WorldWideScience

Sample records for c-jun gene expression

  1. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    International Nuclear Information System (INIS)

    Park, Jin-Sun; Kim, Hee-Sun

    2014-01-01

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes

  2. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    International Nuclear Information System (INIS)

    Horio, M.; Collart, F.R.; Huberman, E.

    1993-01-01

    We investigated the role of reactive oxygen intermediates and protein kinase C (PKC) in induction of c-jun gene expression in human ML-2 leukemic cells and normal DET-551 fibroblasts by comparing the effects of either ionizing radiation or H 2 O 2 exposure in the presence or absence of appropriate inhibitors. In these cell types, the radiation and H 2 O 2 -mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, an antioxidant, or H7, an inhibitor of PKC and cAMP-dependent protein kinase (PKA), but not by HA1004, an inhibitor of PKA. These results suggest a role for PKC and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in radiation- or H 2 O 2 -induced c-jun gene expression in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma, and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H 2 O 2 . Exposure to radiation or to hydrogen peroxide produced a varied response which ranged from little or no induction to a more than two orders of magnitude increase in the steady-state level of the c-jun mRNA

  3. Rapid and preferential activation of the c-jun gene during the mammalian UV response

    International Nuclear Information System (INIS)

    Devary, Y.; Gottlieb, R.A.; Lau, L.F.; Karin, M.

    1991-01-01

    Exposure of mammalian cells to DNA-damaging agents leads to activation of a genetic response known as the UV response. Because several previously identified UV-inducible genes contain AP-1 binding sites within their promoters, we investigated the induction of AP-1 activity by DNA-damaging agents. We found that expression of both c-jun and c-fos, which encode proteins that participate in formation of the AP-1 complex, is rapidly induced by two different DNA-damaging agents: UV and H2O2. Interestingly, the c-jun gene is far more responsive to UV than any other immediate-early gene that was examined, including c-fos. Other jun and fos genes were only marginally affected by UV or H2O2. Furthermore, UV is a much more efficient inducer of c-jun than phorbol esters, the standard inducers of c-jun expression. This preferential response of the c-jun gene is mediated by its 5' control region and requires the TPA response element, suggesting that this element also serves as an early target for the signal transduction pathway elicited by DNA damage. Both UV and H2O2 lead to a long-lasting increase in AP-1 binding activity, suggesting that AP-1 may mediate the induction of other damage-inducible genes such as human collagenase

  4. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  5. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    International Nuclear Information System (INIS)

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y.

    2006-01-01

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression

  6. Expression of c-fos and c-jun proteins in the marginal division of the rat striatum during learning and memory training

    Institute of Scientific and Technical Information of China (English)

    BAO Xin-min; SHU Si-yun; WANG Hong

    2005-01-01

    Background A new brain region, the marginal division (MrD), was discovered at the caudal margin of the neostriatum. The MrD was shown to be involved in learning and memory in the rat. The aim of this study was to investigate the expression of the immediate-early genes c-fos and c-jun in the MrD of the striatum during learning and memory processes in the rat, immunocytochemical and Western blot methods were used to examine Y-maze trained rats.Methods The rats were divided into three groups, namely the training, pseudotraining, and control groups. After Y-maze training, the expression of the immediate-early genes c-fos and c-jun in the MrD of the rats was investigated using immunocytochemical and Western blot methods. Results After one hour of Y-maze training, the expression of c-jun and c-fos proteins was significantly enhanced in the MrD; the c-jun protein, in particular, was more intensely expressed in this region than in other parts of the striatum. The expression of these two proteins in the training group was significantly higher than in the pseudotraining and control groups. In addition, positive expression was also found in the hippocampus, cingulum cortex, thalamus, and in other areas. Western blot disclosed two immunoreactive bands for the anti-c-fos antibody (47 kD and 54 kD) and two immunoreactive bands for the anti-c-jun antibody (39 kD and 54 kD). Conclusions These results indicate that the immediate-early genes c-fos and c-jun participate in signal transduction during the learning and memory processes associated with Y-maze training in rats.

  7. C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.

    Science.gov (United States)

    Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C

    2018-06-02

    CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Synsepalum dulcificum extracts exhibit cytotoxic activity on human colorectal cancer cells and upregulate c-fos and c-jun early apoptotic gene expression

    Directory of Open Access Journals (Sweden)

    Jichang Seong

    2018-01-01

    Full Text Available Objective: To explore cytotoxicity of Synsepalum dulcificum (S. dulcificum Daniell (Sapotaceae on human colon cancer (HCT-116 and HT-29, human monocytic leukemia (THP-1 and normal (HDFn cell lines, and its effect on the expression of early apoptotic genes, c-fos and c-jun. Methods: Leaf, stem and berry of S. dulcificum were separately extracted by using 2 solvents, 10% ethanol (EtOH and 80% methanol (MeOH. PrestoBlue® cell viability assay and qRT-PCR assay were conducted to examine the above objectives respectively. Results: Stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum were cytotoxic to HCT-116 and HT-29 human colon cancer cells. For HCT-116, IC50 values of these 3 extracts were not significantly different (P>0.05 from that of the positive control bleomycin (IC50 of 33.57 μg/mL, while for HT-29, IC50 values of these 3 extracts were significantly lower (P<0.05 than that of bleomycin (IC50 of 25.24 μg/mL. None of the extracts were cytotoxic to the THP-1 monocytic leukemia cells and HDFn normal human dermal fibroblasts. For both HCT-116 and HT-29, these extracts significantly up-regulated (P<0.05 the expression of c-fos and c-jun compared to the untreated negative control. Conclusions: The results of this study suggest that cytotoxicity of stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum on HCT-116 and HT-29 colon cancer cells is due to the induced apoptosis which is caused by the up-regulation of the expression of early apoptotic genes, c-fos and c-jun.

  9. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  10. Inhibition of transcriptional activity of c-JUN by SIRT1

    International Nuclear Information System (INIS)

    Gao Zhanguo; Ye Jianping

    2008-01-01

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1 -/- ), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN

  11. C-Jun expression in lichen planus, psoriasis, and cutaneous squamous cell carcinoma, an immunohistochemical study.

    Science.gov (United States)

    Abdou, Asmaa Gaber; Marae, Alaa Hassan; Shoeib, Mohammed; Dawood, Ghada; Abouelfath, Enas

    2018-01-01

    The AP-1 transcription factor complex is a key player in regulating inflammatory processes, cell proliferation, differentiation, and cell transformation. The aim of the present study is to investigate C-Jun (one of AP-1complex) expression and its proliferative role in skin samples of lichen planus, psoriasis as common inflammatory skin diseases and squamous cell carcinoma using immunohistochemical method. The present study was carried out on skin biopsies of 15 psoriatic patients, 15 lichen planus patients, 15 SCC, and 15 normal skin biopsies. Nuclear expression of C-Jun was detected in basal and few suprabasal layers of epidermis of normal skin. C-Jun was expressed in the whole epidermal layers of both psoriasis (14/15) and lichen planus (15/15) in addition to its expression in lymphocytic infiltrate in the latter in about half of cases (8/15). C-Jun was also expressed in 93.3% (14/15) of SCC in a percentage lower than that of psoriasis, lichen planus, and normal skin. The percentage of C-Jun expression in SCC was significantly associated with an early stage (p = 0.000), free surgical margins (p = 0.022), and small tumour size (p = 0.003). The marked reduction of C-Jun in SCC in comparison to normal skin and inflammatory skin dermatoses may refer to its tumour suppressor activity. C-Jun expression in SCC carries favourable prognosis. Absence of significant association between C-Jun and Ki-67 either in SCC or inflammatory skin diseases indicates that it does not affect proliferative capacity of cells.

  12. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Yuki Haga

    Full Text Available Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC. Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown.The expression of molecules involved in the mitogen-activated protein kinase (MAPK signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun was measured.The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines.The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.

  13. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    Science.gov (United States)

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Graded Elevation of c-Jun in Schwann Cells In Vivo: Gene Dosage Determines Effects on Development, Remyelination, Tumorigenesis, and Hypomyelination.

    Science.gov (United States)

    Fazal, Shaline V; Gomez-Sanchez, Jose A; Wagstaff, Laura J; Musner, Nicolo; Otto, Georg; Janz, Martin; Mirsky, Rhona; Jessen, Kristján R

    2017-12-13

    Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19 ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis

  15. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  17. Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation

    International Nuclear Information System (INIS)

    Yamamoto, Kaoru; Miyatsuka, Takeshi; Tanaka, Ayako; Toyoda, Shuichi; Kato, Ken; Shiraiwa, Toshihiko; Fujitani, Yoshio; Yamasaki, Yoshimitsu; Hori, Masatsugu; Matsuhisa, Munehide; Matsuoka, Taka-aki; Kaneto, Hideaki

    2007-01-01

    It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed in pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun flox/flox mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun flox/flox and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun flox/flox and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated

  18. Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.

    Science.gov (United States)

    Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L

    2015-05-21

    We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.

  19. Expression levels of transcription factors c-Fos and c-Jun and transmembrane protein HAb18G/CD147 in urothelial carcinoma of the bladder.

    Science.gov (United States)

    Huhe, Muren; Liu, Shuangshuang; Zhang, Yang; Zhang, Zheng; Chen, Zhinan

    2017-05-01

    The aim of the present study was to investigate the prognostic significance of the expression of transcription factors, c-Fos, c-Jun and transmembrane protein CD147, in urothelial carcinoma of the bladder (UCB). The current study investigated the clinical significance of these factors in the development, progression and survival analysis of UCB. Immunohistochemistry was employed to analyze c‑Fos, c‑Jun and CD147 expression in 41 UCB cases and 34 non‑cancerous human bladder tissues. These results were scored in a semi‑quantitative manner based on the intensity and percentage of tumor cells that presented immunoreactivity. Protein levels of CD147, c‑Fos and c‑Jun expression were upregulated in 22 (53.7%), 10 (24.4%) and 9 (22.0%) UCB cases, respectively. High levels of c‑Jun correlated with the AJCC cancer staging manual (7th edition; P=0.038). Univariate analysis revealed that upregulated CD147 (P=0.038) or c‑Jun (P=0.008) was associated with poor overall survival (OS), respectively. Further analysis revealed that either CD147‑c‑Fos‑c‑Jun co‑expression (P=0.004), or CD147‑c‑Jun co‑expression (P=0.037) and c‑Fos‑c‑Jun co‑expression (PCD147, c‑Jun or c‑Fos were independent risk indicators for death in UCB patients. Increased expression of c‑Jun or CD147, as well as co‑expression of CD147‑c‑Jun, c‑Jun‑c‑Fos or CD147‑c‑Jun‑c‑Fos has prognostic significance for UCB patients. Therefore, high CD147 and c‑Jun expression may serve roles in tumor progression and may be diagnostic and therapeutic targets in UCB whether alone or in combination.

  20. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  1. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    International Nuclear Information System (INIS)

    Sprowles, Amy; Robinson, Dan; Wu Yimi; Kung, H.-J.; Wisdom, Ron

    2005-01-01

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli

  2. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  3. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    International Nuclear Information System (INIS)

    Zhang, Yan; Hu, Meiru; Shen, Beifen; Guo, Ning; Pu, Xiaoyun; Shi, Ming; Chen, Liyong; Song, Yuhua; Qian, Lu; Yuan, Guogang; Zhang, Hao; Yu, Ming

    2007-01-01

    c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy

  4. Expression of c-Fos and c-Jun in the cornea, lens, and retina after ultraviolet irradiation of the rat eye and effect of topical antisense oligodeoxynucleotides

    International Nuclear Information System (INIS)

    Gillardon, F.; Zimmermann, M.

    1995-01-01

    Aims - Immunohistochemical techniques were used to investigate c-Fos and c-Jun proto-oncogene expression in the cornea, lens, and retina after ultraviolet irradiation of the rat eye. Methods -Eyes of anaesthetised rats were exposed to 1.5 J/cm 2 of ultraviolet radiation (280-380 nm). Animals were perfused 1, 6, or 24 hours after irradiation and tissue sections were incubated with specific antiserum to c-Fos and c-Jun, respectively. Non-irradiated contralateral eyes displayed no c-Fos and c-Jun immunoreactivity. One and 6 hours after ultraviolet exposure numerous c-Fos and c-Jun immunopositive nuclei were observed mainly in the epithelial cell layers of the cornea and the lens epithelium. Scattered labelled nuclei were detectable in the retinal ganglion cell layer and the inner nuclear layer. Twenty four hours after irradiation c-Fos and c-Jun protein expression returned to near control levels. Histological signs of ultraviolet damage (for example, chromatin condensation, nuclear fragmentation) were first recognisable in the corneal epithelium 6 hours after irradiation and became more apparent at later times. The rapid and sustained activation of c-Fos and c-Jun expression in the eye after single ultraviolet exposure may represent the molecular mechanism underlying ultraviolet induced photodamage and initiation of cell death. Furthermore, topical application of a c-fos antisense oligode-oxynucleotide to the ultraviolet exposed rat eye inhibited the increase in c-Fos expression in the cornea, suggesting therapeutic activity of antisense drugs in corneal malignant and infectious diseases. (author)

  5. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    Science.gov (United States)

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their

  6. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    Science.gov (United States)

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell

  7. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2014-01-01

    Full Text Available Atherosclerosis and its complications are major causes of death all over the world. One of the major risks of atherosclerosis is hypercholesterolemia. During atherosclerosis, oxidized low density lipoprotein (oxLDL regulates CD36-mediated activation of c-jun amino terminal kinase-1 (JNK1 and modulates matrix metalloproteinase (MMP induction which stimulates inflammation with an invasion of monocytes. Additionally, inhibition of proteasome leads to an accumulation of c-jun and phosphorylated c-jun and activation of activator protein-1 (AP-1 related increase of MMP expression. We have previously reported a significant increase in cluster of differentiation 36 (CD36 mRNA levels in hypercholesterolemic rabbits and shown that vitamin E treatment prevented the cholesterol induced increase in CD36 mRNA expression. In the present study, our aim is to identify the signaling molecules/transcription factors involved in the progression of atherosclerosis following CD36 activation in an in vivo model of hypercholesterolemic (induced by 2% cholesterol containing diet rabbits. In this direction, proteasomal activities by fluorometry and c-jun, phospo c-jun, JNK1, MMP-9 expressions by quantitative RT-PCR and immunoblotting were tested in aortic tissues. The effects of vitamin E on these changes were also investigated in this model. As a result, c-jun was phosphorylated following decreased proteasomal degradation in hypercholesterolemic group. MMP-9 expression was also increased in cholesterol group rabbits contributing to the development of atherosclerosis. In addition, vitamin E showed its effect by decreasing MMP-9 levels and phosphorylation of c-jun.

  9. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  10. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    International Nuclear Information System (INIS)

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan

    2007-01-01

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells

  11. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    Energy Technology Data Exchange (ETDEWEB)

    Pozas, E. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain); Planas, A.M. [Departament de Farmacologia i Toxicologia, IIBB, CSIC Barcelona (Spain); Ferrer, I. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain)

    1997-07-14

    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  12. Effect of bisphosphonates on NFATc1 and correlators p-NF-κB and p-c-Jun in osteoclast differentiation

    Directory of Open Access Journals (Sweden)

    Wei DONG

    2015-11-01

    Full Text Available Objective To study the effect of alendronate (ALN on NFATc1 and correlated signaling factors p-NF-κB and p-c-Jun in osteoclast differentiation. Methods Osteoclasts were inductively cultivated with mouse mononuclear macrophage RAW264.7, and they were divided into 2 groups: group A (control group and group B (ALN-treated group. The protein expressions of NFATc1, p-NF-κB and p-c-Jun were determined with Western blotting at the 2nd day of cultivation; the expression of NFATc1 was assessed by immunofluorescent assay on the 4th day; and the osteoclast formation was examined on the 7th day of cultivation. RAW264.7 cells were inoculated on abrasive dentine disk, and divided into 2 groups and treated as mentioned above. The resorption function of osteoclast was observed on the 9th day of inoculation. Results TRAP positive multinuclear osteoclasts were observed, and resorption lacunaes formed in the abrasive dentine disks of the 2 groups. More TRAP positive multinuclear cells and resorption lacunaes in large size were found in group A than those in group B. Immunofluorescence assay showed the expression of NFATc1 was higher in group A than in group B. The gene expressions of NFATc1, p-NF-κB and p-c-Jun were lower in group B than in group A(P<0.01 as determined with Western blotting. Conclusion By down-regulating the expressions of p-NF-κB and p-c-Jun, ALN may strongly inhibit the osteoclast formation and its resorption function, thus inhibiting NFATc1 expression. DOI: 10.11855/j.issn.0577-7402.2015.10.02

  13. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  14. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Junming Wang

    Full Text Available c-Jun, c-Jun N-terminal kinase(JNK and endothelin B (ETB receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP. In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE. The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression

  15. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  16. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    International Nuclear Information System (INIS)

    Ahn, Jiwon; Choi, Jeong-Hae; Won, Misun; Kang, Chang-Mo; Gyun, Mi-Rang; Park, Hee-Moon; Kim, Chun-Ho; Chung, Kyung-Sook

    2011-01-01

    Highlights: → Regulation of transcriptional activation of RhoB is still unclear. → We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. → We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. → c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. → The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.

