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. [ 3 H]Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay

  11. Usefulness of C1 Esterase Inhibitor Protein Concentrate in the ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow ... of this case report is to describe the lifesaving use of a novel C1‑INH protein ... edema of the upper lip, uvula, and tongue [Figure 1].

  12. Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Carvalho Vanda Marilza de

    2003-01-01

    Full Text Available Polyacrylamide gel electrophoresis system (PAGE and inhibition tests for biochemical characterization of alpha- and beta-esterases were used to obtain a functional classification of esterases fromAspidosperma polyneuron. The characterization of alpha- and beta-esterases from young leaves of A. polyneuron by the PAGE system showed fourteen esterase isozymes. The differential staining pattern showed that Est-2 isozyme hydrolyzes beta-naphthyl acetate; Est-6, Est-7 and Est-8 isozymes hydrolyze alpha-naphthyl acetate, and Est-1, Est-3, Est-4, Est-5, Est-9, Est-10, Est-11, Est-12, Est-13, and Est-14 isozymes hydrolyze both alpha- and b-naphthyl acetate. Inhibition pattern of a- and beta-esterases showed that Folidol is a more potent inhibitor that Malathion, while Thiamethoxan (an insecticide with organophosphorus-like action acts as an Est-4 and Est-6 inhibitor and induces the appearance of Est-5 and Est-7 isozymes as more intensely stained bands. Inhibition tests showed that OPC insecticides inhibit or activate plant esterases. Thus, plant esterases may be used as bioindicators to detect the presence and toxicity of residues of topically applied insecticides in agriculture and may be valuable for monitoring pollutants in the environment.

  13. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen

    1990-01-01

    We present a new functional assay for the first complement component (C1) in plasma, based on its activation by inhibition of the C1-esterase inhibitor (C1-inh) when monospecific antiserum to C1-inh is added to the plasma. After maximal activation, we can determine the concentration of activated ...

  14. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  15. N- and O-glycosylation Analysis of Human C1-inhibitor Reveals Extensive Mucin-type O-Glycosylation.

    Science.gov (United States)

    Stavenhagen, Kathrin; Kayili, H Mehmet; Holst, Stephanie; Koeleman, Carolien A M; Engel, Ruchira; Wouters, Diana; Zeerleder, Sacha; Salih, Bekir; Wuhrer, Manfred

    2018-06-01

    Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N - and O -glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O -glycosylated N-terminal region. Five novel and five known O -glycosylation sites were identified, carrying mainly core1-type O -glycans. In addition, we detected a heavily O -glycosylated portion spanning from Thr 82 -Ser 121 with up to 16 O -glycans attached. Likewise, all known six N -glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N -glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    Science.gov (United States)

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    Science.gov (United States)

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Organization of the gene coding for human protein C inhibitor (plasminogen activator inhibitor-3). Assignment of the gene to chromosome 14

    NARCIS (Netherlands)

    Meijers, J. C.; Chung, D. W.

    1991-01-01

    Protein C inhibitor (plasminogen activator inhibitor-3) is a plasma glycoprotein and a member of the serine proteinase inhibitor superfamily. In the present study, the human gene for protein C inhibitor was isolated and characterized from three independent phage that contained overlapping inserts

  19. Effect of halogenated benzenes on acetanilide esterase, acetanilide hydroxylase and procaine esterase in rats.

    Science.gov (United States)

    Carlson, G P; Dziezak, J D; Johnson, K M

    1979-07-01

    1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.

  20. Esterase activity as a novel parameter of spore germination in Bacillus anthracis

    International Nuclear Information System (INIS)

    Ferencko, Linda; Cote, Mindy A.; Rotman, Boris

    2004-01-01

    Spores of Bacillus anthracis were shown to produce esterase activity about 4 min after exposure to conventional germinants such as combinations of amino acids and purine ribosides. Neither amino acids nor ribosides alone induce germination and esterase activity. Expression of esterase activity was chloramphenicol resistant, and correlated with loss of spore refractivity, a traditional parameter of early germination. Based on these observations, we hypothesized that esterase activity could be used as a novel parameter for quantifying early events during spore germination. To test this hypothesis, we measured expression of esterase activity under a variety of germinating conditions. Using diacetyl fluorescein as fluorogenic substrate of esterases, we demonstrated that esterase activity was invariably induced whenever spores were triggered by known germinants. Moreover, D-alanine, an inhibitor of L-alanine-mediated germination, was found to significantly inhibit expression of esterase activity. In terms of molecular mechanisms, esterase expression could represent activation of proteases at the onset of spore germination

  1. Crystallization and preliminary X-ray analysis of a novel esterase Rv0045c from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Xu, Lipeng; Guo, Jiubiao; Zheng, Xiangdong; Wen, Tingyi; Sun, Fei; Liu, Siguo; Pang, Hai

    2010-01-01

    The novel esterase Rv0045c from M. tuberculosis was expressed and purified to homogeneity. The crystals of native and SeMet-labelled Rv0045c protein that were obtained diffracted to resolutions of 2.7 and 3.0 Å, respectively. The Rv0045c protein is predicted to be an esterase that is involved in lipid metabolism in Mycobacterium tuberculosis. The protein was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The Rv0045c protein crystals diffracted to a resolution of 2.7 Å using a synchrotron-radiation source and belonged to space group P3 1 or P3 2 , with unit-cell parameters a = b = 73.465, c = 48.064 Å, α = β = 90, γ = 120°. Purified SeMet-labelled Rv0045c protein was also crystallized and formed crystals that diffracted to a resolution of 3.0 Å using an in-house X-ray radiation source

  2. Studies on the oxidizing system in Holt's medium for histochemical demonstration of esterase activity

    DEFF Research Database (Denmark)

    Kirkeby, S; Blecher, S R

    1978-01-01

    Esterase activity in guinea-pig thyroid and mouse epididymis epithelial cells has been studied using 5-bromoindoxyl acetate as substrate. The pattern of esterase activity in the thyroid of the guinea-pig is constant, irrespective of whether ferri-ferrocyanide (FFC) or certain copper compounds...... cells contain an esterase activity which is not inhibited by conventional SH blocking agents, nor by high concentrations of FFC. From these results it appears that the mode of action of FFC in Holt's medium is as follows. At low concentrations FFC appears to act primarily as a catalytic agent...... in oxidation of indoxyl to indigoid. At high concentration FFC acts as an inhibitor of guinea-pig thyroid esterase, by oxidation of SH groups in the active centre. The esterase of mouse epididymis cell type EH 1 is not subject to this inhibition by FFC, presumably because it does not contain accessible SH...

  3. The search of the target of promotion: Phenylbenzoate esterase activities in hen peripheral nerve

    International Nuclear Information System (INIS)

    Moretto, A.; Nicolli, A.; Lotti, M.

    2007-01-01

    Certain esterase inhibitors, such as carbamates, phosphinates and sulfonyl halides, do not cause neuropathy as some organophosphates, but they may exacerbate chemical or traumatic insults to axons. This phenomenon is called promotion of axonopathies. Given the biochemical and toxicological characteristics of these compounds, the hypothesis was made that the target of promotion is a phenyl valerate (PV) esterase similar to neuropathy target esterase (NTE), the target of organophosphate induced delayed polyneuropathy. However, attempts to identify a PV esterase in hen peripheral nerve have been, so far, unsuccessful. We tested several esters, other than PV, as substrates of esterases from crude homogenate of the hen peripheral nerve. The ideal substrate should be poorly hydrolysed by NTE but extensively by enzyme(s) that are insensitive to non-promoters, such as mipafox, and sensitive to promoters, such as phenyl methane sulfonyl fluoride (PMSF). When phenyl benzoate (PB) was used as substrate, about 65% of total activity was resistant to the non-promoter mipafox (up to 0.5 mM, 20 min, pH 8.0), that inhibits NTE and other esterases. More than 90% of this resistant activity was sensitive to the classical promoter PMSF (1 mM, 20 min, pH 8.0) with an IC 50 of about 0.08 mM (20 min, pH 8.0). On the contrary, the non-promoter p-toluene sulfonyl fluoride caused only about 10% inhibition at 0.5 mM. Several esterase inhibitors including, paraoxon, phenyl benzyl carbamate, di-n-butyl dichlorovinyl phosphate and di-isopropyl fluorophosphate, were tested both in vitro and in vivo for inhibition of this PB activity. Mipafox-resistant PMSF-sensitive PB esterase activity(ies) was inhibited by promoters but not by non promoters and neuropathic compounds

  4. Using a simple HPLC approach to identify the enzymatic products of UTL-5g, a small molecule TNF-α inhibitor, from porcine esterase and from rabbit esterase.

    Science.gov (United States)

    Swartz, Kenneth; Zhang, Yiguan; Valeriote, Frederick; Chen, Ben; Shaw, Jiajiu

    2013-12-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. As a prelude to investigating the metabolites of UTL-5g, we set out to identify the enzymatic products of UTL-5g under the treatment of both porcine liver esterase (PLE) and rabbit liver esterase (RLE). First, a number of mixtures made by UTL-5g and PLE were incubated at 25°C. At predetermined time points, individual samples were quenched by acetonitrile, vortexed, and centrifuged. The supernatants were then analyzed by reversed-phase HPLC (using a C18 column). The retention times and UV/vis spectra of individual peaks were compared to those of UTL-5g and its two postulated enzymatic products; thus the enzymatic products of UTL-5g were tentatively identified. Secondly, a different HPLC method (providing different retentions times) was used to cross-check and to confirm the identities of the two enzymatic products. Based on the observations, it was concluded that under the treatment of PLE, the major enzymatic products of UTL-5g were 5-methyliosxazole-3-carboxylic acid (ISOX) and 2,4-dichloroaniline (DCA). Treatment of UTL-5g by RLE also provided the same enzymatic products of UTL-5g from esterase. These results indicate that the peptide bond in UTL-5g was cleaved by PLE/RLE. Michaelis-Menten kinetics showed that the Km values of UTL-5g were 2.07mM with PLE and 0.37mM with RLE indicating that UTL-5g had a higher affinity with RLE. In summary, by a simple HPLC approach, we have concluded that the peptide bond in UTL-5g was cleaved by esterase from either porcine liver or rabbit liver in vitro and afforded DCA (at a mole ratio of 1:1) and ISOX. However, further studies are needed in order to determine whether UTL-5g is metabolized by microsomal enzymes to produce ISOX and DCA. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Glucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune.

    Science.gov (United States)

    Spániková, Silvia; Biely, Peter

    2006-08-21

    The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan esterase, feruloyl esterase and pectin methylesterase. The glucuronoyl esterase attacks exclusively the esters of MeGlcA. The methyl ester of free or glycosidically linked MeGlcA was not hydrolysed by other carbohydrate esterases. The results suggest that we have discovered a new type of carbohydrate esterase that might be involved in disruption of ester linkages connecting hemicellulose and lignin in plant cell walls.

  6. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    Science.gov (United States)

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. The activity of non-specific esterase in the thyroid epithelial cells of the guinea pig as influenced by various inhibitors and activators. A histochemical study

    DEFF Research Database (Denmark)

    Kirkeby, S

    1976-01-01

    The action of various inhibitors and activators upon esterase activity in the thyroid epithelial cells is demonstrated. The agents used were triorthocresylphosphate (TOCP), parachloromercuribenzoate (PCMB), Arsanillic acid, p-nitrophenyl dimethyl carbamate and bis p-nitrophenyl phosphate. TOCP wa...

  8. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination.

    Science.gov (United States)

    Rejón, Juan D; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J

    2012-10-01

    A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma.

  9. Isolation and Expression analysis of OsPME1, encoding for a putative Pectin Methyl Esterase from Oryza sativa (subsp. indica)

    OpenAIRE

    Kanneganti, Vydehi; Gupta, Aditya Kumar

    2009-01-01

    Pectin Methyl Esterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell walls. Recent studies indicated that PMEs play important role in pollen tube development. In this study, we isolated a 1.3 kb cDNA clone from rice panicle cDNA library. It contained a 1038 bp of open reading frame (ORF) encoding for a putative pectin methyl esterase of 345 aminoacids with a 20 aminoacid signal peptide and was hence designated as OsPME1 (Oryza...

  10. Inhibition of pectin methyl esterase activity by green tea catechins.

    Science.gov (United States)

    Lewis, Kristin C; Selzer, Tzvia; Shahar, Chen; Udi, Yael; Tworowski, Dmitry; Sagi, Irit

    2008-10-01

    Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.

  11. A new microplate screening method for the simultaneous activity quantification of feruloyl esterases, tannases, and chlorogenate esterases.

    Science.gov (United States)

    Ramírez, L; Arrizon, J; Sandoval, G; Cardador, A; Bello-Mendoza, R; Lappe, P; Mateos-Díaz, J C

    2008-12-01

    Feruloyl, chlorogenate esterases, and tannases are enzymes useful in phenolic modifications of pharmaceutical relevance as protectors against several degenerative human diseases. Therefore, there is a growing interest in discovering new sources of these enzymes. However, traditional methods for their activity measurements are time-consuming and poorly adapted for high-throughput screening. In this study, a successful new microplate high-throughput screening method for the simultaneous quantification of all mentioned activities is demonstrated. This method allows the detection of activities as low as 1.7 mU ml(-1). Furthermore, reaction rates increased proportionally with the amount of enzyme added, and no interferences with the other commercial hydrolases tested were found. The utility of the method was demonstrated after simultaneously screening feruloyl, chlorogenate esterase, and tannase activities in solid state fermentation extracts obtained during the kinetics of production of 20 fungal strains. Among these, seven strains were positive for at least one of the esterase activities tested. This result shows the potential for the rapid routine screening assays for multiple samples of moderate low to high enzymatic levels.

  12. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparative Study of Esterase and Hemolytic Activities in Clinically Important Candida Species, Isolated From Oral Cavity of Diabetic and Non-diabetic Individuals.

    Science.gov (United States)

    Fatahinia, Mahnaz; Poormohamadi, Farzad; Zarei Mahmoudabadi, Ali

    2015-03-01

    Diabetes mellitus as a chronic metabolic disease occurs in patients with partial or complete deficiency of insulin secretion or disorder in action of insulin on tissue. The disease is known to provide conditions for overgrowth of Candida species. Candida spp. cause candidiasis by many virulence factors such as esterase, hemolysin and phospholipase. This study aimed to compare esterase and hemolytic activity in various Candida species isolated from oral cavity of diabetic and non-diabetic individuals. Swab samples were taken from 95 patients with diabetes (35 men and 60 women) and 95 normal persons (42 men and 53 women) and cultured on Sabouraud dextrose agar. Identification of isolated yeasts was performed by germ tube test, morphology on CHROMagar Candida medium, corn meal agar and ability to grow at 45°C. Hemolysin activity was evaluated using blood plate assay and esterase activity was determined using the Tween 80 opacity test. Different Candida species were isolated from 57 (60%) diabetic and 24 (25%) non-diabetic individuals. Esterase activity was detected in all Candida isolates. Only 21.6% of C. albicans from patients with diabetes had esterase activity as + 3, while it ranged from + 1 to + 2 in others. Hemolytic activity was determined in C. albicans, C. dubliniensis, C. glabrata and C. krusei as 0.79, 0.58, 0.66 and 0.74, respectively. Hemolytic activity was significantly different in the two groups of diabetics and non-diabetics. Oral carriage of C. albicans in the diabetic group (n = 42; 66.7%) was significantly greater than the control group (n = 16; 57.1%). Esterase activity of C. albicans in diabetic group was higher than non-diabetic group. Although C. albicans remains the most frequently pathogenic yeast for human, but other species are increasing.

  14. The effect of EDTA and metal cations on the 5-bromoindoxyl acetate esterase activity in the thyroid of the guinea pig

    DEFF Research Database (Denmark)

    Kirkeby, S

    1976-01-01

    Miscellaneous metal cations and EDTA have been used as activators and inhibitors of esterase activity in the thyroid of the guinea-pig. The results indicate that the 5-bromoiondoxyl acetate esterase in the epithelial cells probably consists of two different A-esterase isoenzymes, one present...

  15. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activities of new curcumin analogs as carbonic anhydrase II (CA-II) inhibitor. Methods: Carbonic anhydrase II (CA-II) inhibition was determined by each ligand capability to inhibit the esterase activity of CA-II using 4-NPA as a substrate in 96-well plates. Dimethyl sulfoxide was used to dissolve each ...

  16. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esterase-lipase derived from Mucor miehei. 173.140... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by...

  17. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    Science.gov (United States)

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  18. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland

  19. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G

    2001-01-01

    and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary...... hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained...... from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye...

  20. Cellular inhibitor of apoptosis protein 2 (cIAP2) controls human colonic epithelial restitution, migration and Rac1 activation

    DEFF Research Database (Denmark)

    Seidelin, JB; Larsen, Sylvester; Linnemann, D

    2015-01-01

    epithelial cells (IECs) was increased at the wound edge after 24 h (P 2 was induced in vitro in regenerating Caco2 IECs after wound infliction (P ...Identification of pathways involved in wound healing is important for understanding the pathogenesis of various intestinal diseases. Cellular inhibitor of apoptosis protein 2 (cIAP2) regulates proliferation and migration in nonepithelial cells and is expressed in human colonocytes. The aim...... of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal...

  1. Inhibition of Pectin Methyl Esterase Activity By Green Tea Catechins

    OpenAIRE

    Sagi, Irit; Lewis, Kristin; Tworowski, Dmitry; Shahar, Chen; Selzer, Tzvia

    2008-01-01

    Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin ...

  2. Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.

    Science.gov (United States)

    Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2003-04-01

    Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.

  3. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  4. Isolation and Expression analysis of OsPME1, encoding for a putative Pectin Methyl Esterase from Oryza sativa (subsp. indica).

    Science.gov (United States)

    Kanneganti, Vydehi; Gupta, Aditya Kumar

    2009-04-01

    Pectin Methyl Esterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell walls. Recent studies indicated that PMEs play important role in pollen tube development. In this study, we isolated a 1.3 kb cDNA clone from rice panicle cDNA library. It contained a 1038 bp of open reading frame (ORF) encoding for a putative pectin methyl esterase of 345 aminoacids with a 20 aminoacid signal peptide and was hence designated as OsPME1 (Oryza sativaPectin Methyl Esterase 1). It contained the structural arrangement GXYXE and GXXDFIF, found in the active groups of all PMEs. OsPME1 gene product shared varying identities, ranging from 52 % to 33 % with PMEs from other plant species belonging to Brassicaceae, Fabaceae, Amaranthaceae and Funariaceae. Southern blot analysis indicated that PME1 exists as a single copy in the rice genome. Expression pattern analysis revealed that OsPME1 is expressed only in pollen grains, during the later stages of their development and was also regulated by various abiotic stress treatments and phytohormones. Functional characterization of this pollen specific PME from rice would enable us to understand its role in pollen development.

  5. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    OpenAIRE

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-01-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritona...

  6. Esterase variation in Turkish white-toothed shrews (Crocidura: Record of a trimeric esterase

    Directory of Open Access Journals (Sweden)

    Tez C.

    2009-01-01

    Full Text Available This study focuses on esterase variation of the genus Crocidura in Turkey. A total of 248 white-toothed shrews were analyzed by means of cellulose acetate gel electrophoresis. Liver tissue and alfa naphthyl acetate were used to investigate esterase variation in Turkish white-toothed shrews. A different esterase banding pattern was found in one Crocidura individual. This phenotype had four anodally migrated bands on cellulose acetate gel. The Crocidura individual displaying the given phenotype was identified as Crocidura suaveolens. The different esterase banding pattern observed in this study is considered to be a result of the trimeric structure of esterase in the lesser white-toothed shrew (Crocidura suaveolens.

  7. EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells

    Directory of Open Access Journals (Sweden)

    Yang Ruijie

    2010-10-01

    Full Text Available Abstract Background The purpose of the present study is to investigate the direct biological effects of the epidermal growth factor receptor (EGFR inhibitor C225 on the radiosensitivity of human lung squamous cancer cell-H520. H520 cells were treated with different dosage of 60Co γ ray irradiation (1.953 Gy/min in the presence or absence of C225. The cellular proliferation, colony forming capacity, apoptosis, the cell cycle distribution as well as caspase-3 were analyzed in vitro. Results We found that C225 treatment significantly increased radiosensitivity of H-520 cells to irradiation, and led to cell cycle arrest in G1 phase, whereas 60Co γ ray irradiation mainly caused G2 phase arrest. H-520 cells thus displayed both the G1 and G2 phase arrest upon treatment with C225 in combination with 60Co γ ray irradiation. Moreover, C225 treatment significantly increased the apoptosis percentage of H-520 cells (13.91% ± 1.88% compared with the control group (5.75% ± 0.64%, P Conclusion In this regard, C225 treatment may make H-520 cells more sensitive to irradiation through the enhancement of caspase-3 mediated tumor cell apoptosis and cell cycle arrest.

  8. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    Science.gov (United States)

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  9. Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC.

    Science.gov (United States)

    Dilokpimol, Adiphol; Mäkelä, Miia R; Mansouri, Sadegh; Belova, Olga; Waterstraat, Martin; Bunzel, Mirko; de Vries, Ronald P; Hildén, Kristiina S

    2017-07-25

    A feruloyl esterase (FAE) from Aspergillus niger N402, FaeC was heterologously produced in Pichia pastoris X-33 in a yield of 10mg/L. FaeC was most active at pH 7.0 and 50°C, and showed broad substrate specificity and catalyzed the hydrolysis of methyl 3,4-dimethoxycinnamate, ethyl ferulate, methyl ferulate, methyl p-coumarate, ethyl coumarate, methyl sinapate, and methyl caffeate. The enzyme released both ferulic acid and p-coumaric acid from wheat arabinoxylan and sugar beet pectin (up to 3mg/g polysaccharide), and acted synergistically with a commercial xylanase increasing the release of ferulic acid up to six-fold. The expression of faeC increased over time in the presence of feruloylated polysaccharides. Cinnamic, syringic, caffeic, vanillic and ferulic acid induced the expression of faeC. Overall expression of faeC was very low in all tested conditions, compared to two other A. niger FAE encoding genes, faeA and faeB. Our data showed that the fae genes responded differently towards the feruloylated polysaccharides and tested monomeric phenolic compounds suggesting that the corresponding FAE isoenzymes may target different substrates in a complementary manner. This may increase the efficiency of the degradation of diverse plant biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima

    NARCIS (Netherlands)

    Levisson, M.; Han, G.W.; Deller, M.C.; Hendriks, S.N.A.; Oost, van der J.; Kengen, S.W.M.

    2012-01-01

    TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity

  11. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. IV: Cellular localization of androgen sensitive nonspecific esterase in the epididymis

    DEFF Research Database (Denmark)

    Kirkeby, S; Blecher, S R

    1981-01-01

    Nonspecific esterase of mouse epididymis has previously been studied histochemically, using alpha naphthyl-acetate and 5-bromoindoxyl acetate techniques, as well as certain inhibitors. Epithelial cell types of the epididymis have been characterized, and certain esterase isozymes in a particular...

  12. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  13. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  14. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  15. Structural analysis of thermostabilizing mutations of cocaine esterase

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K. (Michigan); (Columbia); (Kentucky)

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  16. Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1

    Directory of Open Access Journals (Sweden)

    Tushar R. Mahajan

    2015-09-01

    Full Text Available The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER, one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguanines. Thus we explored synthetic routes to 8-oxoguanines and examined these as OGG1 inhibitors. The best reaction sequence started from 6-chloroguanine and involved N-9 alkylation, C-8 bromination, and finally simultaneous hydrolysis of both halides. Bromination before N-alkylation should only be considered when the N-substituent is not compatible with bromination conditions. The 8-oxoguanines were found to be weak inhibitors of OGG1. 6-Chloro-8-oxopurines, byproducts in the hydrolysis of 2,6-halopurines, turned out to be slightly better inhibitors than the corresponding 8-oxoguanines.

  17. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    Science.gov (United States)

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-10-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

  18. A Novel Cold Active Esterase from a Deep Sea Sponge Stelletta normani Metagenomic Library

    Directory of Open Access Journals (Sweden)

    Erik Borchert

    2017-09-01

    Full Text Available Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups. Due to the widespread applications of lipolytic enzymes in various industrial applications, there continues to be an interest in novel esterases with unique properties. Marine ecosystems have long been acknowledged as a significant reservoir of microbial biodiversity and in particular of bacterial enzymes with desirable characteristics for industrial use, such as for example cold adaptation and activity in the alkaline pH range. We employed a functional metagenomic approach to exploit the enzymatic potential of one particular marine ecosystem, namely the microbiome of the deep sea sponge Stelletta normani. Screening of a metagenomics library from this sponge resulted in the identification of a number of lipolytic active clones. One of these encoded a highly, cold-active esterase 7N9, and the recombinant esterase was subsequently heterologously expressed in Escherichia coli. The esterase was classified as a type IV lipolytic enzyme, belonging to the GDSAG subfamily of hormone sensitive lipases. Furthermore, the recombinant 7N9 esterase was biochemically characterized and was found to be most active at alkaline pH (8.0 and displays salt tolerance over a wide range of concentrations. In silico docking studies confirmed the enzyme's activity toward short-chain fatty acids while also highlighting the specificity toward certain inhibitors. Furthermore, structural differences to a closely related mesophilic E40 esterase isolated from a marine sediment metagenomics library are discussed.

  19. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    Science.gov (United States)

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  20. Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management.

    Science.gov (United States)

    Bork, K; Davis-Lorton, M

    2013-02-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a rare, autosomal-dominant disease. HAE-C1-INH is characterized by recurrent attacks of marked, diffuse, nonpitting and nonpruritic skin swellings, painful abdominal attacks, and laryngeal edema. The extremities and the gastrointestinal tract are most commonly affected. Swelling of the upper respiratory mucosa poses the greatest risk because death from asphyxiation can result from laryngealedema. HAE-C1-INH attacks are variable, unpredictable, and may be induced by a variety of stimuli, including stress or physical trauma. Because the clinical presentation of HAE-C1-INH is similar to other types of angioedema, the condition may be a challenge to diagnose. Accurate identification of HAE-C1-INH is critical in order to avoid asphyxiation by laryngeal edema and to improve the burden of disease. Based on an understanding of the underlying pathophysiology of IHAE-C1-INH, drugs targeted specifically to the disease, such as C1-inhibitor therapy, bradykinin B2-receptor antagonists, and kallikrein-inhibitors, have become available for both treatment and prevention of angioedema attacks. This article reviews the clinical features, differential diagnosis, and current approaches to management of HAE-C1-INH.

  1. International consensus and practical guidelines on the gynecologic and obstetric management of female patients with hereditary angioedema caused by C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Caballero, Teresa; Farkas, Henriette; Bouillet, Laurence

    2012-01-01

    devices, and progestins can be used. Pregnancy: Attenuated androgens are contraindicated and should be discontinued before attempting conception. Plasma-derived human C1 inhibitor concentrate (pdhC1INH) is preferred for acute treatment, short-term prophylaxis, or long-term prophylaxis. Tranexamic acid...

  2. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-01-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  3. Synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid vinyl-ACCA) derivatives: key intermediates for the preparation of inhibitors of the hepatitis C virus NS3 protease.

    Science.gov (United States)

    Beaulieu, Pierre L; Gillard, James; Bailey, Murray D; Boucher, Colette; Duceppe, Jean-Simon; Simoneau, Bruno; Wang, Xiao-Jun; Zhang, Li; Grozinger, Karl; Houpis, Ioannis; Farina, Vittorio; Heimroth, Heidi; Krueger, Thomas; Schnaubelt, Jürgen

    2005-07-22

    (1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotype 1. We have developed a scalable process that delivers derivatives of this unusual amino acid in >99% ee. The strategy was based on the dialkylation of a glycine Schiff base using trans-1,4-dibromo-2-butene as an electrophile to produce racemic vinyl-ACCA, which was subsequently resolved using a readily available, inexpensive esterase enzyme (Alcalase 2.4L). Factors that affect diastereoselection in the initial dialkylation steps were examined and the conditions optimized to deliver the desired diastereomer selectively. Product inhibition, which was encountered during the enzymatic resolution step, initially resulted in prolonged cycle times. Enrichment of racemic vinyl-ACCA through a chemical resolution via diastereomeric salt formation or the use of forcing conditions in the enzymatic reaction both led to improvements in throughput and the development of a viable process. The chemistry described herein was scaled up to produce multikilogram quantities of this building block.

  4. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  5. Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides.

    Science.gov (United States)

    Li, Jiabao; Cai, Shichun; Luo, Yuanming; Dong, Xiuzhu

    2011-09-01

    Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.

  6. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2018-04-01

    Full Text Available Heat-shock factor-1 (HSF-1 is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

  7. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor

    International Nuclear Information System (INIS)

    Antalis, T.M.; Clark, M.A.; Barnes, T.; Lehrbach, P.R.; Devine, P.L.; Schevzov, G.; Goss, N.H.; Stephens, R.W.; Tolstoshev, P.

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A) + RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the λ P/sub L/ promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated M/sub r/ of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators

  8. Pectin methyl esterase activity in apple and orange pulps

    International Nuclear Information System (INIS)

    Abdullaev, A.; Djumaev, B.B.; Djumaev, N.B.; Mukhidinov, Z.K.

    2008-01-01

    The results of pectin methyl esterase activity from apple, orange pulp and orange peel depending of ph and temperature are discussed. It's shown that the methyl esterase activity form apple and orange pulps higher in range of temperatures from +37...+60 d ig C . The analysis of dependence of its activity from ph has shown that in both case the enzyme activity increase with increase of ph

  9. Preliminary X-ray analysis of twinned crystals of the Q88Y25-Lacpl esterase from Lactobacillus plantarum WCFS1

    International Nuclear Information System (INIS)

    Álvarez, Yanaisis; Esteban-Torres, María; Acebrón, Iván; Rivas, Blanca de las; Muñoz, Rosario; Martínez-Ripoll, Martín; Mancheño, José M.

    2011-01-01

    The Q88Y25-Lacpl esterase from L. plantarum WCFS1 has been recombinantly expressed, purified and crystallized. A native diffraction data set has been collected to 2.24 Å resolution. Q88Y25-Lacpl is an esterase produced by the lactic acid bacterium Lactobacillus plantarum WCFS1 that shows amino-acid sequence similarity to carboxylesterases from the hormone-sensitive lipase family, in particular the AFEST esterase from the archaeon Archaeoglobus fulgidus and the hyperthermophilic esterase EstEI isolated from a metagenomic library. N-terminally His 6 -tagged Q88Y25-Lacpl has been overexpressed in Escherichia coli BL21 (DE3) cells, purified and crystallized at 291 K using the hanging-drop vapour-diffusion method. Mass spectrometry was used to determine the purity and homogeneity of the enzyme. Crystals of His 6 -tagged Q88Y25-Lacpl were prepared in a solution containing 2.8 M sodium acetate trihydrate pH 7.0. X-ray diffraction data were collected to 2.24 Å resolution on beamline ID29 at the ESRF. The apparent crystal point group was 422; however, initial global analysis of the intensity statistics (data processed with high symmetry in space group I422) and subsequent tests on data processed with low symmetry (space group I4) showed that the crystals were almost perfectly merohedrally twinned. Most probably, the true space group is I4, with unit-cell parameters a = 169.05, b = 169.05, c = 183.62 Å

  10. Molecular Cloning and Characterization of a Newly Isolated Pyrethroid-Degrading Esterase Gene from a Genomic Library of Ochrobactrum anthropi YZ-1

    Science.gov (United States)

    Song, Jinlong; Shi, Yanhua; Li, Kang; Zhao, Bin; Yan, Yanchun

    2013-01-01

    A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very low sequence similarity compared with reported pyrethroid-degrading genes. PytY was expressed, purified, and characterized. Enzyme assay revealed that PytY is a broad-spectrum degrading enzyme that can degrade various pyrethroids. It is a new pyrethroid-degrading gene and enriches genetic resource. Kinetic constants of Km and Vmax were 2.34 mmol·L−1 and 56.33 nmol min−1, respectively, with lambda-cyhalothrin as substrate. PytY displayed good degrading ability and stability over a broad range of temperature and pH. The optimal temperature and pH were of 35°C and 7.5. No cofactors were required for enzyme activity. The results highlighted the potential use of PytY in the elimination of pyrethroid residuals from contaminated environments. PMID:24155944

  11. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  12. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  13. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  14. Ticlopidine in Its Prodrug Form Is a Selective Inhibitor of Human NTPDase1

    Directory of Open Access Journals (Sweden)

    Joanna Lecka

    2014-01-01

    Full Text Available Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (pathophysiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki=14 μM. Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20% of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.

  15. Discovery of amido-benzisoxazoles as potent c-Kit inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Roxanne K.; Rumfelt, Shannon; Chen, Ning; Zhang, Dawei; Tasker, Andrew S.; Bürli, Roland; Hungate, Randall; Yu, Violeta; Nguyen, Yen; Whittington, Douglas A.; Meagher, Kristin L.; Plant, Matthew; Tudor, Yanyan; Schrag, Michael; Xu, Yang; Ng, Gordon Y.; Hu, Essa (Amgen)

    2010-01-12

    Deregulation of the receptor tyrosine kinase c-Kit is associated with an increasing number of human diseases, including certain cancers and mast cell diseases. Interference of c-Kit signaling with multi-kinase inhibitors has been shown clinically to successfully treat gastrointestinal stromal tumors and mastocytosis. Targeted therapy of c-Kit activity may provide therapeutic advantages against off-target effects for non-oncology applications. A new structural class of c-Kit inhibitors is described, including in vitro c-Kit potency, kinase selectivity, and the observed binding mode.

  16. Hydrolysis of Wheat Arabinoxylan by Two Acetyl Xylan Esterases from Chaetomium thermophilum

    DEFF Research Database (Denmark)

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard

    2015-01-01

    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has...