  17. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  18. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China); The 309th Hospital of China People' s Liberation Army, Beijing 100091 (China); Wang, Junyun; Ding, Nan [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yongjun; Yang, Yaran [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Xiangdong, E-mail: fangxd@big.ac.cn [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hua, E-mail: luckhua301@163.com [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China)

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasion of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.

  19. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    Science.gov (United States)

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  20. BAG3 is upregulated by c-Jun and stabilizes JunD.

    Science.gov (United States)

    Li, Chao; Li, Si; Kong, De-Hui; Meng, Xin; Zong, Zhi-Hong; Liu, Bao-Qin; Guan, Yifu; Du, Zhen-Xian; Wang, Hua-Qin

    2013-12-01

    BAG3 plays a regulatory role in a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, epithelial-mesenchymal transition (EMT), autophagy activation, and virus infection. The AP-1 transcription factors are implicated in a variety of important biological processes including cell differentiation, proliferation, apoptosis and oncogenesis. Recently, it has been reported that AP-1 protein c-Jun inhibits autophagy and enhances apoptotic cell death mediated by starvation. However, the molecular mechanisms remain unclear. For the first time, the current study demonstrated that serum starvation downregulated BAG3 at the transcriptional level via c-Jun. In addition, the current study reported that BAG3 stabilized JunD mRNA, which was, at least in part, responsible for the promotion of serum starvation mediated-growth inhibition by BAG3. © 2013.

  1. Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation.

    Science.gov (United States)

    Lii, Chong-Kuei; Liu, Kai-Li; Cheng, Yi-Ping; Lin, Ai-Hsuan; Chen, Haw-Wen; Tsai, Chia-Wen

    2010-05-01

    The anticarcinogenic effect of dietary organosulfur compounds has been partly attributed to their modulation of the activity and expression of phase II detoxification enzymes. Our previous studies indicated that garlic allyl sulfides upregulate the expression of the pi class of glutathione S-transferase (GSTP) through the activator protein-1 pathway. Here, we examined the modulatory effect of sulforaphane (SFN) and alpha-lipoic acid (LA) or dihydrolipoic acid (DHLA) on GSTP expression in rat Clone 9 liver cells. Cells were treated with LA or DHLA (50-600 micromol/L) or SFN (0.2-5 micromol/L) for 24 h. Immunoblots and real-time PCR showed that SFN, LA, and DHLA dose dependently induced GSTP protein and mRNA expression. Compared with the induction by the garlic organosulfur compound diallyl trisulfide (DATS), the effectiveness was in the order of SFN > DATS > LA = DHLA. The increase in GSTP enzyme activity in cells treated with 5 micromol/L SFN, 50 micromol/L DATS, and 600 micromol/L LA and DHLA was 172, 75, 122, and 117%, respectively (P GPEI) was required for GSTP induction by the organosulfur compounds. Electromobility gel shift assays showed that the DNA binding of GPEI to nuclear proteins reached a maximum at 0.5-1 h after SFN, LA, and DHLA treatment. Super-shift assay revealed that the transcription factors c-jun and nuclear factor erythroid-2 related factor 2 (Nrf2) were bound to GPEI. These results suggest that SFN and LA in either its oxidized or reduced form upregulate the transcription of the GSTP gene by activating c-jun and Nrf2 binding to the enhancer element GPEI.

  2. Immunohistological Analysis of the Jun Family and the Signal Transducers and Activators of Transcription in Thymus

    Directory of Open Access Journals (Sweden)

    Alexandra Papoudou-Bai

    2015-01-01

    Full Text Available The Jun family and the signal transducers and activators of transcription (STAT are involved in proliferation and apoptosis. Moreover, c-Jun and STAT3 cooperate to regulate apoptosis. Therefore, we used double immunostaining to investigate the immunotopographical distribution of phospho-c-Jun (p-c-Jun, JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 in human thymus. JunD was frequently expressed by thymocytes with higher expression in medullary compared to cortical thymocytes. p-c-Jun was frequently expressed by cortical and medullary thymic epithelial cells (TEC and Hassall bodies (HB. p-STAT3 was frequently expressed by TEC with higher expression in cortical compared to medullary TEC and HB. p-c-Jun, JunB, p-STAT3, p-STAT5, and p-STAT6 were rarely expressed by thymocytes. JunB and JunD were expressed by rare cortical TEC with higher expression in medullary TEC. p-STAT5 and p-STAT6 were expressed by rare cortical and medullary TEC. Double immunostaining revealed p-c-Jun and JunD expression in rare CD11c positive dendritic cells. Our findings suggest a notable implication of JunD in the physiology of thymocytes and p-c-Jun and p-STAT3 in the physiology of TEC. The diversity of the immunotopographical distribution and the expression levels of p-c-Jun, JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 indicates that they are differentially involved in the differentiation of TEC, thymocytes, and dendritic cells.

  3. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    Science.gov (United States)

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  4. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    Science.gov (United States)

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  5. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Molecular responses and expression analysis of genes in a xerophytic desert shrub Haloxylon ammodendron .... physiological determination and cDNA-AFLP analysis, three groups of seeds were sowed in pots with sand and .... HaDR27. U. 234. PDR-like ABC transporter. AT1G59870. HaDR28. U. 135.

  6. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  7. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  8. c-Jun Proto-Oncoprotein Plays a Protective Role in Lung Epithelial Cells Exposed to Staphylococcal α-Toxin

    Directory of Open Access Journals (Sweden)

    Alejandro J. Moyano

    2018-05-01

    Full Text Available c-Jun is a member of the early mammalian transcriptional regulators belonging to the AP-1 family, which participates in a wide range of cellular processes such as proliferation, apoptosis, tumorigenesis, and differentiation. Despite its established role in cell survival upon stress, its participation in the stress response induced by bacterial infections has been poorly investigated. To study the potential role of c-Jun in this context we choose the widely studied α-toxin produced by Staphylococcus aureus, a pore-forming toxin that is a critical virulence factor in the pathogenesis of these bacteria. We analyzed the effect of α-toxin treatment in the activation, expression, and protein levels of c-Jun in A549 lung epithelial cells. Furthermore, we explored the role of c-Jun in the cellular fate after exposure to α-toxin. Our results show that staphylococcal α-toxin per se is able to activate c-Jun by inducing phosphorylation of its Serine 73 residue. Silencing of the JNK (c-Jun N-terminal Kinase signaling pathway abrogated most of this activation. On the contrary, silencing of the ERK (Extracellular Signal-Regulated Kinase pathway exacerbated this response. Intriguingly, while the exposure to α-toxin induced a marked increase in the levels of c-Jun transcripts, c-Jun protein levels noticeably decreased in the same time-frame as a consequence of active proteolytic degradation through the proteasome-dependent pathway. In addition, we established that c-Jun promoted cell survival when cells were challenged with α-toxin. Similarly, c-Jun phosphorylation was also induced in cells upon intoxication with the cytolysin produced by Vibrio cholerae in a JNK-dependent manner, suggesting that c-Jun-JNK axis would be a conserved responsive cellular pathway to pore-forming toxins. This study contributes to understanding the role of the multifaceted c-Jun proto-oncoprotein in cell response to bacterial pore-forming toxins, positioning it as a relevant

  9. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.

    Science.gov (United States)

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.

  10. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or γ-rays

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-01-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, cytoskeletal elements, and many more. The experiments reported herein were designed to examine the effects of either JANUS neutron or γ-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or γ-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and Rb following γ-ray but not following neutron exposure. Interestingly, expression of c-myc was repressed following γ-ray but not following neutron exposure. Radiations at different doses and dose rates were compared for each of the genes studied

  11. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    Science.gov (United States)

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.

    2011-01-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048

  12. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    Science.gov (United States)

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  13. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  14. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    Science.gov (United States)

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate

  15. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    Science.gov (United States)

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  16. Genome polymorphism markers and stress genes expression for ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    Jun 11, 2014 ... RNA extraction and purification for SOD and PAL gene expression. Fresh leaf tissues (100 mg), from ... Data analysis. Gelquant program for quantification of protein, DNA and RNA gel. (version 1.8.2) was used for .... by reprogramming the expression of endogenous genes. Higher level of these antioxidant ...

  17. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    Science.gov (United States)

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  18. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  19. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    Directory of Open Access Journals (Sweden)

    Lipigorngoson Suwiwek

    2001-01-01

    Full Text Available Abstract Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(aanthracene (DMBA-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham. Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin.

  20. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    International Nuclear Information System (INIS)

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin

  1. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  2. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells.

    Science.gov (United States)

    Xie, Wangshi; Zhang, Zhang; Song, Liyan; Huang, Chunhua; Guo, Zhongyi; Hu, Xianjing; Bi, Sixue; Yu, Rongmin

    2018-01-01

    Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4',6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. CMF suppressed KB cells' proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. CMF exhibited strong anticancer activity against oral squamous carcinoma KB cellsCMF inhibited KB cells' proliferation via induction of apoptosis and G2/M cell cycle arrestCMF activated JNK signaling pathway and promoted the nuclear localization of c-JunCMF regulated the

  3. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    Science.gov (United States)

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  5. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Lieberman AR

    2006-01-01

    Full Text Available Abstract Background Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker. Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. Results Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. Conclusion Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.

  6. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  7. Niclosamide enhances ROS-mediated cell death through c-Jun activation.

    Science.gov (United States)

    Lee, Sae-lo-oom; Son, A-Rang; Ahn, Jiyeon; Song, Jie-Young

    2014-06-01

    Radiotherapy is an effective treatment modality in the clinical treatment of cancers, and has been combined with chemotherapy in order to improve therapeutic efficacy. Therefore, we aimed to develop small molecules that enhance the cytotoxic effects of radiotherapy. In this study, we provide evidence that niclosamide is an effective radiosensitizer in non-small cell lung cancer cells. Using a cell-based high-throughput viability screen of 1040 compounds in combination with γ-ionizing radiation (IR), we found niclosamide, an FDA-approved antihelminthic agent, had a radiosensitizing effect on H1299 human lung cancer cells. Pretreatment with niclosamide enhanced IR- induced cell death of H1299 in a dose-dependent manner via apoptosis compared with IR or niclosamide alone. The combined treatment induced significantly more phosphorylation of p38 MAPK and c-Jun in H1299 cells than IR or niclosamide alone. Since IR induces apoptosis through generation of reactive oxygen species (ROS), hydrogen peroxide (H2O2) was employed as another ROS generator and we found that niclosamide also sensitized cells to H2O2. Niclosamide pretreatment also induced c-Jun and its phosphorylation in the presence of H2O2, thereby enhancing apoptosis. N-acetyl-L-cysteine (NAC) treatment abolished both cell death and c-Jun activation induced by the combination treatments. Knockdown of c-Jun also decreased PARP cleavage and clonogenic cell survival in niclosamide- and IR-treated H1299 cells. Our findings suggest that niclosamide could be a promising radiosensitizer in lung cancer patients through activation of the p38 MAPK-c-Jun axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    Science.gov (United States)

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  9. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-01-01

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-κB that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-κB activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while γ-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by γ-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas

  10. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    ARL

    2012-06-12

    Jun 12, 2012 ... production and faithful translation and processing of proteins (Baldi et al., ..... deeper understanding of the interaction of cellular factors and regulatory DNA .... mediated transgene expression in the rat brain. Gene Ther., 7: ...

  11. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    International Nuclear Information System (INIS)

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  12. [Expressiona of c-Jun and collagens I and III in cultured human skin fibroblasts are affected by infrared ray radiation].

    Science.gov (United States)

    Liu, Ping; Yang, Rong-Li; Su, Hui; Li, Lin-Li; Song, Jian-Wen; Lu, Ning; Liu, Yu-Ze

    2016-02-01

    To observe the effect of solar infrared ray (IR) radiation on the expressions of c-Jun and collagens I and III in cultured human skin fibroblasts (HSFs) and explore the molecular mechanism by which IR radiation causes aging of the skin. Primarily cultured HSFs exposed to IR radiation were examined for changes of the cell viability with MTT assay. The mRNA and protein expressions of c-Jun and collagens I and III was detected with real-time quantitative PCR and immunocytochemistry. MTT assay showed that IR irradiation caused inhibition of cell proliferation compared with the control cells. The mRNA and protein expression of collagen I was decreased significantly by IR irradiation with the increase of the irradiation dose (Pradiation to initiate and promote skin photoaging.

  13. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells

    Directory of Open Access Journals (Sweden)

    Liu Szu-Hsiu

    2012-08-01

    Full Text Available Abstract Background α-Mangostin (α-MG is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles. Methods U937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF-α and interleukin (IL-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses. Results α-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038 and IL-4 (P = 0.04. α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK pathways, including extracellular signal-regulated kinases (P = 0.016, c-Jun N-terminal kinase (P = 0.01 , and p38 (P = 0.008. α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441, MAPK-activated protein kinase-2 (P = 0.0453, signal transducers and activators of transcription-1 (STAT1 (P = 0.0012, c-Fos (P = 0.04, c-Jun (P = 0.019 and Ets-like molecule 1 (Elk-1 (P = 0.038. Conclusion This study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.

  14. Expression and Purification of Z Protein from Junín Virus

    Directory of Open Access Journals (Sweden)

    S. E. Goñi

    2010-01-01

    Full Text Available Arenaviridae comprises 23 recognized virus species with a bipartite ssRNA genome and an ambisense coding strategy. The virions are enveloped and include nonequimolar amounts of each genomic RNA species, designated L and S, coding for four ORFs (N, GPC, L, and Z. The arenavirus Junín (JUNV is the etiological agent of Argentine Hemorrhagic Fever, an acute disease with high mortality rate. It has been proposed that Z is the functional counterpart of the matrix proteins found in other negative-stranded enveloped RNA viruses. Here we report the optimized expression of a synthetic gene of Z protein, using three expression systems (two bacterial and a baculoviral one. One of these recombinant proteins was used to generate antibodies. A bioinformatic analysis was made where Z was subdivided into three domains. The data presented contributes methodologies for Z recombinant production and provides the basis for the development of new experiments to test its function.

  15. Observation of intermittency in gene expression on cDNA microarrays

    CERN Document Server

    Peterson, L E

    2002-01-01

    We used scaled factorial moments to search for intermittency in the log expression ratios (LERs) for thousands of genes spotted on cDNA microarrays (gene chips). Results indicate varying levels of intermittency in gene expression. The observation of intermittency in the data analyzed provides a complimentary handle on moderately expressed genes, generally not tackled by conventional techniques.

  16. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Kenner, Lukas; Florin, Lore; Hummerich, Lars; Mehic, Denis; Scheuch, Harald; Angel, Peter; Tschachler, Erwin; Wagner, Erwin F

    2005-09-15

    Psoriasis is a frequent, inflammatory disease of skin and joints with considerable morbidity. Here we report that in psoriatic lesions, epidermal keratinocytes have decreased expression of JunB, a gene localized in the psoriasis susceptibility region PSORS6. Likewise, inducible epidermal deletion of JunB and its functional companion c-Jun in adult mice leads (within two weeks) to a phenotype resembling the histological and molecular hallmarks of psoriasis, including arthritic lesions. In contrast to the skin phenotype, the development of arthritic lesions requires T and B cells and signalling through tumour necrosis factor receptor 1 (TNFR1). Prior to the disease onset, two chemotactic proteins (S100A8 and S100A9) previously mapped to the psoriasis susceptibility region PSORS4, are strongly induced in mutant keratinocytes in vivo and in vitro. We propose that the abrogation of JunB/activator protein 1 (AP-1) in keratinocytes triggers chemokine/cytokine expression, which recruits neutrophils and macrophages to the epidermis thereby contributing to the phenotypic changes observed in psoriasis. Thus, these data support the hypothesis that epidermal alterations are sufficient to initiate both skin lesions and arthritis in psoriasis.

  17. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  18. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    International Nuclear Information System (INIS)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.; Rozengurt, Enrique

    2007-01-01

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic 32 P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate into Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains

  19. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  20. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  1. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  2. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    Gene expression profiles in adenosine-treated human mast cells. ... SW Kang, JE Jeong, CH Kim, SH Choi, SH Chae, SA Jun, HJ Cha, JH Kim, YM Lee, YS ... beta 4, ring finger protein, high-mobility group, calmodulin 2, RAN binding protein, ...

  4. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.

    Science.gov (United States)

    Lu, Cong; Dong, Liming; Lv, Jingwei; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-01-05

    20(S)-protopanaxadiol (PPD) possesses various biological properties, including anti-inflammatory, antitumor and anti-fatigue properties. Recent studies found that PPD functioned as a neurotrophic agent to ameliorate the sensory deficit caused by glutamate-induced excitotoxicity through its antioxidant effects and exhibited strong antidepressant-like effects in vivo. The objective of the present study was first to investigate the effect of PPD in scopolamine (SCOP)-induced memory deficit in mice and the potential mechanisms involved. In this study, mice were pretreated with PPD (20 and 40 μmol/kg) and donepezil (1.6 mg/kg) intraperitoneally (i.p) for 14 days. Then, open field test was used to assess the effect of PPD on the locomotor activity and mice were daily injected with SCOP (0.75 mg/kg) to induce cognitive deficits and then subjected to behavioral tests by object location recognition (OLR) experiment and Morris water maze (MWM) task. The cholinergic system function, oxidative stress biomarkers and protein expression of Egr-1, c-Fos, and c-Jun in mouse hippocampus were examined. PPD was found to significantly improve the performance of amnesia mice in OLR and MWM tests. PPD regulated cholinergic function by inhibiting SCOP-induced elevation of acetylcholinesterase (AChE) activity, decline of choline acetyltransferase (ChAT) activity and decrease of acetylcholine (Ach) level. PPD suppressed oxidative stress by increasing activities of antioxidant enzymes such as superoxide dismutase (SOD) and lowering maleic diadehyde (MDA) level. Additionally, PPD significantly elevated the expression of Egr-1, c-Fos, and c-Jun in hippocampus at protein level. Taken together, all these results suggested that 20(S)-protopanaxadiol (PPD) may be a candidate compound for the prevention against memory loss in some neurodegenerative diseases such as Alzheimer's disease (AD). Copyright © 2017. Published by Elsevier B.V.

  5. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  7. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  8. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    International Nuclear Information System (INIS)

    Quintana, Anita M; Liu, Fan; O'Rourke, John P; Ness, Scott A

    2011-01-01

    The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells

  9. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  10. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    International Nuclear Information System (INIS)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-01-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  11. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  12. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    Science.gov (United States)

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  13. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  14. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  15. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  16. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  17. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  18. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2006-12-01

    Full Text Available Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 degrees C and 24 degrees C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii and N2 (Bristol. No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 degrees C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.

  19. Effect of PTTG on endogenous gene expression in HEK 293 cells

    Directory of Open Access Journals (Sweden)

    Panguluri Siva K

    2009-12-01

    Full Text Available Abstract Background Pituitary tumor transforming gene (PTTG, also known as securin, is highly expressed in various tumors including pituitary, thyroid, colon, ovary, testis, lung, and breast. An overexpression of PTTG enhances cell proliferation, induces cellular transformation in vitro, and promotes tumor development in nude mice. PTTG also inhibits separation of sister chromatids leading to aneuploidy and genetic instability. A great amount of work has been undertaken to understand the biology of PTTG and its expression in various tumors. However, mechanisms by which PTTG mediates its tumorigenic function are not fully understood. To utilize this gene for cancer therapy, identification of the downstream signaling genes regulated by PTTG in mediation of its tumorigenic function is necessary. For this purpose, we expressed PTTG in human embryonic kidney (HEK293 cells that do not express PTTG and analyzed the downstream genes using microarray analysis. Results A total of 22,277 genes printed on an Affymetrix HG-U133A 2.0 GeneChip™ array were screened with labeled cRNA prepared from HEK293 cells infected with adenovirus vector expressing PTTG cDNA (AdPTTG cDNA and compared with labeled cRNA prepared from HEK293 cells infected with control adenovirus (control Ad or adenovirus vector expressing GFP (AdGFP. Out of 22,277 genes, 71 genes were down-regulated and 35 genes were up-regulated with an FDR corrected p-value of ≤ 0.05 and a fold change of ≥2. Most of the altered genes identified are involved in the cell cycle and cell apoptosis; a few are involved in mRNA processing and nitrogen metabolism. Most of the up-regulated genes belong to the histone protein family. Conclusion PTTG is a well-studied oncogene for its role in tumorigenesis. In addition to its importance in regulation of the cell cycle, this gene has also been recently shown to play a role in the induction of cell apoptosis. The microarray analysis in the present study

  20. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  1. Radiation-modulated gene expression in C. elegans

    International Nuclear Information System (INIS)

    Nelson, G.A.; Bayeta, E.; Perez, C.; Lloyd, E.; Jones, T.; Smith, A.; Tian, J.

    2003-01-01

    Full text: We use the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation with emphasis effects of charged particle radiation and have described the fluence vs. response relationships for mutation, chromosome aberration and certain developmental errors. These endpoints quantify the biological after repair and compensation pathways have completed their work. In order to address the control of these reactions we have turned to gene expression profiling to identify genes that uniquely respond to high LET species or respond differentially as a function of radiation properties. We have employed whole genome microarray methods to map gene expression following exposure to gamma rays, protons and accelerated iron ions. We found that 599 of 17871 genes analyzed showed differential expression 3 hrs after exposure to 3 Gy of at least one radiation types. 193 were up-regulated, 406 were down-regulated, and 90% were affected by only one species of radiation. Genes whose transcription levels responded significantly mapped to definite statistical clusters that were unique for each radiation type. We are now trying to establish the functional relationships of the genes their relevance to mitigation of radiation-induced damage. Three approaches are being used. First, bioinformatics tools are being used to determine the roles of genes in co-regulated gene sets. Second, we are applying the technique of RNA interference to determine whether our radiation-induced genes affect cell survival (measured in terms of embryo survival) and chromosome aberration (intestinal anaphase bridges). Finally we are focussing on the response of the most strongly-regulated gene in our data set. This is the autosomal gene, F36D3.9, whose predicted structure is that of a cysteine protease resembling cathepsin B. An enzymological approach is being used to characterize this gene at the protein level. This work was supported by NASA Cooperative Agreement NCC9-149

  2. EGCG-targeted p57/KIP2 reduces tumorigenicity of oral carcinoma cells: Role of c-Jun N-terminal kinase

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Digumarthi, Hari; Aranbayeva, Zina; Wataha, John; Lewis, Jill; Messer, Regina; Qin, Haiyan; Dickinson, Douglas; Osaki, Tokio; Schuster, George S.; Hsu, Stephen

    2007-01-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) regulates gene expression differentially in tumor and normal cells. In normal human primary epidermal keratinocytes (NHEK), one of the key mediators of EGCG action is p57/KIP2, a cyclin-dependent kinase (CDK) inhibitor. EGCG potently induces p57 in NHEK, but not in epithelial cancer cells. In humans, reduced expression of p57 often is associated with advanced tumors, and tumor cells with inactivated p57 undergo apoptosis when exposed to EGCG. The mechanism of p57 induction by EGCG is not well understood. Here, we show that in NHEK, EGCG-induces p57 via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In p57-negative tumor cells, JNK signaling mediates EGCG-induced apoptosis, and exogenous expression of p57 suppresses EGCG-induced apoptosis via inhibition of c-Jun N-terminal kinase (JNK). We also found that restoration of p57 expression in tumor cells significantly reduced tumorigenicity in athymic mice. These results suggest that p57 expression may be an useful indicator for the clinical course of cancers, and could be potentially useful as a target for cancer therapies

  3. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  4. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  5. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  6. Role of promoter element in c-mpl gene expression induced by TPO.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2013-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role for the development of megakaryocyte and considered to regulate megakaryocytopoiesis. Previously we reported that TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter and the expression of the c-mpl gene is modulated by transcription through a protein kinase C (PKC)-dependent pathway in the megakaryoblastic cells. In this research, to elucidate the required elements in c-mpl promoter, the promoter activity of the deletion constructs and site-directed mutagenesis were measured by a transient transfection assay system. Destruction of -77GATA in c-mpl promoter decreased the activity by 22.8%. Our study elucidated that -77GATA involved in TPO-induced c-mpl gene expression in a human megakaryoblastic cell line, CMK.

  7. Gene expression profiles associated with anaemia and ITPA genotypes in patients with chronic hepatitis C (CH-C).

    Science.gov (United States)

    Birerdinc, A; Estep, M; Afendy, A; Stepanova, M; Younossi, I; Baranova, A; Younossi, Z M

    2012-06-01

    Anaemia is a common side effect of ribavirin (RBV) which is used for the treatment of hepatitis C. Inosine triphosphatase gene polymorphism (C to A) protects against RBV-induced anaemia. The aim of our study was to genotype patients for inosine triphosphatase gene polymorphism rs1127354 SNP (CC or CA) and associate treatment-induced anaemia with gene expression profile and genotypes. We used 67 hepatitis C patients with available gene expression, clinical, laboratory data and whole-blood samples. Whole blood was used to determine inosine triphosphatase gene polymorphism rs1127354 genotypes (CC or CA). The cohort with inosine triphosphatase gene polymorphism CA genotype revealed a distinct pattern of protection against anaemia and a lower drop in haemoglobin. A variation in the propensity of CC carriers to develop anaemia prompted us to look for additional predictors of anaemia during pegylated interferon (PEG-IFN) and RBV. Pretreatment blood samples of patients receiving a full course of PEG-IFN and RBV were used to assess expression of 153 genes previously implicated in host response to viral infections. The gene expression data were analysed according to presence of anaemia and inosine triphosphatase gene polymorphism genotypes. Thirty-six genes were associated with treatment-related anaemia, six of which are involved in the response to hypoxia pathway (HIF1A, AIF1, RHOC, PTEN, LCK and PDGFB). There was a substantial overlap between sustained virological response (SVR)-predicting and anaemia-related genes; however, of the nine JAK-STAT pathway-related genes associated with SVR, none were implicated in anaemia. These observations exclude the direct involvement of antiviral response in the development of anaemia associated with PEG-IFN and RBV treatment, whereas another, distinct component within the SVR-associated gene expression response may predict anaemia. We have identified baseline gene expression signatures associated with RBV-induced anaemia and identified

  8. Study of expression of genes cIAP and cMET, in liver tissue with and without neoplasia of Rattus norvegicus

    International Nuclear Information System (INIS)

    Coto Valverde, Daniel Esteban

    2010-01-01

    The expression levels of cIAP genes and cMET were determined in liver tissues with and without neoplasm of the organism Rattus norvegicus, for prevention, diagnosis and treatment of hepatocellular carcinoma. The technique of reaction Polymerase Chain in real time (qPCR), is used to obtain the expression, of both genes cIAP and cMET, and this has decreased in neoplastic samples compared to samples not affected. The expression of these genes has been analyzed in samples with neoplastic formations, but treated with an anti-tumor agent. The expression has presented an increase of the cMET gene, unlike the cIAP gene, which has decreased its expression. Perform statistical analysis has been impossible because the number of samples used has been reduced. The results obtained differ with those expected theoretically. (author) [es

  9. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  10. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    Science.gov (United States)

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  11. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2014-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.

  12. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  13. Radioactive cDNA microarrys for gene expression profiles in antidepressant therapy

    International Nuclear Information System (INIS)

    Lee, M. S.; Han, B. J.; Cha, J. H.; Ryu, Y. M.; Shin, E. K.; Park, J. H.; Park, Y. H.; Kim, M. K.

    2002-01-01

    Using radioactive cDNA microarray, we investigated a pattern of gene regulation under treatment of antidepressant on patients of depressive disoder. Basic microarray technology was performed as previously described in our research. The bioinformatic selection of human cDNAs, which is specifically designed for psychiatry, neurology, and signal transduction, were arrayed on nylon membranes. Using with 33P-labeled probes, this method provided highly sensitive gene expression profiles of our interest including brain receptors, drug metabolism, and cellular signalings. Gene expression profiles were also classified into several categories in accordance with the gene-regulation of antidepressant. The gene profiles of our interest were significantly up- (16 genes, >2.0 of Z-ratio) or down- (24 genes, <-2.0 of Z ratio) regulated when compared the good responsed group with the bad-responsed one. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology

  14. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  15. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  16. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  17. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    Science.gov (United States)

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  18. Expression of of VP60 gene from RHDV YL strain under control of ...

    African Journals Online (AJOL)

    zdx

    2012-06-19

    Jun 19, 2012 ... So far, several plant species suitable for the expression of recombinant proteins with ... plant transfer vector including the VP60 gene driven by .... VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73(5): ...

  19. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  20. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Minamitani, Takeharu; Orba, Yasuko; Sato, Mami; Sawa, Hirofumi; Ariga, Hiroyoshi

    2004-01-01

    The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway

  1. Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C).

    Science.gov (United States)

    Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M

    2012-09-01

    The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression.

  2. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  3. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  4. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  5. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  6. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    International Nuclear Information System (INIS)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon

    2001-01-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with 33 P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells

  7. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with {sup 33}P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells.

  8. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  9. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Science.gov (United States)

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-01-01

    Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519

  10. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2009-05-01

    Full Text Available Abstract Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm or female (oocyte fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.

  11. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  12. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-01-01

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH 2 -terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids

  13. Stat1-independent regulation of gene expression in response to IFN-γ

    Science.gov (United States)

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  14. The anthocyanidin synthase gene from sweetpotato [Ipomoea ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... The tissue expression profiles of IbANS indicated that it could be expressed in all tissues but at different ... al., 1997). Likewise, transcripts of the apple ANS gene are detected ... electrophoresis (EC250-90, E-C Apparatus Corporation) and ... Instruments Inc.) analyses and the RNA samples were stored in a.

  15. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  16. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity.

    Directory of Open Access Journals (Sweden)

    Yaroslav Nikolaev

    Full Text Available Basic-region leucine zipper (bZIP proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3',5'-phosphodiester bonds with formation of 2',3'-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins. If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides.

  17. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  18. Development of Gene Expression Fingerprints for Identification of Environmental Contaminants Using cDNA Arrays

    National Research Council Canada - National Science Library

    Inouye, L

    2004-01-01

    ...) to develop cDNA array-based assays that map gene expression from contaminant exposures. Results substantiate that distinct gene expression profiles exist for major contaminant classes such as PARs, PCBs, and PCDD/Fs...

  19. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  20. The Expression of Fos, Jun and AP-1 DNA Binding Activity in Rat Supraoptic Nucleus Neurons Following Acute Versus Repeated Osmotic Stimulation

    Science.gov (United States)

    1995-06-22

    energy . Dr. Griemley - for agreeing to sit on my committee and providing the advice. vii least, for his Thank you for Drs. Steven Bassnett, Rita Dhawan...encouragement. your time, energy and patience. viii TABLE OF CONTENTS Page Approval Sheet i Copyright Statement ii Abstract ’ iii Title Page...D.A., and Murphy,D. 1990. Regulation of c-fos and c- jun expression in the rat supraoptic nucleus. Cell. Mol. Neurobio . 10: 435-445 Castel, M., Gainer

  1. Expression and distribution of PPP2R5C gene in leukemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2011-05-01

    Full Text Available Abstract Background Recently, we clarified at the molecular level novel chromosomal translocation t(14;14(q11;q32 in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A. It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR, and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. Findings Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. Conclusions Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.

  2. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    Science.gov (United States)

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  4. Suppression of cadmium-induced JNK/p38 activation and HSP70 family gene expression by LL-Z1640-2 in NIH3T3 cells

    International Nuclear Information System (INIS)

    Sugisawa, Nobusuke; Matsuoka, Masato; Okuno, Takeo; Igisu, Hideki

    2004-01-01

    When NIH3T3 cells were exposed to CdCl 2 , the three major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase (ERK), c-Jun NH 2 -terminal kinase (JNK), and p38, were phosphorylated in a time (1-9 h)- and dose (1-20 μM)-dependent manner. Treatment with a macrocyclic nonaketide compound, LL-Z1640-2 (10-100 ng/ml), suppressed the phosphorylation of MAPKs without affecting the total protein level in cells exposed to 10 μM CdCl 2 for 6 h. CdCl 2 -induced phosphorylation of c-Jun on Ser63 and that on Ser73, and resultant accumulation of total c-Jun protein were also suppressed by LL-Z1640-2 treatment. The in vitro kinase assays also showed significant inhibitory effects of LL-Z1640-2 (at 10 or 25 ng/ml) on JNK and p38 but less markedly. In contrast to JNK and p38, ERK activity was inhibited moderately only at 50 or 100 ng/ml LL-Z1640-2. On the other hand, other JNK inhibitors, SP600125 and L-JNKI1, failed to suppress CdCl 2 -induced activation of the JNK pathway. Among the mouse stress response genes upregulated in response to CdCl 2 exposure, the expressions of hsp68 (encoding for heat shock 70 kDa protein 1; Hsp70-1) and grp78 (encoding for 78 kDa glucose-regulated protein; Grp78) genes were suppressed by treatment with 25 ng/ml LL-Z1640-2. Thus, LL-Z1640-2 could suppress CdCl 2 -induced activation of JNK/p38 pathways and expression of HSP70 family genes in NIH3T3 cells. LL-Z1640-2 seems to be useful to analyze functions of toxic metal-induced JNK/p38 activation

  5. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  6. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  7. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    Science.gov (United States)

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  10. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  11. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  12. Multiplex preamplification of specific cDNA targets prior to gene expression analysis by TaqMan Arrays

    Directory of Open Access Journals (Sweden)

    Ribal María

    2008-06-01

    Full Text Available Abstract Background An accurate gene expression quantification using TaqMan Arrays (TA could be limited by the low RNA quantity obtained from some clinical samples. The novel cDNA preamplification system, the TaqMan PreAmp Master Mix kit (TPAMMK, enables a multiplex preamplification of cDNA targets and therefore, could provide a sufficient amount of specific amplicons for their posterior analysis on TA. Findings A multiplex preamplification of 47 genes was performed in 22 samples prior to their analysis by TA, and relative gene expression levels of non-preamplified (NPA and preamplified (PA samples were compared. Overall, the mean cycle threshold (CT decrement in the PA genes was 3.85 (ranging from 2.07 to 5.01. A high correlation (r between the gene expression measurements of NPA and PA samples was found (mean r = 0.970, ranging from 0.937 to 0.994; p Conclusion We demonstrate that cDNA preamplification using the TPAMMK before TA analysis is a reliable approach to simultaneously measure gene expression of multiple targets in a single sample. Moreover, this procedure was validated in genes from degraded RNA samples and low abundance expressed genes. This combined methodology could have wide applications in clinical research, where scarce amounts of degraded RNA are usually obtained and several genes need to be quantified in each sample.