  17. Esterase reactions in acute myelomonocytic leukemia.

    Science.gov (United States)

    Kass, L

    1977-05-01

    Specific and nonspecific esterase reactions of bone marrow cells from 14 patients with untreated acute myelomonocytic leukemia and six patients with acute histiomonocytic leukemia were examined. The technic for esterase determination permitted simultaneous visualization of both esterases on the same glass coverslip containing the marrow cells. In cases of acute histiomonocytic leukemia, monocytes, monocytoid hemohistioblasts and undifferentiated blasts stained intensely positive for nonspecific esterase, using alpha-naphthyl acetate as the substrate. No evidence of specific esterase activity using naphthol ASD-chloroacetate as the substrate and fast blue BBN as the dye coupler was apparent in these cells. In all of the cases of acute myelomonocytic leukemia, both specific and nonspecific esterases were visualized within monocytes, monocytoid cells, and granulocytic cells that had monocytoid-type nuclei. Nonspecific esterase activity was not observed in polymorphonuclear leukocytes in cases of myelomonocytic leukemia. The results support a current viewpoint that acute myelomonocytic leukemia may be a variant of acute myeloblastic leukemia, and that cytochemically, many of the leukemic cells in myelomonocytic leukemia share properties of both granulocytes and monocytes.

  18. Studies on esterase isozymes and mycelium growth speed of ganoderma lucidum carried by Shenzhou spaceship

    International Nuclear Information System (INIS)

    Qi Jianjun; Chen Xiangdong; Lan Jin

    2002-01-01

    The esterase isozymes and mycelium growth speed of four Ganoderma lucidum strains carried by Shenzhou spaceship were studied. The results showed that different effects occurred to esterase and mycelium growth speed. The SX, S3 esterase band had changed compared with their control CX, C3, respectively, but there were no differences between SH and CH, S4 and C4. The growth speed of S4 strain was faster than its control C4, SX strain lower than its control CX, and there were no difference between SH and CH, S3 and C3

  19. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    Science.gov (United States)

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  20. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse

    2017-07-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  1. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    Science.gov (United States)

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  2. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  3. Larvicides and acetylcholinesterase inhibitors from Kalanchoe species

    International Nuclear Information System (INIS)

    Trevisan, Maria Teresa Salles; Bezerra, Maria Zeneide Barbosa; Santiago, Gilvandete Maria Pinheiro; Feitosa, Chistiane Mendes; Verpoorte, Robert; Gorlaeus Laboratories, Leiden; Braz Filho, Raimundo

    2006-01-01

    Acetylcholine esterase inhibitors are successfully used to treat the symptoms of Alzheimer's disease. Extracts of three Kalanchoe species (K. brasiliensis, K. pinnata and K. gastonis-bornieri) showed acetylcholine esterase inhibitory effects and a toxic effect on Aedes aegypti larvae. Here we describe the bioassay guided fractionation of extracts of the most active extracts (K. brasiliensis) which resulted in the isolation of an active mixture of three flavonoids: 8-methoxyquercetin, 3,7-di-O-rhamnopyranoside and 8-methoxykaempferol-3,7-di-O-rhamnopyranoside. On TLC these flavonoids showed an acetylcholine esterase inhibitory effect. (author)

  4. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus.

    Science.gov (United States)

    Flisiak, Robert; Horban, Andrzej; Gallay, Philippe; Bobardt, Michael; Selvarajah, Suganya; Wiercinska-Drapalo, Alicja; Siwak, Ewa; Cielniak, Iwona; Higersberger, Jozef; Kierkus, Jarek; Aeschlimann, Christian; Grosgurin, Pierre; Nicolas-Métral, Valérie; Dumont, Jean-Maurice; Porchet, Hervé; Crabbé, Raf; Scalfaro, Pietro

    2008-03-01

    Debio-025 is an oral cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus activity in vitro. Its effect on viral load as well as its influence on intracellular Cyp levels was investigated in a randomized, double-blind, placebo-controlled study. Mean hepatitis C viral load decreased significantly by 3.6 log(10) after a 14-day oral treatment with 1200 mg twice daily (P CypB) levels in peripheral blood mononuclear cells decreased from 67 +/- 6 (standard error) ng/mg protein (baseline) to 5 +/- 1 ng/mg protein at day 15 (P CypB levels, coinciding with the decrease in hepatitis C viral load. These are the first preliminary human data supporting the hypothesis that CypB may play an important role in hepatitis C virus replication and that Cyp inhibition is a valid target for the development of anti-hepatitis C drugs.

  5. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  6. A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity.

    Science.gov (United States)

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2017-07-25

    Extracellular esterase activity was detected in submerged cultures of Rhizoctonia solani grown in the presence of sugar beet pectin or Tween 80. Putative type B feruloyl esterase (FAE) coding sequences found in the genome data of the basidiomycete were heterologously expressed in Pichia pastoris. Recombinant enzyme production on the 5-L bioreactor scale (Rs pCAE: 3245UL -1 ) exceeded the productivity of the wild type strain by a factor of 800. Based on substrate specificity profiling, the purified recombinant Rs pCAE was classified as a p-coumaroyl esterase (pCAE) with a pronounced chlorogenic acid esterase side activity. The Rs pCAE was also active on methyl cinnamate, caffeate and ferulate and on feruloylated saccharides. The unprecedented substrate profile of Rs pCAE together with the lack of sequence similarity to known FAEs or pCAEs suggested that the Rs pCAE represents a new type of enzyme. Hydroxycinnamic acids were released from agro-industrial side-streams, such as destarched wheat bran (DSWB), sugar beet pectin (SBP) and coffee pulp (CP). Overnight incubation of coffee pulp with the Rs pCAE resulted in the efficient release of p-coumaric (100%), caffeic (100%) and ferulic acid (85%) indicating possible applications for the valorization of food processing wastes and for the enhanced degradation of lignified biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biochemical and Structural Analyses of Two Cryptic Esterases in Bacteroides intestinalis and their Synergistic Activities with Cognate Xylanases.

    Science.gov (United States)

    Wefers, Daniel; Cavalcante, Janaina J V; Schendel, Rachel R; Deveryshetty, Jaigeeth; Wang, Kui; Wawrzak, Zdzislaw; Mackie, Roderick I; Koropatkin, Nicole M; Cann, Isaac

    2017-08-04

    Arabinoxylans are constituents of the human diet. Although not utilizable by the human host, they can be fermented by colonic bacteria. The arabinoxylan backbone is decorated with arabinose side chains that may be substituted with ferulic acid, thus limiting depolymerization to fermentable sugars. We investigated the polypeptides encoded by two genes upregulated during growth of the colonic bacterium Bacteroides intestinalis on wheat arabinoxylan. The recombinant proteins, designated BiFae1A and BiFae1B, were functionally assigned esterase activities. Both enzymes were active on acetylated substrates, although each showed a higher ferulic acid esterase activity on methyl-ferulate. BiFae1A showed a catalytic efficiency of 12mM s -1 on para-nitrophenyl-acetate, and on methyl-ferulate, the value was 27 times higher. BiFae1B showed low catalytic efficiencies for both substrates. Furthermore, the two enzymes released ferulic acid from various structural elements, and NMR spectroscopy indicated complete de-esterification of arabinoxylan oligosaccharides from wheat bran. BiFae1A is a tetramer based on the crystal structure, whereas BiFae1B is a dimer in solution based on size exclusion chromatography. The structure of BiFae1A was solved to 1.98Å resolution, and two tetramers were observed in the asymmetric unit. A flexible loop that may act as a hinge over the active site and likely coordinates critical interactions with the substrate was prominent in BiFae1A. Sequence alignments of the esterase domains in BiFae1B with the feruloyl esterase from Clostridium thermocellum suggest that both domains lack the flexible hinge in BiFae1A, an observation that may partly provide a molecular basis for the differences in activities in the two esterases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular dissection of the APC/C inhibitor Rca1 shows a novel F-box-dependent function

    OpenAIRE

    Zielke, Norman; Querings, Silvia; Grosskortenhaus, Ruth; Reis, Tânia; Sprenger, Frank

    2006-01-01

    Rca1 (regulator of Cyclin A)/Emi (early mitotic inhibitor) proteins are essential inhibitors of the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, Rca1 is required during G2 to prevent premature cyclin degradation by the Fizzy-related (Fzr)-dependent APC/C activity. Here, we present a structure and function analysis of Rca1 showing that a carboxy-terminal fragment is sufficient for APC/C inhibition. Rca1/Emi proteins contain a conserved F-box and interact with components of the ...

  9. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    OpenAIRE

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding t...

  10. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1

    Directory of Open Access Journals (Sweden)

    Leda Maria Fortes Gottschalk

    2013-01-01

    Full Text Available The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 ºC and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L, which was not detected in the T. reesei culture.

  11. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  12. Crystallization and preliminary X-ray diffraction analysis of ybfF, a new esterase from Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suk-Youl; Lee, Sang-Hak; Lee, Jieun; Jung, Che-Hun; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr [Department of Chemistry and Institute of Basic Sciences, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2007-12-01

    The crystallization of ybfF, a new esterase from E. coli, and the collection of diffraction data to 1.1 Å resolution are reported. The product of the recently discovered ybfF gene, which belongs to the esterase family, does not show high sequence similarity to other esterases. To provide the molecular background to the enzymatic mechanism of the ybfF esterase, the ybfF protein from Escherichia coli K12 (Ec-ybfF) was cloned, expressed and purified. The Ec-ybfF protein was crystallized from 60% Tacsimate and 0.1 M bis-Tris propane buffer pH 7.0. Diffraction data were collected to 1.10 Å resolution using synchrotron radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 66.09, b = 90.71, c = 92.88 Å. With two Ec-ybfF molecules in the asymmetric unit, the crystal volume per unit protein weight is 2.17 Å{sup 3} Da{sup −1}, corresponding to a solvent content of 42%.

  13. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    Science.gov (United States)

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gender differences in the activities of aspirin-esterases in rat tissues

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    1998-01-01

    Full Text Available The activities of aspirin (acetylsalicylic acid-esterases were measured in several tissues (liver, kidney, adrenal glands, brain and serum from adult male and female Wistar rats. In males, both aspirin-esterase I (assayed at pH 5.5 and II (assayed at pH 7.4 activities were higher in liver homogenates when compared to females (aspirin-esterase I: males 48.9 ± 4.8 (N = 8 and females 29.3 ± 4.2 (N = 8 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 41.4 ± 4.1 (N = 8 and females 26.1 ± 4.5 (N = 8 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In serum, enzyme activity was higher in females than in males (aspirin-esterase I: males 0.85 ± 0.06 (N = 6 and females 1.18 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 1.03 ± 0.13 (N = 6 and females 1.34 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In the other tissues assayed, no statistically significant difference between males and females was found. There were no statistically significant differences when the enzymes were assayed in different phases of the estrous cycle in liver and serum. These results show that the differences in aspirin-esterase activity observed between males and females are not due to the estrous cycle. The gender difference obtained in our study may indicate an involvement of gonadal hormones in the control of the hydrolysis of aspirin. This possibility is currently under investigation.

  15. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    Science.gov (United States)

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  16. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  17. Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography.

    Science.gov (United States)

    Mangas, I; Vilanova, E; Benabent, M; Estévez, J

    2014-02-10

    Low level exposure to organophosphorus esters (OPs) may cause long-term neurological effects and affect specific cognition domains in experimental animals and humans. Action on known targets cannot explain most of these effects by. Soluble carboxylesterases (EC 3.1.1.1) of chicken brain have been kinetically discriminated using paraoxon, mipafox and phenylmethyl sulfonylfluoride as inhibitors and phenyl valerate as a substrate. Three different enzymatic components were discriminated and called Eα, Eβ and Eγ. In this work, a fractionation procedure with various steps was developed using protein native separation methods by preparative HPLC. Gel permeation chromatography followed by ion exchange chromatography allowed enriched fractions with different kinetic behaviors. The soluble chicken brain fraction was fractionated, while total esterase activity, proteins and enzymatic components Eα, Eβ and Eγ were monitored in each subfraction. After the analysis, 13 fractions were pooled and conserved. Preincubation of the soluble chicken brain fraction of with the organophosphorus mipafox gave rise to a major change in the ion exchange chromatography profile, but not in the molecular exchanged chromatography profile, which suggest that mipafox permanently modifies the ionic properties of numerous proteins. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Genome-wide analysis of esterase-like genes in the striped rice stem borer, Chilo suppressalis.

    Science.gov (United States)

    Wang, Baoju; Wang, Ying; Zhang, Yang; Han, Ping; Li, Fei; Han, Zhaojun

    2015-06-01

    The striped rice stem borer, Chilo suppressalis, a destructive pest of rice, has developed high levels of resistance to certain insecticides. Esterases are reported to be involved in insecticide resistance in several insects. Therefore, this study systematically analyzed esterase-like genes in C. suppressalis. Fifty-one esterase-like genes were identified in the draft genomic sequences of the species, and 20 cDNA sequences were derived which encoded full- or nearly full-length proteins. The putative esterase proteins derived from these full-length genes are overall highly diversified. However, key residues that are functionally important including the serine residue in the active site are conserved in 18 out of the 20 proteins. Phylogenetic analysis revealed that most of these genes have homologues in other lepidoptera insects. Genes CsuEst6, CsuEst10, CsuEst11, and CsuEst51 were induced by the insecticide triazophos, and genes CsuEst9, CsuEst11, CsuEst14, and CsuEst51 were induced by the insecticide chlorantraniliprole. Our results provide a foundation for future studies of insecticide resistance in C. suppressalis and for comparative research with esterase genes from other insect species.

  19. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  20. Overexpression of esterase D in kidney from trisomy 13 fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Loughna, S.; Moore, G. (Institute of Obstetrics and Gynaecology, London (United Kingdom)); Gau, G.; Blunt, S. (Cytogenetics Lab., London (United Kingdom)); Nicolaides, K. (King' s College School of Medicine and Dentistry, London (United Kingdom))

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  1. Purification and characterization of bioactive his6-tagged recombinant human tissue inhibitor of metalloproteinases-1 (TIMP-1) protein expressed at high yields in mammalian cells

    DEFF Research Database (Denmark)

    Jensen, Lena Vinther; Lademann, Ulrik Axel; Andersen, Elisabeth Veyhe

    2014-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well as -indepen...... TIMP-1, which structurally and functionally is similar to endogenous human TIMP-1, while using an expression system that is adaptable to most biochemical and biomedical laboratories including those that do not perform protein purifications routinely.......Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well...... as -independent, and probably related to TIMP-1 levels of protein expression, post-translational modifications, and cellular localization. TIMP-1 is an N-glycosylated protein that folds into two functional domains, a C- and an N-terminal domain, with six disulfide bonds. Furthermore, TIMP-1 is processed in the N...

  2. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells

    Science.gov (United States)

    Li, Luyuan; Paz, Ana C.; Wilky, Breelyn A.; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C.

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  3. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Luyuan Li

    Full Text Available Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2 were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  4. Cytological localization of adenosine kinase, nucleoside phosphorylase-1, and esterase-10 genes on mouse chromosome 14

    International Nuclear Information System (INIS)

    Samuelson, L.C.; Farber, R.A.

    1985-01-01

    The authors have determined the regional locations on mouse chromosome 14 of the genes for mouse adenosine kinase (ADK), nucleoside phosphorylase- 1 (NP-1), and esterase-10 (ES-10) by analysis of rearranged mouse chromosomes in gamma-irradiated Chinese hamster X mouse hybrid cell lines. Irradiated clones were screened for expression of the murine forms of these enzymes; segregant clones that expressed only one or two of the three markers were karyotyped. The patterns of enzyme expression in these segregants were correlated with the presence of rearranged chromosomes. The Adk gene was localized to bands A2 to B, Np-1 to bands B to C1, and Es-10 to bands D2 to E2

  5. The Metabolism of Separase Inhibitor Sepin-1 in Human, Mouse, and Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-05-01

    Full Text Available Separase, a known oncogene, is widely overexpressed in numerous human tumors of breast, bone, brain, blood, and prostate. Separase is an emerging target for cancer therapy, and separase enzymatic inhibitors such as sepin-1 are currently being developed to treat separase-overexpressed tumors. Drug metabolism plays a critical role in the efficacy and safety of drug development, as well as possible drug–drug interactions. In this study, we investigated the in vitro metabolism of sepin-1 in human, mouse, and rat liver microsomes (RLM using metabolomic approaches. In human liver microsomes (HLM, we identified seven metabolites including one cysteine–sepin-1 adduct and one glutathione–sepin-1 adduct. All the sepin-1 metabolites in HLM were also found in both mouse and RLM. Using recombinant CYP450 isoenzymes, we demonstrated that multiple enzymes contributed to the metabolism of sepin-1, including CYP2D6 and CYP3A4 as the major metabolizing enzymes. Inhibitory effects of sepin-1 on seven major CYP450s were also evaluated using the corresponding substrates recommended by the US Food and Drug Administration. Our studies indicated that sepin-1 moderately inhibits CYP1A2, CYP2C19, and CYP3A4 with IC50 < 10 μM but weakly inhibits CYP2B6, CYP2C8/9, and CYP2D6 with IC50 > 10 μM. This information can be used to optimize the structures of sepin-1 for more suitable pharmacological properties and to predict the possible sepin-1 interactions with other chemotherapeutic drugs.

  6. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery

    Science.gov (United States)

    Fernando, Isurika R.; Ferris, Daniel P.; Frasconi, Marco; Malin, Dmitry; Strekalova, Elena; Yilmaz, M. Deniz; Ambrogio, Michael W.; Algaradah, Mohammed M.; Hong, Michael P.; Chen, Xinqi; Nassar, Majed S.; Botros, Youssry Y.; Cryns, Vincent L.; Stoddart, J. Fraser

    2015-04-01

    Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells. Electronic supplementary information (ESI) available: Experimental details relating to (i) the synthesis and characterisation of the surface-functionalised MSN and POL (ii) cargo-loading and release studies in solution, (iii) cellular internalisation of nanomaterials, and (iv) cell viability tests. See DOI: 10.1039/c4nr07443b

  7. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  8. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency

    OpenAIRE

    Farkas, H.; Martinez?Saguer, I.; Bork, K.; Bowen, T.; Craig, T.; Frank, M.; Germenis, A. E.; Grumach, A. S.; Luczay, A.; Varga, L.; Zanichelli, A.; Aberer, Werner; Andrejevic, Sladjana; Aygoeren?P?rs?n, Emel; Banerji, Alena

    2016-01-01

    BACKGROUND: The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagnosis and management of pediatric patients with C1-INH-HAE.METHODS: During an expert panel meeting that took place during the 9th C1 Inhibitor Deficiency Workshop in Budapest, 2015 (www.haenet.hu), ped...

  9. Differential regulation of TNF-α and IL-1β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors

    Directory of Open Access Journals (Sweden)

    K. L. Molnar-Kimber

    1992-01-01

    Full Text Available The effect of selective PDE-I (vinpocetine, PDE-III (milrinone, CI-930, PDE-IV (rolipram, nitroquazone, and PDE-V (zaprinast isozyme inhibitors on TNF-α and IL-1β production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-α production, but only partially inhibited IL-1β at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-α, but had no effect on IL-1β production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-α and IL-1β production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.

  10. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    Science.gov (United States)

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  11. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

    Science.gov (United States)

    List, James F; Whaley, Jean M

    2011-03-01

    Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.

  12. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme.

    Science.gov (United States)

    Huang, Xingchuan; Dong, Wenjuan; Milewska, Aleksandra; Golda, Anna; Qi, Yonghe; Zhu, Quan K; Marasco, Wayne A; Baric, Ralph S; Sims, Amy C; Pyrc, Krzysztof; Li, Wenhui; Sui, Jianhua

    2015-07-01

    Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the group 2a CoVs, sialic

  13. A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa.

    Science.gov (United States)

    Zimmer, Christian; Platz, Tanja; Cadez, Neza; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2006-11-01

    In a screening procedure a pink-colored yeast was isolated from enrichment cultures with (2R,3R)-(-)-di-O-benzoyl-tartrate (benzoyl-tartrate) as the sole carbon source. The organism saar1 was identified by morphological, physiological, and 18S ribosomal DNA/internal transcribed spacer analysis as Rhodotorula mucilaginosa, a basidiomycetous yeast. During growth the yeast hydrolyzed the dibenzoyl ester stoichiometrically to the monoester using the separated benzoate as the growth substrate, before the monoester was further cleaved into benzoate and tartrate, which were both metabolized. The corresponding benzoyl esterase was purified from the culture supernatant and characterized as a monomeric glycosylated 86-kDa protein with an optimum pH of 7.5 and an optimum temperature of 45 degrees C. At 0 degrees C the esterase still exhibited 20% of the corresponding activity at 30 degrees C, which correlates it to psychrophilic enzymes. The esterase could hydrolyze short chain p-nitrophenyl-alkyl esters and several benzoyl esters like benzoyl-methyl ester, ethylene-glycol-dibenzoyl ester, phenyl-benzoyl ester, cocaine, and 1,5-anhydro-D: -fructose-tribenzoyl ester. However feruloyl-ethyl ester was not hydrolyzed. The activity characteristics let the enzyme appear as a promising tool for synthesis of benzoylated compounds for pharmaceutical, cosmetic, or fine chemical applications, even at low temperatures.

  14. A case of tongue edema associated with radiation-induced ulcer with low level of C1 inhibitor activity

    International Nuclear Information System (INIS)

    Hata, Tsuyoshi; Hosoda, Masaru

    2003-01-01

    A 66-year-old man became aware of sudden swelling of the tongue with swallowing disturbance. He had a medical history of tongue cancer treated by interstitial radiotherapy and had undergone a cytological examination of an ulcer on the right side of the tongue three weeks earlier because of suspected recurrence. The cytological examination result was class I with no malignant findings. Angioneurotic edema, so-called ''Quincke's edema'', associated with radiation-induced ulcer of the tongue, was diagnosed. Tranexamic acid, d-chlorpheniramine maleate, and epinephrine were administered. After six days, the tongue edema had almost disappeared. Laboratory examination revealed a low level of C1 inhibitor activity with normal levels of CH50, C1, C3, and C4 at the time of swelling. Hereditary angioneurotic edema with absence of hereditary trait was suspected based on the sudden edema attack and low level of C1 inhibitor activity. The C1 inhibitor activity returned to normal after disappearance of the tongue edema. (author)

  15. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate....... Production of FAE does not therefore, require FA, however, production is diminished by the removal of esterified FA from the growth substrate. Optimal FAE activity was observed at pH 7 and 50 degreesC with 68 and 55% activity at pH 8 and pH 9, respectively. The esterase was fully stable at pH 5-8 and up...

  16. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  17. Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096.

    Science.gov (United States)

    Kumar, C Ganesh; Kamle, Avijeet; Kamal, Ahmed

    2013-01-01

    Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE-1, AtFAE-2, and AtFAE-3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH-dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5-8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca(2+), K(+), and Mg(2+) stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (k(cat) /K(m)) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF-MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE-1 belonged to type A while AtFAE-2 and AtFAE-3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers.

  18. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  19. In-gel detection of esterase-like albumin activity: Characterization of esterase-free sera albumin and its putative role as non-invasive biomarker of hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Areeba Ahmad

    2017-07-01

    Full Text Available Albumin is a globular and un-glycosylated multifunctional plasma protein and thus correlated with several human diseases. Owing to esterase contamination, albumin levels are usually misleading. In this study, we propose methodical accuracy for albumin estimation taking healthy and fibrotic rats. Liver fibrosis in rats was generated by N′-Nitrosodimethylamine (NDMA (10 mg/kg body weight within three weeks followed by its confirmation through H&E and immunohistochemical staining for α-SMA expression. Animal sera were screened by native polyacrylamide gel electrophoresis (native-PAGE (7.5%. In-gel esterase-like albumin activity was detected using α- and β-naphthyl acetate (5.58 × 10−3 mM; pH 7.5 as substrate. Sera albumin was purified from unstained PA gel-slices through electroelution. Subsequent to conformation of albumin purity by its molecular weight determination using SDS–PAGE (10% and peptide mass fingerprinting by MALDI-TOF-MS, samples were treated with different concentrations of urea. Urea-treated albumins were screened for esterase activity, conformational change and, albumin levels by immunoblotting. Our results demonstrate that esterase-like albumin activity in rat sera albumin is located in domain-III. The esterase-like activity remains detectable up to 4 M urea, which diminishes with increasing urea concentrations. Further, immunoblotting of urea-treated albumin samples displays a significant decline in purified protein bands, indicating hypoalbuminemia during hepatic fibrosis in rats. In conclusion, the present approach of albumin separation and estimation is of potential interest and may be recommended for diagnostic purposes.

  20. Evolution of the feruloyl esterase MtFae1a from Myceliophthora thermophila towards improved catalysts for antioxidants synthesis.

    Science.gov (United States)

    Varriale, Simona; Cerullo, Gabriella; Antonopoulou, Io; Christakopoulos, Paul; Rova, Ulrika; Tron, Thierry; Fauré, Régis; Jütten, Peter; Piechot, Alexander; Brás, Joana L A; Fontes, Carlos M G A; Faraco, Vincenza

    2018-04-23

    The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.

  1. Non-specific esterases in partly mineralized bovine enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S

    1990-01-01

    Activity for non-specific esterase was demonstrated in the matrix of developing bovine enamel with alpha-naphthyl acetate and 5-bromoindoxyl acetate as the esterase substrates. By use of high-performance liquid chromatography gel filtration, ion-exchange chromatography, and electrophoresis three...... esterases were shown to be present in the enamel matrix. The enzymes showed highest activity at pH 6.5-7.5. In sections a strong reaction was observed in the secretory ameloblasts. The esterases may be proteolytic enzymes that participate in the degradation of the matrix proteins....

  2. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells.

    Science.gov (United States)

    Lagrutta, Armando; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pharmacological modulation of human platelet leukotriene C4-synthase.

    Science.gov (United States)

    Sala, A; Folco, G; Henson, P M; Murphy, R C

    1997-03-21

    The aim of this study was to test if human platelet leukotriene C4-synthase (LTC4-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC4-S inhibitors. Leukotriene C4 (LTC4) synthesis by washed human platelets supplemented with synthetic leukotriene A4 (LTA4) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC4 production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC4-S was inhibited by MK-886 and BAY-X1005 (IC50 of 4.7 microM and 91.2 microM, respectively), but not by zileuton (inactive up to 300 microM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 microM, 0.85 microM, and 1.5 microM, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC4-S. LTC4-S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC4-S with FLAP, Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC4-S inhibitor.

  4. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea

    Science.gov (United States)

    2011-01-01

    Background Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. Conclusions Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters. PMID:22067554

  5. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav{sub 1.2} over-expressing cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagrutta, Armando, E-mail: armando_lagrutta@merck.com; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca{sup 2+} transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca{sup 2+} channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca{sup 2+} stores, and SEA-0400, a Na{sup +}/Ca{sup 2+} exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav{sub 1.2} ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav{sub 1.2} channel inhibition by AMIO, but did not affect inhibition of Cav{sub 1.2} by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca{sup 2+}-handling mechanisms. Additional study in a Cav{sub 1.2} HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca{sup 2+} channels. - Highlights: • Adverse clinical interaction between amiodarone and HCV-NI drugs is captured by in vitro models. • Human iPSC-derived cardiomyocyte

  6. Further insight into the roles of the glycans attached to human blood protein C inhibitor

    DEFF Research Database (Denmark)

    Sun, Wei; Parry, Simon; Ubhayasekera, Wimal

    2010-01-01

    Protein C inhibitor (PCI) is a 57-kDa glycoprotein that exists in many tissues and secretions in human. As a member of the serpin superfamily of proteins it displays unusually broad protease specificity. PCI is implicated in the regulation of a wide range of processes, including blood coagulation......, fertilization, prevention of tumors and pathogen defence. It has been reported that PCI isolated from human blood plasma is highly heterogeneous, and that this heterogeneity is caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of two forms that differ by the presence...... or absence of 6 amino acids at the amino-terminus. In this study we have verified that such heterogeneity exists in PCI purified from single individuals, and that individuals of two different ethnicities possess a similar PCI pattern, verifying that the micro-heterogeneity is conserved among humans...

  7. ELISA to measure neutralizing capacity of anti-C1-inhibitor antibodies in plasma of angioedema patients

    NARCIS (Netherlands)

    Engel, Ruchira; Rensink, Irma; Roem, Dorina; Brouwer, Mieke; Kalei, Asma; Perry, Dawn; Zeerleder, Sacha; Wouters, Diana; Hamann, Dörte

    2015-01-01

    Neutralizing autoantibodies (NAbs) against plasma serpin C1-inhibitor (C1-inh) are implicated in the rare disorder, acquired angioedema (AAE). There is insufficient understanding of the process of antibody formation and its correlation with disease progression and severity. We have developed an

  8. Comparison of single and boosted protease inhibitor versus nonnucleoside reverse transcriptase inhibitor-containing cART regimens in antiretroviral-naïve patients starting cART after January 1, 2000

    DEFF Research Database (Denmark)

    Mocroft, A; Horban, A; Clumeck, N

    2006-01-01

    increase) response in antiretroviral-naïve patients starting either a single protease inhibitor (PI; n = 183), a ritonavir-boosted PI regimen (n = 197), or a nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART regimen (n = 447) after January 1, 2000, and the odds of lack of virologic...... or immunologic response at 3 years after starting cART. METHOD: Cox proportional hazards models and logistic regression. RESULTS: After adjustment, compared to patients taking an NNRTI-regimen, patients taking a single-PI regimen were significantly less likely to achieve a viral load (VL)

  9. COOH-terminal substitutions in the serpin C1 inhibitor that cause loop overinsertion and subsequent multimerization

    NARCIS (Netherlands)

    Eldering, E.; Verpy, E.; Roem, D.; Meo, T.; Tosi, M.

    1995-01-01

    The region COOH-terminal to the reactive center loop is highly conserved in the serine protease inhibitor (serpin) family. We have studied the structural consequences of three substitutions (Val451-->Met, Phe455-->Ser, and Pro476-->Ser) found in this region of C1 inhibitor in patients suffering from

  10. Subcutaneous self-injections of C1 inhibitor: an effective and safe treatment in a patient with hereditary angio-oedema.

    Science.gov (United States)

    Weller, K; Krüger, R; Maurer, M; Magerl, M

    2016-01-01

    A 25-year-old woman presented to our clinic with a history of recurrent swelling and abdominal symptoms for > 20 years. The patient's father was similarly affected. The patient was diagnosed with hereditary angio-oedema (HAE) due to C1 inhibitor deficiency. This was initially managed with systemic androgens, but the symptoms of hyperandrogenism eventually became intolerable. Treatment with icatibant (an antagonist of bradykinin B2 receptors) was partially successful. We changed the therapy to prophylactic treatment with C1 inhibitor. Although the patient became completely symptom-free under this regimen, she found the repeated intravenous injections unacceptable. Therefore, we changed the route of administration to subcutaneous injections of C1 inhibitor 1000 U in 10 mL twice weekly, using a subcutaneous infusion kit. Since that time (December 2013), she has remained completely free of symptoms under this regimen. To our knowledge, this is the first report documenting the efficacy and safety of subcutaneous injections of C1 inhibitor in a patient with HAE. © 2015 British Association of Dermatologists.

  11. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    Science.gov (United States)

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli

    2015-07-01

    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  13. Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumour progenitor cells that express stem cell markers.

    Directory of Open Access Journals (Sweden)

    Thomas Kruewel

    Full Text Available BACKGROUND: The non-receptor tyrosine kinases c-Abl and c-Src are overexpressed in various solid human tumours. Inhibition of their hyperactivity represents a molecular rationale in the combat of cancerous diseases. Here we examined the effects of a new family of pyrazolo [3,4-d] pyrimidines on a panel of 11 different murine lung tumour progenitor cell lines, that express stem cell markers, as well as on the human lung adenocarcinoma cell line A549, the human hepatoma cell line HepG2 and the human colon cancer cell line CaCo2 to obtain insight into the mode of action of these experimental drugs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with the dual kinase inhibitors blocked c-Abl and c-Src kinase activity efficiently in the nanomolar range, induced apoptosis, reduced cell viability and caused cell cycle arrest predominantly at G0/G1 phase while western blot analysis confirmed repressed protein expression of c-Abl and c-Src as well as the interacting partners p38 mitogen activated protein kinase, heterogenous ribonucleoprotein K, cyclin dependent kinase 1 and further proteins that are crucial for tumour progression. Importantly, a significant repression of the epidermal growth factor receptor was observed while whole genome gene expression analysis evidenced regulation of many cell cycle regulated genes as well integrin and focal adhesion kinase (FAK signalling to impact cytoskeleton dynamics, migration, invasion and metastasis. CONCLUSIONS/SIGNIFICANCE: Our experiments and recently published in vivo engraftment studies with various tumour cell lines revealed the dual kinase inhibitors to be efficient in their antitumour activity.

  14. Calibrated kallikrein generation in human plasma

    DEFF Research Database (Denmark)

    Biltoft, D; Sidelmann, J J; Olsen, L F

    2016-01-01

    generation method as a template. RESULTS: A suitable kallikrein specific fluorogenic substrate was identified (KM=0.91mM, kcat=19s(-1)), and kallikrein generation could be measured in undiluted plasma when silica was added as activator. Disturbing effects, including substrate depletion and the inner......-filter effect, however, affected the signal. These problems were corrected for by external calibration with α2-macroglobulin-kallikrein complexes. Selectivity studies of the substrate, experiments with FXII and PK depleted plasmas, and plasma with high or low complement C1-esterase inhibitor activity indicated...

  15. Esterase inhibition by synergists in the western flower thrips Frankliniella occidentalis.

    Science.gov (United States)

    López-Soler, Neus; Cervera, Amelia; Quinto, Vicente; Abellán, Jaime; Bielza, Pablo; Martínez-Pardo, Rafael; Garcerá, Maria Dolores

    2011-12-01

    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is among the most important crop pests in the south-eastern region of Spain. Its increasing resistance to insecticides constitutes a serious problem, and understanding the mechanisms involved is therefore of great interest. Use of synergists to inhibit the enzymes involved in insecticide detoxification is widely used to determine their responsibility for insecticide resistance. However, they do not always act as intended or expected, and caution must be exercised when interpreting synergist results. Laboratory-selected strains of WFT were used to analyse the effects of the synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and methiocarb on total esterase activity. Significant differences were found, indicating esterase activity inhibition by DEF, a lower effect for methiocarb and a small inhibition of the activity by PBO. Esterase isoenzyme inhibition by these compounds showed a similar result; this assay revealed an extreme sensitivity of Triplet A (resistance-associated esterases) to DEF. In an in vivo assay carried out with these compounds at different incubation times, only DEF caused posterior in vitro esterase activity inhibition, with a maximum effect 1 h after treatment. In this work, only DEF shows true synergistic inhibition of WFT esterases. Copyright © 2011 Society of Chemical Industry.

  16. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome

    Directory of Open Access Journals (Sweden)

    Moreno Galleni

    2013-01-01

    Full Text Available An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6–9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation. In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/b hydrolases.

  17. Gennemgang af en ny type hereditært angioødem med normal komplement C1-inhibitor

    DEFF Research Database (Denmark)

    Okholm-Hansen, Maria Bach; Winther, Anna Hillert; Fagerberg, Christina

    2018-01-01

    Hereditary angio-oedema (HAE) is a rare, potentially fatal disease characterized by recurrent swelling of skin and mucosa. Besides HAE with quantitative (type I) or qualitative (type II) deficiency of complement C1-inhibitor (C1-INH), a new subtype of HAE is now described with normal levels of C1...

  18. Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile

    DEFF Research Database (Denmark)

    Topakas, E.; Stamatis, H.; Biely, P.

    2004-01-01

    A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0+/-1.5 kDa, with a mass of 33+/-1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation......-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55-60 degreesC. The purified esterase was stable at the pH range 5.0-7.0. The enzyme retained 70% of activity after 7 h at 50 degreesC and lost 50% of its activity after 45 min at 55 degreesC and after 12 min at 60 degrees......C. Determination of k(cat)/K-m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2...

  19. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  20. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  1. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  2. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  3. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    Science.gov (United States)

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids

  4. Heterologous expression, purification and characterization of three novel esterases secreted by the lignocellulolytic fungus Penicillium purpurogenum when grown on sugar beet pulp.

    Science.gov (United States)

    Oleas, Gabriela; Callegari, Eduardo; Sepúlveda, Romina; Eyzaguirre, Jaime

    2017-04-18

    The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Properties of Two Novel Esterases Identified from Culture Supernatant of Penicillium purpurogenum Grown on Sugar Beet Pulp.

    Science.gov (United States)

    Oleas, Gabriela; Callegari, Eduardo; Sepulveda, Romina; Eyzaguirre, Jaime

    2016-01-01

    The filamentous fungus Penicillium purpurogenum grows on a variety of natural carbon sources, such as sugar beet pulp, and secretes to the medium a large number of enzymes that degrade the carbohydrate components of lignocellulose. Sugar beet pulp is rich in pectin, and the purpose of this work is to identify novel esterases produced by the fungus, which may participate in pectin degradation. Partially purified culture supernatants of the fungus grown on sugar beet pulp were subjected to mass spectrometry analysis. Peptides thus identified, which may be part of potential esterases were probed against the proteins deduced from the fungal genome sequence. The cDNAs of two putative esterases identified were expressed in Pichia pastoris and their properties studied. One of these enzymes, named FAET, is a feruloyl esterase, while the other, PE, is classified as a pectin methyl esterase. These findings add to our knowledge of the enzymology of pectin degradation by Penicillium purpurogenum, and define properties of two novel esterases acting on de-esterification of pectin. Their availability may be useful as tools for the study of pectin structure and degradation.

  6. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  7. Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Wempe MF

    2012-11-01

    Full Text Available Michael F Wempe,1 Janet W Lightner,2 Bettina Miller,1 Timothy J Iwen,1 Peter J Rice,1 Shin Wakui,3 Naohiko Anzai,4 Promsuk Jutabha,4 Hitoshi Endou51Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; 2Department of Pharmacology, East Tennessee State University, Johnson City, TN, USA; 3Department of Toxicology, Azabu University School of Veterinary Medicine, Chuo Sagamihara, Kanagawa, Japan; 4Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan; 5Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, JapanAbstract: Human uric acid transporter 1 (hURAT1; SLC22A12 is a very important urate anion exchanger. Elevated urate levels are known to play a pivotal role in cardiovascular diseases, chronic renal disease, diabetes, and hypertension. Therefore, the development of potent uric acid transport inhibitors may lead to novel therapeutic agents to combat these human diseases. The current study investigates small molecular weight compounds and their ability to inhibit 14C-urate uptake in oocytes expressing hURAT1. Using the most promising drug candidates generated from our structure–activity relationship findings, we subsequently conducted in vitro hepatic metabolism and pharmacokinetic (PK studies in male Sprague-Dawley rats. Compounds were incubated with rat liver microsomes containing cofactors nicotinamide adenine dinucleotide phosphate and uridine 5'-diphosphoglucuronic acid. In vitro metabolism and PK samples were analyzed using liquid chromatography/mass spectrometry-mass spectrometry methods. Independently, six different inhibitors were orally (capsule dosing or intravenously (orbital sinus administered to fasting male Sprague-Dawley rats. Blood samples were collected and analyzed; these data were used to compare in vitro and in vivo metabolism and to

  8. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2017-10-01

    antibodies to 5 specifically blot wild-type C1INH in the pathologic polymers.. A FLAG tag was placed into the wild-type C1INH cDNA located immediately...resulted in decreased secretion of the 3x-FLAG-WT-C1INH when cotransfected with the mutant cDNA . This was an important confirmation of our...C1INH plus mutant C1INH cDNA in the presence or absence of a lactacystin, a proteasome inhibitor. As shown in figure 2, blocking degradation of

  9. Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening.

    Science.gov (United States)

    Deshmukh, Amit Laxmikant; Chandra, Sharat; Singh, Deependra Kumar; Siddiqi, Mohammad Imran; Banerjee, Dibyendu

    2017-07-25

    Human Flap endonuclease1 (FEN1) is an enzyme that is indispensable for DNA replication and repair processes and inhibition of its Flap cleavage activity results in increased cellular sensitivity to DNA damaging agents (cisplatin, temozolomide, MMS, etc.), with the potential to improve cancer prognosis. Reports of the high expression levels of FEN1 in several cancer cells support the idea that FEN1 inhibitors may target cancer cells with minimum side effects to normal cells. In this study, we used large publicly available, high-throughput screening data of small molecule compounds targeted against FEN1. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were utilized to generate four classification models from huge PubChem bioassay data containing probable FEN1 inhibitors and non-inhibitors. We also investigated the influence of randomly selected Zinc-database compounds as negative data on the outcome of classification modelling. The results show that the SVM model with inactive compounds was superior to RF with Matthews's correlation coefficient (MCC) of 0.67 for the test set. A Maybridge database containing approximately 53 000 compounds was screened and top ranking 5 compounds were selected for enzyme and cell-based in vitro screening. The compound JFD00950 was identified as a novel FEN1 inhibitor with in vitro inhibition of flap cleavage activity as well as cytotoxic activity against a colon cancer cell line, DLD-1.

  10. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors.

    Science.gov (United States)

    Tsurkan, Lyudmila G; Hatfield, M Jason; Edwards, Carol C; Hyatt, Janice L; Potter, Philip M

    2013-03-25

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Rapid emergence of hepatitis C virus protease inhibitor resistance is expected

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Approximately 170 million people worldwide are infected with hepatitis C virus (HCV). Current therapy, consisting of pegylated interferon (PEG-IFN) and ribavirin (RBV), leads to sustained viral elimination in only about 45% of patients treated. Telaprevir (VX-950), a novel HCV NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients with chronic hepatitis C genotype 1 infection. However, some patients experience viral breakthrough during dosing, with drug resistant variants being 5%-20% of the virus population as early as day 2 after treatment initiation. Why viral variants appear such a short time after the start of dosing is unclear, especially since this has not been seen with monotherapy for either human immunodeficiency virus or hepatitis B virus. Here, using a viral dynamic model, we explain why such rapid emergence of drug resistant variants is expected when potent HCV protease inhibitors are used as monotherapy. Surprisingly, our model also shows that such rapid emergence need not be the case with some potent HCV NS5B polymerase inhibitors. Examining the case of telaprevir therapy in detail, we show the model fits observed dynamics of both wild-type and drug-resistant variants during treatment, and supports combination therapy of direct antiviral drugs with PEG-IFN and/or RBV for hepatitis C.

  12. Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

    Directory of Open Access Journals (Sweden)

    Samer Haidar

    2017-01-01

    Full Text Available Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones. Beside others, structures with an indeno[1,2-b]indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors of human protein kinase CK2, we report here on the generation of common feature pharmacophore model to further explain the binding requirements for human CK2 inhibitors. Nine common chemical features of indeno[1,2-b]indole-type CK2 inhibitors were determined using MOE software (Chemical Computing Group, Montreal, Canada. This pharmacophore model was used for database mining with the aim to identify novel scaffolds for developing new potent and selective CK2 inhibitors. Using this strategy several structures were selected by searching inside the ZINC compound database. One of the selected compounds was bikaverin (6,11-dihydroxy-3,8-dimethoxy-1-methylbenzo[b]xanthene-7,10,12-trione, a natural compound which is produced by several kinds of fungi. This compound was tested on human recombinant CK2 and turned out to be an active inhibitor with an IC50 value of 1.24 µM.

  13. The Human Tyrosyl-DNA Phosphodiesterase 1 (hTdp1) Inhibitor NSC120686 as an Exploratory Tool to Investigate Plant Tdp1 Genes.

    Science.gov (United States)

    Macovei, Anca; Pagano, Andrea; Sabatini, Maria Elisa; Grandi, Sofia; Balestrazzi, Alma

    2018-03-28

    The hTdp1 (human tyrosyl-DNA phosphodiesterase 1) inhibitor NSC120686 has been used, along with topoisomerase inhibitors, as a pharmacophoric model to restrain the Tdp1 activity as part of a synergistic treatment for cancer. While this compound has an end-point application in medical research, in plants, its application has not been considered so far. The originality of our study consists in the use of hTdp1 inhibitor in Medicago truncatula cells, which, unlike human cells, contain two Tdp1 genes. Hence, the purpose of this study was to test the hTdp1 inhibitor NSC120686 as an exploratory tool to investigate the plant Tdp1 genes, since their characterization is still in incipient phases. To do so, M. truncatula calli were exposed to increasing (75, 150, 300 μM) concentrations of NSC120686. The levels of cell mortality and DNA damage, measured via diffusion assay and comet assay, respectively, were significantly increased when the highest doses were used, indicative of a cytotoxic and genotoxic threshold. In addition, the NSC120686-treated calli and untreated MtTdp1α -depleted calli shared a similar response in terms of programmed cell death (PCD)/necrosis and DNA damage. Interestingly, the expression profiles of MtTdp1α and MtTdp1β genes were differently affected by the NSC120686 treatment, as MtTdp1α was upregulated while MtTdp1β was downregulated. The NSC120686 treatment affected not only the MtTdp1 genes but also other genes with roles in alternative DNA repair pathways. Since the expression patterns of these genes were different than what was observed in the MtTdp1α -depleted plants, it could be hypothesized that the NSC120686 treatment exerts a different influence compared to that resulting from the lack of the MtTdp1α gene function.

  14. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: implications for coadministration with clopidogrel.

    Science.gov (United States)

    Ogilvie, Brian W; Yerino, Phyllis; Kazmi, Faraz; Buckley, David B; Rostami-Hodjegan, Amin; Paris, Brandy L; Toren, Paul; Parkinson, Andrew

    2011-11-01

    As a direct-acting inhibitor of CYP2C19 in vitro, lansoprazole is more potent than omeprazole and other proton pump inhibitors (PPIs), but lansoprazole does not cause clinically significant inhibition of CYP2C19 whereas omeprazole does. To investigate this apparent paradox, we evaluated omeprazole, esomeprazole, R-omeprazole, lansoprazole, and pantoprazole for their ability to function as direct-acting and metabolism-dependent inhibitors (MDIs) of CYP2C19 in pooled human liver microsomes (HLM) as well as in cryopreserved hepatocytes and recombinant CYP2C19. In HLM, all PPIs were found to be direct-acting inhibitors of CYP2C19 with IC(50) values varying from 1.2 μM [lansoprazole; maximum plasma concentration (C(max)) = 2.2 μM] to 93 μM (pantoprazole; C(max) = 6.5 μM). In addition, we identified omeprazole, esomeprazole, R-omeprazole, and omeprazole sulfone as MDIs of CYP2C19 (they caused IC(50) shifts after a 30-min preincubation with NADPH-fortified HLM of 4.2-, 10-, 2.5-, and 3.2-fold, respectively), whereas lansoprazole and pantoprazole were not MDIs (IC(50) shifts lansoprazole, or pantoprazole, as irreversible (or quasi-irreversible) MDIs of CYP2C19. These results have important implications for the mechanism of the clinical interaction reported between omeprazole and clopidogrel, as well as other CYP2C19 substrates.

  16. Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. I. Producing strain, fermentation, isolation, physico-chemical properties and biological activity.

    Science.gov (United States)

    Kanai, Y; Ishiyama, D; Senda, H; Iwatani, W; Takahashi, H; Konno, H; Tokumasu, S; Kanazawa, S

    2000-09-01

    In the course of a screening program for specific inhibitors of human topoisomerase I using a recombinant yeast, we have discovered four new active compounds. All four compounds were isolated from the culture broth of a fungus, Phoma sp. BAUA2861, and two of them were isolated from the culture broth of a fungus, Penicillium sp. BAUA4206. We designated these compounds as topopyrones A, B, C and D. Topopyrones A, B, C and D selectively inhibited recombinant yeast growth dependent on expression of human topoisomerase I with IC50 values of 1.22, 0.15, 4.88 and 19.63 ng/ml, respectively. The activity and selectivity of topopyrone B were comparable to those of camptothecin. The relaxation of supercoiled pBR322 DNA by human DNA topoisomerase I was inhibited by these compounds, however they did not inhibit human DNA topoisomerase II. Topopyrones A, B, C and D were cytotoxic to all tumor cell lines when tested in vitro. Topopyrone B has potent inhibitory activity against herpesvirus, especially varicella zoster virus (VZV). It inhibited VZV growth with EC50 value of 0.038 microg/ml, which is 24-fold stronger than that of acyclovir (0.9 microg/ml). Topopyrones A, B, and C were inhibitory to Gram-positive bacteria.

  17. Molecular dissection of the APC/C inhibitor Rca1 shows a novel F-box-dependent function.

    Science.gov (United States)

    Zielke, Norman; Querings, Silvia; Grosskortenhaus, Ruth; Reis, Tânia; Sprenger, Frank

    2006-12-01

    Rca1 (regulator of Cyclin A)/Emi (early mitotic inhibitor) proteins are essential inhibitors of the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, Rca1 is required during G2 to prevent premature cyclin degradation by the Fizzy-related (Fzr)-dependent APC/C activity. Here, we present a structure and function analysis of Rca1 showing that a carboxy-terminal fragment is sufficient for APC/C inhibition. Rca1/Emi proteins contain a conserved F-box and interact with components of the Skp-Cullin-F-box (SCF) complex. So far, no function has been ascribed to this domain. We find that the F-box of Rca1 is dispensable for APC/C-Fzr inhibition during G2. Nevertheless, we show that Rca1 has an additional function at the G1-S transition, which requires the F-box. Overexpression of Rca1 accelerates the G1-S transition in an F-box-dependent manner. Conversely, S-phase entry is delayed in cells in which endogenous Rca1 is replaced by a transgene lacking the F-box. We propose that Rca1 acts as an F-box protein in an as yet uncharacterized SCF complex, which promotes S-phase entry.

  18. PRODUCTION AND CHARACTERIZATION OF AN ALKALOTHERMOSTABLE, ORGANIC SOLVENT TOLERANT AND SURFACTANT TOLERANT ESTERASE PRODUCED BY A THERMOPHILIC BACTERIUM GEOBACILLUS SP. AGP-04, ISOLATED FROM BAKRESHWAR HOT SPRING, INDIA

    Directory of Open Access Journals (Sweden)

    Amit Ghati

    2013-10-01

    Full Text Available A thermophilic bacteria, Geobacillus sp. AGP-04, isolated from Surya Kund hot spring, Bakreshwar, West Bengal, India was studied in terms of capability of tributyrin hydrolysis and characterization of its thermostable esterase activity using p-nitrophenyl butyrate (PNPB as substrate. The extracellular crude preparation was characterized in terms of pH and temperature optima and stability, organic solvent tolerance capacity and stability, substrate specificity, surfactant tolerance capacity, kinetic parameters and activation/inhibition behavior towards some metal ions and chemicals. Tributyrin agar assay exhibited that Geobacillus sp. AGP-04 secretes an extracellular esterase. The Vmax and Km values of the esterase were found to be 5099 U/Land 103.5µM, respectively in the presence of PNPB as substrate. The optimum temperature and pH, for Geobacillus sp. AGP-04 esterase was 60oC and 8.0, respectively. Although the enzyme activity was not significantly altered by incubating crude extract solution at 20-70oC for 1 hour, the enzyme activity was fully lost at 90oC for same incubation period. The pH stability profile showed that original crude esterase activity is stable at a broad range (pH 5.0-10.0. Moreover, the enzyme was highly organic solvent and surfactant tolerant. The effect of some chemical on crude esterase activity indicated that Geobacillus sp. AGP-04 produce an esterase which contains a serine residue in active site and for its activity -SH groups are essential. Besides, enzyme production was highly induced if fermentation medium contain polysaccharides and oil as carbon source.

  19. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  20. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties

    Directory of Open Access Journals (Sweden)

    Koh Eunhee

    2007-07-01

    Full Text Available Abstract Background EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. Results Here we report for the first time the 2.1-Å resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic α/β hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other α/β hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the β8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. Conclusion Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.

  1. A comparison between activities for non-specific esterases and esterproteases

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1988-01-01

    Electrophoretic separation of non-specific esterases and esterproteases from kidney, lung, and liver have been carried out in polyacrylamide gels. By use of zone electrophoresis, isoelectric focusing, and 2-dimensional electrophoresis it was found that most of the esterprotease bands had the same...... localization in the gels as non-specific esterase bands. A number of esterase bands showed no activity towards the esterprotease substrates and a single kidney band possessed esterprotease activity only. Isozymes of the ES-6 and ES-9 zones showed sex dependent esterprotease reactions. In sections esterase...

  2. Discovery and optimization of antibacterial AccC inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cliff C.; Shipps, Jr., Gerald W.; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A.; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd; (SPRI)

    2010-09-17

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS). The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC{sub 50} of 20 nM and a MIC of 0.8 {micro}g/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  3. Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Algar

    Full Text Available SMARCB1 is deleted in rhabdoid tumor, an aggressive paediatric malignancy affecting the kidney and CNS. We hypothesized that the oncogenic pathway in rhabdoid tumors involved epigenetic silencing of key cell cycle regulators as a consequence of altered chromatin-remodelling, attributable to loss of SMARCB1, and that this hypothesis if proven could provide a biological rationale for testing epigenetic therapies in this disease. We used an inducible expression system to show that the imprinted cell cycle inhibitor CDKN1C is a downstream target for SMARCB1 and is transcriptionally activated by increased histone H3 and H4 acetylation at the promoter. We also show that CDKN1C expression induces cell cycle arrest, CDKN1C knockdown with siRNA is associated with increased proliferation, and is able to compete against the anti-proliferative effect of restored SMARCB1 expression. The histone deacetylase inhibitor (HDACi, Romidepsin, specifically restored CDKN1C expression in rhabdoid tumor cells through promoter histone H3 and H4 acetylation, recapitulating the effect of SMARCB1 on CDKNIC allelic expression, and induced cell cycle arrest in G401 and STM91-01 rhabdoid tumor cell lines. CDKN1C expression was also shown to be generally absent in clinical specimens of rhabdoid tumor, however CDKN1A and CDKN1B expression persisted. Our observations suggest that maintenance of CDKN1C expression plays a critical role in preventing rhabdoid tumor growth. Significantly, we report for the first time, parallels between the molecular pathways of SMARCB1 restoration and Romidepsin treatment, and demonstrate a biological basis for the further exploration of histone deacetylase inhibitors as relevant therapeutic reagents in the treatment of rhabdoid tumor.

  4. The potential of P1 site alterations in peptidomimetic protease inhibitors as suggested by virtual screening and explored by the use of C-C-coupling reagents.

    Science.gov (United States)

    Weik, Steffen; Luksch, Torsten; Evers, Andreas; Böttcher, Jark; Sotriffer, Christoph A; Hasilik, Andrej; Löffler, Hans-Gerhard; Klebe, Gerhard; Rademann, Jörg

    2006-04-01

    A synthetic concept is presented that allows the construction of peptide isostere libraries through polymer-supported C-acylation reactions. A phosphorane linker reagent is used as a carbanion equivalent; by employing MSNT as a coupling reagent, the C-acylation can be conducted without racemization. Diastereoselective reduction was effected with L-selectride. The reagent linker allows the preparation of a norstatine library with full variation of the isosteric positions including the P1 side chain that addresses the protease S1 pocket. Therefore, the concept was employed to investigate the P1 site specificity of peptide isostere inhibitors systematically. The S1 pocket of several aspartic proteases including plasmepsin II and cathepsin D was modeled and docked with approximately 500 amino acid side chains. Inspired by this virtual screen, a P1 site mutation library was designed, synthesized, and screened against three aspartic proteases (plasmepsin II, HIV protease, and cathepsin D). The potency of norstatine inhibitors was found to depend strongly on the P1 substituent. Large, hydrophobic residues such as biphenyl, 4-bromophenyl, and 4-nitrophenyl enhanced the inhibitory activity (IC50) by up to 70-fold against plasmepsin II. In addition, P1 variation introduced significant selectivity, as up to 9-fold greater activity was found against plasmepsin II relative to human cathepsin D. The active P1 site residues did not fit into the crystal structure; however, molecular dynamics simulation suggested a possible alternative binding mode.

  5. Larvicides and acetylcholinesterase inhibitors from Kalanchoe species; Atividades larvicida e anticolinesterasica de plantas do genero Kalanchoe

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Maria Teresa Salles; Bezerra, Maria Zeneide Barbosa; Santiago, Gilvandete Maria Pinheiro; Feitosa, Chistiane Mendes [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: trevisan@ufc.br; Verpoorte, Robert [Leiden University, Leiden (Netherlands); Gorlaeus Laboratories, Leiden (Netherlands). Div. of Pharmacognosy; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais

    2006-03-15

    Acetylcholine esterase inhibitors are successy used to treat the symptoms of Alzheimer's disease. Extracts of three Kalanchoe species (K. brasiliensis, K. pinnata and K. gastonis-bornieri) showed acetylcholine esterase inhibitory effects and a toxic effect on Aedes aegypti larvae. Here we describe the bioassay guided fractionation of extracts of the most active extracts (K. brasiliensis) which resulted in the isolation of an active mixture of three flavonoids: 8-methoxyquercetin, 3,7-di-O-rhamnopyranoside and 8-methoxykaempferol-3,7-di-O-rhamnopyranoside. On TLC these flavonoids showed an acetylcholine esterase inhibitory effect. (author)

  6. Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate ▿ †

    Science.gov (United States)

    Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.

    2011-01-01

    We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23

  7. Crystallization and preliminary crystallographic analysis of Axe2, an acetylxylan esterase from Geobacillus stearothermophilus

    International Nuclear Information System (INIS)

    Lansky, Shifra; Alalouf, Onit; Solomon, Vered; Alhassid, Anat; Govada, Lata; Chayan, Naomi E.; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2013-01-01

    The serine acetylxylan esterase from G. stearothermophilus (Axe2) has been crystallized in the tetragonal space group I422. Complete diffraction data sets have been measured for the selenomethionine derivative (SAD data, 1.70 Å resolution) and the wild-type enzyme (1.85 Å resolution) to be used for a full three-dimensional structural analysis of the Axe2 protein. Acetylxylan esterases are part of the hemi-cellulolytic system of many microorganisms which utilize plant biomass for growth. Xylans, which are polymeric sugars that constitute a significant part of the plant biomass, are usually substituted with acetyl side groups attached at position 2 or 3 of the xylose backbone units. Acetylxylan esterases hydrolyse the ester linkages of the xylan acetyl groups and thus improve the ability of main-chain hydrolysing enzymes to break down the sugar backbone units. As such, these enzymes play an important part in the hemi-cellulolytic utilization system of many microorganisms that use plant biomass for growth. Interest in the biochemical characterization and structural analysis of these enzymes stems from their numerous potential biotechnological applications. An acetylxylan esterase (Axe2) of this type from Geobacillus stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized. One of the crystal forms obtained (RB1) belonged to the tetragonal space group I422, with unit-cell parameters a = b = 110.2, c = 213.1 Å. A full diffraction data set was collected to 1.85 Å resolution from flash-cooled crystals of the wild-type enzyme at 100 K using synchrotron radiation. A selenomethionine derivative of Axe2 has also been prepared and crystallized for single-wavelength anomalous diffraction experiments. The crystals of the selenomethionine-derivatized Axe2 appeared to be isomorphous to those of the wild-type enzyme and enabled the measurement of a full 1.85 Å resolution diffraction data set at the selenium

  8. Isomeric mono-, di-, and tri-bromobenzo-1H-triazoles as inhibitors of human protein kinase CK2α.

    Directory of Open Access Journals (Sweden)

    Romualda Wąsik

    Full Text Available To further clarify the role of the individual bromine atoms of 4,5,6,7-tetrabromotriazole (TBBt, a relatively selective inhibitor of protein kinase CK2, we have examined the inhibition (IC(50 of human CK2α by the two mono-, the four di-, and the two tri- bromobenzotriazoles relative to that of TBBt. Halogenation of the central vicinal C(5/C(6 atoms proved to be a key factor in enhancing inhibitory activity, in that 5,6-di-Br(2Bt and 4,5,6-Br(3Bt were almost as effective inhibitors as TBBt, notwithstanding their marked differences in pK(a for dissociation of the triazole proton. The decrease in pK(a on halogenation of the peripheral C(4/C(7 atoms virtually nullifies the gain due to hydrophobic interactions, and does not lead to a decrease in IC(50. Molecular modeling of structures of complexes of the ligands with the enzyme, as well as QSAR analysis, pointed to a balance of hydrophobic and electrostatic interactions as a discriminator of inhibitory activity. The role of halogen bonding remains debatable, as originally noted for the crystal structure of TBBt with CK2α (pdb1j91. Finally we direct attention to the promising applicability of our series of well-defined halogenated benzotriazoles to studies on inhibition of kinases other than CK2.

  9. Safety, pharmacokinetics, and antiviral activity of A77003, a C2 symmetry-based human immunodeficiency virus protease inhibitor

    NARCIS (Netherlands)

    Reedijk, M.; Boucher, C. A.; van Bommel, T.; Ho, D. D.; Tzeng, T. B.; Sereni, D.; Veyssier, P.; Jurriaans, S.; Granneman, R.; Hsu, A.

    1995-01-01

    A77003, an inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease, was administered to asymptomatic HIV-1-infected patients in a phase I trial. The drug was given by continuous intravenous infusion at dosages of 0.035, 0.07, 0.14, and 0.28 mg/kg of body weight per h. The drug was

  10. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita; Karkashon, Shay; Bonanno, Jeffrey B.; Poulos, Thomas L.; Yeh, Syun-Ru (Einstein); (UCI)

    2017-11-22

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.

  11. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study

    Directory of Open Access Journals (Sweden)

    Coriat R

    2016-11-01

    Full Text Available Romain Coriat,1 Sandrine J Faivre,2 Olivier Mir,3 Chantal Dreyer,2 Stanislas Ropert,3 Mohammed Bouattour,2 Robert Desjardins,4 François Goldwasser,3 Eric Raymond5 1Gastroenterology and Digestive Oncology Unit, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, 2Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy, 3Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France; 4Drais Pharmaceuticals, Bridgewater, NJ, USA; 5Groupe Hospitalier Paris Saint-Joseph, Paris, France Background: DTS-108 is a hydrosoluble prodrug, where the SN-38 moiety is covalently linked to a 20-amino acid vector peptide by a specific esterase-sensitive cross-linker, releasing 7-ethyl-10-hydroxycampthotecin (SN-38 by esterase bond cleavage. Methods: The pharmacokinetics of DTS-108, adverse events graded according to NCI-CTCv3.1, dose-limiting toxicities at cycle 1, the maximum tolerated dose (MTD, and the recommended Phase II dose (RP2D of intravenous DTS-108 (1–2 hours every 2 weeks were evaluated in a first-in-human Phase I study in patients with advanced/metastatic carcinomas, according to an accelerated dose escalation design. SN-38 and SN-38 glucuronide (SN-38G levels were evaluated with fluorescence high-performance liquid chromatography (HPLC test, then liquid chromatography–tandem mass spectrometry (LC/MS/MS methods. Results: Forty-two patients received DTS-108 across 14 dosing cohorts (range 3–416 mg/m2. At 416 mg/m2, three out of six patients had grade 4 neutropenia thereby defining the MTD and the RP2D at 313 mg/m2. Fluorescence HPLC was inaccurate to quantify DTS-108 and its metabolites (SN-38 and SN-38G. New processes and analytical LC/MS/MS methods for testing SN-38 were implemented. At a dose of 313 mg/m2, mean DTS-108, SN-38, and SN-38G area under the plasma concentration–time curve to infinity

  12. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J.; Goswami, Chandan

    2014-01-01

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys

  13. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Bhandari, Anita [Molecular Physiology, Zoological Institute, Christian-Albrechts-University at Kiel, Kiel (Germany); Sarde, Sandeep J. [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Goswami, Chandan [National Institute of Science Education and Research, Bhubaneswar, Orissa (India)

    2014-07-18

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.

  14. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    Science.gov (United States)

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release

    Science.gov (United States)

    2011-01-01

    Background Biosurfactants have been reported to utilize a number of immiscible substrates and thereby facilitate the biodegradation of panoply of polyaromatic hydrocarbons. Olive oil is one such carbon source which has been explored by many researchers. However, studying the concomitant production of biosurfactant and esterase enzyme in the presence of olive oil in the Bacillus species and its recombinants is a relatively novel approach. Results Bacillus species isolated from endosulfan sprayed cashew plantation soil was cultivated on a number of hydrophobic substrates. Olive oil was found to be the best inducer of biosurfactant activity. The protein associated with the release of the biosurfactant was found to be an esterase. There was a twofold increase in the biosurfactant and esterase activities after the successful cloning of the biosurfactant genes from Bacillus subtilis SK320 into E.coli. Multiple sequence alignment showed regions of similarity and conserved sequences between biosurfactant and esterase genes, further confirming the symbiotic correlation between the two. Biosurfactants produced by Bacillus subtilis SK320 and recombinant strains BioS a, BioS b, BioS c were found to be effective emulsifiers, reducing the surface tension of water from 72 dynes/cm to as low as 30.7 dynes/cm. Conclusion The attributes of enhanced biosurfactant and esterase production by hyper-producing recombinant strains have many utilities from industrial viewpoint. This study for the first time has shown a possible association between biosurfactant production and esterase activity in any Bacillus species. Biosurfactant-esterase complex has been found to have powerful emulsification properties, which shows promising bioremediation, hydrocarbon biodegradation and pharmaceutical applications. PMID:21707984

  16. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    International Nuclear Information System (INIS)

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P.

    2007-01-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 μM), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness

  17. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

    Science.gov (United States)

    Castaneda, Francisco; Kinne, Rolf K-H

    2005-12-01

    The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-alpha-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2.

  18. Metagenomic mining of feruloyl esterases from termite enteric flora

    CSIR Research Space (South Africa)

    Rashamuse, K

    2014-01-01

    Full Text Available A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes...

  19. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1 with DNA damage response genes.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Flap endonuclease 1 (FEN1 is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.

  1. Esterase polymorphism marking cultivars of Manihot esculenta, Crantz

    Directory of Open Access Journals (Sweden)

    Adriana Gazoli Resende

    2004-07-01

    Full Text Available Esterase isozymes were used to detected substrate-preference polymorphism in twenty cultivars of Manihot esculenta, and to show cultivar-specific variation of this species. A relatively complex extraction solution of proteins from leaves was needed to show a larger number of esterase isozymes. Similarity between cultivars from six groups ranged from 51 to 96%. The cultivars identified by the same name seemed to be biochemically different regarding esterase isozymes. Esterase isozyme electrophoretic patterns could, therefore, be used to discriminate the cultivars identified by the same name, and to monitor the vegetative propagation of cultivars maintained in the germplasm collection. In breeding strategies, isoesterase analysis could be used to avoid intercrossing between the similar genotypes.Isoenzimas esterases foram usadas no presente estudo, para detectar polimorfismos específicos para diferentes substratos em vinte cultivares de Manihot esculenta, e para mostrar variações específicas de cultivares nesta espécie. Os diferentes cultivares de M. esculenta tem sido mantidos na coleção de germoplasma do Departamento de Agronomia da Universidade Estadual de Maringá (Maringá, PR, e foram provenientes de cultivares tradicionais coletados nas regiões sudoeste e noroeste do Estado. Foi necessário a utilização de uma solução de extração de proteínas relativamente mais complexa, para evidenciar um maior número de isoenzimas esterases. A similaridade entre os cultivares variou de 51 a 96%. Cultivares identificados pelo mesmo nome parecem ser bioquimicamente diferentes para as isoenzimas esterases. Os padrões eletroforéticos das isoesterases podem, portanto, serem usados para discriminar os cultivares que são identificados pelo mesmo nome, e para monitorar a propagação vegetativa dos cultivares mantidos na coleção de germoplasma. A análise das isoesterases pode também ser usada para evitar cruzamentos entre genótipos mais

  2. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution.