  13. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  14. Normal uniform mixture differential gene expression detection for cDNA microarrays

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2005-07-01

    Full Text Available Abstract Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002 1. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM, and Empirical Bayes for microarrays (EBarrays with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at http://www.bioconductor.org.

  15. cDNA-SRAP and Its Application in Differential Gene Expression Analysis: A Case Study in Erianthus arundinaceum

    Directory of Open Access Journals (Sweden)

    Youxiong Que

    2012-01-01

    Full Text Available Erianthus arundinaceum is a wild relative species of sugarcane. The aim of this research was to demonstrate the feasibility of cDNA-SRAP for differential gene expression and to explore the molecular mechanism of drought resistance in E. arundinaceum. cDNA-SRAP technique, for the first time, was applied in the analysis of differential gene expression in E. arundinaceum under drought stress. In total, eight differentially expressed genes with length of 185–427 bp were successfully isolated (GenBank Accession numbers: EU071770, EU071772, EU071774, EU071776, EU071777, EU071779, EU071780, and EU071781. Based on their homologies with genes in GenBank, these genes were assumed to encode ribonuclease III, vacuolar protein, ethylene insensitive protein, aerobactin biosynthesis protein, photosystem II protein, glucose transporter, leucine-rich repeat protein, and ammonia monooxygenase. Real-time PCR analysis on the expression profiling of gene (EU071774 encoding ethylene-insensitive protein and gene (EU071781 encoding ammonia monooxygenase revealed that the expression of these two genes was upregulated both by PEG and ABA treatments, suggesting that they may involve in the drought resistance of E. arundinaceum. This study constitutes the first report of genes activated in E. arundinaceum by drought stress and opens up the application of cDNA-SRAP in differential gene expression analysis in E. arundinaceum under certain stress conditions.

  16. Study of differential gene expression in human hepatocyte exposed to 50 cGy γ ray

    International Nuclear Information System (INIS)

    Wen Jianhua; Li Jianguo; Tian Huancheng; Li Yanling; Wang Xiaoli; Zuo Yanhui

    2008-01-01

    The study analyzed the differential transcriptional profile of the normal human hepatic cell and the human hepatic cell radiated with 50 cGy γ ray by gene chip technique. The results showed that there were 614 differentially expressed genes among 14 112 human genes analyzed, in which 521 genes were up-regulated and 93 genes down-regulated. These genes are associated with mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, tumor necrosis factor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN were consistent with gene chip data. (authors)

  17. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice.

    Science.gov (United States)

    Bineshian, Farahnaz; Yadegari, Mohammad Hossien; Sharifi, Zohre; Akbari Eidgahi, Mohammadreza; Nasr, Reza

    2015-05-01

    Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively

  18. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  19. Radioactive cDNA microarray (II): Gene expression profiling of antidepressant treatment by human cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hye; Kang, Rhee Hun; Ham, Byung Joo; Lee, Min Su; Shin, Kyung Ho; Choe, Jae Gol; Kim, Meyoung Kon [College of Medicine, Univ. of Korea, Seoul (Korea, Republic of)

    2003-07-01

    Major depressive disorder is a prevalent psychiatric disorder in primary care, associated with impaired patient functioning and well-being. Fluoxetine is a selective serotonin-reuptake inhibitors (SSRIs) and is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Objectives ; the aims of this study were two-fold: (1) to determine the usefulness for investigation of the transcription profiles in depression patients, and (2) to assess the differences in gene expression profiles between positive response group and negative response groups by fluoxetine treatment. This study included 53 patients with major depression (26 in positive response group with antidepressant treatment, 27 in negative response group with antidepressant treatment), and 53 healthy controls. To examine the difference of gene expression profile in depression patients, radioactive complementary DNA microarrays were used to evaluate changes in the expression of 1,152 genes in total. Using 33p-labeled probes, this method provided highly sensitive gene expression profiles including brain receptors, drug metabolism, and cellular signaling. Gene transcription profiles were classified into several categories in accordance with the antidepressant gene-regulation. The gene profiles were significantly up-(22 genes) and down-(16 genes) regulated in the positive response group when compared to the control group. Also, in the negative response group, 35 genes were up-regulated and 8 genes were down-regulated when compared to the control group. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology.

  20. Radioactive cDNA microarray (II): Gene expression profiling of antidepressant treatment by human cDNA microarray

    International Nuclear Information System (INIS)

    Lee, Ji Hye; Kang, Rhee Hun; Ham, Byung Joo; Lee, Min Su; Shin, Kyung Ho; Choe, Jae Gol; Kim, Meyoung Kon

    2003-01-01

    Major depressive disorder is a prevalent psychiatric disorder in primary care, associated with impaired patient functioning and well-being. Fluoxetine is a selective serotonin-reuptake inhibitors (SSRIs) and is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Objectives ; the aims of this study were two-fold: (1) to determine the usefulness for investigation of the transcription profiles in depression patients, and (2) to assess the differences in gene expression profiles between positive response group and negative response groups by fluoxetine treatment. This study included 53 patients with major depression (26 in positive response group with antidepressant treatment, 27 in negative response group with antidepressant treatment), and 53 healthy controls. To examine the difference of gene expression profile in depression patients, radioactive complementary DNA microarrays were used to evaluate changes in the expression of 1,152 genes in total. Using 33p-labeled probes, this method provided highly sensitive gene expression profiles including brain receptors, drug metabolism, and cellular signaling. Gene transcription profiles were classified into several categories in accordance with the antidepressant gene-regulation. The gene profiles were significantly up-(22 genes) and down-(16 genes) regulated in the positive response group when compared to the control group. Also, in the negative response group, 35 genes were up-regulated and 8 genes were down-regulated when compared to the control group. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology

  1. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    Science.gov (United States)

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  2. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice

    Directory of Open Access Journals (Sweden)

    Liao Dezhong J

    2008-01-01

    Full Text Available Abstract Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT and liver metastatic lesions (LM compared to normal pancreas (NP. In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1 and Serine proteinase inhibitor A1 (Serpina1, and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  3. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice.

    Science.gov (United States)

    Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J

    2008-01-24

    Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  4. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  5. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    Science.gov (United States)

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  6. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  7. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Differential effects of v-Jun and c-Jun proteins on v-myb-transformed monoblasts

    Czech Academy of Sciences Publication Activity Database

    Ševčíková, S.; Souček, Karel; Kubala, Lukáš; Bryja, Vítězslav; Šmarda, J.

    2002-01-01

    Roč. 59, č. 10 (2002), s. 1690-1705 ISSN 1420-682X R&D Projects: GA ČR GA301/01/0040 Institutional research plan: CEZ:AV0Z5004920 Keywords : v-myb * Jun * differentiation Subject RIV: BO - Biophysics Impact factor: 5.259, year: 2002

  9. Examination of gene expression in mice exposed to low dose radiation using affymetrix cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.; Knox, D.; Lavoie, J.; Lemon, J.; Boreham, D. [McMaster Univ., Hamilton, Ontario (Canada)

    2005-07-01

    'Full text:' Gamma radiation acts via the indirect effect to damage cells by producing reactive oxygen species (ROS). These ROS are capable damaging macromolecules and, altering signal pathways and gene transcription. Cells have evolved enzymes and mechanisms to scavenge ROS and repair oxidative damage. Microarrays allow the survey of the gene transcription activity of thousands of genes simultaneously. Messenger RNA is extracted from cells, hybridized with the complementary DNA (cDNA) of a microarray chip, and examined with a chip reader. Affymetrix microarray chips have been produced by the CSCHAH in Winnipeg containing 26000 murine genes. Groups of female mice have been exposed to low dose whole body chronic gamma radiation exposures of 0,50,100, and 120 mGy, corresponding to 15,30,60, and 75 weeks, respectively. MRNA from mice brain tissue has been extracted, isolated, converted to cDNA and labeled. Gene expression in each irradiated mouse was compared to the pooled expression of the control mice. Analysis of gene expression levels are performed with microarray analytical software, Array Pro by Media Cybernetics, and powerful statistical software, BRB microarray tools. Differences in gene expressions, focusing on genes for cytokines, DNA repair mechanisms, immuno-modulators, apoptosis pathways, and enzymatic anti-oxidant systems, are being examined and will be reported. (author)

  10. Exploring gene expression changes in the amphioxus gill after poly(I:C) challenge using digital expression profiling.

    Science.gov (United States)

    Zhang, Qi-Lin; Qiu, Han-Yue; Liang, Ming-Zhong; Luo, Bang; Wang, Xiu-Qiang; Chen, Jun-Yuan

    2017-11-01

    Amphioxus, a cephalochordate, is a key model animal for studying the evolution of vertebrate immunity. Recently, studies have revealed that microRNA (miRNA) expression profiles change significantly in the amphioxus gill after immune stimulation, but it remains largely unknown how gene expression responds to immune stress. Elucidating gene expression changes in the amphioxus gill will provide a deeper understanding of the evolution of gill immunity in vertebrates. Here, we used high-throughput RNA sequencing technology (RNA-seq) to conduct tag-based digital gene expression profiling (DGE) analyses of the gills of control Branchiostoma belcheri and of those exposed to the viral mimic, poly(I:C) (pIC). Six libraries were created for the control and treatment groups including three biological replicates per group. A total of 1999 differently expressed genes (DEGs) were obtained, with 571 and 1428 DEGs showing up- or down-regulation, respectively, in the treatment group. Enrichment analysis of gene ontology (GO) terms and pathways revealed that the DEGs were primarily related to immune and defense response, apoptosis, human disease, cancer, protein metabolism, enzyme activity, and regulatory processes. In addition, eight DEGs were randomly selected to validate the RNA-seq data using real-time quantitative PCR (qRT-PCR), and the results confirmed the accuracy of the RNA-seq approach. Next, we screened eight key responding genes to examine the dynamic changes in expression levels at different time points in more detail. The results indicated that expressions of TRADD, MARCH, RNF31, NF-κb, CYP450, TNFRSF6B, IFI and LECT1 were induced to participate in the antiviral response against pIC. This study provides a valuable resource for understanding the role of the amphioxus gill in antiviral immunity and the evolution of gill immunity in vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  12. Natural variation of histone modification and its impact on gene expression in the rat genome

    Czech Academy of Sciences Publication Activity Database

    Rintisch, C.; Heinig, M.; Bauerfeind, A.; Schafer, S.; Mieth, Ch.; Patone, G.; Hummel, O.; Chen, W.; Cook, S.; Cuppen, E.; Colomé-Tatché, M.; Johannes, F.; Jansen, R. C.; Neil, H.; Werner, M.; Pravenec, Michal; Vingron, M.; Hubner, N.

    2014-01-01

    Roč. 24, JUN (2014), s. 942-953 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 7E10067; GA ČR(CZ) GAP301/10/0290; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : ChIP-seq * histone modification * gene expression * genetic linkage analysis Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 14.630, year: 2014

  13. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun.

    Directory of Open Access Journals (Sweden)

    Celia Martínez-Mora

    Full Text Available Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.

  14. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  15. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  16. Gene expression profile associated with superimposed non-alcoholic fatty liver disease and hepatic fibrosis in patients with chronic hepatitis C.

    Science.gov (United States)

    Younossi, Zobair M; Afendy, Arian; Stepanova, Maria; Hossain, Noreen; Younossi, Issah; Ankrah, Kathy; Gramlich, Terry; Baranova, Ancha

    2009-10-01

    Hepatic steatosis occurs in 40-70% of patients chronically infected with hepatitis C virus [chronic hepatitis C (CH-C)]. Hepatic steatosis in CH-C is associated with progressive liver disease and a low response rate to antiviral therapy. Gene expression profiles were examined in CH-C patients with and without hepatic steatosis, non-alcoholic steatohepatitis (NASH) and fibrosis. This study included 65 CH-C patients who were not receiving antiviral treatment. Total RNA was extracted from peripheral blood mononuclear cells, quantified and used for one-step reverse transcriptase-polymerase chain reaction to profile 153 mRNAs that were normalized with six 'housekeeping' genes and a reference RNA. Multiple regression and stepwise selection assessed differences in gene expression and the models' performances were evaluated. Models predicting the grade of hepatic steatosis in patients with CH-C genotype 3 involved two genes: SOCS1 and IFITM1, which progressively changed their expression level with the increasing grade of steatosis. On the other hand, models predicting hepatic steatosis in non-genotype 3 patients highlighted MIP-1 cytokine encoding genes: CCL3 and CCL4 as well as IFNAR and PRKRIR. Expression levels of PRKRIR and SMAD3 differentiated patients with and without superimposed NASH only in the non-genotype 3 cohort (area under the receiver operating characteristic curve=0.822, P-value 0.006]. Gene expression signatures related to hepatic fibrosis were not genotype specific. Gene expression might predict moderate to severe hepatic steatosis, NASH and fibrosis in patients with CH-C, providing potential insights into the pathogenesis of hepatic steatosis and fibrosis in these patients.

  17. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening.

    Science.gov (United States)

    Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai

    2017-02-16

    Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our

  18. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    International Nuclear Information System (INIS)

    Chen, Yinghua; Xu, Jinhua; Borowicz, Stanley; Collins, Cindy; Huo, Dezheng; Olopade, Olufunmilayo I

    2011-01-01

    The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. The distal BRCA1 promoter region is associated with c

  19. Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-12-31

    Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H(2)O(2))-induced cell death are unclear. This study examined the effects of H(2)O(2) on the activation of MAPK and AP-1 by exposing the cells to H(2)O(2) generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H(2)O(2) affected the activities of MAPK differently according to the method of H(2)O(2) exposure. H(2)O(2) increased the AP-1-DNA binding activity in these cells, where continuously generated H(2)O(2) led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH(2)-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H(2)O(2)-induced cell death. However, the suppression of H(2)O(2)-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H(2)O(2). This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H(2)O(2) may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H(2)O(2) than the concentration of this agent.

  20. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  1. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  2. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  3. Identification of differentially expressed genes and biological pathways in bladder cancer

    Science.gov (United States)

    Tang, Fucai; He, Zhaohui; Lei, Hanqi; Chen, Yuehan; Lu, Zechao; Zeng, Guohua; Wang, Hangtao

    2018-01-01

    The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein-protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in ‘extracellular matrix organization’, ‘proteinaceous extracellular matrix’ and ‘heparin binding’. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the ‘cell cycle’, whereas the downregulated DEGs were significantly enriched in ‘complement and coagulation cascades’. JUN, cyclin-dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub-networks revealed that these gene were enriched in significant pathways, including the ‘cell cycle’ signaling pathway and ‘PI3K-Akt signaling pathway’. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC. PMID:29532898

  4. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Anna Francina, E-mail: Francina.Jackson@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Recio, Leslie, E-mail: lrecio@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Waters, Michael D., E-mail: mwaters@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Lambert, Iain B., E-mail: Iain.Lambert@carleton.ca [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Yauk, Carole L., E-mail: Carole.Yauk@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada)

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  5. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    International Nuclear Information System (INIS)

    Jackson, Anna Francina; Williams, Andrew; Recio, Leslie; Waters, Michael D.; Lambert, Iain B.; Yauk, Carole L.

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  6. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  7. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer

    Directory of Open Access Journals (Sweden)

    Yi-Nong Niu

    2016-01-01

    Full Text Available In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3 cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3 mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride′s therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients.

  8. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  9. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  10. c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Liu Yang

    Full Text Available A-to-I RNA editing catalyzed by the two main members of the adenosine deaminase acting on RNA (ADAR family, ADAR1 and ADAR2, represents a RNA-based recoding mechanism implicated in a variety of cellular processes. Previously we have demonstrated that the expression of ADAR2 in pancreatic islet β-cells is responsive to the metabolic cues and ADAR2 deficiency affects regulated cellular exocytosis. To investigate the molecular mechanism by which ADAR2 is metabolically regulated, we found that in cultured β-cells and primary islets, the stress-activated protein kinase JNK1 mediates the upregulation of ADAR2 in response to changes of the nutritional state. In parallel with glucose induction of ADAR2 expression, JNK phosphorylation was concurrently increased in insulin-secreting INS-1 β-cells. Pharmacological inhibition of JNKs or siRNA knockdown of the expression of JNK1 prominently suppressed glucose-augmented ADAR2 expression, resulting in decreased efficiency of ADAR2 auto-editing. Consistently, the mRNA expression of Adar2 was selectively reduced in the islets from JNK1 null mice in comparison with that of wild-type littermates or JNK2 null mice, and ablation of JNK1 diminished high-fat diet-induced Adar2 expression in the islets from JNK1 null mice. Furthermore, promoter analysis of the mouse Adar2 gene identified a glucose-responsive region and revealed the transcription factor c-Jun as a driver of Adar2 transcription. Taken together, these results demonstrate that JNK1 serves as a crucial component in mediating glucose-responsive upregulation of ADAR2 expression in pancreatic β-cells. Thus, the JNK1 pathway may be functionally linked to the nutrient-sensing actions of ADAR2-mediated RNA editing in professional secretory cells.