    Science.gov (United States)

    Jiang, Huang; Zhang, Shaowei; Gao, Haofeng; Hu, Nan

    2016-01-22

    In recent years, cold-active esterases have received increased attention due to their attractive properties for some industrial applications such as high catalytic activity at low temperatures. An esterase-encoding gene (estS, 909 bp) from Serratia sp. was identified, cloned and expressed in Escherichia coli DE3 (BL21). The estS encoded a protein (EstS) of 302 amino acids with a predicted molecular weight of 32.5 kDa. It showed the highest activity at 10 °C and pH 8.5. EstS was cold active and retained ~92 % of its original activity at 0 °C. Thermal inactivation analysis showed that the T1/2 value of EstS was 50 min at 50 °C (residual activity 41.23 %) after 1 h incubation. EstS is also quite stable in high salt conditions and displayed better catalytic activity in the presence of 4 M NaCl. To improve the thermo-stability of EstS, variants of estS gene were created by error-prone PCR. A mutant 1-D5 (A43V, R116W, D147N) that showed higher thermo-stability than its wild type predecessor was selected. 1-D5 showed enhanced T1/2 of 70 min at 50 °C and retained 63.29 % of activity after incubation at 50 °C for 60 min, which were about 22 % higher than the wild type (WT). CD spectrum showed that the secondary structure of WT and 1-D5 are more or less similar, but an increase in β-sheets was recorded, which enhanced the thermostability of mutant protein. EstS was a novel cold-active and salt-tolerant esterase and half-life of mutant 1-D5 was enhanced by 1.4 times compared with WT. The features of EstS are interesting and can be exploited for commercial applications. The results have also provided useful information about the structure and function of Est protein.

  3. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Directory of Open Access Journals (Sweden)

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  4. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  5. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

    Science.gov (United States)

    Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching

    2013-08-01

    Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

  6. Effects of Model Salivary Esterases and MMP Inhibition on the Restoration's Marginal Integrity and Potential Degradative Contribution of Cariogenic Bacteria

    Science.gov (United States)

    Huang, Bo

    Enzyme-catalyzed degradation of the restoration-tooth interface compromises interfacial integrity, thereby contributing to secondary caries, which is a major cause of resin-based restoration failure. It is hypothesized that in addition to salivary esterases, the cariogenic bacterium Streptococcus mutans has specific esterases that degrade the resin-dentin interface, releasing biodegradation by- products (BBPs) such as bis-hydroxy-propoxy-phenyl-propane (BisHPPP). In turn, BisHPPP affects S. mutans by stimulating the expression of esterases. Another hypothesis is that the biostability of the resin-dentin interface is affected by simulated salivary esterases, dentinal matrix metalloproteinase (MMP) inhibition, and restorative materials. To test the first hypothesis, putative esterase genes in S. mutans UA159 were identified, purified, and characterized. SMU_118c was identified as the dominant esterase in S. mutans UA159 and showed a similar hydrolytic activity profile to salivary esterases. BisHPPP upregulated expression of the SMU_118c gene and related protein in a concentration-dependent manner. This positive feedback process could accelerate the degradation of the restoration-tooth interface and lead to premature restoration failure. To test the second hypothesis, an in vitro model was established to evaluate the effects of salivary esterases, MMP inhibition and restorative materials on interfacial integrity. It was confirmed that interfacial integrity was compromised with time and was further deteriorated by simulated salivary esterases, as indicated by the greater depth of bacterial ingress and more bacterial biomass of biofilm along the interface. However, this process could be modulated by using different restorative materials and MMPs inhibition. This project elucidated the mechanistic interaction between oral bacteria and restorative materials and established a new, in vitro, and physiologically relevant model to assess the effect of material chemistry

  7. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    Science.gov (United States)

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  8. The Lp_3561 and Lp_3562 enzymes support a functional divergence process in the lipase/esterase toolkit from Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Maria Esteban-Torres

    2016-07-01

    Full Text Available Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions.

  9. Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing.

    Science.gov (United States)

    Reader, John C; Matthews, Thomas P; Klair, Suki; Cheung, Kwai-Ming J; Scanlon, Jane; Proisy, Nicolas; Addison, Glynn; Ellard, John; Piton, Nelly; Taylor, Suzanne; Cherry, Michael; Fisher, Martin; Boxall, Kathy; Burns, Samantha; Walton, Michael I; Westwood, Isaac M; Hayes, Angela; Eve, Paul; Valenti, Melanie; de Haven Brandon, Alexis; Box, Gary; van Montfort, Rob L M; Williams, David H; Aherne, G Wynne; Raynaud, Florence I; Eccles, Suzanne A; Garrett, Michelle D; Collins, Ian

    2011-12-22

    Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.

  10. Poly(I:C) induces expressions of MMP-1, -2, and -3 through various signaling pathways including IRF3 in human skin fibroblasts.

    Science.gov (United States)

    Yao, Cheng; Lee, Dong Hun; Oh, Jang-Hee; Kim, Min-Kyoung; Kim, Kyu Han; Park, Chi-Hyun; Chung, Jin Ho

    2015-10-01

    Ultraviolet (UV) irradiation can result in premature skin aging (photoaging) which is characterized by decreased expression of collagen and increased expression of matrix metalloproteinases (MMPs). Double-stranded RNAs (dsRNAs) can be generated at various conditions including virally infected cells or UV-damaged skin cells. Recent studies have shown that a synthetic dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), can reduce procollagen expression in human skin fibroblasts. However, little is known about the effect of poly(I:C) on the expression of MMPs in skin fibroblasts and its underlying mechanisms. We examined the effect of poly(I:C) on MMP-1, -2, and -3 expressions in human skin fibroblasts. Then, we further explored the underlying signaling pathways involved in the processes. Human skin fibroblasts were treated with poly(I:C) for the indicated times in the presence or the absence of various chemical inhibitors or small interfering RNAs (siRNAs) at the indicated concentrations. Protein and mRNA levels of various target molecules were examined by Western blotting and quantitative real-time PCR, respectively. Poly(I:C) induced MMP-1, -2, and -3 expressions, which were dependent on TLR3. Poly(I:C) also induced activations of the mitogen-activated protein kinases (MAPKs), the nuclear factor-kappaB (NF-κB) and the interferon regulatory factor 3 (IRF3) pathways. By using specific inhibitors, we found that poly(I:C)-induced expressions of MMP-1, -2, and -3 were differentially regulated by these signaling pathways. In particular, we found that the inhibition of IRF3 signaling pathways attenuated poly(I:C)-induced expressions of all the three MMPs. Our data show that the expressions of MMP-1, -2, and -3 are induced by poly(I:C) through various signaling pathways in human skin fibroblasts and suggest that TLR3 and/or IRF3 may be good targets for regulating the expressions of MMP-1, -2, and -3 induced by dsRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights

  11. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    International Nuclear Information System (INIS)

    Wood, S. J.; Li, X.-L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.

    2008-01-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2 1 2 1 2 1 . X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2 1 2 1 2 1 and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research

  12. Inhibitor scaffold for the histone lysine demethylase KDM4C (JMJD2C)

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Clausen, Rasmus P; Kristensen, Jesper L

    2012-01-01

    The human histone demethylases of the KDM4 (JMJD2) family have been associated to diseases such as prostate and breast cancer, as well as X-linked mental retardation. Therefore, these enzymes are considered oncogenes and their selective inhibition might be a possible therapeutic approach to treat...... cancer. Here we describe a heterocyclic ring system library screened against the histone demethylase KDM4C (JMJD2C) in the search for novel inhibitory scaffolds. A 4-hydroxypyrazole scaffold was identified as an inhibitor of KDM4C; this scaffold could be employed in the further development of novel...... therapeutics, as well as for the elucidation of the biological roles of KDM4C on epigenetic regulation....

  13. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  14. Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Dyoni M. de Oliveira

    2016-12-01

    Full Text Available Feruloyl esterase is a subclass of carboxylic acid esterases with the capacity to release ferulic acid and other cinnamic acids from plant cell walls and synthetic substrates. Feruloyl esterases act synergistically with xylanases removing ferulic acid residues esterified to arabinoxylans. Feruloyl esterase type D from Aspergillus clavatus (AcFAE was expressed in Escherichia coli, purified, and applied with a commercial xylanase consortium (Novozymes for hydrolysis of sugarcane bagasse. Feruloyl esterase plus xylanase increased 5.13-fold the releasing of ferulic acid from sugarcane bagasse. Removal of only 7.7% of ferulic acid content by AcFAE increased 97.3% the sugarcane bagasse hydrolysis by xylanase. These data support the use of AcFAE as an interesting adjuvant enzyme to improve lignocellulose digestion and biotechnological tool for biorefineries.

  15. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    International Nuclear Information System (INIS)

    Ooi, G.T.; Herington, A.C.

    1986-01-01

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When 125 I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, following further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands

  16. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens...... and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  17. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  18. Preliminary X-ray Study of Naproxen Esterase from Bacillus subtilis

    NARCIS (Netherlands)

    van der Laan, Jan; Teplyakov, A.V.; Lammers, A.A.; Dijkstra, B.W.

    1993-01-01

    Single crystals of naproxen esterase from Bacillus subtilis have been obtained from PEG6000 solutions at pH 8.0 by liquid-liquid diffusion while applying a temperature gradient from 4°C to room temperature over a period of four weeks. The crystals belong to the trigonal space group P3121 or P3221

  19. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Science.gov (United States)

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  20. Purification and general properties of pectin methyl esterase from Curvularia inaequalis NRRL 13884 in solid state culture using orange peels as an inducer.

    Science.gov (United States)

    Afifi, A F; Fawzi, E M; Foaad, M A

    2002-01-01

    Pectin methyl esterase (PME) [E.C.3. 1.1.11] production by Curvularia inaequalis (Shear) Boedijn NRRL 13884 was investigated using solid-state culture. The highest level of extracellular pectin methyl esterase was detected with orange peels as an inducing substrate and as a sole carbon source. The enzyme was partially purified using Sephadex G-100 and DEAE-Cellulose column chromatography. It was purified about 40 fold with optimum activity at pH 4.4 and 45 degrees C. The enzyme was activated by Co++, Mg++, Na+, whereas it was slightly activated in the presence of Cu++, K+, Mn++, Zn++. On the other hand Ag++, Ca++ and Hg++ inhibited the activity of the enzyme. The Km was calculated to be 0.52 mM.

  1. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors

    Directory of Open Access Journals (Sweden)

    Lucianna Helene Santos

    2015-11-01

    Full Text Available Reverse transcriptase (RT is a multifunctional enzyme in the human immunodeficiency virus (HIV-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  2. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S. J. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, X.-L.; Cotta, M. A. [Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604 (United States); Biely, P. [Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava (Slovakia); Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R., E-mail: rajp@anl.gov [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2008-04-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  3. Atividades larvicida e anticolinesterásica de plantas do gênero Kalanchoe Larvicides and acetylcholinesterase inhibitors from Kalanchoe species

    Directory of Open Access Journals (Sweden)

    Maria Teresa Salles Trevisan

    2006-06-01

    Full Text Available Acetylcholine esterase inhibitors are successfully used to treat the symptoms of Alzheimer's disease. Extracts of three Kalanchoe species (K. brasiliensis, K. pinnata and K. gastonis-bornieri showed acetylcholine esterase inhibitory effects and a toxic effect on Aedes aegypti larvae. Here we describe the bioassay guided fractionation of extracts of the most active extracts (K. brasiliensis which resulted in the isolation of an active mixture of three flavonoids: 8-methoxyquercetin, 3,7-di-O-rhamnopyranoside and 8-methoxykaempferol-3,7-di-O-rhamnopyranoside. On TLC these flavonoids showed an acetylcholine esterase inhibitory effect.

  4. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    Science.gov (United States)

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  5. Esterase activity in the guinea pig thyroid under normal and pathological conditions (vitamin A deficiency) with special regard to cyst-like structures

    DEFF Research Database (Denmark)

    Kirkeby, S

    1977-01-01

    By use of different activators and inhibitors, TOCP(tri-o-cresyl phosphate), PCMB (parachloromercury benzoate), NiCl2, Pb(NO3)2, HgCl2, Hg(NO3)2, eserine and sodium taurocholate, it is shown that the esterase in the cyst cells and in group I cells of the guinea pig thyroid probably are A...

  6. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency.

    Science.gov (United States)

    Farkas, H; Martinez-Saguer, I; Bork, K; Bowen, T; Craig, T; Frank, M; Germenis, A E; Grumach, A S; Luczay, A; Varga, L; Zanichelli, A

    2017-02-01

    The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagnosis and management of pediatric patients with C1-INH-HAE. During an expert panel meeting that took place during the 9th C1 Inhibitor Deficiency Workshop in Budapest, 2015 (www.haenet.hu), pediatric data were presented and discussed and a consensus was developed by voting. The symptoms of C1-INH-HAE often present in childhood. Differential diagnosis can be difficult as abdominal pain is common in pediatric C1-INH-HAE, but also commonly occurs in the general pediatric population. The early onset of symptoms may predict a more severe subsequent course of the disease. Before the age of 1 year, C1-INH levels may be lower than in adults; therefore, it is advisable to confirm the diagnosis after the age of one year. All neonates/infants with an affected C1-INH-HAE family member should be screened for C1-INH deficiency. Pediatric patients should always carry a C1-INH-HAE information card and medicine for emergency use. The regulatory approval status of the drugs for prophylaxis and for acute treatment is different in each country. Plasma-derived C1-INH, recombinant C1-INH, and ecallantide are the only agents licensed for the acute treatment of pediatric patients. Clinical trials are underway with additional drugs. It is recommended to follow up patients in an HAE comprehensive care center. The pediatric-focused international consensus for the diagnosis and management of C1-INH-HAE patients was created. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  7. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    Science.gov (United States)

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Beischer, W.; Keller, L.; Maas, M.; Schiefer, E.; Pfeiffer, E.F.

    1976-01-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125 iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.) [de

  9. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  10. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  11. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Ghobadi, Sirous; Shahlaei, Mohsen; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  12. Structural insights into the binding mechanism of IDO1 with hydroxylamidine based inhibitor INCB14943

    International Nuclear Information System (INIS)

    Wu, You; Xu, Tingting; Liu, Jinsong; Ding, Ke; Xu, Jinxin

    2017-01-01

    IDO1 (indoleamine 2, 3-dioxygenase 1), a well characterized immunosuppressive enzyme, has attracted growing attention as a potential target for cancer immunotherapy. Hydroxylamidine compounds INCB024360 and INCB14943 (INCB024360 analogue) are highly effective IDO1 inhibitors. INCB024360 is undergoing clinical trials for treatment of various types of human cancer. Here, we determined the co-crystal structure of IDO1 and INCB14943, and elucidate the detailed binding mode. INCB14943 binds to heme iron in IDO1 protein through the oxime nitrogen. Further analysis also reveals that a halogen bonding interaction between the chlorine atom (3-Cl) of INCB14943 and the sulphur atom of C129 significantly improves the inhibition activity against IDO1. Comparing with the other reported inhibitors, the oxime nitrogen and halogen bond interaction are identified as the unique features of INCB14943 among the IDO1 inhibitors. Thus, our study provides novel insights into the interaction between a small molecule inhibitor INCB14943 and IDO1 protein. The structural information will facilitate future IDO1 inhibitor design. - Highlights: • This is the first co-crystal structure of IDO1 with hydroxylamidine compound. • INCB14943 binds to heme iron through oxime nitrogen instead of imidazole nitrogen. • Halogen bond interaction with C129 is another unique feature of INCB14943.

  13. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  14. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients.

    Science.gov (United States)

    Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene; Verheyen, Jens; Rao, Vasudev R; Gore, Sagar C; Soni, Neelesh; Shet, Anita; Schülter, Eugen; Ekstrand, Maria L; Wondwossen, Amogne; Kaiser, Rolf; Madhusudhan, Mallur S; Prasad, Vinayaka R; Sonnerborg, Anders

    2014-09-24

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region, which appeared in protease inhibitor failure Indian HIV-1C sequences (odds ratio=17.1, P < 0.001) but was naturally present in half of untreated Ethiopian HIV-1C sequences. The insertion is predicted to restore ALIX-mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of the insertion needs to be evaluated in HIV-1C dominating regions wherein the use of protease inhibitor drugs are being scaled up.

  15. Crystallization and preliminary crystallographic studies of the metalloglycoprotein esterase A4 using a baculovirus expression system

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Toshiki [Protein Design Laboratory, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Shibayama, Naoya [Department of Physiology, Division of Biophysics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Yoon, Young-Ho [Protein Design Laboratory, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Yun, Kyung-Mook [Department of Physiology, Division of Biophysics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Hamamoto, Toshiro [Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Tame, Jeremy R. H.; Park, Sam-Yong, E-mail: park@tsurumi.yokohama-cu.ac.jp [Protein Design Laboratory, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045 (Japan)

    2007-09-01

    Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. The protein crystals belong to space group P2{sub 1}, with unit-cell parameters a = 47.1, b = 73.9, c = 47.4 Å, β = 104.1°. With one dimer per asymmetric unit, the crystal volume per unit protein weight (V{sub M}) is 2.3 Å{sup 3} Da{sup −1} and the solvent content is 47%.

  16. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S.

    Science.gov (United States)

    Luo, Xiangwen; Zhang, Deyong; Zhou, Xuguo; Du, Jiao; Zhang, Songbai; Liu, Yong

    2018-05-09

    Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30-46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l -1 and 0.918 ± 0.025 U·µg -1 , respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems.

  17. Esterase Isoenzyme Profiles in Acute and Chronic Leukemias.

    Science.gov (United States)

    Drexler, H G; Gignac, S M; Hoffbrand, A V; Minowada, J

    1991-01-01

    Using isoelectric focusing (IEF) a number of carboxylic esterase isoenzymes (EC 3.1.1.1) with isoelectric points between pH 4.5-8.0 can be separated. One particular isoenzyme with an isoelectric point at about pH 6.0, the Mono-band, can be selectively and completely inhibited by sodium fluoride; this isoenzyme comprises a number of closely related subcomponents and may appear in more than one band on the gel. We analyzed the expression of typical esterase isoenzyme patterns in cells from a large panel of leukemias which were tested under identical conditions by IEF on horizontal thin-layer polyacrylamide gels with an ampholyte of pH 2-11. The 442 cases of acute and chronic myeloid and lymphoid leukemia (AML/AMMoL, CML/CMML, ALL, CLL) were classified according to clinical, morpho-cytochemical and immunophenotyping criteria. While bands between pH 4.5-5.5 appeared not to be specific for lineage or stage of differentiation, isoenzymes between pH 6.6-7.7 provided information on the type of leukemia involved. Seven typical isoenzyme patterns termed Mono1/Mono2 (fo monocyte-associated), My1/My2 (myeloid), Lym1/Lym2 (lymphoid) and Und (undifferentiated) could be discerned. Lym and Und patterns are characterized by fewer bands with a weaker staining intensity than Mono and My patterns. Nearly all cases of lymphoid leukemias (acute and chronic) expressed only Lym or Und esterase isoenzyme patterns, but no Mono or My patterns. Cases of acute or chronic myeloid and (myelo)monocytic leukemia showed strong isoenzyme staining displaying predominantly Mono or My isoenzyme patterns. The isoenzyme patterns found in CML in lymphoid or myeloid blast crisis corresponded to those seen in the respective acute leukemias, ALL or AML. The Mono-band was found in most cases of leukemias with monocytic elements (AMMoL 80%, CML 44%, CMML 100%), in the occasional case of CML-myeloid blast crisis or AML, but in none of the cases of ALL or CLL. This isoenzyme is a distinctive, specific marker for

  18. Health-Related Quality of Life with Subcutaneous C1-Inhibitor for Prevention of Attacks of Hereditary Angioedema.

    Science.gov (United States)

    Lumry, William R; Craig, Timothy; Zuraw, Bruce; Longhurst, Hilary; Baker, James; Li, H Henry; Bernstein, Jonathan A; Anderson, John; Riedl, Marc A; Manning, Michael E; Keith, Paul K; Levy, Donald S; Caballero, Teresa; Banerji, Aleena; Gower, Richard G; Farkas, Henriette; Lawo, John-Philip; Pragst, Ingo; Machnig, Thomas; Watson, Douglas J

    2018-01-31

    Hereditary angioedema with C1-inhibitor deficiency (C1-INH-HAE) impairs health-related quality of life (HRQoL). The objective of this study was to assess HRQoL outcomes in patients self-administering subcutaneous C1-INH (C1-INH[SC]; HAEGARDA) for routine prevention of HAE attacks. Post hoc analysis of data from the placebo-controlled, crossover phase III COMPACT study (Clinical Studies for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy). Ninety patients with C1-INH-HAE were randomized to 1 of 4 treatment sequences: C1-INH(SC) 40 or 60 IU/kg twice weekly for 16 weeks, preceded or followed by 16 weeks of twice weekly placebo injections. All HAE attacks were treated with open-label on-demand treatment as necessary. HRQoL assessments at week 14 (last visit) included the European Quality of Life-5 Dimensions Questionnaire (EQ-5D-3L), the Hospital Anxiety and Depression Scale (HADS), the Work Productivity and Activity Impairment Questionnaire (WPAI), and the Treatment Satisfaction Questionnaire for Medication (TSQM). Compared with placebo (on-demand treatment alone), treatment with twice weekly C1-INH(SC) (both doses combined) was associated with better EQ-5D visual analog scale general health, less HADS anxiety, less WPAI presenteeism, work productivity loss, and activity impairment, and greater TSQM effectiveness and overall treatment satisfaction. More patients self-reported a "good/excellent" response during routine prevention with C1-INH(SC) compared with on-demand only (placebo prophylaxis) management. For each HRQoL measure, a greater proportion of patients had a clinically meaningful improvement during C1-INH(SC) treatment compared with placebo. In patients with frequent HAE attacks, a treatment strategy of routine prevention with self-administered twice weekly C1-INH(SC) had a greater impact on improving multiple HAE-related HRQoL impairments, most notably anxiety and work productivity, compared with on

  19. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  20. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors

    DEFF Research Database (Denmark)

    Ermert, David; Shaughnessy, Jutamas; Joeris, Thorsten

    2015-01-01

    Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and c...... in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.......Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement...... and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being...

  1. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus.

    Science.gov (United States)

    Dong, Hao; Secundo, Francesco; Xue, Changhu; Mao, Xiangzhao

    2017-03-15

    Cinnamyl acetate has a wide application in the flavor and fragrance industry because of its sweet, balsamic, and floral odor. Up to now, lipases have been mainly used in enzyme-mediated synthesis of cinnamyl acetate, whereas esterases are used in only a few cases. Moreover, the use of purified enzymes is often a disadvantage, which leads to increases of the production costs. In this paper, a genomic DNA library of Acinetobacter hemolyticus was constructed, and a novel esterase (EstK1) was identified. After expression in Escherichia coli, the whole-cell catalyst of EstK1 displayed high transesterification activity to produce cinnamyl acetate in nonaqueous systems. Furthermore, under optimal conditions (vinyl acetate as acyl donor, isooctane as solvent, molar ratio 1:4, temperature 40 °C), the conversion ratio of cinnamyl alcohol could be up to 94.1% at 1 h, and it reached an even higher level (97.1%) at 2 h.

  2. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  3. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  4. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    Science.gov (United States)

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  5. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Directory of Open Access Journals (Sweden)

    Tuffery Pierre

    2009-12-01

    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  6. Cloning, Expression and Characterization of a Thermostable Esterase HydS14 from Actinomadura sp. Strain S14 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Pichapak Sriyapai

    2015-06-01

    Full Text Available A thermostable esterase gene (hydS14 was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG and catalytic triad (Ser88-Asp208-His235 of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases, has three conserved regions, and contains the novel motif (GY(FSLG, which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14 was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6, displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1. In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.

  7. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    Science.gov (United States)

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  8. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  9. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.

    Science.gov (United States)

    Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin

    2017-09-01

    A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No. 1, Tianshan, People's Republic of China and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room temperature plasma method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30 ℃, pH 9.0 and 25 ℃, pH 8.5, respectively. EstTB11 was thermally more stable (50 ℃ for 1 H) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0 ℃ and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4 ℃. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  10. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål).

    Science.gov (United States)

    Vontas, J G; Small, G J; Hemingway, J

    2000-12-01

    Organophosphorus and carbamate insecticide resistance in Nilaparvata lugens is based on amplification of a carboxylesterase gene, Nl-EST1. An identical gene occurs in susceptible insects. Quantitative real-time PCR was used to demonstrate that Nl-EST1 is amplified 3-7-fold in the genome of resistant compared to susceptible planthoppers. Expression levels were similar to amplification levels, with 1-15-fold more Nl-EST1 mRNA in individual insects and 5-11-fold more Nl-EST1 mRNA in mass whole body homogenates of resistant females compared to susceptibles. These values corresponded to an 8-10-fold increase in esterase activity in the head and thorax of individual resistant insects. Although amplification, expression and activity levels of Nl-EST1 in resistant N. lugens were similar, the correlation between esterase activity and Nl-EST1 mRNA levels in resistant individuals was not linear.

  11. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  12. L-Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro

    International Nuclear Information System (INIS)

    Reinke, Ryan A.; Lee, Deborah J.; McDougall, Brenda R.; King, Peter J.; Victoria, Joseph; Mao Yingqun; Lei Xiangyang; Reinecke, Manfred G.; Robinson, W. Edward

    2004-01-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. L-Chicoric acid (L-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), L-CA inhibits integration at concentrations from 500 nM to 10 μM but also inhibits entry at concentrations above 1 μM. Using recombinant HIV IN, steady-state kinetic analyses with L-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of L-CA, was successively washed. Inhibition of IN diminished, demonstrating that L-CA was reversibly bound to the protein. These data demonstrate that L-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, L-CA likely interacts with amino acids other than those which bind substrate

  13. Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs.

    Science.gov (United States)

    Napolitano, Lara; Scalise, Mariafrancesca; Koyioni, Maria; Koutentis, Panayiotis; Catto, Marco; Eberini, Ivano; Parravicini, Chiara; Palazzolo, Luca; Pisani, Leonardo; Galluccio, Michele; Console, Lara; Carotti, Angelo; Indiveri, Cesare

    2017-11-01

    The LAT1 transporter is acknowledged as a pharmacological target of tumours since it is strongly overexpressed in many human cancers. The purpose of this work was to find novel compounds exhibiting potent and prolonged inhibition of the transporter. To this aim, compounds based on dithiazole and dithiazine scaffold have been screened in the proteoliposome experimental model. Inhibition was tested on the antiport catalysed by hLAT1 as transport of extraliposomal [ 3 H]histidine in exchange with intraliposomal histidine. Out of 59 compounds tested, 8 compounds, showing an inhibition higher than 90% at 100µM concentration, were subjected to dose-response analysis. Two of them exhibited IC 50 lower than 1µM. Inhibition kinetics, performed on the two best inhibitors, indicated a mixed type of inhibition with respect to the substrate. Furthermore, inhibition of the transporter was still present after removal of the compounds from the reaction mixture, but was reversed on addition of dithioerythritol, a S-S reducing agent, indicating the formation of disulfide(s) between the compounds and the protein. Molecular docking of the two best inhibitors on the hLAT1 homology structural model, highlighted interaction with the substrate binding site and formation of a covalent bond with the residue C407. Indeed, the inhibition was impaired in the hLAT1 mutant C407A confirming the involvement of that Cys residue. Treatment of SiHa cells expressing hLAT1 at relatively high level, with the two most potent inhibitors led to cell death which was not observed after treatment with a compound exhibiting very poor inhibitory effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pharmacological characterization of a novel phosphodiesterase type 5 (PDE5) inhibitor lodenafil carbonate on human and rabbit corpus cavernosum.

    Science.gov (United States)

    Toque, Haroldo A; Teixeira, Cleber E; Lorenzetti, Raquel; Okuyama, Cristina E; Antunes, Edson; De Nucci, Gilberto

    2008-09-04

    Nitrergic nerves and endothelial cells release nitric oxide (NO) in the corpus cavernosum, a key mediator that stimulates soluble guanylyl cyclase to increase cGMP levels causing penile erection. Phosphodiesterase 5 (PDE5) inhibitors, such as sildenafil, prolong the NO effects by inhibiting cGMP breakdown. Here, we report a novel PDE5 inhibitor, lodenafil carbonate, (Bis-(2-{4-[4-ethoxy-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-benzenesulfonyl]piperazin-1-yl}-ethyl)carbonate) that is a dimer of lodenafil. We therefore aimed to compare the effects of sildenafil, lodenafil and lodenafil carbonate on in vitro human and rabbit cavernosal relaxations, activity of crude PDE extracts from human platelets, as well as stability and metabolic studies in rat, dog and human plasma. Pharmacokinetic evaluations after intravenous and oral administration were performed in male beagles. Functional experiments were conducted using organ bath techniques. Pharmacokinetics was studied in beagles by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), following oral or intravascular administration. All PDE5 inhibitors tested concentration-dependently relaxed (0.001-100 microM) phenylephrine-precontracted rabbit and human corpus cavernosum. The cavernosal relaxations evoked by either acetylcholine (0.01-100 microM) or electrical field stimulation (EFS, 1-20 Hz) were markedly potentiated by sildenafil, lodenafil and lodenafil carbonate. Lodenafil carbonate was more potent to inhibit the cGMP hydrolysis in PDE extracts compared with lodenafil and sildenafil. Following intravascular and single oral administration of lodenafil carbonate, only lodenafil and norlodenafil were detected in vivo. These results indicate that lodenafil carbonate works as a prodrug, being lodenafil the active moiety of lodenafil carbonate.

  15. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  16. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V.; Sankaranarayanan, Rajan, E-mail: sankar@ccmb.res.in [Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007 (India)

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.

  17. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.

    Science.gov (United States)

    Ganjewala, Deepak; Luthra, Rajesh

    2009-01-01

    Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.

  19. BstXI RFLP in the human inter-alpha-trypsin inhibitor light chain gene

    Energy Technology Data Exchange (ETDEWEB)

    Leveillard, T; Bourguignon, J; Sesbouee, R; Hanauer, A; Salier, J P; Diarra-Mehrpour, M; Martin, J P

    1988-03-25

    The 1.2 kb EcoRI/SmaI fragment of lambdaHuLITI2 was used as probe. lambdaHuLITI2 is a full length cDNA clone coding for human inter-alpha-trypsin inhibitor light chain isolated from immunochemical screening of a lambdagt11 library. Its sequence coding for HI-30 and alpha-1-microglobulin is in agreement. BstXI identifies five invariant bands at 5.0 kb, 2.3 kb, 1.5 kb, 1.1 kb, and 0.7 kb and a diallelic polymorphism with DNA fragments at 2.0 kb or 1.7 kb.

  20. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  1. FoxM1 is a general target for proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Uppoor G Bhat

    2009-08-01

    Full Text Available Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.

  2. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  3. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  4. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    We have studied the effect of plasminogen activator inhibitors PAI-1 and PAI-2 on the binding of urokinase-type plasminogen activator (u-PA) to its receptor in the human choriocarcinoma cell line JAR. With 125I-labeled ligands in whole-cell binding assays, both uncomplexed u-PA and u......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function......-PA-inhibitor complexes bound to the receptor with a Kd of approximately 100 pM at 4 degrees C. Transferring the cells to 37 degrees C led to degradation to amino acids of up to 50% of the cell-bound u-PA-inhibitor complexes, whereas the degradation of uncomplexed u-PA was 15%; the remaining ligand was recovered...

  5. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  6. Human genes for complement components C1r and C1s in a close tail-to-tail arrangement

    International Nuclear Information System (INIS)

    Kusumoto, H.; Hirosawa, S.; Salier, J.P.; Hagen, F.S.; Kurachi, K.

    1988-01-01

    Complementary DNA clones for human C1s were isolated from cDNA libraries that were prepared with poly(A) + RNAs of human liver and HepG2 cells. A clone with the largest cDNA insert of 2,664 base pairs (bp) was analyzed for its complete nucleotide sequence. It contained 202 bp of a 5' untranslated region, 45 bp of coding for a signal peptide (15 amino acid residues), 2,019 bp for complement component C1s zymogen (673 amino acid residues), 378 bp for a 3' untranslated region, a stop codon, and 17 bp of a poly(A) tail. The amino acid sequence of C1s was 40.5% identical to that of C1r, with excellent matches of tentative disulfide bond locations conserving the overall domain structure of C1r. DNA blotting and sequencing analyses of genomic DNA and of an isolated genomic DNA clone clearly showed that the human genes for C1r and C1s are closely located in a tail-to-tail arrangement at a distance of about 9.5 kilobases. Furthermore, RNA blot analyses showed that both C1r and C1s genes are primarily expressed in liver, whereas most other tissues expressed both C1r and C1s genes at much lower levels (less than 10% of that in liver). Multiple molecular sizes of specific mRNAs were observed in the RNA blot analyses for both C1r and C1s, indicating that alternative RNA processing(s), likely an alternative polyadenylylation, might take place for both genes

  7. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  8. Use of a C1 Inhibitor Concentrate in Adults ≥65 Years of Age with Hereditary Angioedema

    DEFF Research Database (Denmark)

    Bygum, Anette; Martinez-Saguer, Inmaculada; Bas, Murat

    2016-01-01

    BACKGROUND: Treatment of hereditary angioedema (HAE) in 'older adults' (those aged ≥65 years) has not been well studied. The international Berinert Patient Registry collected data on the use of intravenous plasma-derived, pasteurized, nanofiltered C1-inhibitor concentrate (pnfC1-INH; Berinert......(®)/CSL Behring) in patients of any age, including many older adults. METHODS: This observational registry, conducted from 2010 to 2014 at 30 US and seven European sites, gathered prospective (post-enrollment) and retrospective (pre-enrollment) usage and adverse event (AE) data on subjects treated with pnfC1-INH....... RESULTS: The registry documented 1701 pnfC1-INH infusions in 27 older adults. A total of 1511 HAE attacks treated with pnfC1-INH administration were reported among 25 of the 27 (92.6 %) older adults. Among the older adults, mean (standard deviation [SD]) (8.8 [4.1] IU/kg) and median (6.4 IU/kg) pnfC1-INH...