  11. INAA analysis for Jun porcelaim and modern Chinese Jun porcelain

    International Nuclear Information System (INIS)

    Jia Xiuqin; Dong Jinquan; Han Song; Tang Yunhui

    2004-01-01

    A total of 28 old Jun porcelain, seven modern Chinese Jun porcelain and two Jingdezhen porcelain samples are analyzed with INAA method. The systematic geochemical study for these 37 samples on their REE and trace elements shows that these three types of china were made with relatively stable and similar material, although they leaptover 600 years in different colors and from different kilns. However, the REE patterns of modern Chinese Jun porcelain are a little bit different from that of old Jun porcelain, and clear different from the old glaze of Jindezheng. (authors)

  12. Lymphangiogenesis in cervical cancer evaluated by expression of the VEGF-C gene in clinical stage IB-IIIB

    Directory of Open Access Journals (Sweden)

    Magdalena Franc

    2015-02-01

    Full Text Available Introduction : The aim of the present study was to evaluate the profile of VEGF-C gene expression in particular stages of cervical cancer (IB-IIIB and to estimate the correlation between VEGF-C mRNA quantity profile and clinical stage. Material and methods : Material for molecular analysis consisted of cervical cancer tissue specimens collected from 38 women (10, 15, 13 cases were classified as IB, IIB and IIIB, respectively. The control group was composed of normal cervical tissues collected from 10 women who underwent hysterectomy for non-oncological reasons. The number of VEGF-C mRNA copies in particular groups was estimated by the reverse transcription quantitative polymerase chain reaction (RT-qPCR method. Results: In the control group the average number of mRNA copies was 134 ± 36 (median: 106, in a group with stage IB it was 16 077 ± 7090 (median: 580, for stage IIB – 35 019 ± 8945 (median: 40 870. The highest number of mRNA VEGF-C copies was derived in a group of patients with cervical cancer of stage IIIB. The average quantity was 56 155 ± 12 470, whereas median 55 981. A statistically significantly higher level of VEGF-C gene expression was disclosed in cervical cancer specimens with stage IIB and IIIB than in the control group. In stage IIIB, the VEGF-C gene expression was significantly higher than in specimens derived from individuals in stage IB. Conclusions : In squamous cell carcinoma of the uterine cervix of stage IB-IIIB genes involved in lymphangio­genesis, especially VEGF-C , are expressed, which expression increases as the clinical stage of cervical cancer is higher.

  13. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  14. Expressão dos genes nodC, nodW e nopP em Bradyrhizobium japonicum estirpe CPAC 15 avaliada por RT-qPCR Expression of nodC, nodW and nopP genes in Bradyrhizobium japonicum CPAC 15 strain evaluated by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Simone Bortolan

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a expressão, por RT-qPCR, dos genes de nodulação nodC e nodW e do gene nopP da estirpe CPAC 15, que provavelmente atuam na infecção das raízes da soja. Foram realizados dois experimentos. No primeiro, a expressão dos genes foi avaliada nas células após a incubação com genisteína por 15 min, 1, 4 e 8 horas. Os resultados revelaram que os três genes apresentaram maior expressão imediatamente após o contato com o indutor (15 min. No segundo experimento, a bactéria foi cultivada na presença de indutores (genisteína ou exsudatos de sementes de soja por 48 horas. A expressão dos três genes foi maior na presença de genisteína, com valores de expressão para nodC, nodW e nopP superiores ao controle. Os resultados obtidos confirmam a funcionalidade dos três genes na estirpe CPAC 15, com ênfase para o nopP, cuja funcionalidade em Bradyrhizobium japonicum foi descrita pela primeira vez.The objective of this work was to evaluate, by RT-qPCR, the expression of the nodC and nodW nodulation genes and of the nopP gene of the CPAC 15 strain, which probably play a role in the infection of soybean roots. Two experiments were done. In the first, the gene expression was evaluated in cells after incubation with genistein for 15 min, 1, 4 and 8 hours. Results showed that the three genes showed higher expression immediately after contact with the inducer (15 min. In the second experiment, the bacterium was grown in the presence of inducers (genistein or soybean seed exudates for 48 hours. The expression of the three genes was greater when induced by genistein, and the expression of nodC, nodW and nopP had higher values than the control. The results confirm the functionality of the three genes in the CPAC 15 strain, with an emphasis on the nopP, whose functionality in Bradyrhizobium japonicum was described for the first time.

  15. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  16. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  17. Manufacturing porcine islets: culture at 22 °C has no advantage above culture at 37 °C: a gene expression evaluation.

    Science.gov (United States)

    Mueller, Kate R; Martins, Kyra V; Murtaugh, Michael P; Schuurman, Henk-Jan; Papas, Klearchos K

    2013-01-01

    The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37 °C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. Porcine islets were isolated from three donors and cultured at 37 °C for 1 day, and then under three different conditions: 37 °C for 6 days (condition A); 22 °C for 6 days (condition B); or 22 °C for 5 days followed by 37 °C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129-159 nmol/min·mgDNA before culture, and 259-291, 204-212, and 207-228 nmol/min·mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular, most of lymphocyte markers showed a >10-fold reduction and also six markers in the lymphokine and chemokine series; these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B, the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those

  18. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells

    Directory of Open Access Journals (Sweden)

    Burgoon Lyle D

    2011-04-01

    Full Text Available Abstract Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is an environmental contaminant that elicits a broad spectrum of toxic effects in a species-specific manner. Current risk assessment practices routinely extrapolate results from in vivo and in vitro rodent models to assess human risk. In order to further investigate the species-specific responses elicited by TCDD, temporal gene expression responses in human HepG2, mouse Hepa1c1c7 and rat H4IIE cells were compared. Results Microarray analysis identified a core set of conserved gene expression responses across species consistent with the role of AhR in mediating adaptive metabolic responses. However, significant species-specific as well as species-divergent responses were identified. Computational analysis of the regulatory regions of species-specific and -divergent responses suggests that dioxin response elements (DREs are involved. These results are consistent with in vivo rat vs. mouse species-specific differential gene expression, and more comprehensive comparative DRE searches. Conclusions Comparative analysis of human HepG2, mouse Hepa1c1c7 and rat H4IIE TCDD-elicited gene expression responses is consistent with in vivo rat-mouse comparative gene expression studies, and more comprehensive comparative DRE searches, suggesting that AhR-mediated gene expression is species-specific.

  19. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    Science.gov (United States)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  20. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute; Kieser, Arnd

    2008-01-01

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-κB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies

  1. Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Oana Tudoran

    Full Text Available Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients.

  2. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain

    International Nuclear Information System (INIS)

    Joo Lee, Pom; Ahn, Ji-Young; Kim, Yang-Hoon; Wook Kim, Seung; Kim, Ji-Yeon; Park, Jae-Sung; Lee, Jeewon

    2004-01-01

    We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus (AJ308438), Photorhabdus luminescens W14 (AF346499) P. luminescens TTO1 (BX571873), and Yersinia pestis CO92 (NC 0 03143). The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity

  3. Influence of UV-C irradiation on expansin and pectin-methylesterase gene expression in strawberry fruit

    International Nuclear Information System (INIS)

    Pombo, M.; Dotto, M.; Martinez, G.; Civello, P.

    2005-01-01

    Full text: The exposure to UV-C delays fruit softening, one of the main factors determining fruit post harvest life. This delay in softening may be caused by changes in the activities of enzymes and proteins involved in cell wall disassembly. Expansins are cell wall proteins involved in fruit softening, while pectin-melhylesterases (PME) are cell wall enzymes related to pectin demethylation, and their activity is affected by heating, another physical treatment based on abiotic stress. We analyzed FaPME 1 gene expression in irradiated strawberry fruits and also measured PME activity after treatment. An increase in PME activity immediately after the treatment was found. The expression of FaEXP2, FaEXP4 and FaEXP5 genes was analyzed in the same fruit samples, as well as expansin protein accumulation. For these three genes we found a decrease in expression 4 h after treatment and an increase after 24 h. The decrease in gene expression after treatment correlated with a diminution of expansins. (author)

  4. Gene Expression Profile in the Liver of BALB/c Mice Infected with Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Jose Rojas-Caraballo

    Full Text Available Fasciola hepatica infection still remains one of the helminthic neglected tropical diseases (NTDs. It has a huge worldwide distribution, affecting mainly cattle and, sometimes, human beings. In addition to data reported about the immunological response induced by helminthic infections and that induced by Fasciola hepatica, little is known about the gene expression profile in its organ target, the liver, which is where adult worms are established and live for long periods of time, causing its characteristic pathology. In the present work, we study both the early and late gene expression profiles in the livers of mice infected with F. hepatica metacercariae using a microarray-based methodology.A total of 9 female-6-week-old BALB/c mice (Charles River Laboratories, Barcelona, Spain weighing 20 to 35 g were used for the experiments. Two groups of BALB/c mice were orally infected with seven F. hepatica metacercariae, and the other group remained untreated and served as a control. Mice were humanely euthanized and necropsied for liver recovery, histological assessment of hepatic damage, RNA isolation, microarray design and gene expression analysis on the day of infection (t0, seven days post-infection (t7 and twenty-one days post-infection (t21.We found that F. hepatica infection induces the differential expression of 128 genes in the liver in the early stage of infection and 308 genes in the late stage, and most of them are up-regulated. The Ingenuity Pathway Analysis revealed significant changes in the pathways related to metabolism, biosynthesis and signaling as well as genes implicated in inducing liver-toxicity, injury and death.The present study provides us insights at the molecular level about the underlying mechanisms used by F. hepatica, leading to liver damage and its subsequent pathophysiology. The expression pattern obtained here could also be used to explain the lack of association between infection with F. hepatica and cholangiocarcinoma

  5. Gene Expression Profile in the Liver of BALB/c Mice Infected with Fasciola hepatica.

    Science.gov (United States)

    Rojas-Caraballo, Jose; López-Abán, Julio; Fernández-Soto, Pedro; Vicente, Belén; Collía, Francisco; Muro, Antonio

    2015-01-01

    Fasciola hepatica infection still remains one of the helminthic neglected tropical diseases (NTDs). It has a huge worldwide distribution, affecting mainly cattle and, sometimes, human beings. In addition to data reported about the immunological response induced by helminthic infections and that induced by Fasciola hepatica, little is known about the gene expression profile in its organ target, the liver, which is where adult worms are established and live for long periods of time, causing its characteristic pathology. In the present work, we study both the early and late gene expression profiles in the livers of mice infected with F. hepatica metacercariae using a microarray-based methodology. A total of 9 female-6-week-old BALB/c mice (Charles River Laboratories, Barcelona, Spain) weighing 20 to 35 g were used for the experiments. Two groups of BALB/c mice were orally infected with seven F. hepatica metacercariae, and the other group remained untreated and served as a control. Mice were humanely euthanized and necropsied for liver recovery, histological assessment of hepatic damage, RNA isolation, microarray design and gene expression analysis on the day of infection (t0), seven days post-infection (t7) and twenty-one days post-infection (t21). We found that F. hepatica infection induces the differential expression of 128 genes in the liver in the early stage of infection and 308 genes in the late stage, and most of them are up-regulated. The Ingenuity Pathway Analysis revealed significant changes in the pathways related to metabolism, biosynthesis and signaling as well as genes implicated in inducing liver-toxicity, injury and death. The present study provides us insights at the molecular level about the underlying mechanisms used by F. hepatica, leading to liver damage and its subsequent pathophysiology. The expression pattern obtained here could also be used to explain the lack of association between infection with F. hepatica and cholangiocarcinoma. However

  6. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust.

    Science.gov (United States)

    Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won; Song, Jae-Jun

    2015-12-01

    The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.

  7. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    Full Text Available BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads, Smad1/5, in murine primary osteoblasts (mPOBs. FSS rapidly phosphorylated Y311 of protein kinase C (PKCδ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

  8. Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5'end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries. This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function.

  9. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cellular phenotype-dependent and -independent effects of vitamin C on the renewal and gene expression of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5 M, but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was

  11. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  12. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    Science.gov (United States)

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  13. C1-Pathways in Methyloversatilis universalis FAM5: Genome Wide Gene Expression and Mutagenesis Studies

    Directory of Open Access Journals (Sweden)

    Nathan M. Good

    2015-04-01

    Full Text Available Methyloversatilis universalis FAM5 utilizes single carbon compounds such as methanol or methylamine as a sole source of carbon and energy. Expression profiling reveals distinct sets of genes altered during growth on methylamine vs methanol. As expected, all genes for the N-methylglutamate pathway were induced during growth on methylamine. Among other functions responding to the aminated source of C1-carbon, are a heme-containing amine dehydrogenase (Qhp, a distant homologue of formaldehyde activating enzyme (Fae3, molybdenum-containing formate dehydrogenase, ferredoxin reductase, a set of homologues to urea/ammonium transporters and amino-acid permeases. Mutants lacking one of the functional subunits of the amine dehydrogenase (ΔqhpA or Δfae3 showed no growth defect on C1-compounds. M. universalis FAM5 strains with a lesion in the H4-folate pathway were not able to use any C1-compound, methanol or methylamine. Genes essential for C1-assimilation (the serine cycle and glyoxylate shunt and H4MTP-pathway for formaldehyde oxidation showed similar levels of expression on both C1-carbon sources. M. universalis FAM5 possesses three homologs of the formaldehyde activating enzyme, a key enzyme of the H4MTP-pathway. Strains lacking the canonical Fae (fae1 lost the ability to grow on both C1-compounds. However, upon incubation on methylamine the fae1-mutant produced revertants (Δfae1R, which regained the ability to grow on methylamine. Double and triple mutants (Δfae1RΔfae3, or Δfae1RΔfae2 or Δfae1RΔfae2Δfae3 constructed in the revertant strain background showed growth similar to the Δfae1R phenotype. The metabolic pathways for utilization of methanol and methylamine in Methyloversatilis universalis FAM5 are reconstructed based on these gene expression and phenotypic data.

  14. Proto-oncogene expression: a predictive assay for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.; Luo, L.; Chin, W.K.; Director-Myska, A.E.; Prasanna, P.G.S.; Blakely, W.F

    2002-07-01

    Using a model system of in vitro human peripheral blood lymphocytes, the effect of low-dose (0.25 to 1.50 Gy) 250-kV{sub p} X ray radiation (1 Gy.min{sup -1}) on the expression of several proto-oncogenes was examined (c-Haras, c-src, c-met, c-jun, c-fos, and c-myc) and {beta}-actin from 0.25 to 17 h post-radiation. RNA was extracted from cells harvested at various times after exposure and examined for levels of particular mRNAs by northern blot hybridisation. A progressive time- and dose-dependent increase in mRNA levels was observed for c-Haras mRNA, while the other proto-oncogenes (c-src, c-met, c-fos, c-jun, and c-myc) examined were variable during the same time period. {beta}-actin levels were initially decreased but at 17 h post-radiation had returned to control levels. A comparison of the rate of c-Haras transcription at 5 and 17 h post-irradiation revealed that c-Haras transcription was higher at 5 h than at 17 h. These findings suggest that the level of specific proto-oncogene expression, particularly c-Haras, may be useful early diagnostic molecular biomarkers for biodosimetry applications. The use of real-time PCR technologies to quantify gene expression changes will also be discussed. (author)

  15. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    Science.gov (United States)

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2018-01-01

    Full Text Available How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3 encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD. In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

  17. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  18. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  19. The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro

    Directory of Open Access Journals (Sweden)

    Said Yekta Sareh

    2011-02-01

    Full Text Available Abstract Background Bisphosphonates are therapeutics of bone diseases, such as Paget's disease, multiple myeloma or osteoclastic metastases. As a severe side effect the bisphosphonate induced osteonecrosis of the jaw (BONJ often requires surgical treatment and is accompanied with a disturbed wound healing. Therefore, the influence on adhesion and migration of human osteoblasts (hOB after bisphosphonate therapy has been investigated by morphologic as well as gene expression methods. Methods By a scratch wound experiment, which measures the reduction of defined cell layer gap, the morphology and migration ability of hOB was evaluated. A test group of hOB, which was stimulated by zoledronate 5 × 10-5M, and a control group of unstimulated hOB were applied. Furthermore the gene expression of integrin aVb3 and tenascin C was quantified by Real-Time rtPCR at 5data points over an experimental period of 14 days. The bisphosphonates zoledronate, ibandronate and clodronate have been compared with an unstimulated hOB control. Results After initially identical migration and adhesion characteristics, zoledronate inhibited hOB migration after 50 h of stimulation. The integrinavb3 and tenascin C gene expression was effected by bisphosphonates in a cell line dependent manner with decreased, respectively inconsistent gene expression levels over time. The non-nitrogen containing bisphosphonates clodronate led to decreased gene expression levels. Conclusion Bisphosphonates seem to inhibit hOB adhesion and migration. The integrin aVb3 and tenascin C gene expression seem to be dependent on the cell line. BONJ could be enhanced by an inhibition of osteoblast adhesion and migration. The gene expression results, however, suggest a cell line dependent effect of bisphosphonates, which could explain the interindividual differences of BONJ incidences.

  20. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    Science.gov (United States)

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  1. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  2. Increased C-C chemokine receptor 2 gene expression in monocytes of severe obstructive sleep apnea patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Shih-Wei; Chang, Ying-Ling; Liao, Hsiang-Ruei; Lin, Yu-Sheng; Chao, I-Ju; Lin, Yuling; Pang, Jong-Hwei S

    2014-01-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes. Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes. Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia. This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes.

  3. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Science.gov (United States)

    Aubry, Sylvain; Kelly, Steven; Kümpers, Britta M C; Smith-Unna, Richard D; Hibberd, Julian M

    2014-06-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  4. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Directory of Open Access Journals (Sweden)

    Sylvain Aubry

    2014-06-01

    Full Text Available With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors

  5. Circulating Tfh1 (cTfh1 cell numbers and PD1 expression are elevated in low-grade B-cell non-Hodgkin's lymphoma and cTfh gene expression is perturbed in marginal zone lymphoma.