  9. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease.

    Science.gov (United States)

    Rajagopalan, Ravi; Pan, Lin; Schaefer, Caralee; Nicholas, John; Lim, Sharlene; Misialek, Shawn; Stevens, Sarah; Hooi, Lisa; Aleskovski, Natalia; Ruhrmund, Donald; Kossen, Karl; Huang, Lea; Yap, Sophia; Beigelman, Leonid; Serebryany, Vladimir; Liu, Jyanwei; Sastry, Srikonda; Seiwert, Scott; Buckman, Brad

    2017-01-01

    The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection. Copyright © 2016 American Society for Microbiology.

  10. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.

  11. Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: A template-based approach-Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Labroli, Marc; Paruch, Kamil; Dwyer, Michael P.; Alvarez, Carmen; Keertikar, Kartik; Poker, Cory; Rossman, Randall; Duca, Jose S.; Fischmann, Thierry O.; Madison, Vincent; Parry, David; Davis, Nicole; Seghezzi, Wolfgang; Wiswell, Derek; Guzi, Timothy J. [Merck

    2013-11-20

    Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.

  12. Hepatic esterase activity is increased in hepatocyte-like cells derived from human embryonic stem cells using a 3D culture system.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Yoon, Seokjoo; Park, Han-Jin

    2018-05-01

    The aim of the study is to generate a spherical three-dimensional (3D) aggregate of hepatocyte-like cells (HLCs) differentiated from human embryonic stem cells and to investigate the effect of the 3D environment on hepatic maturation and drug metabolism. Quantitative real-time PCR analysis indicated that gene expression of mature hepatocyte markers, drug-metabolizing enzymes, and hepatic transporters was significantly higher in HLCs cultured in the 3D system than in those cultured in a two-dimensional system (p formation, were increased in HLCs cultured in the 3D system. In particular, 3D spheroidal culture increased expression of CES1 and BCHE, which encode hepatic esterases (p 3D spheroidal culture enhances the maturation and drug metabolism of stem cell-derived HLCs, and this may help to optimize hepatic differentiation protocols for hepatotoxicity testing.

  13. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which

  14. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    Science.gov (United States)

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    Science.gov (United States)

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  16. Identification of cytochrome P450 2D6 and 2C9 substrates and inhibitors by QSAR analysis

    DEFF Research Database (Denmark)

    Jónsdóttir, Svava Ósk; Ringsted, Tine; Nikolov, Nikolai G.

    2012-01-01

    This paper presents four new QSAR models for CYP2C9 and CYP2D6 substrate recognition and inhibitor identification based on human clinical data. The models were used to screen a large data set of environmental chemicals for CYP activity, and to analyze the frequency of CYP activity among these com......This paper presents four new QSAR models for CYP2C9 and CYP2D6 substrate recognition and inhibitor identification based on human clinical data. The models were used to screen a large data set of environmental chemicals for CYP activity, and to analyze the frequency of CYP activity among...... these compounds. A large fraction of these chemicals were found to be CYP active, and thus potentially capable of affecting human physiology. 20% of the compounds within applicability domain of the models were predicted to be CYP2C9 substrates, and 17% to be inhibitors. The corresponding numbers for CYP2D6 were 9...... of specific CYP activity. An overrepresentation was seen for poly-aromatic hydrocarbons (group of procarcinogens) among CYP2C9 active and mutagenic compounds compared to CYP2C9 inactive and mutagenic compounds. The mutagenicity was predicted with a QSAR model based on Ames in vitro test data....

  17. c-Abl inhibitors enable insights into the pathophysiology and neuroprotection in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Dan Lindholm

    2016-10-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl in dopaminergic neurons with phosphorylation of protein substrates, such as α-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients.

  18. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  20. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  1. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).

    Science.gov (United States)

    Leontieva, Olga V; Demidenko, Zoya N; Blagosklonny, Mikhail V

    2015-09-15

    In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.

  2. In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors

    Science.gov (United States)

    Gantner, Florian; Kupferschmidt, Rochus; Schudt, Christian; Wendel, Albrecht; Hatzelmann, Armin

    1997-01-01

    During in vitro culture in 10% human AB serum, human peripheral blood monocytes acquire a macrophage-like phenotype. The underlying differentiation was characterized by increased activities of the macrophage marker enzymes unspecific esterase (NaF-insensitive form) and acid phosphatase, as well as by a down-regulation in surface CD14 expression. In parallel, a dramatic change in the phosphodiesterase (PDE) profile became evident within a few days that strongly resembled that previously described for human alveolar macrophages. Whereas PDE1 and PDE3 activities were augmented, PDE4 activity, which represented the major cyclic AMP-hydrolysing activity of peripheral blood monocytes, rapidly declined. Monocytes and monocyte-derived macrophages responded to lipopolysaccharide (LPS) with the release of tumour necrosis factor-α (TNF). In line with the change in CD14 expression, the EC50 value of LPS for induction of TNF release increased from approximately 0.1 ng ml−1 in peripheral blood monocytes to about 2 ng ml−1 in macrophages. Both populations of cells were equally susceptible towards inhibition of TNF release by cyclic AMP elevating agents such as dibutyryl cyclic AMP, prostaglandin E2 (PGE2) or forskolin, which all led to a complete abrogation of TNF production in a concentration-dependent manner and which were more efficient than the glucocorticoid dexamethasone. In monocytes, PDE4 selective inhibitors (rolipram, RP73401) suppressed TNF formation by 80%, whereas motapizone, a PDE3 selective compound, exerted a comparatively weak effect (10–15% inhibition). Combined use of PDE3 plus PDE4 inhibitors resulted in an additive effect and fully abrogated LPS-induced TNF release as did the mixed PDE3/4 inhibitor tolafentrine. In monocyte-derived macrophages, neither PDE3- nor PDE4-selective drugs markedly affected TNF generation when used alone (<15% inhibition), whereas in combination, they led to a maximal inhibition of TNF formation by about 40–50

  3. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  4. Human C-peptide. Pt. 1. Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Beischer, W; Keller, L; Maas, M; Schiefer, E; Pfeiffer, E F [Ulm Univ. (Germany, F.R.). Abt. Innere Medizin, Endokrinologie und Stoffwechsel

    1976-08-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with /sup 125/iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum.

  5. Esterases in striated muscle from mice with the Chediak-Higashi syndrome

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1981-01-01

    In this paper a localized strong reaction for non-specific esterase forming cylindric structures is described within skeletal muscle fibres from the beige mouse. It seems from zymograms and protein electrophoresis that this esterase is membrane bound, highly reactive and present in rather small...

  6. C1 Inhibitor in Acute Antibody-Mediated Rejection Nonresponsive to Conventional Therapy in Kidney Transplant Recipients: A Pilot Study.

    Science.gov (United States)

    Viglietti, D; Gosset, C; Loupy, A; Deville, L; Verine, J; Zeevi, A; Glotz, D; Lefaucheur, C

    2016-05-01

    Complement inhibitors have not been thoroughly evaluated in the treatment of acute antibody-mediated rejection (ABMR). We performed a prospective, single-arm pilot study to investigate the potential effects and safety of C1 inhibitor (C1-INH) Berinert added to high-dose intravenous immunoglobulin (IVIG) for the treatment of acute ABMR that is nonresponsive to conventional therapy. Kidney recipients with nonresponsive active ABMR and acute allograft dysfunction were enrolled between April 2013 and July 2014 and received C1-INH and IVIG for 6 months (six patients). The primary end point was the change in eGFR at 6 months after inclusion (M+6). Secondary end points included the changes in histology and DSA characteristics and adverse events as evaluated at M+6. All patients showed an improvement in eGFR between inclusion and M+6: from 38.7 ± 17.9 to 45.2 ± 21.3 mL/min/1.73 m(2) (p = 0.0277). There was no change in histological features, except a decrease in the C4d deposition rate from 5/6 to 1/6 (p = 0.0455). There was a change in DSA C1q status from 6/6 to 1/6 positive (p = 0.0253). One deep venous thrombosis was observed. In a secondary analysis, C1-INH patients were compared with a similar historical control group (21 patients). C1-INH added to IVIG is safe and may improve allograft function in kidney recipients with nonresponsive acute ABMR. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration.

    Science.gov (United States)

    Fang, Evandro Fei; Bah, Clara Shui Fern; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Ye, Xiu Juan; Ng, Tzi Bun

    2012-02-01

    A 20-kDa Kunitz-type trypsin-chymotrypsin inhibitor, Bauhinia purpurea trypsin inhibitor (BPLTI), has been isolated from the seeds of B. purpurea L. by using liquid chromatography procedures that involved ion exchange chromatography on Sp-Sepharose and Mono S and gel filtration on Superdex 75. BPLTI demonstrated protease inhibitory activities of 7226 BAEE units/mg and 65 BTEE units/mg toward trypsin and α-chymotrypsin, respectively. BPLTI was relatively thermal (0-60°C) and pH (3-10) stable and its activity could be decreased by dithiothreitol treatment. BPLTI exhibited a wide spectrum of anti-proliferative and pro-apoptotic activities especially on human hepatocellular carcinoma Hep G2 cells. However, it was devoid of a significant antiproliferative effect on immortal human hepatic WRL 68 cells. We show here that BPLTI stimulates apoptosis in Hep G2 cells, including (1) evoking DNA damage including the production of chromatin condensation and apoptotic bodies; (2) induction of cell apoptosis/necrosis; (3) mitochondrial membrane depolarization; and (4) increasing the production of cytokines. Taken together, our findings show for the first time that purified protease inhibitor from B. purpurea L. seeds is a promising candidate for the treatment of human hepatocellular carcinoma.

  8. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification Nueva esterasa tolerante a los solventes orgánicos aislada por metagenómica: ideas sobre la clasificación de las esterasas/lipasas

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2013-03-01

    Full Text Available In order to isolate novel organic solvent-tolerant (OST lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1 contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 a/ß hydrolase subgroup (abH04.04. Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4 compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.Con el fin de aislar nuevas variantes de lipasas tolerantes a solventes organicos (OST, se construyo una libreria metagenomica a partir de ADN obtenido de una muestra de suelo de bosque templado. A traves de un monitoreo en dos etapas, basado en la deteccion de actividades, se aislo un clon con actividad lipolitica en presencia de solventes organicos. La secuenciacion del plasmido pRBest recuperado del clon positivo revelo la presencia de un

  9. Cyclohex-1-ene carboxylic acids: synthesis and biological evaluation of novel inhibitors of human 5 alpha reductase.

    Science.gov (United States)

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2003-03-01

    In search of novel nonsteroidal mimics of steroidal inhibitors of 5 alpha reductase, 4-(2-phenylethyl)cyclohex-1-ene carboxylic acids 1-5 were synthesized with different substituents in para position of the phenyl ring (1: N, N-diisopropylcarbamoyl, 2: phenyl, 3: phenoxy, 4: benzoyl, and 5: benzyl). The principal synthetic approach for the desired compounds consisted of a Wittig olefination between 1, 4-dioxaspiro [4.5]-decane-8-carbaldehyde (4g and the appropriate phosphonium salts. The compounds were tested for inhibition of human 5 alpha reductase isozymes 1 and 2 using DU 145 cells and preparations from prostatic tissue, respectively. They turned out to be good inhibitors of the prostatic isozyme 2 with compound 1 being the most potent one (IC(50) = 760 nM). Isozyme 1 was only slightly inhibited. It is concluded that the novel structures are appropriate for being further optimized, aiming at the development of a novel drug for the treatment of benign prostatic hyperplasia.

  10. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer

    International Nuclear Information System (INIS)

    Larson, Pamela S; Schlechter, Benjamin L; King, Chia-Lin; Yang, Qiong; Glass, Chelsea N; Mack, Charline; Pistey, Robert; Morenas, Antonio de las; Rosenberg, Carol L

    2008-01-01

    CDKN1C (also known as p57 KIP2 ) is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21 CIP1 and B/p27 KIP1 ) have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. We determined rates of allele imbalance or loss of heterozygosity (AI/LOH) in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR), and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC). All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. AI/LOH at 11p15.5 occurred in 28/73 (38%) informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19%) cancers (p = ns). In contrast, CDKN1C mRNA levels were reduced in 9/10 (90%) cancers (p < 0.0001), ranging from 2–60% of paired normal epithelium. Similarly, CDKN1C protein staining was seen in 19/20 (95%) cases' normal epithelium but in only 7/14 (50%) cases' CIS (p < 0.004) and 5/18 (28%) cases' IC (p < 0.00003). The reduction appears primarily due to loss of CDKN1C expression from myoepithelial layer cells, which stained intensely in 17/20 (85%) normal lobules, but in 0/14 (0%) CIS (p < 0.00001). In contrast, luminal cells displayed less intense, focal staining fairly consistently across histologies. Decreased CDKN1C was not clearly associated with tumor grade, histology, ER, PR or HER2 status. CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor

  11. Fitness differences due to allelic variation at Esterase-4 locus in ...

    Indian Academy of Sciences (India)

    KAVITA KRISHNAMOORTI

    2017-08-31

    Aug 31, 2017 ... Keywords. esterases; null allele; reproductive fitness; natural selection; Drosophila ananassae. .... cific substrate (1-naphthylacetate AR) and stain (fast blue. RR). On the ... transferred to fresh food vials and eggs were counted.

  12. Crystallization and preliminary X-ray crystallographic analysis of EstE1, a new and thermostable esterase cloned from a metagenomic library

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jung-Sue [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of); Rhee, Jin-Kyu [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Dong-Uk [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Jong-Won [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cho, Hyun-Soo, E-mail: hscho8@yonsei.ac.kr [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Protein Network Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2006-02-01

    Recombinant EstE1 protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was then crystallized at 290 K by the hanging-drop vapour-diffusion method. EstE1, a new thermostable esterase, was isolated by functional screening of a metagenomic DNA library from thermal environment samples. This enzyme showed activity towards short-chain acyl derivatives of length C4–C6 at a temperature of 303–363 K and displayed a high thermostability above 353 K. EstE1 has 64 and 57% amino-acid sequence similarity to est{sub pc}-encoded carboxylesterase from Pyrobaculum calidifontis and AFEST from Archaeoglobus fulgidus, respectively. The recombinant protein with a histidine tag at the C-terminus was overexpressed in Escherichia coli strain BL21(DE3) and then purified by affinity chromatography. The protein was crystallized at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 2.3 Å resolution from an EstE1 crystal; the crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 73.71, c = 234.23 Å. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient V{sub M} is calculated to be 2.2 Å{sup 3} Da{sup −1} and the solvent content is 44.1%.

  13. A Novel Halotolerant Thermoalkaliphilic Esterase from Marine Bacterium Erythrobacter seohaensis SW-135

    Directory of Open Access Journals (Sweden)

    Ying-Yi Huo

    2017-11-01

    Full Text Available A novel esterase gene, e69, was cloned from Erythrobacter seohaensis SW-135, which was isolated from a tidal flat sediment of the Yellow Sea in Korea. This gene is 825 bp in length and codes for a 29.54 kDa protein containing 274 amino acids. Phylogenetic analysis showed that E69 is a new member of the bacterial lipolytic enzyme family IV. This enzyme exhibited the highest level of activity toward p-nitrophenyl (NP butyrate but little or no activity toward the other p-NP esters tested. The optimum temperature and pH of the catalytic activity of E69 were 60°C and pH 10.5, respectively. The enzyme exhibited stable activity over a wide range of alkaline pH values (7.5–9.5. In addition, E69 was found to be a halotolerant esterase as it exhibited the highest hydrolytic activity in the presence of 0.5 M NaCl and was still active in the presence of 3 M NaCl. Moreover, it possessed some degree of tolerance to Triton X-100 and several organic solvents. Through homology modeling and comparison with other esterases, it was suggested that the absence of the cap domain and its narrow substrate-binding pocket might be responsible for its narrow substrate specificity. Sequence and structural analysis results suggested that its high ratio of negatively to positively charged residues, large hydrophobic surface area, and negative electrostatic potential on the surface may be responsible for its alkaline adaptation. The results of this study provide insight into marine alkaliphilic esterases, and the unique properties of E69 make it a promising candidate as a biocatalyst for industrial applications.

  14. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla......The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous...... with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  15. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.

    Science.gov (United States)

    Herholz, K; Bauer, B; Wienhard, K; Kracht, L; Mielke, R; Lenz, M O; Strotmann, T; Heiss, W D

    2000-01-01

    Memory and attention are cognitive functions that depend heavily on the cholinergic system. Local activity of acetylcholine esterase (AChE) is an indicator of its integrity. Using a recently developed tracer for positron emission tomography (PET), C-11-labeled N-methyl-4-piperidyl-acetate (C11-MP4A), we measured regional AChE activity in 4 non-demented subjects, 4 patients with dementia of Alzheimer type (DAT) and 1 patient with senile dementia of Lewy body type (SDLT), and compared the findings with measurements of blood flow (CBF) and glucose metabolism (CMRGlc). Initial tracer extraction was closely related to CBF. AChE activity was reduced significantly in all brain regions in demented subjects, whereas reduction of CMRGlc and CBF was more limited to temporo-parietal association areas. AChE activity in SDLT was in the lower range of values in DAT. Our results indicate that, compared to non-demented controls, there is a global reduction of cortical AChE activity in dementia. Dementia, cholinergic system, acetylcholine esterase, positron emission tomography, cerebral blood flow, cerebral glucose metabolism.

  16. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding.

    Science.gov (United States)

    Chen, Qi; Luan, Zheng-Jiao; Yu, Hui-Lei; Cheng, Xiaolin; Xu, Jian-He

    2015-11-01

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    Science.gov (United States)

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  18. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    Science.gov (United States)

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  19. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    Science.gov (United States)

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis and biological evaluation of lycorine derivatives as dual inhibitors of human acetylcholinesterase and butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Wang Yue-Hu

    2012-09-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is a neurologically degenerative disorder that affects more than 20 million people worldwide. The selective butyrylcholinesterase (BChE inhibitors and bivalent cholinesterase (ChE inhibitors represent new treatments for AD. Findings A series of lycorine derivatives (1–10 were synthesized and evaluated for anti-cholinesterase activity. Result showed that the novel compound 2-O-tert-butyldimethylsilyl-1-O-(methylthiomethyllycorine (7 was a dual inhibitor of human acetylcholinesterase (hAChE and butyrylcholinesterase (hBChE with IC50 values of 11.40 ± 0.66 μM and 4.17 ± 0.29 μM, respectively. The structure-activity relationships indicated that (i the 1-O-(methylthiomethyl substituent in lycorine was better than the 1-O-acetyl group for the inhibition of cholinesterase; (ii the acylated or etherified derivatives of lycorine and lycorin-2-one were more potent against hBChE than hAChE; and (iii the oxidation of lycorine at C-2 decreases the activity. Conclusion Acylated or etherified derivatives of lycorine are potential dual inhibitors of hBChE and hAChE. Hence, further study on the modification of lycorine for ChE inhibition is necessary.

  1. Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Friboulet, Luc; Gourzones, Claire; Tsao, Sai Wah; Morel, Yannis; Paturel, Carine; Témam, Stéphane; Uzan, Catherine; Busson, Pierre

    2010-01-01

    There is increasing evidence that the toll-like receptor 3 (TLR3) is an interesting target for anti-cancer therapy. Unfortunately, most laboratory investigations about the impact of TLR3 stimulation on human malignant cells have been performed with very high concentrations - 5 to 100 μg/ml - of the prototype TLR3 ligand, poly(I:C). In a previous study focused on a specific type of human carcinoma - nasopharyngeal carcinoma - we have shown that concentrations of poly(I:C) as low as 100 ng/ml are sufficient to induce apoptosis of malignant cells when combined to a pharmacological antagonist of the IAP family based on Smac mimicry. This observation prompted us to investigate the contribution of the IAP family in cell response to poly(I:C) in a variety of human malignant cell types. We report a rapid, intense and selective increase in c-IAP2 protein expression observed under stimulation by poly(I:C)(500 ng/ml) in all types of human malignant cells. In most cell types, this change in protein expression is underlain by an increase in c-IAP2 transcripts and dependent on the TLR3/TRIF pathway. When poly(I:C) is combined to the IAP inhibitor RMT 5265, a cooperative effect in apoptosis induction and/or inhibition of clonogenic growth is obtained in a large fraction of carcinoma and melanoma cell lines. Currently, IAP inhibitors like RMT 5265 and poly(I:C) are the subject of separate therapeutic trials. In light of our observations, combined use of both types of compounds should be considered for treatment of human malignancies including carcinomas and melanomas

  2. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  3. Epidemiology of Non-hereditary Angioedema

    DEFF Research Database (Denmark)

    Madsen, Flemming; Attermann, Jorn; Linneberg, Allan

    2012-01-01

    The prevalence of non-hereditary angioedema was investigated in a general population sample (n = 7,931) and in a sample of Danish patients (n = 7,433) tested for deficiency of functional complement C1 esterase inhibitor protein (functional C1 INH). The general population sample (44% response rate...

  4. Identification of a Novel Esterase from Marine Environmental Genomic DNA Libraries and Its Application in Production of Free All- trans-Astaxanthin.

    Science.gov (United States)

    Lu, Ping; Gao, Xinwei; Dong, Hao; Liu, Zhen; Secundo, Francesco; Xue, Changhu; Mao, Xiangzhao

    2018-03-21

    Astaxanthin is a pigment with various functions. Free astaxanthin is obtained mainly through saponification methods, which could result in many byproducts. Enzymatic methods using lipases have been used in a few cases, while there are no reports on the use of esterases for the production of free astaxanthin. Herein we present the screening and identification of a novel esterase (Est3-14) from a marine mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in alkaline buffers (residual activity 94%, pH 8.0, 4 °C, and 36 h). Meanwhile, Est3-14 keeps a good stability in the medium temperature condition (residual activity 56.7%, pH 8.0, 40 °C, and 84 h). Est3-14 displayed high hydrolysis activity to prepare free all- trans-astaxanthin in biphasic systems. Furthermore, under optimal conditions (0.5 mL ethanol, 6 mL 0.1 M Tris-HCl buffer, pH 8.0, 0.5% (w/v) H. pluvialis oil, 40 °C), the hydrolytic conversion ratio was 99.3% after 36 h.

  5. Production, purification, and characterization of human alpha1 proteinase inhibitor from Aspergillus niger.

    Science.gov (United States)

    Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph

    2009-02-15

    Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.

  6. The role of Ca2+ and Mg2+ in the cytotoxic T lymphocyte reaction and in the secretion of N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester-serine esterase by human T cell clones

    NARCIS (Netherlands)

    Blanchard, D.; Aubry, J. P.; de Vries, J. E.; Spits, H.

    1989-01-01

    Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon

  7. Clickable prodrugs bearing potent and hydrolytically cleavable nicotinamide phosphoribosyltransferase inhibitors

    Directory of Open Access Journals (Sweden)

    Sadrerafi K

    2018-04-01

    Full Text Available Keivan Sadrerafi, Emilia O Mason, Mark W Lee Jr Department of Chemistry, University of Missouri, Columbia, MO, USA Purpose: Our previous study indicated that carborane containing small-molecule 1-(hydroxymethyl-7-(4′-(trans-3″-(3‴-pyridylacrylamidobutyl-1,7-dicarbadodecaborane (hm-MC4-PPEA, was a potent inhibitor of nicotinamide phosphoribosyltransferase (Nampt. Nampt has been shown to be upregulated in most cancers and is a promising target for the treatment of many different types of cancers, including breast cancers. Patients and methods: To increase the selectivity of hm-MC4-PPEA toward cancer cells, three prodrugs were synthesized with different hydrolyzable linkers: ester, carbonate, and carbamate. Using click chemistry a fluorophore was attached to these prodrugs to act as a model for our conjugation strategy and to serve as an aid for prodrug stability studies. The stabilities of these drug conjugates were tested in phosphate-buffered saline (PBS at normothermia (37°C using three different pH levels, 5.5, 7.5, and 9.5, as well as in horse serum at physiological pH. The stability of each was monitored using reversed-phase HPLC equipped with both diode array and fluorescence detection. The inhibitory activity of hm-MC4-PPEA was also measured using a commercially available colorimetric assay. The biological activities of the drug conjugates as well as those of the free drug (hm-MC4-PPEA, were evaluated using the MTT assay against the human breast cancer cell lines T47D and MCF7, as well as the noncancerous, transformed, Nampt-dependent human breast epithelium cell line 184A1.Results: hm-MC4-PPEA showed to be a potent inhibitor of recombinant Nampt activity, exhibiting an IC50 concentration of 6.8 nM. The prodrugs showed great stability towards hydrolytic degradation under neutral, mildly acidic and mildly basic conditions. The carbamate prodrug also showed to be stable in rat serum. However, the carbonate and the ester prodrug

  8. Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Levisson, Mark; Hendriks, Sjon; Akveld, Twan; Kengen, Servé W. M. [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Dijkstra, Bauke W. [Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Oost, John van der, E-mail: john.vanderoost@wur.nl [Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands)

    2007-09-01

    A thermostable esterase (EstA) from Thermotoga maritima was cloned and purified. Crystals of EstA and its selenomethionine derivative were grown and diffract to beyond 2.6 Å resolution at 100 K using synchrotron radiation. A predicted esterase (EstA) with an unusual new domain from the hyperthermophilic bacterium Thermotoga maritima has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized by the hanging-drop vapour-diffusion technique in the presence of lithium sulfate and polyethylene glycol 8000. Selenomethionine-substituted EstA crystals were obtained under the same conditions and three different-wavelength data sets were collected to 2.6 Å resolution. The crystal belongs to space group H32, with unit-cell parameters a = b = 130.2, c = 306.2 Å. There are two molecules in the asymmetric unit, with a V{sub M} of 2.9 Å{sup 3} Da{sup −1} and 58% solvent content.

  9. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  10. A novel esterase from Saccharomyces carlsbergensis, a possible function for the yeast TIP1 gene

    DEFF Research Database (Denmark)

    Horsted, M W; Dey, E S; Holmberg, S

    1998-01-01

    An extracellular esterase was isolated from the brewer's yeast, Saccharomyces carlsbergensis. Inhibition by diisopropyl fluorophosphate shows that the enzyme has a serine active site. By mass spectrometry, the molecular weight of the enzyme was 16.9 kDa. The optimal pH for activity was in the range...

  11. Interactions of p-Nitrobenzene Diazonium Fluoroborate and Analogs with the Active Sites of Acetylcholine-Receptor and -Esterase*

    Science.gov (United States)

    Mautner, Henry G.; Bartels, Eva

    1970-01-01

    p-Nitrobenzene diazonium fluoroborate (NDF) is a potent inhibitor of the carbamylcholine-induced depolarization of the electroplax and of acetylcholinesterase. It probably forms covalent bonds with the acetylcholine-receptor and -esterase at the active site of the proteins. Its inhibitory strength is at least the same as that of trimethylammonium diazonium fluoroborate (TDF). The p-acetoxy analog, with its weaker electron-withdrawing group, is about ten times weaker as an inhibitor than the trimethylammonium or p-nitro analogs, both of which have strong electron-withdrawing groups. After treatment of the electroplax preparation with dithiothreitol, NDF remains an irreversible receptor-inhibitor, while TDF becomes a potent reversible receptor-activator. TDF is self-inhibitory: applied before reduction, it no longer depolarizes. Although the first observations on TDF suggested that the compound labels both proteins by virtue of the steric complementary of its trimethylammonium group to a negative subsite in the proteins, the present study indicates that it is the positively charged diazonium group that reacts with the active sites of the proteins to form a covalent bond with an appropriate amino-acid residue. PMID:5272331

  12. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    International Nuclear Information System (INIS)

    Kacham, R.; Karanth, S.; Baireddy, P.; Liu, J.; Pope, C.

    2006-01-01

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less

  13. Crystal structure of a complex of human chymase with its benzimidazole derived inhibitor

    International Nuclear Information System (INIS)

    Matsumoto, Yoshiyuki; Kakuda, Shinji; Koizumi, Masahiro; Mizuno, Tsuyoshi; Muroga, Yumiko; Kawamura, Takashi; Takimoto-Kamimura, Midori

    2013-01-01

    The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The present study shows that the benzimidazole ring of the inhibitor takes the stable stacking interaction with the protonated His57 in the catalytic domain of human chymase. The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The X-ray crystallographic study shows that the benzimidazole inhibitor forms a non-covalent interaction with the catalytic domain of human chymase. The hydrophobic fragment of the inhibitor occupies the S1 pocket. The carboxylic acid group of the inhibitor forms hydrogen bonds with the imidazole N(∊) atom of His57 and/or the O(γ) atom of Ser195 which are members of the catalytic triad. This imidazole ring of His57 induces π–π stacking to the benzene ring of the benzimidazole scaffold as P2 moiety. Fragment molecular orbital calculation of the atomic coordinates by X-ray crystallography shows that this imidazole ring of His57 could be protonated with the carboxyl group of Asp102 or hydroxyl group of Ser195 and the stacking interaction is stabilized. A new drug design strategy is proposed where the stacking to the protonated imidazole of the drug target protein with the benzimidazole scaffold inhibitor causes unpredicted potent inhibitory activity for some enzymes

  14. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  15. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  16. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  17. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  18. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    International Nuclear Information System (INIS)

    Herholz, Karl

    2008-01-01

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  19. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Science.gov (United States)

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  20. Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport

    Science.gov (United States)

    An, Guohua; Wang, Xiaodong

    2014-01-01

    Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway. PMID:25002746

  1. Trisubstituted purine inhibitors of PDGFRα and their antileukemic activity in the human eosinophilic cell line EOL-1.

    Science.gov (United States)

    Malínková, Veronika; Řezníčková, Eva; Jorda, Radek; Gucký, Tomáš; Kryštof, Vladimír

    2017-12-15

    Inhibition of protein kinases is a validated concept for pharmacological intervention in cancers. Many kinase inhibitors have been approved for clinical use, but their practical application is often limited. Here, we describe a collection of 23 novel 2,6,9-trisubstituted purine derivatives with nanomolar inhibitory activities against PDGFRα, a receptor tyrosine kinase often found constitutively activated in various tumours. The compounds demonstrated strong and selective cytotoxicity in the human eosinophilic leukemia cell line EOL-1, whereas several other cell lines were substantially less sensitive. The cytotoxicity in EOL-1, which is known to express the FIP1L1-PDGFRA fusion gene encoding an oncogenic kinase, correlated significantly with PDGFRα inhibition. EOL-1 cells treated with the compounds also exhibited dose-dependent inhibition of PDGFRα autophosphorylation and suppression of its downstream signaling pathways with concomitant G 1 phase arrest, confirming the proposed mechanism of action. Our results show that substituted purines can be used as platforms for preparing tyrosine kinase inhibitors with specific activity towards eosinophilic leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Isolation of natural inhibitors of papain obtained from Carica papaya latex

    Directory of Open Access Journals (Sweden)

    Rubens Monti

    2004-09-01

    Full Text Available Studies were carried out to natural papain inhibitor from papaya latex. Fresh latex from green fruits of Carica papaya was collected and immediately transported in ice bath to the lab, from which three fractions with inhibitor effect of esterase papain activity were isolated by latex dialysis, Sephadex G-25 gel filtration and ionic exchange chromatography in SP-Sephadex C-25. The isolated fractions, identified as inhibitors I and II, showed a negative reaction with ninhydrin; however, the fraction identified as P-III showed positive reaction with ninhydrin. Kinetics data showed non-competitive inhibition (inhibitor I and uncompetitive (inhibitors II and P-III.Este trabalho apresenta novos dados sobre inibidores naturais de papaína. O látex fresco de frutos verdes de Carica papaya foi coletado pela manhã em plantações da região de Araraquara, SP, Brasil e imediatamente transportado ao laboratório em banho de gelo. Três frações com efeito inibitório da atividade esterásica da papaína foram isoladas a partir do látex fresco, através de diálise, filtração em Sephadex G-25 e cromatografia em SP-Sephadex C-25. As frações isoladas identificadas como inibidores I e II, mostraram reação negativa à ninidrina; entretanto, a fração identificada como P-III mostrou reação positiva. Dados cinéticos revelaram inibição não-competitiva (inibidor I e incompetitiva (inibidores II e P-III.

  3. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter Durand

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla...

  4. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    DEFF Research Database (Denmark)

    Harholt, Jesper; Bach, Inga Christensen; Lind Bouquin, Solveig

    2010-01-01

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm-specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu) KDEL were used....... Extensive analysis of the cell walls showed a 10%-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water-extractable arabinoxylan, and a shift in the MW of the water-extractable arabinoxylan from being mainly larger than 85 kD to being between 2 and 85 kD. Ferulic acid esterase......-expressing grains were also shrivelled, and the seed weight was decreased by 20%-50%. No ferulic acid esterase activity could be detected in wild-type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15%-40% increase in water-unextractable arabinoxylan...

  5. Esterase screening using whole cells of Brazilian soil microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Simone M.; Oliveira, Luciana G. de; Marsaioli, Anita J., E-mail: anita@iqm.unicamp.b [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    A miniaturized enzymatic assay using fluorescent probes to reveal esterase producing microorganisms was optimized and applied to screen 64 soil bacterial strains. The best results were validated using traditional non-fluorogenic assays with acetyl and propanoyl phenylethanol to confirm the miniaturized results. The most active microorganisms belong to the genus Bacillus showing esterase activity and good enantiomeric ratios for the resolution of phenylethanol derivatives (E > 30). Part of the microorganisms are kept in our laboratory in glycerol or freezedried and the best microorganisms will be deposited in the CBMAI/CPQBA/UNICAMP culture collection. (author)

  6. The effect of fixation on esterases

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D

    1984-01-01

    The localization of reaction product for non-specific esterase from fresh and aldehyde treated glandular tissue was examined. The electrophoretical studies showed a selective inhibition of certain isoenzymes and a change in mobility of some bands caused by aldehyde fixation. In sections a granular...

  7. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure

    Science.gov (United States)

    Neogi, Ujjwal; RAO, Shwetha D; BONTELL, Irene; VERHEYEN, Jens; RAO, Vasudev R; GORE, Sagar C; SONI, Neelesh; SHET, Anita; SCHÜLTER, Eugen; EKSTRAND, Maria L.; WONDWOSSEN, Amogne; KAISER, Rolf; MADHUSUDHAN, Mallur S.; PRASAD, Vinayaka R; SONNERBORG, Anders

    2014-01-01

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options. PMID:25102091

  8. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  9. Genetics Home Reference: complete plasminogen activator inhibitor 1 deficiency

    Science.gov (United States)

    ... well studied in a large family belonging to the Old Order Amish population of eastern and southern Indiana. Additional cases in North ... Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997 Jul 1;90( ...

  10. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    Science.gov (United States)

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  11. Epidemiology of Non-hereditary Angioedema

    DEFF Research Database (Denmark)

    Madsen, Flemming; Attermann, Jørn; Linneberg, Allan

    2012-01-01

    The prevalence of non-hereditary angioedema was investigated in a general population sample (n¿=¿7,931) and in a sample of Danish patients (n¿=¿7,433) tested for deficiency of functional complement C1 esterase inhibitor protein (functional C1 INH). The general population sample (44% response rate...

  12. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Directory of Open Access Journals (Sweden)

    Juan Roberto Rodriguez-Madoz

    Full Text Available The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272 improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  13. Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

    Science.gov (United States)

    Rodriguez-Madoz, Juan Roberto; San Jose-Eneriz, Edurne; Rabal, Obdulia; Zapata-Linares, Natalia; Miranda, Estibaliz; Rodriguez, Saray; Porciuncula, Angelo; Vilas-Zornoza, Amaia; Garate, Leire; Segura, Victor; Guruceaga, Elizabeth; Agirre, Xabier; Oyarzabal, Julen; Prosper, Felipe

    2017-01-01

    The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

  14. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.

    Science.gov (United States)

    Blake, James F; Xu, Rui; Bencsik, Josef R; Xiao, Dengming; Kallan, Nicholas C; Schlachter, Stephen; Mitchell, Ian S; Spencer, Keith L; Banka, Anna L; Wallace, Eli M; Gloor, Susan L; Martinson, Matthew; Woessner, Richard D; Vigers, Guy P A; Brandhuber, Barbara J; Liang, Jun; Safina, Brian S; Li, Jun; Zhang, Birong; Chabot, Christine; Do, Steven; Lee, Leslie; Oeh, Jason; Sampath, Deepak; Lee, Brian B; Lin, Kui; Liederer, Bianca M; Skelton, Nicholas J

    2012-09-27

    The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.

  15. Development of antibody-based c-Met inhibitors for targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Lee D

    2015-02-01

    Full Text Available Dongheon Lee, Eun-Sil Sung, Jin-Hyung Ahn, Sungwon An, Jiwon Huh, Weon-Kyoo You Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea Abstract: Signaling pathways mediated by receptor tyrosine kinases (RTKs and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics. Keywords: hepatocyte growth factor, ligands, receptor tyrosine kinase, signaling pathway, therapeutic agent

  16. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation.

    Science.gov (United States)

    Brogi, Simone; Butini, Stefania; Maramai, Samuele; Colombo, Raffaella; Verga, Laura; Lanni, Cristina; De Lorenzi, Ersilia; Lamponi, Stefania; Andreassi, Marco; Bartolini, Manuela; Andrisano, Vincenza; Novellino, Ettore; Campiani, Giuseppe; Brindisi, Margherita; Gemma, Sandra

    2014-07-01

    We recently described multifunctional tools (2a-c) as potent inhibitors of human Cholinesterases (ChEs) also able to modulate events correlated with Aβ aggregation. We herein propose a thorough biological and computational analysis aiming at understanding their mechanism of action at the molecular level. We determined the inhibitory potency of 2a-c on Aβ1-42 self-aggregation, the interference of 2a with the toxic Aβ oligomeric species and with the postaggregation states by capillary electrophoresis analysis and transmission electron microscopy. The modulation of Aβ toxicity was assessed for 2a and 2b on human neuroblastoma cells. The key interactions of 2a with Aβ and with the Aβ-preformed fibrils were computationally analyzed. 2a-c toxicity profile was also assessed (human hepatocytes and mouse fibroblasts). Our prototypical pluripotent analogue 2a interferes with Aβ oligomerization process thus reducing Aβ oligomers-mediated toxicity in human neuroblastoma cells. 2a also disrupts preformed fibrils. Computational studies highlighted the bases governing the diversified activities of 2a. Converging analytical, biological, and in silico data explained the mechanism of action of 2a on Aβ1-42 oligomers formation and against Aβ-preformed fibrils. This evidence, combined with toxicity data, will orient the future design of safer analogues. © 2014 John Wiley & Sons Ltd.

  17. Cytocidal activities of topoisomerase 1 inhibitors and 5-azacytidine against pheochromocytoma/paraganglioma cells in primary human tumor cultures and mouse cell lines.

    Directory of Open Access Journals (Sweden)

    James F Powers

    Full Text Available There is currently no effective treatment for metastatic pheochromocytomas and paragangliomas. A deficiency in current chemotherapy regimens is that the metastases usually grow very slowly. Drugs that target dividing tumor cells have therefore had limited success. To improve treatment, new strategies and valid experimental models are required for pre-clinical testing. However, development of models has itself been hampered by the absence of human pheochromocytoma/paraganglioma cell lines for cultures or xenografts. Topoisomerase 1 (TOP1 inhibitors are drugs that interfere with mechanisms that maintain DNA integrity during transcription in both quiescent and dividing cells. We used primary cultures of representative human tumors to establish the cytotoxicity of camptothecin, a prototypical TOP1 inhibitor, against non-dividing pheochromocytoma/paraganglioma cells, and then employed a mouse pheochromocytoma model (MPC to show that efficacy of low concentrations of camptothecin and other TOP1 inhibitors is increased by intermittent coadministration of sub-toxic concentrations of 5-azacytidine, a DNA methylation inhibitor that modulates transcription. We then tested the same drugs against a clonal MPC derivative that expresses CMV reporter-driven luciferase and GFP, intended for in vivo drug testing. Unexpectedly, luciferase expression, bioluminescence and GFP expression were paradoxically increased by both camptothecin and SN38, the active metabolite of irinotecan, thereby masking cell death. Expression of chromogranin A, a marker for neuroendocrine secretory granules, was not increased, indicating that the drug effects on levels of luciferase and GFP are specific to the GFP-luciferase construct rather than generalized cellular responses. Our findings provide proof of principle for use of TOP1 inhibitors against pheochromocytoma/paraganglioma and suggest novel strategies for enhancing efficacy and reducing toxicity by optimizing the combination and

  18. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  19. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  20. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  1. Lipase and esterase: to what extent can this classification be applied accurately?

    Directory of Open Access Journals (Sweden)

    Danielle Branta Lopes

    2011-09-01

    Full Text Available Enzyme technology is an ever-growing field of knowledge and, in recent years, this technology has raised renewed interest, due to the search for new paradigms in several productive processes. Lipases, esterases and cutinases are enzymes used in a wide range of processes involving synthesis and hydrolysis reactions. The objective of this work was to investigate and compare the specific lipase and esterase activities of five enzymes - four already classified as lipases and one classified as cutinase - in the presence of natural and synthetic substrates. All tested enzymes presented both esterase and lipase specific activities. The highest specific esterase activity was observed for Aspergillus 1068 lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate, while the highest specific lipase activity was observed for Geotrichum sp. lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate. These results display some interface-independent lipolytic activity for all lipases tested. This is in accordance with the rationale that a new and broader definition of lipases may be necessary.

  2. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  3. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors

    Science.gov (United States)

    Mamidala, Rajinikanth; Majumdar, Papiya; Jha, Kunal Kumar; Bathula, Chandramohan; Agarwal, Rahul; Chary, M. Thirumala; Mazumdar, H. K.; Munshi, Parthapratim; Sen, Subhabrata

    2016-05-01

    A library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1). The most active compound 4 displayed no cytotoxicity against normal mammalian COS7 cell line (~100 fold less inhibition at the EC50). Similar to camptothecin, 4 interacted with free LdTop1 as observed in the preincubation DNA relaxation inhibition experiment. It also displayed anti-protozoal activity against Leishmania donovani promastigote. Crystal structure investigation of 4 and its molecular modelling with LdTop1 revealed putative binding sites in the enzyme that could be harnessed to generate molecules with better potency.

  4. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  5. New Approaches of PARP-1 Inhibitors in Human Lung Cancer Cells and Cancer Stem-Like Cells by Some Selected Anthraquinone-Derived Small Molecules

    Science.gov (United States)

    Yu, Dah-Shyong; Huang, Kuo-Feng; Chou, Shih-Jie; Chen, Tsung-Chih; Lee, Chia-Chung; Chen, Chun-Liang; Chiou, Shih-Hwa; Huang, Hsu-Shan

    2013-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC) and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60) in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy. PMID:23451039

  6. SwissProt search result: AK107138 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107138 002-124-C12 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 4e-40 ...

  7. SwissProt search result: AK064554 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064554 002-112-C03 (P38571) Lysosomal acid lipase/cholesteryl ester hydrolase pre...cursor (EC 3.1.1.13) (LAL) (Acid cholesteryl ester hydrolase) (Sterol esterase) (Lipase A) (Cholesteryl esterase) LICH_HUMAN 6e-15 ...

  8. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2013-01-01

    Full Text Available Currently, hepatitis C virus (HCV infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin. The new therapy has significantly improved sustained virologic response (SVR; however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors.

  9. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC.

    Science.gov (United States)

    Reck, F; Marmor, S; Fisher, S; Wuonola, M A

    2001-06-04

    A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.

  10. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.

    Science.gov (United States)

    Komiya, Dai; Hori, Akane; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Koseki, Takuya; Fushinobu, Shinya

    2017-10-15

    Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis ( Al AXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. Al AXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that Al AXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of A lAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan. IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of

  11. Zymography Detection of a Bacterial Extracellular Thermoalkaline Esterase/Lipase Activity.

    Science.gov (United States)

    Tapizquent, María; Fernández, Marleny; Barreto, Georgina; Hernández, Zully; Contreras, Lellys M; Kurz, Liliana; Wilkesman, Jeff

    2017-01-01

    Lipases are esterases that occur widely in nature, yet those with commercial relevance are exclusively from microbial origin. Glycerol and long-chain fatty acids are the products after hydrolysis of esters bonds in saponifiable lipids catalyzed by lipases. In this work, we describe lipase/esterase activity contained in cell-free fractions from thermophilic bacteria, cultured in medium containing olive oil. Analysis of the cell-free fractions by electrotransference zymography, using tributyrin as substrate, revealed bands corresponding to lipase activity. The method is simple, fast, and inexpensive.

  12. Transcriptional factor PU.1 regulates decidual C1q expression in early pregnancy in human

    Directory of Open Access Journals (Sweden)

    Priyaa Madhukaran Raj

    2015-02-01

    Full Text Available C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells. Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue- specific. Recently, PU.1 has been shown to regulate C1q gene expression in dendritic cells and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  13. Alicyclobacillus acidocaldarius Thermophilic Esterase EST2's Activity in Milk and Cheese Models

    NARCIS (Netherlands)

    Mandrich, L.; Manco, M.; Rossie, M.; Floris, E.; Jansen-van den Bosch, T.; Smit, G.; Wouters, J.A.

    2006-01-01

    The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results

  14. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    Science.gov (United States)

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza; Siam, Rania; Mohamed, Yasmine M.

    2014-01-01

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II

  16. Effects of phosphodiesterase inhibitors on atrial dynamics induced by C-type natriuretic peptide in isolated beating rabbit atria

    International Nuclear Information System (INIS)

    Ding Dazhi; Cui Xun; Jin Xiunan; Lan Ying; Liu Liping; Hong Lan

    2010-01-01

    Objective: To investigate the effects of phosphodiesterase inhibitors (PDEI) on atrial dynamics induced by C-type natriuretic peptide (CNP) and the contents of cyclic nucleotide (cAMP, cGMP) in isolated beating rabbit atria. Methods: After the rabbits had been anesthetized, the hearts were removed rapidly. The left auricles were isolated and fixed on the atrial perfusion system. The atrial stroke volume and the pulse pressure were observed by CNP with or without PDEIs pretreatment. The contents of cAMP and cGMP were measured by radioimmunoassay. Results: (1)Compared with control cycle group, CNP (30.0 nmol · L -1 ) obviously decreased the atrial stroke volume and pulse pressure (P 0.05). (2)Compared with control cycle group, IBMX(1000.0 nmol · L -1 ), a non-selective inhibitor of PDE, significantly increased the atrial stroke volume, pulse pressure, cAMP and cGMP contents (P -1 ) plus CNP (30.0 nmol · L -1 )group and IBMX group (P>0.05). (3)Compared with control cycle group, EHNA(30.0 nmol · L -1 ), an inhibitor of PDE2, obviously decreased the atrial stroke volume and pulse pressure (P 0.05). EHNA(30.0 nmol · L -1 ) plus CNP (30.0 nmol · L -1 ) showed similar roles with EHNA only. (4)Compared with control cycle group, milrinone (1.0 nmol · L -1 ), an inhibitor of PDE3, significantly increased the content of cAMP (P 0.05). CNP (30.0 nmol · L -1 ) obviously decreased the atrial stroke volume and pulse pressure (P 0.05). Conclusion: CNP can inhibit atrial dynamics by increasing the content of cGMP, the different inhibitors of PDEs play different roles in the CNP-induced inhibition of atrial dynamics in isolated beating rabbit atria. (authors)

  17. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    Science.gov (United States)

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  18. A nomogram to estimate the HbA1c response to different DPP-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of 98 trials with 24 163 patients

    Science.gov (United States)

    Esposito, Katherine; Chiodini, Paolo; Maiorino, Maria Ida; Capuano, Annalisa; Cozzolino, Domenico; Petrizzo, Michela; Bellastella, Giuseppe; Giugliano, Dario

    2015-01-01

    Objectives To develop a nomogram for estimating the glycated haemoglobin (HbA1c) response to different dipeptidyl peptidase-4 (DPP-4) inhibitors in type 2 diabetes. Design A systematic review and meta-analysis of randomised controlled trials (RCTs) of DPP-4 inhibitors (vildagliptin, sitagliptin, saxagliptin, linagliptin and alogliptin) on HbA1c were conducted. Electronic searches were carried out up to December 2013. Trials were included if they were carried out on participants with type 2 diabetes, lasted at least 12 weeks, included at least 30 participants and had a final assessment of HbA1c. A random effect model was used to pool data. A nomogram was used to represent results of the metaregression model. Participants Adults with type 2 diabetes. Interventions Any DPP-4 inhibitor (vildagliptin, sitagliptin, saxagliptin, linagliptin or alogliptin). Outcome measures The HbA1c response to each DPP-4 inhibitor within 1 year of therapy. Results We screened 928 citations and reviewed 98 articles reporting 98 RCTs with 100 arms in 24 163 participants. There were 26 arms with vildagliptin, 37 with sitagliptin, 13 with saxagliptin, 13 with linagliptin and 11 with alogliptin. For all 100 arms, the mean baseline HbA1c value was 8.05% (64 mmol/mol); the decrease of HbA1c from baseline was −0.77% (95% CI −0.82 to −0.72%), with high heterogeneity (I2=96%). Multivariable metaregression model that included baseline HbA1c, type of DPP-4 inhibitor and fasting glucose explained 58% of variance between studies, with no significant interaction between them. Other factors, including age, previous diabetes drugs and duration of treatment added low predictive power (HbA1c reduction from baseline using the type of DPP-4 inhibitor, baseline values of HbA1c and fasting glucose. Conclusions Baseline HbA1c level and fasting glucose explain most of the variance in HbA1c change in response to DPP-4 inhibitors: each increase of 1.0% units HbA1c provides a 0.4–0.5% units greater

  19. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    International Nuclear Information System (INIS)

    Singh, Suman; Singhal, Rahul; Malhotra, B.D.

    2007-01-01

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL -1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL -1 and sensitivity as 5.4 x 10 -5 Abs. mg -1 dL -1

  20. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.

  1. Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein*

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M.; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-01-01

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (KD = 0.34–2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  2. Differential sensitivity of 5'UTR-NS5A recombinants of hepatitis C virus genotypes 1-6 to protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Humes, Daryl

    2014-01-01

    BACKGROUND & AIMS: Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5' untranslated region-NS5A (5-5A...... daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all...... protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency...

  3. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    the esterase activity of CA-II using 4-NPA as a substrate in 96-well plates. Dimethyl sulfoxide was used ... intensive search for novel drugs is ongoing, through synthesis of new ..... License (http://creativecommons.org/licenses/by/. 4.0) and the ...

  4. Improvements in or relating to antibodies active against human hemoglobin Asub(1C)

    International Nuclear Information System (INIS)

    Javid, J.; Cerami, A.; Koenig, R.J.; Pettis, P.K.

    1980-01-01

    A method is described for preparing an antibody against human hemoglobin Asub(1c) which is substantially free of cross-reactivity against the human hemoglobins A 0 , Asub(1a) and Asub(1b). The antibodies are collected from cats, goats or sheep following injections of purified hemoglobin Asub(1c) antigen since these animals do not naturally produce hemoglobin Asub(1c). A radioimmunoassay method is also described whereby these antibodies are used to determine the quantity of hemoglobin Asub(1c) in blood samples. This is a useful technique in the diagnosis of diabetes mellitus. (U.K.)

  5. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  6. A Styrene-alt-Maleic Acid Copolymer Is an Effective Inhibitor of R5 and X4 Human Immunodeficiency Virus Type 1 Infection

    Directory of Open Access Journals (Sweden)

    Vanessa Pirrone

    2010-01-01

    Full Text Available An alternating copolymer of styrene and maleic acid (alt-PSMA differs from other polyanionic antiviral agents in that the negative charges of alt-PSMA are provided by carboxylic acid groups instead of sulfate or sulfonate moieties. We hypothesized that alt-PSMA would have activity against human immunodeficiency virus type 1 (HIV-1 comparable to other polyanions, such as the related compound, poly(sodium 4-styrene sulfonate (PSS. In assays using cell lines and primary immune cells, alt-PSMA was characterized by low cytotoxicity and effective inhibition of infection by HIV-1 BaL and IIIB as well as clinical isolates of subtypes A, B, and C. In mechanism of action assays, in which each compound was added to cells and subsequently removed prior to HIV-1 infection (“washout” assay, alt-PSMA caused no enhancement of infection, while PSS washout increased infection 70% above control levels. These studies demonstrate that alt-PSMA is an effective HIV-1 inhibitor with properties that warrant further investigation.

  7. Pectin Methyl Esterase Activity Change in Intermediate Moisture Sun-Dried Figs after Storage

    Directory of Open Access Journals (Sweden)

    Dilek Demirbüker Kavak

    2015-12-01

    Full Text Available Intermediate moisture fruits can be obtained by rehydrating dried fruits. Intermediate moisture fruits are suitable for direct consumption compared to dry fruits and can be directly used in the production of various products such as bakery products, dairy products and candies. Aim of this study is to compare the pectin methyl esterase (PME activity of intermediate moisture figs which causes softening of the texture and to compare their microbial stability after 3 months storage period. For this purpose, dried figs were rehydrated in 30 and 80° C water until they reach 30% moisture content. Rehydrated samples were stored for 3 months at +4°C. Results showed that there was no statistically significant difference between the control samples and the samples rehydrated at 80°C according to the total viable counts. At the end of the storage period, results of residual PME activity in control samples was 24.1 μmol COOH min-1g-1, while it was found 17.4 μmol COOH min-1g-1 in samples rehydrated at 80°C. As a result rehydration conducted at 80°C provided 28% reduction in PME activity compared to the control samples rehydrated at 30°C, although it did not affect the microbial load significantly after storage.

  8. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    Science.gov (United States)

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  9. Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system

    International Nuclear Information System (INIS)

    Mangas, Iris; Vilanova, Eugenio; Estévez, Jorge

    2011-01-01

    Some published studies suggest that low level exposure to organophosphorus esters (OPs) may cause neurological and neurobehavioral effects at long term exposure. These effects cannot be explained by action on known targets. In this work, the interactions (inhibition, spontaneous reactivation and “ongoing inhibition”) of two model OPs (paraoxon, non neuropathy-inducer, and mipafox, neuropathy-inducer) with the chicken brain soluble esterases were evaluated. The best-fitting kinetic model with both inhibitors was compatible with three enzymatic components. The amplitudes (proportions) of the components detected with mipafox were similar to those obtained with paraoxon. These observations confirm the consistency of the results and the model applied and may be considered an external validation. The most sensitive component (Eα) for paraoxon (11–23% of activity, I 50 (30 min) = 9–11 nM) is also the most sensitive for mipafox (I 50 (30 min) = 4 nM). This component is spontaneously reactivated after inhibition with paraoxon. The second sensitive component to paraoxon (Eβ, 71–84% of activity; I 50 (30 min) = 1216 nM) is practically resistant to mipafox. The third component (Eγ, 5–8% of activity) is paraoxon resistant and has I 50 (30 min) of 3.4 μM with mipafox, similar to NTE (neuropathy target esterase). The role of these esterases remains unknown. Their high sensitivity suggests that they may either play a role in toxicity in low-level long-term exposure of organophosphate compounds or have a protective effect related with the spontaneous reactivation. They will have to be considered in further metabolic and toxicological studies. -- Research Highlights: ► Paraoxon and mipafox interactions have been evaluated with chicken soluble brain esterases. ► The paraoxon inhibition was analyzed considering the simultaneous spontaneous reactivation. ► The best-fitting kinetic models were compatible with a three enzymatic components. ► The amplitudes of the

  10. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396.

    Science.gov (United States)

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K; Westwood, Nicholas J; Adamson, Catherine S

    2016-09-15

    HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they

  11. Dampak Hipoksia Sistemik terhadap Malondialdehida, Glial Fibrillary Acidic Protein dan Aktivitas Asetilkolin Esterase Otak Tikus

    Directory of Open Access Journals (Sweden)

    Andriani Andriani

    2016-09-01

    Full Text Available Hipoksia sistemik menyebabkan berkurangnya oksigen dan energi di otak sehingga memicupenglepasan neurotransmiter asetilkolin, meningkatkan radikal bebas dan glial fibrillary acidic protein (GFAPyang berfungsi menjaga kekuatan membran. Tujuan penelitian untuk melihat gambaran adaptasi otak padahipoksia sistemik terhadap fungsi asetilkolin esterase, kerusakan membran sel neuron dan astrosit. Penelitiandilakukan di Laboratorium Biokimia & Biologi Molekuler FK Universitas Indonesia, pada tahun 2013.Penelitian ekperimental ini menggunakan hewan coba tikus spraque dawley yang diinduksi hipoksia sistemikyang diambil jaringan otak bagian korteks dan plasma tikus. Kelompok tikus terdiri atas kelompok kontrol,kelompok perlakuan induksi hipoksia hari ke-1, 3 hari, 5 hari dan hari ke-7. Parameter yang diukur adalahkadar malondialdehida (MDA otak dan plasma, aktivitas spesifik enzim AChE jaringan otak serta kadar GFAPjaringan otak. Hasil menunjukkan bahwa hipoksia sistemik tidak meningkatkankadar MDA otak dan plasma.Induksi hipoksia sistemik meningkatkan aktivitas spesifik enzim AChE dan kadar GFAP jaringan otak secarabermakna. Pada plasma tidak terjadi peningkatan kadar GFAP. Hipoksia sistemik selama hari ke-7 belummenyebabkan kerusakan oksidatif, namun memperlihatkan peningkatan aktivitas AChe dan adaptasi astrositmelalui peningkatan GFAP. Kata kunci: hipoksia, astrosit, glial fibrillary acidic protein, malondialdehida, asetilkolin esterase   Systemic Hypoxia Effect on Rat Brain Malondialdehyde, Glial FibrillaryAcidic Protein, and Acetylcholine Esterase Activity Abstract Sistemic hypoxia causes lack of oxygen and energy in brain that trigger the release of acetylcholine,free radical and Glial fibrillary acidic protein (GFAP, a specific protein in astrocyte cells that act to strenghtenastrocite membrane. The aim of the research was to evaluate the damages of brain in systemic hypoxiathrough activity of acetylcholine esterase, neuron and astrocyte membran

  12. [{sup 18}F]FETO: metabolic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Ettlinger, Dagmar E.; Machek, Michael; Rendl, Gundula; Karanikas, Georgios; Kletter, Kurt [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Wadsak, Wolfgang; Dudczak, Robert [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Ludwig-Boltzmann-Institute for Nuclear Medicine, Vienna (Austria); Mien, Leonhard-Key [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Pharmaceutic Technology and Biopharmaceutics, Vienna (Austria); Medical University of Vienna, Department of Psychiatry, Vienna (Austria); Wabnegger, Leila [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Medical University of Vienna, Department of Psychiatry, Vienna (Austria); Viernstein, Helmut [University of Vienna, Department of Pharmaceutic Technology and Biopharmaceutics, Vienna (Austria); Mitterhauser, Markus [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Pharmaceutic Technology and Biopharmaceutics, Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, Vienna (Austria)

    2006-08-15

    11{beta}-Hydroxylase is a key enzyme in the biosynthesis of adrenocortical steroid hormones and is a suitable target for the imaging of the adrenal cortex. [{sup 11}C]Metomidate (MTO), [{sup 11}C]etomidate (ETO) and desethyl-[{sup 18}F]fluoroethyl-etomidate (FETO) are potent inhibitors of this enzyme and are used for PET imaging of adrenocortical pathologies. The aims of this study were (1) to evaluate and compare the metabolic stability of MTO, ETO and FETO against esterases and (2) to investigate the metabolic pattern of FETO in vivo. In vitro assays were performed using different concentrations of MTO, ETO and FETO with constant concentrations of carboxylesterase. Human in vivo studies were performed with human blood samples drawn from the cubital vein. After sample clean-up, the serum was analysed by HPLC methods. In vitro assays showed Michaelis-Menten constants of 115.1 {mu}mol for FETO, 162.0 {mu}mol for MTO and 168.6 {mu}mol for ETO. Limiting velocities were 1.54 {mu}mol/min (FETO), 1.47 {mu}mol/min (MTO) and 1.35 {mu}mol/min (ETO). This implies insignificantly decreased esterase stability of FETO compared with MTO and ETO. In vivo investigations showed a rapid metabolisation of FETO within the first 10 min (2 min: 91.41%{+-}6.44%, n=6; 10 min: 23.78%{+-}5.54%, n=4) followed by a smooth decrease in FETO from 20 to 90 min (20 min: 11.23%{+-}3.79% n=4; 90 min: 3.68%{+-}3.65%, n=4). Recovery rate was 61.43%{+-}3.19% (n=12). In vitro experiments demonstrated that FETO stability against esterases is comparable to that of ETO and MTO. The metabolic profile showed that FETO kinetics in humans are fast. (orig.)

  13. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  14. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

    Science.gov (United States)

    Sainz, Bruno; Barretto, Naina; Martin, Danyelle N.; Hiraga, Nobuhiko; Imamura, Michio; Hussain, Snawar; Marsh, Katherine A.; Yu, Xuemei; Chayama, Kazuaki; Alrefai, Waddah A.; Uprichard, Susan L.

    2011-01-01

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent. PMID:22231557

  15. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    A novel ferulic acid esterase encoding gene CtFae, was successfully cloned from a highly esterase active strain of the thermophile ascomycetous fungus Chaetomium thermophilum var. dissitum; the gene was heterologously expressed in Pichia pastoris KM71H. The recombinant enzyme (CtFae) was purified...... to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  16. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  17. Estrogenic and esterase-inhibiting potency in rainwater in relation to pesticide concentrations, sampling season and location

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, T.; Brink, P.J. van den; Mos, L.; Linden, S.C. van der; Legler, J.; Koeman, J.H.; Murk, A.J

    2003-05-01

    Estrogenic potency of rainwater correlated well with organochlorine concentrations, but could not be attributed to specific pesticides. - In a year-round monitoring program (1998), pesticide composition and toxic potency of the mix of pollutants present in rainwater were measured. The goal of the study was to relate atmospheric deposition of toxic potency and pesticide composition to each other and to sampling period and local agricultural activity. Rainwater was collected in 26 consecutive periods of 14 days in a background location (BACK) and in two locations representative for different agricultural practices, i.e. intensive greenhouse horticulture (HORT) and flower bulb culture (BULB). Samples were chemically analyzed for carbamate (CARB), organophosphate (OP) and organochlorine (OC) pesticides and metabolites. Esterase inhibiting potency of rainwater extracts was measured in a specially developed bio-assay with honeybee esterases and was expressed as an equivalent concentration of the model inhibitor dichlorvos. Estrogenic potency of the extracts was measured in the ER-CALUX reporter gene assay and was expressed as an equivalent concentration of estradiol. Multivariate principal component analysis (PCA) techniques proved to be valuable tools to analyze the numerous pesticide concentrations in relation to toxic potency, sampling location, and sampling season. Pesticide composition in rainwater depended much more on sampling season than on sampling location, but differences between SPRING and SUMMER were mainly attributed to local differences in agricultural practice. On average, the esterase inhibiting potency exceeded the maximum permissible concentration set for dichlorvos in The Netherlands, and was significantly higher in HORT than in BACK and BULB. Esterase inhibition correlated significantly with OP and CARB concentrations, as expected given the working mechanism of these insecticides. The estrogenic potency incidentally exceeded NOEC levels reported for

  18. Estrogenic and esterase-inhibiting potency in rainwater in relation to pesticide concentrations, sampling season and location

    International Nuclear Information System (INIS)

    Hamers, T.; Brink, P.J. van den; Mos, L.; Linden, S.C. van der; Legler, J.; Koeman, J.H.; Murk, A.J.

    2003-01-01

    Estrogenic potency of rainwater correlated well with organochlorine concentrations, but could not be attributed to specific pesticides. - In a year-round monitoring program (1998), pesticide composition and toxic potency of the mix of pollutants present in rainwater were measured. The goal of the study was to relate atmospheric deposition of toxic potency and pesticide composition to each other and to sampling period and local agricultural activity. Rainwater was collected in 26 consecutive periods of 14 days in a background location (BACK) and in two locations representative for different agricultural practices, i.e. intensive greenhouse horticulture (HORT) and flower bulb culture (BULB). Samples were chemically analyzed for carbamate (CARB), organophosphate (OP) and organochlorine (OC) pesticides and metabolites. Esterase inhibiting potency of rainwater extracts was measured in a specially developed bio-assay with honeybee esterases and was expressed as an equivalent concentration of the model inhibitor dichlorvos. Estrogenic potency of the extracts was measured in the ER-CALUX reporter gene assay and was expressed as an equivalent concentration of estradiol. Multivariate principal component analysis (PCA) techniques proved to be valuable tools to analyze the numerous pesticide concentrations in relation to toxic potency, sampling location, and sampling season. Pesticide composition in rainwater depended much more on sampling season than on sampling location, but differences between SPRING and SUMMER were mainly attributed to local differences in agricultural practice. On average, the esterase inhibiting potency exceeded the maximum permissible concentration set for dichlorvos in The Netherlands, and was significantly higher in HORT than in BACK and BULB. Esterase inhibition correlated significantly with OP and CARB concentrations, as expected given the working mechanism of these insecticides. The estrogenic potency incidentally exceeded NOEC levels reported for

  19. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  20. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS.

    Science.gov (United States)

    Vignozzi, Linda; Gacci, Mauro; Cellai, Ilaria; Morelli, Annamaria; Maneschi, Elena; Comeglio, Paolo; Santi, Raffaella; Filippi, Sandra; Sebastianelli, Arcangelo; Nesi, Gabriella; Serni, Sergio; Carini, Marco; Maggi, Mario

    2013-09-01

    Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH-related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate. Evaluation of the effect of tadalafil and vardenafil on secretion of interleukin 8 (IL-8, a surrogate marker of prostate inflammation) by human myofibroblast prostatic cells (hBPH) exposed to different inflammatory stimuli. We preliminary evaluate histological features of prostatic inflammatory infiltrates in BPH patients enrolled in a randomized, double bind, placebo controlled study aimed at investigating the efficacy of vardenafil (10 mg/day, for 12 weeks) on BPH/LUTS. In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one. © 2013 Wiley Periodicals, Inc.

  1. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    International Nuclear Information System (INIS)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-01-01

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent

  2. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    Science.gov (United States)

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. [Memantine as add-on medication to acetylcholinesterase inhibitor therapy for Alzheimer dementia].