    Directory of Open Access Journals (Sweden)

    Elliot T Byford

    Full Text Available CD4+ T-cell subsets are found in the tumour microenvironment (TME of low-grade B-cell non-Hodgkin's lymphomas such as marginal zone lymphoma (MZL or follicular lymphoma (FL. Both numbers and architecture of activating follicular helper T-cells (Tfh and suppressive Treg in the TME of FL are associated with clinical outcomes. There has been almost no previous work on CD4+ T-cells in MZL. It is now recognised that circulating CD4+CXCR5+ T-cells are the memory compartment of Tfh cells. We determined differences in number of circulating Tfh (cTfh cells and cTfh subsets between normal subjects and patients with FL or MZL. Lymphoma patients showed increased numbers of cTfh1 and reduced cTfh17 cells due to decreased expression of the subset-defining marker CCR6 in patients. PD1, a surface marker associated with Tfh cells, showed increased expression on cTfh subsets in patients. Focusing on MZL we determined expression of 96 T-cell associated genes by microfluidic qRT-PCR. Analysis of differentially expressed genes showed significant differences between normal subjects and patients both for bulk cTfh (CCL4 and the cTfh1 subset (JAK3. While our findings require confirmation in larger studies we suggest that analysis of number and gene expression of circulating T-cells might be a source of clinically useful information as is the case for T-cells within lymphoma lymph nodes.

  6. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  7. Genome-Wide Gene Expression Disturbance by Single A1/C1 Chromosome Substitution in Brassica rapa Restituted From Natural B. napus

    Directory of Open Access Journals (Sweden)

    Bin Zhu

    2018-03-01

    Full Text Available Alien chromosome substitution (CS lines are treated as vital germplasms for breeding and genetic mapping. Previously, a whole set of nine Brassica rapa-oleracea monosonic alien addition lines (MAALs, C1-C9 was established in the background of natural B. napus genotype “Oro,” after the restituted B. rapa (RBR for Oro was realized. Herein, a monosomic substitution line with one alien C1 chromosome (Cs1 in the RBR complement was selected in the progenies of MAAL C1 and RBR, by the PCR amplification of specific gene markers and fluorescence in situ hybridization. Cs1 exhibited the whole plant morphology similar to RBR except for the defective stamens without fertile pollen grains, but it produced some seeds and progeny plants carrying the C1 chromosome at high rate besides those without the alien chromosome after pollinated by RBR. The viability of the substitution and its progeny for the RBR diploid further elucidated the functional compensation between the chromosome pairs with high homoeology. To reveal the impact of such aneuploidy on genome-wide gene expression, the transcriptomes of MAAL C1, Cs1 and euploid RBR were analyzed. Compared to RBR, Cs1 had sharply reduced gene expression level across chromosome A1, demonstrating the loss of one copy of A1 chromosome. Both additional chromosome C1 in MAAL and substitutional chromosome C1 in Cs1 caused not only cis-effect but also prevalent trans-effect differentially expressed genes. A dominant gene dosage effects prevailed among low expressed genes across chromosome A1 in Cs1, and moreover, dosage effects for some genes potentially contributed to the phenotype deviations. Our results provided novel insights into the transcriptomic perturbation and gene dosage effects on phenotype in CS related to one naturally evolved allopolyploid.

  8. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    Science.gov (United States)

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  9. Analysis of gene expression of myo1c and inpp5k genes involved in endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Koul, A.M.; Nadeem, A.; Baryalai, P.

    2012-01-01

    Abstract: Inpp5k gene encodes a protein which plays a very vital role in a number of metabolic pathways. It is very significant in the glucose metabolism where it regulates the signalling of the insulin pathway. But the full molecular details of the pathways regulated by Inpp5k encoded protein are not known. It is speculated that Inpp5k gene expression is altered in case of endometrial adenocarcinoma. Myolc gene encodes for a protein called Myosin-lc which acts an actin-based molecular motor in the cells. II has been studied that this gene down-regulates during endometrial adenocarcinoma and colorectal cancers. In this study the expression analysis of these two was carried out using multiplex PCR. An endogenous control was used for this PCR. ACTS gene served as the endogenous control because of it being a house keeping gene. It thus shows a universal expression in all cells. Thus in this study the gene expression of Inpp5k and Myulc genes was comparatively analysed with ACTS gene. The results that came out of this study showed an over-expression of Inpp5k gene and down-regulation of myolc gene with respect to ACTS gene in cancer cell lines as was indicated by the previous studies with these genes. Expression of both genes i.e. Inpp5k and Myolc was statistically compared between normal and cancerous cell lines and was found statistically significant at a value of P< O.O I in most of the cases. (author)

  10. The chicken c-erbA alpha-product induces expression of thyroid hormone-responsive genes in 3,5,3'-triiodothyronine receptor-deficient rat hepatoma cells

    DEFF Research Database (Denmark)

    Muñoz, A; Höppner, W; Sap, J

    1990-01-01

    To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon...

  11. Identifying novel genes in C. elegans using SAGE tags

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-12-01

    Full Text Available Abstract Background Despite extensive efforts devoted to predicting protein-coding genes in genome sequences, many bona fide genes have not been found and many existing gene models are not accurate in all sequenced eukaryote genomes. This situation is partly explained by the fact that gene prediction programs have been developed based on our incomplete understanding of gene feature information such as splicing and promoter characteristics. Additionally, full-length cDNAs of many genes and their isoforms are hard to obtain due to their low level or rare expression. In order to obtain full-length sequences of all protein-coding genes, alternative approaches are required. Results In this project, we have developed a method of reconstructing full-length cDNA sequences based on short expressed sequence tags which is called sequence tag-based amplification of cDNA ends (STACE. Expressed tags are used as anchors for retrieving full-length transcripts in two rounds of PCR amplification. We have demonstrated the application of STACE in reconstructing full-length cDNA sequences using expressed tags mined in an array of serial analysis of gene expression (SAGE of C. elegans cDNA libraries. We have successfully applied STACE to recover sequence information for 12 genes, for two of which we found isoforms. STACE was used to successfully recover full-length cDNA sequences for seven of these genes. Conclusions The STACE method can be used to effectively reconstruct full-length cDNA sequences of genes that are under-represented in cDNA sequencing projects and have been missed by existing gene prediction methods, but their existence has been suggested by short sequence tags such as SAGE tags.

  12. Acute suppression, but not chronic genetic deficiency, of c-fos gene expression impairs long-term memory in aversive taste learning.

    Science.gov (United States)

    Yasoshima, Yasunobu; Sako, Noritaka; Senba, Emiko; Yamamoto, Takashi

    2006-05-02

    Several lines of evidence have indicated that the establishment of long-term memory requires protein synthesis, including the synthesis of immediate-early gene products. Although the anatomical expression patterns of the c-fos gene, a transcription factor-encoding immediate-early gene, in conditioned taste aversion (CTA) are well documented, the functional roles of c-fos gene expression and Fos-mediated transcription remain to be clarified. Using the antisense oligodeoxynucleotide (AS-ODN) method in rats and gene-targeting knockout techniques in mice (c-fos(-/-) mice), we examined the roles of c-fos gene expression in the acquisition, retrieval, and retention of CTA. Preconditioning microinfusion of AS-ODN directed against c-fos mRNA (c-fos AS-ODN) into the parabrachial nucleus (PBN) impaired the acquisition, whereas infusion of control ODNs consisting of a randomized or inverted base order had no effect. Microinfusion of c-fos AS-ODN into either the amygdala or insular cortex did not impair the acquisition, whereas it attenuated the retention. Retrieval and subsequent retention of an acquired CTA were not disrupted by c-fos AS-ODN infusion into the PBN or amygdala. Microinfusion of another AS-ODN directed against zif268 (egr-1, krox-24, NGFI-A) mRNA into the PBN or amygdala did not affect the acquisition and retention. The genetic deficiency in c-fos(-/-) mice caused normal acquisition and retention. The present results suggest that the Fos-mediated gene transcription in the PBN, amygdala, or insular cortex plays critical roles in the acquisition and/or consolidation, but not the retrieval, of long-term taste memory; nevertheless, some other factors could compensate CTA mechanism when Fos-mediated transcription is not available.

  13. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin.

    Science.gov (United States)

    Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P

    2009-03-01

    Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.

  14. The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva.

    Directory of Open Access Journals (Sweden)

    Jolene S Fernandes

    2007-04-01

    Full Text Available Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF, each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2, lin-11 (LIM, and egl-38 (Pax2/5/8 to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types.

  15. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats.

    Science.gov (United States)

    Aja, Susan; Bi, Sheng; Knipp, Susan B; McFadden, Jill M; Ronnett, Gabriele V; Kuhajda, Francis P; Moran, Timothy H

    2006-07-01

    3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.

  16. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

    Science.gov (United States)

    Wu, Sifan; Zheng, Qiongdan; Xing, Xiaoxia; Dong, Yinying; Wang, Yaohui; You, Yang; Chen, Rongxin; Hu, Chao; Chen, Jie; Gao, Dongmei; Zhao, Yan; Wang, Zhiming; Xue, Tongchun; Ren, Zhenggang; Cui, Jiefeng

    2018-05-04

    Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and

  17. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Directory of Open Access Journals (Sweden)

    Llano-Diez Monica

    2011-12-01

    Full Text Available Abstract Background Acute quadriplegic myopathy (AQM or critical illness myopathy (CIM is frequently observed in intensive care unit (ICU patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days, intermediate (5-8 days and long (9-14 days durations. A striking early and maintained up-regulation (6 h-14d of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1 was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d. Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C, regulatory (troponin, tropomyosin, developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel

  18. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell.

    Science.gov (United States)

    Iser, I C; de Campos, R P; Bertoni, A P S; Wink, M R

    2015-10-01

    There is growing evidence that mesenchymal stem cells (MSCs) can be important players in the tumor microenvironment. They can affect the glioma progression through the modulation of different genes. This modulation can be evaluated through a very useful model, treating the tumor cells with MSC-conditioned medium. However, for an accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is a prerequisite. We performed a systematic review in an attempt to find a reference gene to use when analyzing gene expression in C6 glioma cells lines. Considering that we were not able to find a reference gene originated by an appropriate validation, in this study we evaluated candidate genes to be used as reference gene in C6 cells under different treatments with adipose-derived stem cells conditioned medium (CM-ADSCs). β-actin (ACTB); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine-guanine phosphoribosyltransferase I (HPRT-1); TATA box binding protein (TBP) and beta-2-microglobulin (B2M) were evaluated by real-time reverse transcription PCR (RT-qPCR). The mean Cq, the maximum fold change (MFC) and NormFinder software were used for reference gene evaluation and selection. The GAPDH and ACTB genes have been the most widely used reference genes to normalize among the different investigated genes in our review, however, controversially these genes underwent a substantial variability among the genes evaluated in the present work. Individually, TBP gene was more stable when compared with other genes analyzed and the combination of TBP and HPRT-1 was even more stable. These results evidence the importance of appropriate validation of reference genes before performing qPCR experiments. Besides, our data will contribute with researchers that work analyzing the role of ADSCs in glioma microenvironment through gene expression. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  20. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  1. Profiling of differentially expressed genes induced by ionizing radiation in thymus cells of C57 mice

    International Nuclear Information System (INIS)

    Li Zhiheng; Li Yu

    2007-01-01

    Objective: Microarrays was used to text changes, of gene expression of thymus cell in C57 mice one moth after exposed to 1 Gy γ-ray irradiation. Methods: The difference of gene express between irradiated and un-irradiated mice being analysis by Agilent mouse oligo microarrays. Results: In the observed 21319 known genes, 107 up-regulated at least 2-fo1d (13 excess 4-fold); whereas 9 genes were down-regulated 2-fold (2 more 4-fo1d). The function of theses genes are known as some basic metabolic process. Conclusions: The gene changed in the experiment involved embryo development, organ formation and maintain, immunity or stress, protein compose, apoptosis, signal transduction. The number of gene is much more than that of down-regulated. It ought to be noticed that the gens which coding horny protein in embryo development, and ought also to be noticed that the gens which involve the function of PI3-K. (authors)

  2. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    Science.gov (United States)

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways

  3. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin

    Directory of Open Access Journals (Sweden)

    Younossi Zobair M

    2012-02-01

    Full Text Available Abstract Background Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Methods Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56 and was correlated with IL28B genotype (IL28B C/C or non-C/C over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP. Pathways were ranked based on number of gene involved separately per each study cohort. Results The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. Conclusions IL28B CC genotype patients with CH-C show a sustained treatment-induced gene

  4. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin.

    Science.gov (United States)

    Younossi, Zobair M; Birerdinc, Aybike; Estep, Mike; Stepanova, Maria; Afendy, Arian; Baranova, Ancha

    2012-02-07

    Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR) after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56) and was correlated with IL28B genotype (IL28B C/C or non-C/C) over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP). Pathways were ranked based on number of gene involved separately per each study cohort. The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. IL28B CC genotype patients with CH-C show a sustained treatment-induced gene expression profile which is not seen in non-CC genotype patients

  5. DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.

    Science.gov (United States)

    Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario

    2008-06-25

    In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.

  6. Identification and Analysis of the Chloroplast rpoC1 Gene Differentially Expressed in Wild Ginseng

    Directory of Open Access Journals (Sweden)

    Lee Kwang-Ho

    2012-06-01

    Full Text Available Panax ginseng is a well-known herbal medicine in traditional Asian medicine, and wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention. However, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Thus, to identify and analyze those differences, we used suppressive subtraction hybridization (SSH sequences with microarrays, realtime polymerase chain reaction (PCR, and reverse transcription PCRs (RT-PCRs. One of the clones isolated in this research was the chloroplast rpoC1 gene, a β subunit of RNA polymerase. Real-time RT-PCR results showed that the expression of the rpoC1 gene was significantly upregulated in wild ginseng as compared to cultivated ginseng, so, we conclude that the rpoC1 gene may be one of the important markers of wild ginseng.

  7. Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex.

    Directory of Open Access Journals (Sweden)

    Yan Hao

    2011-05-01

    Full Text Available Elevation of the second messenger cGMP by nitric oxide (NO activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1-dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response.

  8. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... traditional breeding as well as gene-engineering approa- ches (Ottow et al., ... tolerance, H. ammodendron is one of the main tree species used for ... labeled with DIG-11-dUTP by reverse transcription using. SuperScript III ...

  9. The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans.

    Science.gov (United States)

    Tseng, Rong-Jeng; Armstrong, Kristin R; Wang, Xiaodong; Chamberlin, Helen M

    2007-11-01

    In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.

  10. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response.

    Science.gov (United States)

    Ryan, James C; Morey, Jeanine S; Bottein, Marie-Yasmine Dechraoui; Ramsdell, John S; Van Dolah, Frances M

    2010-08-26

    Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against neuroinflammation. Pathologic

  11. Gene expression-based biological test for major depressive disorder: an advanced study

    Directory of Open Access Journals (Sweden)

    Watanabe S

    2017-02-01

    Full Text Available Shin-ya Watanabe,1 Shusuke Numata,1 Jun-ichi Iga,2 Makoto Kinoshita,1 Hidehiro Umehara,1 Kazuo Ishii,3 Tetsuro Ohmori1 1Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 2Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Ehime, 3Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan Purpose: Recently, we could distinguished patients with major depressive disorder (MDD from nonpsychiatric controls with high accuracy using a panel of five gene expression markers (ARHGAP24, HDAC5, PDGFC, PRNP, and SLC6A4 in leukocyte. In the present study, we examined whether this biological test is able to discriminate patients with MDD from those without MDD, including those with schizophrenia and bipolar disorder.Patients and methods: We measured messenger ribonucleic acid expression levels of the aforementioned five genes in peripheral leukocytes in 17 patients with schizophrenia and 36 patients with bipolar disorder using quantitative real-time polymerase chain reaction (PCR, and we combined these expression data with our previous expression data of 25 patients with MDD and 25 controls. Subsequently, a linear discriminant function was developed for use in discriminating between patients with MDD and without MDD.Results: This expression panel was able to segregate patients with MDD from those without MDD with a sensitivity and specificity of 64% and 67.9%, respectively.Conclusion: Further research to identify MDD-specific markers is needed to improve the performance of this biological test. Keywords: depressive disorder, biomarker, gene expression, schizophrenia, bipolar disorder

  12. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    CCL5 Chemokine (C-C motif) ligand 5 /RANTES. IFNγ Interferon gamma TNFα Tumor necrosis factor alpha HMGB1 High mobility group box 1 protein /high...aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease...PBMC’s) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by

  13. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  14. Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements.

    Science.gov (United States)

    Papantonis, Argyris; Sourmeli, Sissy; Lecanidou, Rena

    2008-05-09

    From the different cis-elements clustered on silkmoth chorion gene promoters, C/EBP binding sites predominate. Their sequence composition and dispersal vary amongst promoters of diverse developmental specificity. Occupancy of these sites by BmC/EBP was examined through Southwestern and ChIP assays modified to suit ovarian follicular cells. For the genes studied, binding of BmC/EBP coincided with the respective stages of transcriptional activation. However, the factor was reloaded on promoter sequences long after individual gene repression. Furthermore, suppression of BmC/EBP transcription in developing follicles resulted in de-regulation of chorion gene expression. A biphasic function of BmC/EBP, according to which it may act as both an activator and a repressor during silkmoth choriogenesis, is considered under the light of the presented data.