    Science.gov (United States)

    Haussmann, R; Donix, M

    2017-01-01

    Currently available data indicate superior therapeutic effects of combination treatment for Alzheimer dementia with memantine and acetylcholine esterase inhibitors in certain clinical contexts. Out of five randomized, placebo-controlled, double-blind trials two showed superior therapeutic effects in comparison to monotherapy with acetylcholinesterase inhibitors regarding various domains. Recently published meta-analyses and cost-benefit analyses also showed positive results. Recently published German guidelines for dementia treatment also take these new data into account and recommend combination treatment in patients with severe dementia on stable donepezil medication. This article gives an overview of current evidence for combination therapy.

  4. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  5. Synthesis of[11C]LY186126, an inhibitor of phosphodiesterase

    International Nuclear Information System (INIS)

    Prenant, C.; Crouzel, C.; Comar, D.; Robertson, D.W.

    1992-01-01

    LY186126 [1,3-dihydro-1,3,3-trimethyl-5-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyriddazinyl)-2H-indol-2-one ], an analogue of the cardiotonic agent indolidan, is a potent, selective and competitive inhibitor of an isozymic form of cyclic AMP phosphodiesterase. LY186126 was labelled with carbon-11 to permit pharmacological studies in the dog myocardium by positron emission tomography. Alkylation with [ 11 C]methyl iodide of N-norLY186126 (LY-197055) allowed the production of 1.7 GBq (50mCi) of [ 11 C]LY-186126 in 40 min. The product, was purified by HPLC. (author)

  6. In silico screening of potent natural inhibitor compounds against Human DOPA Decarboxylase for management of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2017-12-01

    Full Text Available Loss of dopaminergic neurons of the substantia nigra of the mid brain is a well studied pathophysiology of Parkinson’s disease (PD, is the second most common neurodegenerative disorder. To compensate dopamine levels at the Central Nervous System (CNS exogenous L-Dopa is generally administered. But the major part of the L-Dopa is metabolized by Dopa decarboxylase (DDC, E.C. 4.1.1.28, a pyridoxal 5’ –phosphate (PLP enzyme, which is abundant in CNS and hence, only 1-5% of L-Dopa reaches to dopaminergic neurons. In this context, co-administration of peripheral DDC inhibitors (carbidopa or benserazide has been successfully used for the symptomatic treatment of PD patients. But, due to use of synthetic drugs many adverse effects have been reported during treatment. Therefore, the current study is planned to discover some plant based potent natural inhibitors against human DDC as an alternative way for the management of PD. This study was conducted through virtual screening and molecular docking of DDC enzyme with phytochemicals like withania somnifera (ashwagandha, glycine max (soybean, vicia faba (broad bean, and marsilea quadrifolia (sunsunia etc to evaluate their inhibition properties. In silico study results shown a good binding affinity and predicted some of the phytochemicals as potent natural inhibitors against human DDC. This work could be validated further through experimental procedures.

  7. Effect of phenobarbital on inducing insecticide tolerance and esterase changes in Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Sousa-Polezzi

    2004-01-01

    Full Text Available The effect of phenobarbital (PB on the induction of tolerance to the organophosphorous insecticide temephos (TE was investigated in Aedes aegypti L4 larvae submitted to two different PB-treatments:(1 continuous treatment from the egg to the larval L4 stage and (2 discontinuous treatment in which L4 larvae were exposed for 30 h. Mosquitoes from two Brazilian cities were studied: São José do Rio Preto (SJ in São Paulo State and Goiânia (GO in Goiás State. According to criterions established by World Health Organization (WHO mosquitoes from SJ are organophosphate-susceptible while mosquitoes from GO are organophosphate-resistant. For both SJ and GO larvae the two different PB-treatments resulted in significantly increased tolerance (measured by reduced mortality to 0.01mg/L TE while for larvae exposed to 0.02 mg/L TE only continuous PB-treatment resulted in significantly increased TE-tolerance. The reduction of mortality rate was greater in SJ larvae than in GO larvae, confirming data from other organisms indicating that the effect of PB is more pronounced in susceptible strains. To test if oxidase enzymes were involved in PB-induced tolerance we treated PB-pretreated SJ and GO larvae with the oxidase inhibitor piperonyl butoxide (PBO before exposure to TE and observed increased (rather than decreased tolerance, suggesting that oxidases are not involved in the tolerance process and that PB and PBO can act in concert or synergistically. Esterase patterns of PB-pretreated larvae indicated that the cholinesterases EST-13 and EST-14 are involved in the PB-induced TE- tolerance, reinforcing a previous study carried out in our laboratory which suggested that increased esterase synthesis is the mechanism responsible for the development of insecticide resistance in Aedes aegypti.

  8. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Yuki Haga

    Full Text Available Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC. Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown.The expression of molecules involved in the mitogen-activated protein kinase (MAPK signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun was measured.The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines.The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.

  9. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    Science.gov (United States)

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 7-Chloro-11a-phenyl-2,3,5,10,11,11a-hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

    Directory of Open Access Journals (Sweden)

    Vahan Martirosyan

    2008-03-01

    Full Text Available The title compound, C18H15ClN2O2, is a potential human immunodeficiency virus type-1 (HIV-1 non-nucleoside reverse transcriptase inhibitor. The pyrrolidine ring adopts an envelope and the diazepine ring a boat conformation. In the crystal structure, two isomers (R and S form centrosymmetric dimers via N—H...O hydrogen bonds.

  11. Esterases no exame da estrutura populacional de Camu-camu (Myrciaria dubia (Kunth McVaugh-Myrtaceae Esterases for examining the population structure of Camu-camu (Myrciaria dubia (Kunth McVaugh-Myrtaceae

    Directory of Open Access Journals (Sweden)

    Aylton Saturnino Teixeira

    2004-01-01

    Full Text Available Dois sistemas enzimáticos (esterase e esterase-D, analisados pela técnica de eletroforese em gel de amido, em folhas jovens de plantas cultivadas em terra firme, de sementes provenientes de três amostras de populações naturais de camu-camu, Myrciaria dubia (Kunth McVaugh-Myrtaceae, procedentes de Iquitos, Boa Vista e Uatumã, revelaram a presença de 6 locos: Est-1, Est-2, Est-3, Est-4, Est-D1 e Est-D2. Dois dos seis locos gênicos examinados no presente estudo (Est-3 e Est-D2 mostraram-se polimórficos, sendo desse modo considerados valiosos no estudo de caracterização da estrutura populacional da espécie. Os padrões de polimorfismo revelados nos locos Est-3 e Est-D2 de camu-camu, são típicos de enzimas monoméricas e diméricas, respectivamente. O loco Est-3 apresentou um grande desbalanço genético dentro e entre as amostras populacionais examinadas, devido ao excessivo número observado de plantas heterozigóticas em relação ao número esperado. O loco Est-D2 apresentou um polimorfismo exclusivo para os alelos Est-D2¹,Est-D2² e Est-D2³, e um bom balanço genético na amostra populacional de Uatumã. Em função disso, dentre os demais locos gênicos aqui investigados, o loco Est-D2 parece ser o mais adequado para identificação e delimitação de prováveis estoques de camu-camu. Portanto, recomenda-se que esse loco esteja presente na lista dos marcadores isoenzimáticos a serem usados em futuras prospecções sobre genética populacional dessa espécie na região amazônica. Dados sobre a distribuição das freqüências alélicas, estimativas das distâncias genéticas, e estimativas de variação genética nos 6 locos de esterases examinados, foram eficazes na demonstração de diferenças genéticas entre as amostras populacionais examinadas da espécie. Os maiores valores de heterozigozidade média (0,1353; proporção de locos polimórficos (0,33 e número médio de alelos por loco (1,33 revelados na amostra

  12. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, Karl [University of Manchester, Wolfson Molecular Imaging Centre, Clinical Neuroscience, Manchester (United Kingdom); University of Cologne, Cologne (Germany)

    2008-03-15

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  13. Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum

    DEFF Research Database (Denmark)

    Udatha, D.B.R.K. Gupta; Madsen, Karina Marie; Panagiotou, Gianni

    2015-01-01

    The catalytic residues in carbohydrate esterase enzyme families constitute a highly conserved triad: serine, histidine and aspartic acid. This catalytic triad is generally located in a very sharp turn of the protein backbone structure, called the nucleophilic elbow and identified by the consensus...... sequence GXSXG. An esterase from Sorangium cellulosum Soce56 that contains five nucleophilic elbows was cloned and expressed in Escherichia coli and the function of each nucleophilic elbowed site was characterized. In order to elucidate the function of each nucleophilic elbow, site directed mutagenesis....... To our knowledge, this is the first report presenting the role of multiple nucleophilic elbows in the catalytic promiscuity of an esterase. Further structural analysis at protein unit level indicates the new evolutionary trajectories in emerging promiscuous esterases....

  14. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  15. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    Energy Technology Data Exchange (ETDEWEB)

    Madauss, Kevin P. [Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States); Burkhart, William A.; Consler, Thomas G. [Department of Biochemical Reagents and Assay Development, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States); Cowan, David J. [Department of Chemistry in the Center for Excellence in Metabolic Pathways Drug Discovery, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States); Gottschalk, William K. [Institute for Genome Sciences and Policy and Department of Medicine, Division of Neurology, Duke University, Durham, NC 27708 (United States); Miller, Aaron B. [Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States); Short, Steven A. [Department of Biochemical Reagents and Assay Development, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States); Tran, Thuy B. [Department of Physiology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27515 (United States); Williams, Shawn P., E-mail: shawn.p.williams@gsk.com [Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709 (United States)

    2009-05-01

    The use of biophysical assays permitted the identification of a specific human ACC2 carboxyl transferase (CT) domain mutant that binds inhibitors and crystallizes in their presence. This mutant led to determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed differences in the inhibitor conformation from the yeast protein complex that are caused by differing residues in the binding pocket. Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  16. Novel recombinant ethyl ferulate esterase from Burkholderia multivorans

    CSIR Research Space (South Africa)

    Rashamuse, KJ

    2007-11-01

    Full Text Available Isolation and identification of bacterial isolates with specific ferulic acid (FA) esterase activity and cloning of a gene encoding activity. A micro-organism with ethyl ferulate hydrolysing (EFH) activity was isolated by culture enrichment...

  17. Notes on electropherograms of eye-lens, muscle proteins and zymograms of muscle esterases of fish collected during the first Brazilian expedition to the Antarctica

    Directory of Open Access Journals (Sweden)

    Van Ngan Phan

    1985-01-01

    Full Text Available A preliminary study was carried out on electropherograms of eye-lens, muscle proteins and zymograms of muscle esterases of ten Notothenia larseni, six Notothenia nudifrons and one lanternfish, Electrona antarctica. The fish were collected by the R/V "Prof. W. Besnard" of the Institute of Oceanography, University of São Paulo, during the First Brazilian Expedition to Antarctica. Eye-lens proteins were analysed on cellulose acetate membrane, muscle proteins and esterases on gel of polyaorylamide. Eye-lens proteins showed three types of electropherograms for N. larseni, and two types for N. nudifrons. One of the electropherograms of N. larseni can be readily distinguished from those of N. nudifrons. Electropherograms of muscle proteins of N. larseni and N. nudifrons are very similar and, consist of sixteen to seventeen fractions. Electropherograms of muscle proteins of N. larseni are severely affected by the conservation of the extracts overnight under -20ºC. All N. nudifrons were of the same zymograms of esterases while those of N. larseni varied. Electropherograms of eye-lens and muscle proteins as well as zymograms of esterases of the lanternfish are different from those of nototheniids.Foi realizado um estudo preliminar sobre eletroferogramas de proteínas de cristalino e de músculo esquelético, e zimogramas de esterases de músculo esquelético de dez Notothenia larseni, seis Notothenia nudifrons e de um peixe-lanterna, Electrona antarctica. Os peixes foram coletados pelo N/Oc. "Prof. W. Besnard" do Instituto Oceanográfico da Universidade de São Paulo durante a I Expedição Brasileira à Antártica. As proteinas do cristalino foram analisadas em membranas de acetato de celulose, enquanto que as proteínas e esterases do músculo esquelético, em gel de poliacrilamida. As proteínas do cristalino apresentam três tipos distintos de eletroferogramas para N. larseni, e dois para N. nudifrons. Um dos eletroferogramas de N. larseni, pode ser

  18. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  19. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    Science.gov (United States)

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  20. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman [Central Mechanical Engineering Research Institute, G. Avenue, Durgapur 713209, West Bengal (India); Singhal, Rahul [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-01-23

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL{sup -1} (12 mM), shelf life of 1 month, detection limit of 12 mg dL{sup -1} and sensitivity as 5.4 x 10{sup -5} Abs. mg{sup -1} dL{sup -1}.

  1. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. The monotony of transferrin and esterase electrophoretic patterns in pirarucu, Arapaima gigas (Schinz, 1822) from Santa Cruz Lake, Tefé River, Amazonas, Brazil.

    Science.gov (United States)

    Teixeira, A S

    2008-05-07

    Starch gel electrophoresis was used for examining the transferrin gene locus (Tf) and two esterase gene loci (Est-1 and Est-D1) of a pirarucu (Arapaima gigas) population sample collected from Santa Cruz Lake, Tefé River, Amazonas, Brazil. The Tf locus was tentatively classified as being polymorphic, showing two double-banded patterns (Tf(12) and Tf(22)) of the three theoretically expected ones (Tf(11), Tf(12) and Tf(22)), presumably controlled by two co-dominant alleles, Tf(1) and Tf(2). The monotony detected in pirarucu Tf locus genotypes showing a very high proportion of the double-banded heterozygote pattern Tf(12) (95% of the sampled individuals) may indicate the possibility of their having come from representatives of the same brood begotten by a pair of fish, where a single-banded Tf(11) homozygote pattern male would have crossed with a single-banded Tf(22) homozygote pattern female, or vice versa. One zone of electrophoretic activity was detected in esterase, presumably controlled by a monomorphic Est-1 locus with the fixed allele Est-1(1) where all individuals showed the single-banded Est-1(11) homozygote pattern. Esterase-D also displayed one zone of electrophoretic activity, presumably controlled by a monomorphic Est-D1 locus with a fixed allele Est-D1(1) where all individuals revealed the single-banded Est-D1(11) genotype pattern. The monotony comprised by single-banded genotype patterns in both esterase systems tested may also indicate the possibility of the individuals from the sample examined having come from representatives of the same brood begotten by a pair of fish with both the male and female having the same genotypes.

  3. Identification and characterization of a GDSL esterase gene located proximal to the swr quorum-sensing system of Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Riedel, K.; Talker-Huiber, D.; Givskov, Michael Christian

    2003-01-01

    direction, designated estA, which encodes an esterase that belongs to family II of lipolytic enzymes. EstA was heterologously expressed in Escherichia coli, and the substrate specificity of the enzyme was determined in crude extracts. With the aid of zymograms visualizing EstA on polyacrylamide gels...... and by the analysis of a transcriptional fusion of the estA promoter to the promoterless lux4B genes, we showed that expression of the esterase is not regulated by the swr quorum-sensing system. An estA mutant was generated and was found to exhibit growth defects on minimal medium containing Tween 20 or Tween 80...

  4. ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Anchit Khanna

    2011-03-01

    Full Text Available EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40-80% in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal -27 to -107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of

  5. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    Science.gov (United States)

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    Directory of Open Access Journals (Sweden)

    Pablo Luis Santo-Orihuela

    2013-12-01

    Full Text Available The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia and from domiciliary areas, including El Palmar (Bolivia and La Pista (Argentina. Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR value (44.90 compared to the susceptible reference strain (NFS, whereas the Veinte de Octubre samples had the lowest value (0.50. Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively. The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP.

  7. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

    Science.gov (United States)

    Chuck, Chi-Pang; Chen, Chao; Ke, Zhihai; Wan, David Chi-Cheong; Chow, Hak-Fun; Wong, Kam-Bo

    2013-01-01

    Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation.

    Science.gov (United States)

    Chen, Kai; Duan, Wenxiu; Han, Qianqian; Sun, Xuan; Li, Wenqian; Hu, Shuangyun; Wan, Jiajia; Wu, Jiang; Ge, Yushu; Liu, Dan

    2018-03-08

    Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.

  9. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  10. Usefulness of Leukocyte Esterase Test Versus Rapid Strep Test for Diagnosis of Acute Strep Pharyngitis

    Directory of Open Access Journals (Sweden)

    Kumara V. Nibhanipudi MD

    2015-08-01

    Full Text Available Objective: A study to compare the usage of throat swab testing for leukocyte esterase on a test strip(urine dip stick-multi stick to rapid strep test for rapid diagnosis of Group A Beta hemolytic streptococci in cases of acute pharyngitis in children. Hypothesis: The testing of throat swab for leukocyte esterase on test strip currently used for urine testing may be used to detect throat infection and might be as useful as rapid strep. Methods: All patients who come with a complaint of sore throat and fever were examined clinically for erythema of pharynx, tonsils and also for any exudates. Informed consent was obtained from the parents and assent from the subjects. 3 swabs were taken from pharyngo-tonsillar region, testing for culture, rapid strep & Leukocyte Esterase. Results: Total number is 100. Cultures 9(+; for rapid strep== 84(- and16 (+; For LE== 80(- and 20(+ Statistics: From data configuration Rapid Strep versus LE test don’t seem to be a random (independent assignment but extremely aligned. The Statistical results show rapid and LE show very agreeable results. Calculated Value of Chi Squared Exceeds Tabulated under 1 Degree Of Freedom (P<.0.0001 reject Null Hypothesis and Conclude Alternative Conclusions: Leukocyte esterase on throat swab is as useful as rapid strep test for rapid diagnosis of strep pharyngitis on test strip currently used for urine dip stick causing acute pharyngitis in children.

  11. Selective Inhibitors of Kv11.1 Regulate IL-6 Expression by Macrophages in Response to TLR/IL-1R Ligands

    Directory of Open Access Journals (Sweden)

    Cheryl Hunter

    2010-01-01

    Full Text Available The mechanism by which the platelet-endothelial cell adhesion molecule PECAM-1 regulates leukodiapedesis, vascular endothelial integrity, and proinflammatory cytokine expression in vivo is not known. We recently identified PECAM-1 as a negative regulator of Kv11.1, a specific voltage-gated potassium channel that functioned in human macrophages to reset a resting membrane potential following depolarization. We demonstrate here that dofetilide (DOF, a selective inhibitor of the Kv11.1 current, had a profound inhibitory effect on neutrophil recruitment in mice following TLR/IL-1R–elicited peritonitis or intrascrotal injection of IL-1β, but had no effect on responses seen with TNFα. Furthermore, inhibitors of Kv11.1 (DOF, E4031, and astemizole, but not Kv1.3 (margatoxin, suppressed the expression of IL-6 and MCP-1 cytokines by murine resident peritoneal macrophages, while again having no effect on TNFα. In contrast, IL-6 expression by peritoneal mesothelial cells was unaffected. Using murine P388 cells, which lack endogenous C/EBPβexpression and are unresponsive to LPS for the expression of both IL-6 and MCP-1, we observed that DOF inhibited LPS-induced expression of IL-6 mRNA following ectopic expression of wild-type C/EBPβ, but not a serine-64 point mutant. Finally, DOF inhibited the constitutive activation of cdk2 in murine peritoneal macrophages; cdk2 is known to phosphorylate C/EBPβ at serine-64. Taken together, our results implicate a potential role for Kv11.1 in regulating cdk2 and C/EBPβ activity, where robust transactivation of both IL-6 and MCP-1 transcription is known to be dependent on serine-64 of C/EBPβ. Our data might also explain the altered phenotypes displayed by PECAM-1 knockout mice in several disease models.

  12. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  13. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    Science.gov (United States)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  14. Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation.

    Directory of Open Access Journals (Sweden)

    Lianghua Bin

    Full Text Available The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq profiling approach, we found that forkhead box c 1 (FOXC1 was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.

  15. Validation of Simultaneous Quantitative Method of HIV Protease Inhibitors Atazanavir, Darunavir and Ritonavir in Human Plasma by UPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Tulsidas Mishra

    2014-01-01

    Full Text Available Objectives. HIV protease inhibitors are used in the treatment of patients suffering from AIDS and they act at the final stage of viral replication by interfering with the HIV protease enzyme. The paper describes a selective, sensitive, and robust method for simultaneous determination of three protease inhibitors atazanavir, darunavir and ritonavir in human plasma by ultra performance liquid chromatography-tandem mass spectrometry. Materials and Methods. The sample pretreatment consisted of solid phase extraction of analytes and their deuterated analogs as internal standards from 50 μL human plasma. Chromatographic separation of analytes was performed on Waters Acquity UPLC C18 (50 × 2.1 mm, 1.7 μm column under gradient conditions using 10 mM ammonium formate, pH 4.0, and acetonitrile as the mobile phase. Results. The method was established over a concentration range of 5.0–6000 ng/mL for atazanavir, 5.0–5000 ng/mL for darunavir and 1.0–500 ng/mL for ritonavir. Accuracy, precision, matrix effect, recovery, and stability of the analytes were evaluated as per US FDA guidelines. Conclusions. The efficiency of sample preparation, short analysis time, and high selectivity permit simultaneous estimation of these inhibitors. The validated method can be useful in determining plasma concentration of these protease inhibitors for therapeutic drug monitoring and in high throughput clinical studies.

  16. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1).

    Science.gov (United States)

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2017-05-01

    Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Subnanomolar Inhibitor of Cytochrome bc1 Complex Designed via Optimizing Interaction with Conformationally Flexible Residues

    Science.gov (United States)

    Zhao, Pei-Liang; Wang, Le; Zhu, Xiao-Lei; Huang, Xiaoqin; Zhan, Chang-Guo; Wu, Jia-Wei; Yang, Guang-Fu

    2009-01-01

    Cytochrome bc1 complex (EC 1.10.2.2, bc1), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc1 complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective π-π interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the π-π interaction with conformationally flexible residues was proposed to design and discover new bc1 inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c with a Ki value of 570 pM was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc1 inhibitors including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc1 inhibitor discovered from structure-based design with a potency of subnanomolar Ki value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental Ki values with a correlation coefficient of r2 = 0.89. The further inhibitory kinetics studies revealed that compound 5c is a non-competitive inhibitor with respect to substrate cytochrome c, but is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar Ki potency and slow dissociation rate constant (k−0 = 0.00358 s−1), compound 5c could be used as a specific probe for further elucidation of the mechanism of bc1 function and as a new lead compound for future drug discovery. PMID:19928849

  18. Resistance analysis and characterization of NITD008 as an adenosine analog inhibitor against hepatitis C virus.

    Science.gov (United States)

    Qing, Jie; Luo, Rui; Wang, Yaxin; Nong, Junxiu; Wu, Ming; Shao, Yan; Tang, Ruoyi; Yu, Xi; Yin, Zheng; Sun, Yuna

    2016-02-01

    Hepatitis disease caused by hepatitis C virus (HCV) is a severe threat to global public health, affecting approximately 3% of the world's population. Sofosbuvir (PSI-7977), a uridine nucleotide analog inhibitor targeting the HCV NS5B polymerase, was approved by FDA at the end of 2013 and represents a key step towards a new era in the management of HCV infection. Previous study identified NITD008, an adenosine nucleoside analog, as the specific inhibitor against dengue virus and showed good antiviral effect on other flaviviruses or enteroviruses. In this report, we systematically analyzed the anti-HCV profile of NITD008, which was discovered to effectively suppress the replication of different strains of HCV in human hepatoma cells with a low nanomolar activity. On genotype 2a virus, or 2a, 1a, and 1b replicon cells, EC50 values were 8.7 nM, 93.3 nM, 60.0 nM and 67.2 nM, and selective index values were >2298.9, >214.4, >333.3, >298.5 respectively. We demonstrated that resistance to NITD008 was conferred by mutation in NS5B (S282T) in the HCV infectious virus genotype 2a (JFH-1). Then, we compared the resistant profiles of NITD008 and PSI-7977, and found that the folds change of EC50 of NITD008 to full replicon cells containing mutation S282T was much bigger than PSI-7977(folds 76.50 vs. 4.52). Analysis of NITD008 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of NITD008 was not completely similar to PSI-7977, and meanwhile, S282T resistant mutation to NITD008 emerge more easily in cell culture than PSI-7977. Interestingly, NITD008 displayed significant synergistic effects with the NS5B polymerase inhibitor PSI-7977, however, only additive effects with alpha interferon (IFNα-2b), ribavirin, and an NS3 protease inhibitor. These results verify that NITD008 is an effective analog inhibitor against hepatitis C virus and a good research tool as a supplement to other types of nucleoside analogs. Copyright

  19. Pronounced radiosensitization of cultured human cancer cells by COX inhibitor under acidic microenvironment

    International Nuclear Information System (INIS)

    Shah, Tushar; Ryu, Samuel; Lee, Ho Jun; Brown, Stephen; Kim, Jae Ho

    2002-01-01

    Purpose: To demonstrate the influence of pH on the cytotoxicity and radiosensitization by COX (cyclooxygenase) -1 and -2 inhibitors using established human cancer cells in culture. Methods and Materials: Nonselective COX inhibitor, ibuprofen (IB), and selective COX-2 inhibitor, SC-236, were used to determine the cytotoxicity and radiosensitization at varying pH of culture media. Human colon carcinoma cell line (HT-29) was exposed to the drug alone and in combination with radiation at different pH of the cell culture media. The end point was clonogenic ability of the single-plated cells after the treatment. Results: Cytotoxicity and radiosensitization of IB increased with higher drug concentration and longer exposure time. The most significant radiosensitization was seen with IB (1.5 mM) for 2-h treatment at pH 6.7 before irradiation. The dose-modifying factor as defined by the ratio of radiation doses required to achieve the same effect on cell survival was 1.8 at 10% survival level. In contrast, SC-236 (50 μM for 2-8 h) showed no pH-dependent cytotoxicity. There was modest increase in the cell killing at lower doses of radiation. Conclusion: An acidic pH was an important factor affecting the increased cytotoxicity and radiosensitization by ibuprofen. Radiation response was enhanced at shoulder portion of the cell survival curve by selective COX-2 inhibitor

  20. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  1. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast.

    Science.gov (United States)

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2011-02-01

    Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. Ten healthy subjects in a randomized cross-over study took gemfibrozil 600 mg or placebo twice daily for 5 days, and on day 3, a single oral dose of 20 mg zafirlukast. The plasma concentrations of zafirlukast were measured for 72 h postdose. The mean total area under the plasma concentration-time curve of zafirlukast during the gemfibrozil phase was 102% (geometric mean ratio; 95% confidence interval 89-116%) of that during the placebo phase. Furthermore, there were no statistically significant differences in the peak plasma concentration, time of peak concentration, or elimination half-life of zafirlukast between the phases. Gemfibrozil has no effect on the pharmacokinetics of zafirlukast, indicating that CYP2C8 does not play a significant role in the elimination of zafirlukast.

  2. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    Science.gov (United States)

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  3. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  4. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  5. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.; Ghazy, Mohamed A.; Sayed, Ahmed; Ouf, Amged; El-Dorry, Hamza; Siam, Rania

    2013-01-01

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  6. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  7. Synthesis and structure activity relationships of carbamimidoylcarbamate derivatives as novel vascular adhesion protein-1 inhibitors.

    Science.gov (United States)

    Yamaki, Susumu; Yamada, Hiroyoshi; Nagashima, Akira; Kondo, Mitsuhiro; Shimada, Yoshiaki; Kadono, Keitaro; Yoshihara, Kosei

    2017-11-01

    Vascular adhesion protein-1 (VAP-1) is a promising therapeutic target for the treatment of diabetic nephropathy. Here, we conducted structural optimization of the glycine amide derivative 1, which we previously reported as a novel VAP-1 inhibitor, to improve stability in dog and monkey plasma, and aqueous solubility. By chemical modification of the right part in the glycine amide derivative, we identified the carbamimidoylcarbamate derivative 20c, which showed stability in dog and monkey plasma while maintaining VAP-1 inhibitory activity. We also found that conversion of the pyrimidine ring in 20c into saturated rings was effective for improving aqueous solubility. This led to the identification of 28a and 35 as moderate VAP-1 inhibitors with excellent aqueous solubility. Further optimization led to the identification of 2-fluoro-3-{3-[(6-methylpyridin-3-yl)oxy]azetidin-1-yl}benzyl carbamimidoylcarbamate (40b), which showed similar human VAP-1 inhibitory activity to 1 with improved aqueous solubility. 40b showed more potent ex vivo efficacy than 1, with rat plasma VAP-1 inhibitory activity of 92% at 1h after oral administration at 0.3mg/kg. In our pharmacokinetic study, 40b showed good oral bioavailability in rats, dogs, and monkeys, which may be due to its improved stability in dog and monkey plasma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  9. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  10. Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress.

    Science.gov (United States)

    Lu, Jingtao; Miyakawa, Kazuhisa; Roth, Robert A; Ganey, Patricia E

    2013-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, α-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. α-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity.

  11. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF).

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-08-01

    Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. B-type esterases in the snail Xeropicta derbentina: An enzymological analysis to evaluate their use as biomarkers of pesticide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Laguerre, Christel [Universite d' Avignon et des Pays de Vaucluse, UMR 406 UAPV/INRA, F-84914 Avignon (France); INRA, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, F-84914 Avignon (France); Sanchez-Hernandez, Juan C. [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo (Spain); Koehler, Heinz R. [Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Strasse 20, D-72072 Tuebingen (Germany); Triebskorn, Rita [Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Strasse 20, D-72072 Tuebingen (Germany); Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg (Germany); Capowiez, Yvan [INRA, Unite PSH, F- 84914 Avignon (France); Rault, Magali [Universite d' Avignon et des Pays de Vaucluse, UMR 406 UAPV/INRA, F-84914 Avignon (France); INRA, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, F-84914 Avignon (France); Mazzia, Christophe [Universite d' Avignon et des Pays de Vaucluse, UMR 406 UAPV/INRA, F-84914 Avignon (France); INRA, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, F-84914 Avignon (France)], E-mail: mazzia@avignon.inra.fr

    2009-01-15

    The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (K{sub m} = 77.2 mM; V{sub max} = 38.2 mU/mg protein) and 1-naphthyl acetate (K{sub m} = 222 mM, V{sub max} = 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 = 1.35 x 10{sup -5}-3.80 x 10{sup -8} M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2-aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 = 1.20 x 10{sup -5}-2.98 x 10{sup -8} M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions. - Characterization of the B-type esterases in the terrestrial snail Xeropicta derbentina in order to evaluate pesticide exposure.

  13. Research of small quaternary AChE inhibitors as pretreatment of OP poisoning

    International Nuclear Information System (INIS)

    Musilek, K.; Komloova, M.; Holas, O.; Opletalova, V.; Pohanka, M.; Kuca, K.

    2009-01-01

    Small quaternary AChE inhibitors are used (e.g. pyridostigmine) or scoped (e.g. SAD-128) for pretreatment against organophosphate intoxication [1]. The pretreatment is based on competitive inhibition of AChE prior to organophosphate (OP) poisoning. Consequently, the OP can not influence the inhibited AChE and is degraded by other esterases. Although various competitive inhibitors are used globally, pyridostigmine still remains the most broaden. Its side effects including gastrointestinal effects (nausea, intestinal obstruction), increased bronchial secretion, cardiac arrhythmia or cholinergic crisis are well described. Moreover, some bisquaternary competitive inhibitors (e.g. SAD-128) were used to decrease lethal effects of OP poisoning in vivo. The further studies dealing with SAD-128 showed its increased ability to interact with brain muscarinic acetylcholine receptors as allosteric inhibitors [2]. The small molecules derived from quaternized pyridine, quinoline and isoquinoline were designed as AChE inhibitors. Their ability to inhibit AChE or BChE was determined in vitro using IC50. The IC50 data were compared within each group of compounds with emphasis on selectivity AChE versus BChE. The overall study will be presented. The work was supported by Ministry of Defence of Czech Republic No. OVUOFVZ200805.(author)

  14. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    Science.gov (United States)

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  15. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration.

    Science.gov (United States)

    Heathcote, Dean A; Patel, Hetal; Kroll, Sebastian H B; Hazel, Pascale; Periyasamy, Manikandan; Alikian, Mary; Kanneganti, Seshu K; Jogalekar, Ashutosh S; Scheiper, Bodo; Barbazanges, Marion; Blum, Andreas; Brackow, Jan; Siwicka, Alekasandra; Pace, Robert D M; Fuchter, Matthew J; Snyder, James P; Liotta, Dennis C; Freemont, Paul S; Aboagye, Eric O; Coombes, R Charles; Barrett, Anthony G M; Ali, Simak

    2010-12-23

    Cyclin-dependent protein kinases (CDKs) are central to the appropriate regulation of cell proliferation, apoptosis, and gene expression. Abnormalities in CDK activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Here, we report the identification of a pyrazolo[1,5-a]pyrimidine derived compound, 4k (BS-194), as a selective and potent CDK inhibitor, which inhibits CDK2, CDK1, CDK5, CDK7, and CDK9 (IC₅₀= 3, 30, 30, 250, and 90 nmol/L, respectively). Cell-based studies showed inhibition of the phosphorylation of CDK substrates, Rb and the RNA polymerase II C-terminal domain, down-regulation of cyclins A, E, and D1, and cell cycle block in the S and G₂/M phases. Consistent with these findings, 4k demonstrated potent antiproliferative activity in 60 cancer cell lines tested (mean GI₅₀= 280 nmol/L). Pharmacokinetic studies showed that 4k is orally bioavailable, with an elimination half-life of 178 min following oral dosing in mice. When administered at a concentration of 25 mg/kg orally, 4k inhibited human tumor xenografts and suppressed CDK substrate phosphorylation. These findings identify 4k as a novel, potent CDK selective inhibitor with potential for oral delivery in cancer patients.