  15. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  16. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  17. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  18. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  19. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  20. Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    NARCIS (Netherlands)

    Li, Y.; Alda Alvarez, O.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.G.; Hazendonk, E.; Prins, J.C.P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  1. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    NARCIS (Netherlands)

    Li, Y.; Alvarez, O.A.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.; Hazendonk, M.G.A.; Prins, P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  2. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ilka Engelmann

    Full Text Available While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens and two fungal pathogens (Drechmeria coniospora and Harposporium sp.. We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/, to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.

  3. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c/sub 2/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, T.J.; McEwan, A.G.; Kaplan, S.

    1986-11-01

    The Rhodobacter sphaeroides cytochrome c/sub 2/ functions as a mobile electron carrier in both aerobic and photosynthetic electron transport chains. Synthetic deoxyoligonucleotide probes, based on the known amino acid sequence of this protein (M/sub r/ 14,000), were used to identify and clone the cytochrome c/sub 2/ structural gene (cycA). DNA sequence analysis of the cycA gene indicated the presence of a typical procaryotic 21-residue signal sequence, suggesting that this periplasmic protein is synthesized in vivo as a precursor. Synthesis of an immunoreactive cytochrome c/sub 2/ precursor protein (M/sub r/ 15,500) was observed in vitro when plasmids containing the cycA gene were used as templates in an R. sphaeroides coupled transcription-translation system. Approximately 500 base pairs of DNA upstream of the cycA gene was sufficient to allow expression of this gene product in vitro. Northern blot analysis with an internal cycA-specific probe identified at least two possibly monocistronic transcripts present in both different cellular levels and relative stoichiometries in steady-state cells grown under different physiological conditions. The ratio of the small (740-mucleotide) and large (920-nucleotide) cycA-specific mRNA species was dependent on cultural conditions but was not affected by light intensity under photosynthetic conditions. These results suggest that the increase in the cellular level of the cytochrome c/sub 2/ protein found in photosynthetic cells was due, in part, to increased transcription of the single-copy cyc operon.

  4. Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel

    2015-04-01

    The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-06-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2% displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40% had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%, signal transduction (5.4%, disease/defence (5.9% and metabolism (5% of the sequenced TDFs. BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5% genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the

  6. T-bet-mediated Tim-3 expression dampens monocyte function during chronic hepatitis C virus infection.

    Science.gov (United States)

    Yi, Wenjing; Zhang, Peixin; Liang, Yan; Zhou, Yun; Shen, Huanjun; Fan, Chao; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhansheng; Zhang, Ying

    2017-03-01

    Hepatitis C virus (HCV) induces a high rate of chronic infection via dysregulation of host immunity. We have previously shown that T-cell immunoglobulin and mucin domain protein-3 (Tim-3) is up-regulated on monocyte/macrophages (M/Mφ) during chronic HCV infection; little is known, however, about the transcription factor that controls its expression in these cells. In this study, we investigated the role of transcription factor, T-box expressed in T cells (T-bet), in Tim-3 expression in M/Mφ in the setting of HCV infection. We demonstrate that T-bet is constitutively expressed in resting CD14 + M/Mφ in the peripheral blood. M/Mφ from chronically HCV-infected individuals exhibit a significant increase in T-bet expression that positively correlates with an increased level of Tim-3 expression. Up-regulation of T-bet is also observed in CD14 + M/Mφ incubated with HCV + Huh7.5 cells, as well as in primary M/Mφ or monocytic THP-1 cells exposed to HCV core protein in vitro, which is reversible by blocking HCV core/gC1qR interactions. Moreover, the HCV core-induced up-regulation of T-bet and Tim-3 expression in M/Mφ can be abrogated by incubating the cells with SP600125 - an inhibitor for the c-Jun N-terminal kinase (JNK) signalling pathway. Importantly, silencing T-bet gene expression decreases Tim-3 expression and enhances interleukin-12 secretion as well as signal transducer and activator of transcription 1 phosphorylation. These data suggest that T-bet, induced by the HCV core/gC1qR interaction, enhances Tim-3 expression via the JNK pathway, leading to dampened M/Mφ function during HCV infection. These findings reveal a novel mechanism for Tim-3 regulation via T-bet during HCV infection, providing new targets to combat this global epidemic viral disease. © 2016 John Wiley & Sons Ltd.

  7. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    Science.gov (United States)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  8. Global analysis of differential expressed genes in ECV304 ...

    African Journals Online (AJOL)

    EB

    Methods: Changes in mRNA expression levels of human endothelial-like ... recognized as a risk factor for vascular diseases, like ..... and JUN kinase signaling pathways and transform ... protein accumulates at the G1-S phase boundary and.

  9. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  10. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  11. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    Science.gov (United States)

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  12. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W

    Science.gov (United States)

    2013-01-01

    Background Antimicrobial peptides have been the focus of much research over the last decade because of their effectiveness and broad-spectrum activity against microbial pathogens. These peptides also participate in inflammation and the innate host defense system by modulating the immune function that promotes immune cell adhesion and migration as well as the respiratory burst, which makes them even more attractive as therapeutic agents. This has led to the synthesis of various antimicrobial peptides, including KSL-W (KKVVFWVKFK-NH2), for potential clinical use. Because this peptide displays antimicrobial activity against bacteria, we sought to determine its antifungal effect on C. albicans. Growth, hyphal form, biofilm formation, and degradation were thus examined along with EFG1, NRG1, EAP1, HWP1, and SAP 2-4-5-6 gene expression by quantitative RT-PCR. Results This study demonstrates that KSL-W markedly reduced C. albicans growth at both early and late incubation times. The significant effect of KSL-W on C. albicans growth was observed beginning at 10 μg/ml after 5 h of contact by reducing C. albicans transition and at 25 μg/ml by completely inhibiting C. albicans transition. Cultured C. albicans under biofilm-inducing conditions revealed that both KSL-W and amphotericin B significantly decreased biofilm formation at 2, 4, and 6 days of culture. KSL-W also disrupted mature C. albicans biofilms. The effect of KSL-W on C. albicans growth, transition, and biofilm formation/disruption may thus occur through gene modulation, as the expression of various genes involved in C. albicans growth, transition and biofilm formation were all downregulated when C. albicans was treated with KSL-W. The effect was greater when C. albicans was cultured under hyphae-inducing conditions. Conclusions These data provide new insight into the efficacy of KSL-W against C. albicans and its potential use as an antifungal therapy. PMID:24195531

  13. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  14. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  15. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Li, Yingying

    2017-01-01

    Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm...... cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents...... possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP...

  16. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  17. Cloning and Expression of Three New Azotobacter vinelandii Genes Closely Related to a Previously Described Gene Family Encoding Mannuronan C-5-Epimerases

    OpenAIRE

    Svanem, Britt Iren Glærum; Skjåk-Bræk, Gudmund; Ertesvåg, Helga; Valla, Svein

    1999-01-01

    The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of β-d-mannuronic acid to α-l-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced...

  18. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  19. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus

    NARCIS (Netherlands)

    Ploeg, van der M.J.C.; Handy, R.D.; Heckmann, L.H.; Hout, van der A.; Brink, van den N.W.

    2013-01-01

    Effects of C60 exposure (0, 15 or 154 mg/kg soil) on the earthworm Lumbricus rubellus were assessed at the tissue and molecular level, in two experiments. In the first experiment, earthworms were exposed for four weeks, and in the second lifelong. In both experiments, gene expression of heat shock

  20. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    Science.gov (United States)

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids

  1. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    Science.gov (United States)

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC. ©2013 AACR.

  2. The change of p16 gene expression in glioma cell line C6 after radiation with gamma knife

    International Nuclear Information System (INIS)

    Zhao Xingli; Zhao Conghai; Tian Yu

    2002-01-01

    Objective: T observe the change of expression of p16 gene product, P16 protein, after treated by gamma knife on glioma cell line C6. Methods: Glioma C6 cells proliferated in vitro, treated by γ-knife in dose of 5.00 and 6.22 Gy, respectively. P16 protein was detected by immunohistochemical technique and image analysis. Results: The P16 protein in glioma C6 cells was notably increased after treatment with γ knife (P < 0.01). The grey number in C6 group (control group) was 167.1 +- 6.2 and was 155.4 +- 2.0 and 124.9 +- 7.1, respectively, in 5.00 Gy and 6.22 Gy gamma knife treated group. Conclusion: It is suggests that one of the mechanisms of glioma cell C6 apoptosis induced by γ-knife radiation may be associated with activation of p16 gene and increase of P16 protein expression

  3. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Directory of Open Access Journals (Sweden)

    Shu Tang

    2016-01-01

    Full Text Available c-Jun NH2-terminal kinase (JNK-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  4. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  5. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases.

  6. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  7. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  8. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  9. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  10. Characterization and expression of the calpastatin gene in Cyprinus carpio.

    Science.gov (United States)

    Chen, W X; Ma, Y

    2015-07-03

    Calpastatin, an important protein used to regulate meat quality traits in animals, is encoded by the CAST gene. The aim of the present study was to clone the cDNA sequence of the CAST gene and detect the expression of CAST in the tissues of Cyprinus carpio. The cDNA of the C. carpio CAST gene, amplified using rapid amplification of cDNA ends PCR, is 2834 bp in length (accession No. JX275386), contains a 2634-bp open reading frame, and encodes a protein with 877 amino acid residues. The amino acid sequence of the C. carpio CAST gene was 88, 80, and 59% identical to the sequences observed in grass carp, zebrafish, and other fish, respectively. The C. carpio CAST was observed to contain four conserved domains with 54 serine phosphorylation loci, 28 threonine phosphorylation loci, 1 tyrosine phosphorylation loci, and 6 specific protein kinase C phosphorylation loci. The CAST gene showed widespread expression in different tissues of C. carpio. Surprisingly, the relative expression of the CAST transcript in the muscle and heart tissues of C. carpio was significantly higher than in other tissues (P < 0.01).

  11. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  12. Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3).

    Science.gov (United States)

    Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong

    2012-06-01

    A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Expression of TLP-3 gene without signal peptide in tobacco plants ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... African Journal of Biotechnology Vol. ... group of plant proteins which accumulate as a result of different types ... across the plasma membranes, the rapid production of ..... transformation and RT-PCR analysis confirm the gene.

  14. Light-Dependent Expression of Four Cryptic Archaeal Circadian Gene Homologs

    Directory of Open Access Journals (Sweden)

    Michael eManiscalco

    2014-03-01

    Full Text Available Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. To investigate this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12 during balanced growth in H. volcanii. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes results in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

  15. Studies to identify genes and their expression for resistance to blast ...

    African Journals Online (AJOL)

    aps

    2013-06-26

    Jun 26, 2013 ... INTRODUCTION. Rice (Oryza sativa L.) is the staple food for more than ... disease under induced artificial epiphytotic conditions at SVP. University farm .... resistance is under the control of several additive genes having small ...

  16. Dynamics of Fos-Jun-NFAT1 complexes.

    Science.gov (United States)

    Ramirez-Carrozzi, V R; Kerppola, T K

    2001-04-24

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.

  17. Construction of a cDNA library from female adult of Toxocara canis, and analysis of EST and immune-related genes expressions.

    Science.gov (United States)

    Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin

    2011-10-01

    Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.

  18. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  19. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  20. Hierarchy in the home cage affects behaviour and gene expression in group-housed C57BL/6 male mice.

    Science.gov (United States)

    Horii, Yasuyuki; Nagasawa, Tatsuhiro; Sakakibara, Hiroyuki; Takahashi, Aki; Tanave, Akira; Matsumoto, Yuki; Nagayama, Hiromichi; Yoshimi, Kazuto; Yasuda, Michiko T; Shimoi, Kayoko; Koide, Tsuyoshi

    2017-08-01

    Group-housed male mice exhibit aggressive behaviour towards their cage mates and form a social hierarchy. Here, we describe how social hierarchy in standard group-housed conditions affects behaviour and gene expression in male mice. Four male C57BL/6 mice were kept in each cage used in the study, and the social hierarchy was determined from observation of video recordings of aggressive behaviour. After formation of a social hierarchy, the behaviour and hippocampal gene expression were analysed in the mice. Higher anxiety- and depression-like behaviours and elevated gene expression of hypothalamic corticotropin-releasing hormone and hippocampal serotonin receptor subtypes were observed in subordinate mice compared with those of dominant mice. These differences were alleviated by orally administering fluoxetine, which is an antidepressant of the selective serotonin reuptake inhibitor class. We concluded that hierarchy in the home cage affects behaviour and gene expression in male mice, resulting in anxiety- and depression-like behaviours being regulated differently in dominant and subordinate mice.

  1. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  2. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  3. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory

  4. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  5. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    2015-06-27

    Jun 27, 2015 ... D3-expressing cells on induction of differentiation. 2. Materials and .... 2 –ΔΔCt method was used for quantification and each gene ..... of pluripotency genes known to be silenced by deposition of ..... embryonic stem cells.

  6. Differential Gene Expression in Response to Papaya ringspot virus Infection in Cucumis metuliferus Using cDNA- Amplified Fragment Length Polymorphism Analysis

    Science.gov (United States)

    Lin, Chia-Wei; Chung, Chien-Hung; Chen, Jo-Chu; Yeh, Shy-Dong; Ku, Hsin-Mei

    2013-01-01

    A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future. PMID:23874746

  7. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  8. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  9. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    Science.gov (United States)

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  10. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.

    Science.gov (United States)

    Tanabe, Atsushi; Konno, Junpei; Tanikawa, Kenya; Sahara, Hiroeki

    2014-02-01

    We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    Science.gov (United States)

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  12. Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Rasoul Salehi

    2014-01-01

    Full Text Available Background: Streptococci are the main causative agents in plaque formation and mutans streptococci are the principle etiological agent of dental plaque and caries. The process of biofilm formation is a step-wise process, starting with adhesion of planktonic cells to the surfaces. It is now a well known fact that expression of glucosyltransferases (gtfs and fructosyltransferase (ftf genes play a critical role in the initial adhesion of Streptococcus mutans to the tooth surface, which results in the formation of dental plaques and consequently caries and other periodontal diseases. Materials and Methods: In the present study, we have determined the effect of biosurfactants purified from Lactobacillus reuteri (DSM20016 culture on gene expression profile of gftB/C and fft of S. mutans (ATCC35668 using quantitative real-time polymerase chain reaction. Results: The application of biosurfactant caused considerable down-regulation of the expression of all three genes under study. The reduction in gene expression was statistically very significant (P > 0.0001 for all three genes. Conclusions: Inhibition of these genes by the extracted L. reuteri biosurfactant shows the emergence of a powerful alternative to the presently practicing alternatives. In view of the importance of these gene products for S. mutans attachment to the tooth surface, which is the initial important step in biofilm production and dental caries, we believe that the biosurfactant prepared in this study could be considered as a step ahead in dental caries prevention.

  13. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish

    Directory of Open Access Journals (Sweden)

    Jason T Popesku

    2012-11-01

    Full Text Available Dopamine (DA is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signalling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signalling. Sexually mature, pre-spawning (GSI 4.5 ± 1.3% or sexually regressing ( GSI 3 ± 0.4% female goldfish (15-40 g injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e. opposite between agonism and antagonism/depletion fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodelling. Sub-network enrichment analysis (SNEA was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signalling (STAT3, SP1, SMAD, Jun/Fos, immune response (IL6, IL1β, TNFs, cytokine, NF-κB, and cell proliferation and growth (IGF1, TGFβ1. These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons’ disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signalling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish

  14. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  15. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  16. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  17. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-01-01

    Highlights: ► CRP increases TNF-α and IL-6 genes expression in matured 3T3-L1 adipocytes. ► CRP suppresses adiponectin, leptin and PPAR-γ mRNA levels in matured 3T3-L1 cells. ► Wortmannin reverses effects of CRP on adiponectin, TNF-α and leptin mRNA levels. ► CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes expression and raised tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-α and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-α, leptin, IL-6 and PPAR-γ genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  18. Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    International Nuclear Information System (INIS)

    Wallden, Brett; Emond, Mary; Swift, Mari E; Disis, Mary L; Swisshelm, Karen

    2005-01-01

    The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10 -8 ), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN

  19. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-01-01

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  20. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans.

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-11-01

    Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. We designed a study to probe the mechanisms of garlic action in humans. We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. © 2015 American Society for Nutrition.

  1. Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD34+ Hematopoietic Stem/Progenitor Cells

    Science.gov (United States)

    Zhang, Qing-Hua; Ye, Min; Wu, Xin-Yan; Ren, Shuang-Xi; Zhao, Meng; Zhao, Chun-Jun; Fu, Gang; Shen, Yu; Fan, Hui-Yong; Lu, Gang; Zhong, Ming; Xu, Xiang-Ru; Han, Ze-Guang; Zhang, Ji-Wang; Tao, Jiong; Huang, Qiu-Hua; Zhou, Jun; Hu, Geng-Xi; Gu, Jian; Chen, Sai-Juan; Chen, Zhu

    2000-01-01

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58–752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon–intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3′ UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation. [The sequence data described in this paper have been submitted to the GenBank data library under the accession nos. listed in Table 1, pp 1548–1552.] PMID:11042152

  2. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  3. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  4. Polimorfismos em genes de reparo do DNA (XPC, ERCC1, XRCC7) em mulheres com câncer do colo do útero

    OpenAIRE

    Saffar, Issamir Farias [UNIFESP

    2010-01-01

    Estudos demonstram que polimorfismos em genes relacionados ao reparo do DNA estão envolvidos na patogênese de diversas doenças neoplásicas, como o câncer ginecológico, particularmente o câncer do colo do útero. O presente estudo, caso-controle, compara os polimorfismos dos genes XPC, ERCC1 e XRCC7 em 77 mulheres com câncer cervical (70 casos de carcinoma espinocelular e 7 casos de adenocarcinoma do colo do útero) e 73 mulheres saudáveis atendidas no Hospital do Câncer Alfredo Abrão, entre Jun...