  16. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)

    International Nuclear Information System (INIS)

    Wang, Xin-Xin; Lv, Xia; Li, Shi-Yang; Hou, Jie; Ning, Jing; Wang, Jia-Yue; Cao, Yun-Feng; Ge, Guang-Bo; Guo, Bin; Yang, Ling

    2015-01-01

    As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe for UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (K i ) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the K i values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury. - Graphical abstract: LC-UV fingerprint and UGT1A1 inhibition profiles were combined to identity and characterize the natural inhibitors of UGT1A1 in F. psoraleae for the first time. Five major components in F. psoraleae were identified as strong

  17. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Xin [Liaoning Medical University, Jinzhou, Liaoning (China); Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Lv, Xia; Li, Shi-Yang [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Hou, Jie [Dalian Medical University, Dalian 116044 (China); Ning, Jing [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian Medical University, Dalian 116044 (China); Wang, Jia-Yue [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cao, Yun-Feng [Liaoning Medical University, Jinzhou, Liaoning (China); Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Ge, Guang-Bo, E-mail: geguangbo@dicp.ac.cn [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Guo, Bin, E-mail: jyguobin@126.com [Liaoning Medical University, Jinzhou, Liaoning (China); Yang, Ling [Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China)

    2015-11-15

    As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe for UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (K{sub i}) values lower than 1 μM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the K{sub i} values ranging from 1.61 to 9.86 μM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury. - Graphical abstract: LC-UV fingerprint and UGT1A1 inhibition profiles were combined to identity and characterize the natural inhibitors of UGT1A1 in F. psoraleae for the first time. Five major components in F. psoraleae were identified as

  18. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    Science.gov (United States)

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  19. Esterase-D and chromosome patterns in Central Amazon piranha (Serrasalmus rhombeus Linnaeus, 1766 from Lake Catalão

    Directory of Open Access Journals (Sweden)

    Aylton Saturnino Teixeira

    2006-01-01

    Full Text Available This study presents additional genetic data on piranha (Serrasalmus rhombeus Linnaeus, 1766 complex previously diagnosed due to the presence of distinct cytotypes 2n = 58 and 2n = 60. Three esterase-D enzyme loci (Est-D1, Est-D2 and Est-D3 were examined and complemented with chromosomal data from 66 piranha specimens collected from Lake Catalão. For all specimens the Est-D1 and Est-D2 loci were monomorphic. In contrast, the Est-D3 locus was polymorphic with genotypes and alleles being differentially distributed in the previously described cytotypes and served as the basis for detecting a new cytotype (2n = 60 B. In cytotype 2n = 58 the Est-D3 locus was also polymorphic and presented Mendelian allelic segregation with four genotypes (Est-D3(11, Est-D3(12, Est-D3(22 and Est-D3(33 out of six theoretically possible genotypes, presumably encoded by alleles Est-D3¹ (frequency = 0.237, EsT-D3² (0.710 and Est-D3³ (0.053. A Chi-squared (chi2 test for Hardy-Weinberg equilibrium was applied to the Est-D3 locus and revealed a genetic unbalance in cytotype 2n = 58, indicating the probable existence in the surveyed area of different stocks for that karyotypic structure. A silent null allele (Est-D3(0 with a high frequency (0.959 occurred exclusively in the 2n = 60 cytotype. On the other hand, the new cytotype 2n = 60 B described here for the first time was monomorphic for the presumably fixed Est-D3³ allele. The data as a whole should contribute to the better understanding the rhombeus complex taxonomic status definition in the Central Amazon.

  20. 5,6-Dihydro-5-aza-2’-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors

    OpenAIRE

    Rawson, Jonathan M.; Heineman, Richard H.; Beach, Lauren B.; Martin, Jessica L.; Schnettler, Erica K.; Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2013-01-01

    The nucleoside analog 5,6-dihydro-5-aza-2’-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C ...

  1. Effects of piperonyl butoxide on the toxicity of the organophosphate temephos and the role of esterases in the insecticide resistance of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Boscolli Barbosa Pereira

    2014-10-01

    Full Text Available Introduction The effects of piperonyl butoxide (PBO on the toxicity of the organophosphate temephos (TE and the role of esterases in the resistance of Aedes aegypti to this insecticide were evaluated. Methods A. aegypti L4 larvae susceptible and resistant to TE were pre-treated with PBO solutions in acetone at concentrations of 0.125, 0.25, 0.5, 1, and 2% for 24h and subsequently exposed to a diagnostic concentration of 0.02mg/L aqueous TE solution. The esterase activity of the larvae extracts pre-treated with varying PBO concentrations and exposed to TE for three time periods was determined. Results At concentrations of 0.25, 0.5, 1, and 2%, PBO showed a significant synergistic effect with TE toxicity. High levels of esterase activity were associated with the survival of A. aegypti L4 larvae exposed to TE only. Conclusions The results of the biochemical assays suggest that PBO has a significant inhibitory effect on the total esterase activity in A. aegypti larvae.

  2. Development of potent inhibitors of the coxsackievirus 3C protease

    International Nuclear Information System (INIS)

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin; Kim, Yong-Chul

    2007-01-01

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro

  3. C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Kasetty, Gopinath; Mörgelin, Matthias; Rydengård, Victoria; Albiger, Barbara; Lundqvist, Katarina; Malmsten, Martin; Schmidtchen, Artur

    2010-09-03

    Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the "classic" human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.

  4. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy.

    Directory of Open Access Journals (Sweden)

    Eric K Hoobler

    Full Text Available We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11 and human 5-lipoxygenase (5-LOX with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM and CYP51 (IC50 = 43 nM in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.

  5. Hepatitis C virus inhibitor synergism suggests multistep interactions between heat-shock protein 90 and hepatitis C virus replication

    Science.gov (United States)

    Kubota, Naoko; Nomoto, Masataka; Hwang, Gi-Wook; Watanabe, Toshihiko; Kohara, Michinori; Wakita, Takaji; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    AIM: To address the effect of heat-shock protein 90 (HSP90) inhibitors on the release of the hepatitis C virus (HCV), a cell culture-derived HCV (JFH1/HCVcc) from Huh-7 cells was examined. METHODS: We quantified both the intracellular and extracellular (culture medium) levels of the components (RNA and core) of JFH-1/HCVcc. The intracellular HCV RNA and core levels were determined after the JFH1/HCVcc-infected Huh-7 cells were treated with radicicol for 36 h. The extracellular HCV RNA and core protein levels were determined from the medium of the last 24 h of radicicol treatment. To determine the possible role of the HSP90 inhibitor in HCV release, we examined the effect of a combined application of low doses of the HSP90 inhibitor radicicol and the RNA replication inhibitors cyclosporin A (CsA) or interferon. Finally, we statistically examined the combined effect of radicicol and CsA using the combination index (CI) and graphical representation proposed by Chou and Talalay. RESULTS: We found that the HSP90 inhibitors had greater inhibitory effects on the HCV RNA and core protein levels measured in the medium than inside the cells. This inhibitory effect was observed in the presence of a low level of a known RNA replication inhibitor (CsA or interferon-α). Treating the cells with a combination of radicicol and cyclosporin A for 24 h resulted in significant synergy (CI < 1) that affected the release of both the viral RNA and the core protein. CONCLUSION: In addition to having an inhibitory effect on RNA replication, HSP90 inhibitors may interfere with an HCV replication step that occurs after the synthesis of viral RNA, such as assembly and release. PMID:26925202

  6. EVALUATION OF ESTERASE POLYMORPHISMS IN MATURE SEEDS OF RADISH (RAPHANUS SATIVUS L. ACCESSIONS OF VIR COLLECTION

    Directory of Open Access Journals (Sweden)

    A. S. Rudakova

    2017-01-01

    Full Text Available A biochemical evaluation of 25 radish accessions (Raphanus sativus L. on esterase isozymes of mature seeds has been carried out. The results of the experiments showed a wide range of diversity among the genotypes based on electrophoretic zones of esterase isoenzymes. The revealed isoenzyme complex of esterases was represented by eight isoforms with molecular weights from 37.7 kD to 57.6 kD. All accessions were divided into 13 electrophoretic zymotypes, differing from each other by the presence or absence of definite zones. The most often observed electrophoretic zymo-type is Gr. 1, which includes 24% of the total number of accessions evaluated. There are 8 zymotypes (Gr. 6 Gr. 13 with a frequency of occurrence 4%. Three groups (Gr. 2 – Gr. 4 had the same frequency of occurrence – 12%. Zimotype of Gr. 5 containes the maximum number of zones – 8. 2 zimotypes – Gr. 3 and Gr. 12 had the smallest number of 4 zones. Two zones of esterases – zones 7 and 8 (Мr 39.7кD and Мr 37.7 kD, respectively were monomorphic. The remaining six zones were polymorphic, i.e. could be absent in some zimotypes. The frequency of occurrence of each zone in different zymotypes has varied from 6.58% to 17.11%. As results of this research the accessions that were selected can become the most promising parent forms for future genetic and selection studies of this culture.

  7. Imaging cAMP-specific phosphodiesterase-4 in human brain with R-[11C]rolipram and positron emission tomography

    International Nuclear Information System (INIS)

    DaSilva, Jean N.; Lourenco, Celia M.; Meyer, Jeffrey H.; Houle, Sylvain; Hussey, Douglas; Potter, William Z.

    2002-01-01

    Evidence of disruptions in cAMP-mediated signaling in several neuropsychiatric disorders has led to the development of R-[ 11 C]rolipram for imaging phosphodiesterase-4 (PDE4) enzymes with positron emission tomography (PET). The high-affinity PDE4 inhibitor rolipram was previously reported to have an antidepressant effect in humans. PDE4 is abundant in the brain, and it hydrolyzes cAMP produced following stimulation of various neurotransmitter systems. PDE4 is regulated by intracellular cAMP levels. This paper presents the first PET study of R-[ 11 C]rolipram in living human brain. Consistent with the wide distribution of PDE4, high radioactivity retention was observed in all regions representing the gray matter. Rapid metabolism was observed, and kinetic analysis demonstrated that the data fit in a two-tissue compartment model. R-[ 11 C]Rolipram is thus suitable for imaging PDE4 and possibly cAMP signal transduction in the living human brain with PET. (orig.)

  8. Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Mangas, Iris; Vilanova, Eugenio; Estevez, Jorge, E-mail: jorge.estevez@umh.es

    2011-11-15

    Some published studies suggest that low level exposure to organophosphorus esters (OPs) may cause neurological and neurobehavioral effects at long term exposure. These effects cannot be explained by action on known targets. In this work, the interactions (inhibition, spontaneous reactivation and 'ongoing inhibition') of two model OPs (paraoxon, non neuropathy-inducer, and mipafox, neuropathy-inducer) with the chicken brain soluble esterases were evaluated. The best-fitting kinetic model with both inhibitors was compatible with three enzymatic components. The amplitudes (proportions) of the components detected with mipafox were similar to those obtained with paraoxon. These observations confirm the consistency of the results and the model applied and may be considered an external validation. The most sensitive component (E{alpha}) for paraoxon (11-23% of activity, I{sub 50} (30 min) = 9-11 nM) is also the most sensitive for mipafox (I{sub 50} (30 min) = 4 nM). This component is spontaneously reactivated after inhibition with paraoxon. The second sensitive component to paraoxon (E{beta}, 71-84% of activity; I{sub 50} (30 min) = 1216 nM) is practically resistant to mipafox. The third component (E{gamma}, 5-8% of activity) is paraoxon resistant and has I{sub 50} (30 min) of 3.4 {mu}M with mipafox, similar to NTE (neuropathy target esterase). The role of these esterases remains unknown. Their high sensitivity suggests that they may either play a role in toxicity in low-level long-term exposure of organophosphate compounds or have a protective effect related with the spontaneous reactivation. They will have to be considered in further metabolic and toxicological studies. -- Research Highlights: Black-Right-Pointing-Pointer Paraoxon and mipafox interactions have been evaluated with chicken soluble brain esterases. Black-Right-Pointing-Pointer The paraoxon inhibition was analyzed considering the simultaneous spontaneous reactivation. Black

  9. Spatial distribution and esterase activity in populations of Aedes (Stegomyia aegypti (Linnaeus (Diptera: Culicidae resistant to temephos

    Directory of Open Access Journals (Sweden)

    Wanessa Porto Tito Gambarra

    2013-04-01

    Full Text Available INTRODUCTION: The need for studies that describe the resistance patterns in populations of Aedes aegypti (Linnaeus in function of their region of origin justified this research, which aimed to characterize the resistance to temephos and to obtain information on esterase activity in populations of Aedes aegypti collected in municipalities of the State of Paraíba. METHODS: Resistance to temephos was evaluated and characterized from the diagnostic dose of 0.352mg i.a./L and multiple concentrations that caused mortalities between 5% and 99%. Electrophoresis of isoenzymes was used to verify the patterns of esterase activity among populations of the vector. RESULTS: All populations of Aedes aegypti were resistant to temephos, presenting a resistance rate (RR greater than 20. The greatest lethal dose 50% of the sample (CL50 was found for the municipality of Lagoa Seca, approximately forty-one times the value of CL50 for the Rockefeller population. The populations characterized as resistant showed two to six regions of α and β-esterase, called EST-1 to EST-6, while the susceptible population was only seen in one region of activity. CONCLUSIONS: Aedes aegypti is widely distributed and shows a high degree of resistance to temephos in all municipalities studied. In all cases, esterases are involved in the metabolism and, consequently, in the resistance to temephos.

  10. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  11. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement.

    Science.gov (United States)

    Buchholz, Mirko; Hamann, Antje; Aust, Susanne; Brandt, Wolfgang; Böhme, Livia; Hoffmann, Torsten; Schilling, Stephan; Demuth, Hans-Ulrich; Heiser, Ulrich

    2009-11-26

    The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.

  12. Plasma B-esterase activities in European raptors.

    Science.gov (United States)

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  13. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  14. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  15. Human CD141+ Dendritic Cell and CD1c+ Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yoshihito Minoda

    2017-10-01

    Full Text Available Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These “humanized” mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs in mice are categorized into cDC1, which mediate T helper (Th1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study

  16. Synthesis of 1-benzyl-4-[(5,6-dimethoxy[2-14C]-1-indanon)-2-YL]-methylpiperidine hydrochloride (E2020-14C)

    International Nuclear Information System (INIS)

    Iimura, Youichi; Mishima, Mannen; Sugimoto, Hachiro

    1989-01-01

    1-Benzyl-4-[(5,6-dimethoxy[2- 14 C]-1-indanon)-2-yl]-methylpiperidine hydrochloride (E2020- 14 C), and acetylcholinesterase inhibitor for studying the pharmacokinetic profiles of E2020, was synthesized from 5,6-dimethoxy[2- 14 C]-1-indanone as the labelled starting material. (author)

  17. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  18. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  19. Characterization and distribution of esterase activity in activated sludge

    NARCIS (Netherlands)

    Boczar, BA; Forney, LJ; Begley, WM; Larson, RJ; Federle, TW

    2001-01-01

    The location and activity of esterase enzymes in activated Sludge from three Municipal wastewater treatment plants were characterized using model Substrate, and denaturing and nondenaturing polyacrylamide gel electrophoresis (PAGE) Of particulate, freeze thaw (primarily periplasmic enzymes and those

  20. Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO.

    Science.gov (United States)

    Coelho Cerqueira, Eduardo; Netz, Paulo Augusto; Diniz, Cristiane; Petry do Canto, Vanessa; Follmer, Cristian

    2011-12-15

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mechanism-Guided Discovery of an Esterase Scaffold with Promiscuous Amidase Activity

    Directory of Open Access Journals (Sweden)

    Charlotte Kürten

    2016-06-01

    Full Text Available The discovery and generation of biocatalysts with extended catalytic versatilities are of immense relevance in both chemistry and biotechnology. An enhanced atomistic understanding of enzyme promiscuity, a mechanism through which living systems acquire novel catalytic functions and specificities by evolution, would thus be of central interest. Using esterase-catalyzed amide bond hydrolysis as a model system, we pursued a simplistic in silico discovery program aiming for the identification of enzymes with an internal backbone hydrogen bond acceptor that could act as a reaction specificity shifter in hydrolytic enzymes. Focusing on stabilization of the rate limiting transition state of nitrogen inversion, our mechanism-guided approach predicted that the acyl hydrolase patatin of the α/β phospholipase fold would display reaction promiscuity. Experimental analysis confirmed previously unknown high amidase over esterase activity displayed by the first described esterase machinery with a protein backbone hydrogen bond acceptor to the reacting NH-group of amides. The present work highlights the importance of a fundamental understanding of enzymatic reactions and its potential for predicting enzyme scaffolds displaying alternative chemistries amenable to further evolution by enzyme engineering.

  2. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  3. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    International Nuclear Information System (INIS)

    Serce, Nuran Bektas; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar; Boesl, Andreas; Klaman, Irina; Serényi, Sonja von; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid

    2012-01-01

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the

  4. Finding Potent Sirt Inhibitor in Coffee: Isolation, Confirmation and Synthesis of Javamide-II (N-Caffeoyltryptophan as Sirt1/2 Inhibitor.

    Directory of Open Access Journals (Sweden)

    Jae B Park

    Full Text Available Recent studies suggest that Sirt inhibition may have beneficial effects on several human diseases such as neurodegenerative diseases and cancer. Coffee is one of most popular beverages with several positive health effects. Therefore, in this paper, potential Sirt inhibitors were screened using coffee extract. First, HPLC was utilized to fractionate coffee extract, then screened using a Sirt1/2 inhibition assay. The screening led to the isolation of a potent Sirt1/2 inhibitor, whose structure was determined as javamide-II (N-caffeoyltryptophan by NMR. For confirmation, the amide was chemically synthesized and its capacity of inhibiting Sirt1/2 was also compared with the isolated amide. Javamide-II inhibited Sirt2 (IC50; 8.7 μM better than Sirt1(IC50; 34μM. Since javamide-II is a stronger inhibitor for Sirt2 than Sirt1. The kinetic study was performed against Sirt2. The amide exhibited noncompetitive Sirt2 inhibition against the NAD+ (Ki = 9.8 μM and showed competitive inhibition against the peptide substrate (Ki = 5.3 μM. Also, a docking simulation showed stronger binding pose of javamide-II to Sirt2 than AGK2. In cellular levels, javamide-II was able to increase the acetylation of total lysine, cortactin and histone H3 in neuronal NG108-15 cells. In the same cells, the amide also increased the acetylation of lysine (K382 in p53, but not (K305. This study suggests that Javamide-II found in coffee may be a potent Sirt1/2 inhibitor, probably with potential use in some conditions of human diseases.

  5. Functional characterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate.

    Science.gov (United States)

    Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng

    2018-06-01

    The two enantiomers of ethyl 3-hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)-3-hydroxybutyrate. Herein, we also functionally characterized one novel salt-tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)-3-hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio-selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates. © 2018 Wiley Periodicals, Inc.

  6. Leucocyte esterase in the rapid diagnosis of paediatric septic arthritis.

    LENUS (Irish Health Repository)

    Kelly, E G

    2013-02-01

    Septic arthritis may affect any age group but is more common in the paediatric population. Infection is generally bacterial in nature. Prompt diagnosis is crucial, as delayed treatment is associated with lifelong joint dysfunction. A clinical history and application of Kocher\\'s criteria may indicate that there is a septic arthritis. However, definitive diagnosis is made on culture of septic synovial fluid. The culture process can take over 24h for the initial culture to yield bacterial colonies. Leucocyte esterase is released by leucocytes at the site of an infection. We hypothesise that leucocyte esterase can be utilized in the rapid diagnosis of septic arthritis and shorten the time to decisive treatment whilst simultaneously decreasing unnecessary treatment of non-septic joints.

  7. Evidence-based recommendations for the therapeutic management of angioedema owing to hereditary C1 inhibitor deficiency: consensus report of an International Working Group

    NARCIS (Netherlands)

    Cicardi, M.; Bork, K.; Caballero, T.; Craig, T.; Li, H. H.; Longhurst, H.; Reshef, A.; Zuraw, B.; Werner, Aberer; Aygören-Pürsün, Emel; Banerji, Aleena; Bjorkander, Janne; Boccon-Gibod, Isabelle; Konrad, Bork; Bouillet, Laurence; Bova, Maria; Bowen, Tom; Branco Ferreira, Manuel; Bygum, Anette; Caballero, Teresa; Cancian, Mauro; Castel-Branco, Maria Graça; Cicardi, Marco; Craig, Timothy; de Carolis, Caterina; Mihály, Enikö; Josè, Fabiani; Farkas, Henriette; Gompels, Mark; Gower, Richard; Groffik, Adriane; Grumach, Anete; Guillarte, Mar; Hernandez Landeros, Maria Esthela; Kaplan, Allen; Leibovich, Iris; Li, Henry; Lock, Bob; Longhurst, Hilary; Lumry, William; Malbran, Alejandro; Martinez-Saguer, Immaculada; Campos, Matta; Maurer, Marcus; Moldovan, Dumitru; Montinaro, Vincenzo; Nieto, Sandra; Nordenfelt, Patrik; Obtulovicz, Krystana; Zeerleder, Sacha

    2012-01-01

    Angioedema owing to hereditary deficiency of C1 inhibitor (HAE) is a rare, life-threatening, disabling disease. In the last 2 years, the results of well-designed and controlled trials with existing and new therapies for this condition have been published, and new treatments reached the market.

  8. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    Science.gov (United States)

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  9. Potent selective nonpeptidic inhibitors of human lung tryptase

    OpenAIRE

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting ...

  10. Enzymatic degradation of lignin‐carbohydrate complexes (LCCs): Model studies using a fungal glucuronoyl esterase from Cerrena unicolor

    DEFF Research Database (Denmark)

    d'Errico, Clotilde; Jørgensen, Jonas O.; Krogh, Kristian B. R. M.

    2015-01-01

    Lignin‐carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) has...

  11. A feruloyl esterase derived from a leachate metagenome library

    CSIR Research Space (South Africa)

    Rashamuse, K

    2012-01-01

    Full Text Available A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid polypeptide...

  12. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Shinya; Hanazono, Kiwamu [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi [Veterinary Oncology, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Iwano, Hidetomo [Veterinary Biochemistry, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Uchide, Tsuyoshi, E-mail: uchide@rakuno.ac.jp [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM

  13. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors.

    Science.gov (United States)

    Schmitz, Janina; Furtmann, Norbert; Ponert, Moritz; Frizler, Maxim; Löser, Reik; Bartz, Ulrike; Bajorath, Jürgen; Gütschow, Michael

    2015-08-01

    Cleavage of the invariant chain is the key event in the trafficking pathway of major histocompatibility complex class II. Cathepsin S is the major processing enzyme of the invariant chain, but cathepsin F acts in macrophages as its functional synergist which is as potent as cathepsin S in invariant chain cleavage. Dedicated low-molecular-weight inhibitors for cathepsin F have not yet been developed. An active site mapping with 52 dipeptide nitriles, reacting as covalent-reversible inhibitors, was performed to draw structure-activity relationships for the non-primed binding region of human cathepsin F. In a stepwise process, new compounds with optimized fragment combinations were designed and synthesized. These dipeptide nitriles were evaluated on human cysteine cathepsins F, B, L, K and S. Compounds 10 (N-(4-phenylbenzoyl)-leucylglycine nitrile) and 12 (N-(4-phenylbenzoyl)leucylmethionine nitrile) were found to be potent inhibitors of human cathepsin F, with Ki values nitriles from our study, a 3D activity landscape was generated to visualize structure-activity relationships for this series of cathepsin F inhibitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase.

    Science.gov (United States)

    Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C

    2000-05-18

    To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.

  15. MUC1-C activates EZH2 expression and function in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  16. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Dipeptidyl peptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) agonists

    DEFF Research Database (Denmark)

    Madsbad, Sten

    2012-01-01

    Incretin-based therapies, which include the GLP-1 receptor agonists and DPP-4 inhibitors, use the antidiabetic properties of potentiating the GLP-1 receptor signalling via the regulation of insulin and glucagon secretion, inhibition of gastric emptying and suppression of appetite. Most physicians...... will start antidiabetic treatment with metformin, but adding a GLP-1 receptor agonist as the second drug seems to be optimal since more patients will reach an HbA1c below 7% than with a DPP-4 inhibitor or another oral antidiabetic agents and with minimal risk of hypoglycaemia. The GLP-1 receptor agonists...

  18. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  19. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease.

    Science.gov (United States)

    Riebold, Mathias; Kozany, Christian; Freiburger, Lee; Sattler, Michael; Buchfelder, Michael; Hausch, Felix; Stalla, Günter K; Paez-Pereda, Marcelo

    2015-03-01

    One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.

  20. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  2. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.

    Science.gov (United States)

    Côté, Marceline; Misasi, John; Ren, Tao; Bruchez, Anna; Lee, Kyungae; Filone, Claire Marie; Hensley, Lisa; Li, Qi; Ory, Daniel; Chandran, Kartik; Cunningham, James

    2011-08-24

    Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.

  3. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    Science.gov (United States)

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Pig Liver Esterase (PLE) as Biocatalyst in Organic Synthesis: From Nature to Cloning and to Practical Applications

    NARCIS (Netherlands)

    Dominguez de Maria, Pablo; Garcia-Burgos, Carlos A.; Bargeman, Gerrald; van Gemert, Robert W.

    2007-01-01

    Pig liver esterase (PLE, EC 3.1.1.1) has been employed extensively for research purposes during the last three decades, especially in kinetic resolutions, in desymmetrizations of prochiral substrates, and in the synthesis of nucleosides. Its practical use, however, has been traditionally hampered

  6. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  7. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity

    Science.gov (United States)

    Marjanovic, Jasmina; Chalupska, Dominika; Patenode, Caroline; Coster, Adam; Arnold, Evan; Ye, Alice; Anesi, George; Lu, Ying; Okun, Ilya; Tkachenko, Sergey; Haselkorn, Robert; Gornicki, Piotr

    2010-01-01

    Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases. We have developed an inexpensive nonradioactive high-throughput screening system to identify new ACC inhibitors. The screen uses yeast gene-replacement strains depending for growth on cloned human ACC1 and ACC2. In “proof of concept” experiments, growth of such strains was inhibited by compounds known to target human ACCs. The screen is sensitive and robust. Medium-size chemical libraries yielded new specific inhibitors of human ACC2. The target of the best of these inhibitors was confirmed with in vitro enzymatic assays. This compound is a new drug chemotype inhibiting human ACC2 with 2.8 μM IC50 and having no effect on human ACC1 at 100 μM. PMID:20439761

  8. Synthesis of 14C analogue of 1,2-diaryl-[2-14C]-pyrroles

    International Nuclear Information System (INIS)

    Saemian, N.; Shirvani, G.; Matloubi, H.

    2007-01-01

    Three 1,2-diaryl pyrroles selective COX-2 inhibitors, 2-(4-fluorophenyl)-5-methyl-1-(4-methylsulfonyl-phenyl)-1H pyrrole, 2-(4-fluorophenyl)-1- [4-(methylsulfonyl) phenyl]-1H-pyrrole and 4-[2-(4-fluorophenyl)-1H-pyrrol-1-yl]benzenesulfon-amide, all three labeled with 14 C in the 2-position were prepared from para-fluoro-benzaldehyde-[carbonyl- 14 C]. (author)

  9. Dicty_cDB: Contig-U12697-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ebrafish DNA sequence from clone BUSM1-21A14 in ... 40 1.7 3 ( AY781284 ) Human rotavirus C strain V460 nons...tructural prote... 46 1.9 1 ( AY781283 ) Human rotavirus C strain V966 nonstructural prote... 46 1.9 1 ( AY770979 ) Human rotavirus... C strain v508 nonstructural prote... 46 1.9 1 ( AJ132205 ) Human rotavirus

  10. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  11. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    Science.gov (United States)

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  12. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  13. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  14. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells.

    Science.gov (United States)

    Gong, Yixuan; Sohn, Heesook; Xue, Ling; Firestone, Gary L; Bjeldanes, Leonard F

    2006-05-01

    Epidemiologic evidence suggests that high dietary intake of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, protects against tumorigenesis in multiple organs. 3,3'-Diindolylmethane, one of the active products derived from Brassica vegetables, is a promising antitumor agent. Previous studies in our laboratory showed that 3,3'-diindolylmethane induced a G(1) cell cycle arrest in human breast cancer MCF-7 cells by a mechanism that included increased expression of p21. In the present study, the upstream events leading to p21 overexpression were further investigated. We show for the first time that 3,3'-diindolylmethane is a strong mitochondrial H(+)-ATPase inhibitor (IC(50) approximately 20 micromol/L). 3,3'-Diindolylmethane treatment induced hyperpolarization of mitochondrial inner membrane, decreased cellular ATP level, and significantly stimulated mitochondrial reactive oxygen species (ROS) production. ROS production, in turn, led to the activation of stress-activated pathways involving p38 and c-Jun NH(2)-terminal kinase. Using specific kinase inhibitors (SB203580 and SP600125), we showed the central role of p38 and c-Jun NH(2)-terminal kinase (JNK) pathways in 3,3'-diindolylmethane-induced p21 mRNA transcription. In addition, antioxidants significantly attenuated 3,3'-diindolylmethane-induced activation of p38 and JNK and induction of p21, indicating that oxidative stress is the major trigger of these events. To further support the role of ROS in 3,3'-diindolylmethane-induced p21 overexpression, we showed that 3,3'-diindolylmethane failed to induce p21 overexpression in mitochondrial respiratory chain deficient rho(0) MCF-7 cells, in which 3,3'-diindolylmethane did not stimulate ROS production. Thus, we have established the critical role of enhanced mitochondrial ROS release in 3,3'-diindolylmethane-induced p21 up-regulation in human breast cancer cells.

  15. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    Directory of Open Access Journals (Sweden)

    Thomas Lanyon-Hogg

    2016-06-01

    Full Text Available In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI” class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a, RU-SKI 43 (9b, RU-SKI 101 (9c, and RU-SKI 201 (9d were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015 [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors.

  16. Activity of pectin methyl esterase during blanching of peaches

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Rodis, P.S.; Hertog, M.L.A.T.M.; Proxenia, N.; Dijk, van C.

    1999-01-01

    The activity of pectin methyl esterase (PE) in peaches during blanching treatments was modelled and analyzed. It was postulated that the enzyme exists in two configurations, one bound and one soluble. The bound configuration can be converted into the soluble configuration. These two configurations

  17. Human pro. cap alpha. 1)(I) collagen: cDNA sequence for the C-propeptide domain

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, J K; Raassina, M; Virta, A; Vuorio, E

    1988-01-11

    The authors have previously constructed a cDNA clone pHCAL1, covering most of the C-terminal propeptide domain of human pro..cap alpha..1(I) collagen mRNA,by inserting a 678 bp EcoRI-XhoI fragment of cDNA into pBR322. Since the XhoI/SalI ligation prevented removal of the insert, they used the same strategy to obtain a similar clone in pUC8. RNA was isolated from fetal calvarial bones. The cDNA was digested with EcoRI and XhoI and fractionated on a 1 % agarose gel. Fragments of 650-700 bp were cloned in pUC8 at the polylinker site, which now permits easy removal of the insert. The new clone was named pHCAL1U since the RNA was isolated from another individual. The approach outlined is useful for studies on individual variation which is important to recognize when searching for disease-related mutations in type I collagen.

  18. Disposition and metabolism of [(14)C] Sacubitril/Valsartan (formerly LCZ696) an angiotensin receptor neprilysin inhibitor, in healthy subjects.

    Science.gov (United States)

    Flarakos, Jimmy; Du, Yancy; Bedman, Timothy; Al-Share, Qusai; Jordaan, Pierre; Chandra, Priya; Albrecht, Diego; Wang, Lai; Gu, Helen; Einolf, Heidi J; Huskey, Su-Er; Mangold, James B

    2016-11-01

    1. Sacubitril/valsartan (LCZ696) is an angiotensin receptor neprilysin inhibitor (ARNI) providing simultaneous inhibition of neprilysin (neutral endopeptidase 24.11; NEP) and blockade of the angiotensin II type-1 (AT1) receptor. 2. Following oral administration, [(14)C]LCZ696 delivers systemic exposure to valsartan and AHU377 (sacubitril), which is rapidly metabolized to LBQ657 (M1), the biologically active neprilysin inhibitor. Peak sacubitril plasma concentrations were reached within 0.5-1 h. The mean terminal half-lives of sacubitril, LBQ657 and valsartan were ∼1.3, ∼12 and ∼21 h, respectively. 3. Renal excretion was the dominant route of elimination of radioactivity in human. Urine accounted for 51.7-67.8% and feces for 36.9 to 48.3 % of the total radioactivity. The majority of the drug was excreted as the active metabolite LBQ657 in urine and feces, total accounting for ∼85.5% of the total dose. 4. Based upon in vitro studies, the potential for LCZ696 to inhibit or induce cytochrome P450 (CYP) enzymes and cause CYP-mediated drug interactions clinically was found to be low.

  19. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  20. The natural catalytic function of CuGE glucuronoyl esterase in hydrolysis of genuine lignin-carbohydrate complexes from birch

    DEFF Research Database (Denmark)

    Mosbech, Caroline; Holck, Jesper; Meyer, Anne S.

    2018-01-01

    Glucuronoyl esterases belong to carbohydrate esterase family 15 and catalyze de-esterification. Their natural function is presumed to be cleavage of ester linkages in lignin-carbohydrate complexes particularly those linking lignin and glucuronoyl residues in xylans in hardwood. Here, we show...... for the first time a detailed product profile of aldouronic acids released from birchwood lignin by a glucuronoyl esterase from the white-rot fungus Cerrena unicolor (CuGE). CuGE releases substrate for GH10 endo-xylanase which results in significantly increased product release compared to the action of endo......-xylanase alone. CuGE also releases neutral xylo-oligosaccharides that can be ascribed to the enzymes feruloyl esterase side activity as demonstrated by release of ferulic acid from insoluble wheat arabinoxylan. The data verify the enzyme's unique ability to catalyze removal of all glucuronoxylan associated...