  5. Post-operative infection and sepsis in humans is associated with deficient gene expression of γc cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-01

    Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators.

  6. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc; Sparfel, Lydie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of

  7. Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis

    Directory of Open Access Journals (Sweden)

    Amitis Karrys

    2018-02-01

    Full Text Available Treatment with 1,25-dihydroxyvitamin D3 (1,25D improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del, we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR. DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα-signaled phosphorylation of mitogen activated protein (MAP kinases, p38 and Jun amino-terminal kinase (JNK, thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.

  8. Changes in gene expression during male meiosis in Petunia hybrida.

    Science.gov (United States)

    Cnudde, Filip; Hedatale, Veena; de Jong, Hans; Pierson, Elisabeth S; Rainey, Daphne Y; Zabeau, Marc; Weterings, Koen; Gerats, Tom; Peters, Janny L

    2006-01-01

    We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

  9. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  10. Induction of UMUC+ gene expression in Escherichia coli irradiated by near ultraviolet light

    International Nuclear Information System (INIS)

    Sato, N.; Ohnishi, T.; Tano, K.; Nozu, K.; Yamamoto, K.

    1985-01-01

    The induction of umu + gene expression caused by irradiation with near ultraviolet light (BLB; black light blue) was studied in Escherichia coli K-12 strains with special reference to the effects of SOS repair deficiencies. The umuC + gene expression was measured as the enzymic activity of β-galactosidase which is regulated by the promoter of the umuC + operon carried in a plasmid DNA carrying a promoter of umuC + operon, a umuD + gene and a umuC + -lacZ + gene fusion. A high induction of the umuC + gene expression was observed in the uvrA cells in the case of BLB or UV irradiation as compared with the parental wild-type cells. Caffeine inhibited the induction of the umuC + gene expression due to BLB or UV irradiation in both strains. There was very little induction in lexA and recA mutants. In contrast with UV irradiation, there was no killing of cells by BLB irradiation in any strain (wild, uvrA, lexA and recA). Possible implications of the experimental results were discussed. (author)

  11. Radioresistance related genes screened by protein-protein interaction network analysis in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zhu Xiaodong; Guo Ya; Qu Song; Li Ling; Huang Shiting; Li Danrong; Zhang Wei

    2012-01-01

    Objective: To discover radioresistance associated molecular biomarkers and its mechanism in nasopharyngeal carcinoma by protein-protein interaction network analysis. Methods: Whole genome expression microarray was applied to screen out differentially expressed genes in two cell lines CNE-2R and CNE-2 with different radiosensitivity. Four differentially expressed genes were randomly selected for further verification by the semi-quantitative RT-PCR analysis with self-designed primers. The common differentially expressed genes from two experiments were analyzed with the SNOW online database in order to find out the central node related to the biomarkers of nasopharyngeal carcinoma radioresistance. The expression of STAT1 in CNE-2R and CNE-2 cells was measured by Western blot. Results: Compared with CNE-2 cells, 374 genes in CNE-2R cells were differentially expressed while 197 genes showed significant differences. Four randomly selected differentially expressed genes were verified by RT-PCR and had same change trend in consistent with the results of chip assay. Analysis with the SNOW database demonstrated that those 197 genes could form a complicated interaction network where STAT1 and JUN might be two key nodes. Indeed, the STAT1-α expression in CNE-2R was higher than that in CNE-2 (t=4.96, P<0.05). Conclusions: The key nodes of STAT1 and JUN may be the molecular biomarkers leading to radioresistance in nasopharyngeal carcinoma, and STAT1-α might have close relationship with radioresistance. (authors)

  12. Merkel cell polyomavirus in Merkel cell carcinogenesis: small T antigen-mediates c-Jun phosphorylation.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Rady, Peter L; Tyring, Stephen K

    2016-06-01

    Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer associated with the Merkel cell polyomavirus (MCPyV). The MCPyV genome, which is clonally integrated in the majority of MCCs, encodes the regulatory small T (sT) antigen. Previously, reports have established MCPyV sT antigen as a potent oncogene capable of inducing cell transformation. In the current study, we demonstrate a distinct role for c-Jun hyperactivation in MCPyV sT antigen pathogenesis. As MCPyV sT antigen's association with aggressive cancer growth has been previously established, this finding may represent a potential therapeutic target for the treatment of MCCs.

  13. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  14. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    Science.gov (United States)

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  15. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  16. GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER.

    Science.gov (United States)

    Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John

    2016-06-01

    We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.

  17. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia.

    Science.gov (United States)

    Yin, Min; Chen, Zhiying; Ouyang, Yetong; Zhang, Huiyan; Wan, Zhigang; Wang, Han; Wu, Wei; Yin, Xiaoping

    2017-06-29

    Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin

  18. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  19. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer.

    Science.gov (United States)

    Lin, Yanping; Wang, Kangyu; Li, Xiangyu; Sun, Chunyu; Yin, Rui; Wang, Yanfang; Wang, Yi; Zhang, Meiping

    2018-02-21

    Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.

  20. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    Science.gov (United States)

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-03

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  2. Paternal irradiation perturbs the expression of circadian genes in offspring

    International Nuclear Information System (INIS)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E.

    2015-01-01

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies

  3. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans1234

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-01-01

    Background: Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. Objective: We designed a study to probe the mechanisms of garlic action in humans. Methods: We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. Results: The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. Conclusion: These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. PMID:26423732

  4. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  5. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    International Nuclear Information System (INIS)

    Li, Tianjia; Song, Ting; Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei; Liu, Bao; Liu, Changwei

    2014-01-01

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE

  6. Mechanism of estrogen activation of c-myc oncogene expression.

    Science.gov (United States)

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  7. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance.

    Directory of Open Access Journals (Sweden)

    Santosh Nanda

    Full Text Available Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3 and cytotoxic granule-associated RNA binding protein (TIA1, associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a "danger signal" leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.

  8. Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals

    Directory of Open Access Journals (Sweden)

    Andrea C. Romero

    2015-12-01

    Full Text Available There is a necessity to develop in vitro methods for testing embryotoxicity (Romero et al., 2015 [1]. We studied the progress of D3 mouse embryonic stem cells differentiation exposed to model embryotoxicants and non-embryotoxicants chemicals through the expression of biomarker genes. We studied a set of 16 different genes biomarkers of general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3, ectoderm formation (Nrcam, Nes, Shh and Pnpla6, mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7 and endoderm formation (Flk1 and Afp. We offer dose response in order to derive the concentration causing either 50% or 200% of expression of the biomarker gene. These records revealed to be a valuable end-point to predict in vitro the embryotoxicity of chemicals (Romero et al., 2015 [1].

  9. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw

    2015-12-15

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione

  10. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    International Nuclear Information System (INIS)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana

    2015-01-01

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione

  11. IL-1α Up-Regulates IL-6 Expression in Bovine Granulosa Cells via MAPKs and NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-01-01

    Full Text Available Background/Aims: IL-6 is one of the main cytokines in regulating ovarian follicular development and ovulation. However, the factors that regulate IL-6 expression in follicles are still unclear. The aim of this study was to elucidate the mechanisms underlying the effect of IL-1α on IL-6 expression in granulosa cells. Methods: IL-6 expression after IL-1α with/without inhibitors treatment was analyzed by RT-qPCR and ELISA. The phosphorylation of proteins induced by IL-1α was analyzed by western blot. The intracellular cAMP level was assayed by immunoassay kit. Results: IL-1α has a dose-dependent effect on IL-6 expression in granulosa cells. This promoting effect can be significantly attenuated by Erk, c-Jun, p38 and IκB proteins inhibitors, respectively. Moreover, the phosphorylation levels of Erk, c-Jun, p38 and IκBα proteins were significantly increased after IL-1α treatment. In addition, we also found that IL-1α not only reversed the cAMP attenuated IL-6 expression, but also increased IL-1α mRNA expression in granulosa cells. Conclusion: The regulation of IL-1α on IL-6 expression is mediated by activation of MAPKs and NF-κB signaling pathways. Moreover,IL-1α may regulate the ovulation-related genes expression in granulosa cells by an autocrine and/or paracrine manner.

  12. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    International Nuclear Information System (INIS)

    Rabbani, M.A.

    2005-01-01

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  13. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin.

    Science.gov (United States)

    Lü, Guodong; Zhang, Wenbao; Wang, Jianhua; Xiao, Yunfeng; Zhao, Jun; Zhao, Jianqin; Sun, Yimin; Zhang, Chuanshan; Wang, Junhua; Lin, Renyong; Liu, Hui; Zhang, Fuchun; Wen, Hao

    2014-12-01

    Cystic echinoccocosis (CE) is a neglected zoonosis that is caused by the dog-tapeworm Echinococcus granulosus. The disease is endemic worldwide. There is an urgent need for searching effective drug for the treatment of the disease. In this study, we sequenced a cDNA library constructed using RNA isolated from oncospheres, protoscoleces, cyst membrane and adult worms of E. granulosus. A total of 9065 non-redundant or unique sequences were obtained and spotted on chips as uniEST probes to profile the gene expression in protoscoleces of E. granulosus treated with the anthelmintic drugs albendazole and artemisinin, respectively. The results showed that 7 genes were up-regulated and 38 genes were down-regulated in the protoscoleces treated with albendazole. Gene analysis showed that these genes are responsible for energy metabolism, cell cycle and assembly of cell structure. We also identified 100 genes up-regulated and 6 genes down-regulated in the protoscoleces treated with artemisinin. These genes play roles in the transduction of environmental signals, and metabolism. Albendazole appeared its drug efficacy in damaging cell structure, while artemisinin was observed to increase the formation of the heterochromatin in protoscolex cells. Our results highlight the utility of using cDNA microarray methods to detect gene expression profiles of E. granulosus and, in particular, to understand the pharmacologic mechanism of anti-echinococcosis drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available The roles of vitamin A (VA in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1 were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.

  15. IP3-dependent intracellular Ca2+ release is required for cAMP-induced c-fos expression in hippocampal neurons

    International Nuclear Information System (INIS)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-01-01

    Highlights: ► cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca 2+ pool. ► The submembraneous Ca 2+ pool derives from intracellular ER stores. ► Expression of IP 3 -metabolizing enzymes inhibits cAMP-induced c-fos expression. ► SRE-mediated and CRE-mediated gene expression is sensitive to IP 3 -metabolizing enzymes. ► Intracellular Ca 2+ release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca 2+ and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca 2+ and cAMP signals, including some that are Ca 2+ -responsive, some that are cAMP-responsive and some that detect coincident Ca 2+ and cAMP signals. Because Ca 2+ and cAMP can influence each other’s amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca 2+ are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca 2+ buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP 3 levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements – the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP 3 metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca 2+ stores. Our data indicate that Ca 2+ release from IP 3 -sensitive pools is required for cAMP-induced transcription in hippocampal neurons.

  16. Effect of Chronic Pioglitazone Treatment on Hepatic Gene Expression Profile in Obese C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Chunming Jia

    2015-05-01

    Full Text Available Pioglitazone, a selective ligand of peroxisome proliferator-activated receptor gamma (PPARγ, is an insulin sensitizer drug that is being used in a number of insulin-resistant conditions, including non-alcoholic fatty liver disease (NAFLD. However, there is a discrepancy between preclinical and clinical data in the literature and the benefits of pioglitazone treatment as well as the precise mechanism of action remain unclear. In the present study, we determined the effect of chronic pioglitazone treatment on hepatic gene expression profile in diet-induced obesity (DIO C57BL/6J mice in order to understand the mechanisms of NAFLD induced by PPARγ agonists. DIO mice were treated with pioglitazone (25 mg/kg/day for 38 days, the gene expression profile in liver was evaluated using Affymetrix Mouse GeneChip 1.0 ST array. Pioglitazone treatment resulted in exacerbated hepatic steatosis and increased hepatic triglyceride and free fatty acids concentrations, though significantly increased the glucose infusion rate in hyperinsulinemic-euglycemic clamp test. The differentially expressed genes in liver of pioglitazone treated vs. untreated mice include 260 upregulated and 86 downregulated genes. Gene Ontology based enrichment analysis suggests that inflammation response is transcriptionally downregulated, while lipid metabolism is transcriptionally upregulated. This may underlie the observed aggravating liver steatosis and ameliorated systemic insulin resistance in DIO mice.

  17. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la...

  18. A expressão de genes reparadores do DNA nos tumores sincrônicos de câncer colorretal esporádico DNA repair gene expression in synchronic tumors of sporadic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Igor Proscurshim

    2007-03-01

    Full Text Available RACIONAL: Um dos mecanismos genéticos presentes em aproximadamente 80% dos pacientes com síndrome hereditária não-polipóide do câncer colorretal (HNPCC são os defeitos nos genes reparadores de DNA, como o MSH2, MSH6 e MLH1, onde os tumores sincrônicos são relativamente freqüentes. Já no câncer colorretal esporádico as lesões sincrônicas são raras. OBJETIVO: Verificar se o mesmo mecanismo genético presente no HNPCC está presente no câncer colorretal esporádico que apresentam com lesões sincrônicas. MÉTODOS: Foram incluídos no estudo todos os pacientes com câncer colorretal sincrônico não HNPCC. Imunoistoquímica com anticorpos para MSH2,MSH6, e MLH1 foi realizada para cada tumor. RESULTADOS: Todos os pacientes apresentaram expressão normal de MSH2 e MLH1. O único gene com imunoexpressão alterada foi o MSH6. CONCLUSÃO: Possivelmente outro mecanismo genético seja responsável pelo surgimento de dois tumores sincrônicos no câncer colorretal esporádico.BACKGROUND: Mismatch repair genes (such as MSH2, MLH1 and MSH6 mutations are present in over 80% of hereditary non-polyposis colorectal cancer (HNPCC tumors, which frequently exhibit synchronous lesions. Sporadic colorectal cancer is rarely associated with synchronous lesions. AIM: To investigate the role of mismatch repair gene mutation in synchronous sporadic colorectal cancer. METHODS: Patients with sporadic synchronous colorectal adenocarcinomas were included in the study. Immunohistochemistry was performed using MSH2, MLH1 and MSH6 antibodies. RESULTS: All patients had two synchoronous lesions. None of them had altered MSH2 or MLH1 expression. One patient had altered MSH6 expression in both tumors. CONCLUSION: Possibly, other molecular mechanisms are involved in carcinogenesis of sporadic synchronous colorectal cancer.

  19. Structure and expression of thyroglobulin gene

    Energy Technology Data Exchange (ETDEWEB)

    Vassart, G; Brocas, H; Christophe, D; de Martynoff, G; Leriche, A; Mercken, L; Pohl, V; van Heuverswyn, B [Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucleaire (IRIBHN), Faculte de Medecine, Universite libre de Bruxelles, Campus Hopital Erasme, Brussels (Belgium)

    1982-01-01

    Thyroglobulin is composed of two 300000 dalton polypeptide chains, translated from an 8000 base mRNA. Preparation of a full length cDNA and its cloning in E. coli have lead to the demonstration that the polypeptides of thyroglobulin protomers were identical. Used as molecular probes, the cloned cDNA allowed the isolation of a fragment of thyroglobulin gene. Electron microscopic studies have demonstrated that this gene contains more than 90 % intronic material separating small size exons (<200 bp). Sequencing of bovine thyroglobulin structural gene is in progress. Preliminary results show evidence for the existence of repetitive segments. Availability of cloned DNA complementary to bovine and human thyroglobulin mRNA allows the study of genetic defects of thyroglobulin gene expression in the human and in various animal models.

  20. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos.

    Science.gov (United States)

    Chen, Kun; Tsutsumi, Yuki; Yoshitake, Shuhei; Qiu, Xuchun; Xu, Hai; Hashiguchi, Yasuyuki; Honda, Masato; Tashiro, Kosuke; Nakayama, Kei; Hano, Takeshi; Suzuki, Nobuo; Hayakawa, Kazuichi; Shimasaki, Yohei; Oshima, Yuji

    2017-01-01

    Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sakai, Yasuyoshi

    2016-05-01

    The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.

  2. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  3. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    Science.gov (United States)

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and

  4. Suppression of prolactin gene expression in GH cells correlates with site-specific DNA methylation.

    Science.gov (United States)

    Zhang, Z X; Kumar, V; Rivera, R T; Pasion, S G; Chisholm, J; Biswas, D K

    1989-10-01

    Prolactin- (PRL) producing and nonproducing subclones of the GH line of (rat) pituitary tumor cells have been compared to elucidate the regulatory mechanisms of PRL gene expression. Particular emphasis was placed on delineating the molecular basis of the suppressed state of the PRL gene in the prolactin-nonproducing (PRL-) GH subclone (GH(1)2C1). We examined six methylatable cytosine residues (5, -CCGG- and 1, -GCGC-) within the 30-kb region of the PRL gene in these subclones. This analysis revealed that -CCGG-sequences of the transcribed region, and specifically, one in the fourth exon of the PRL gene, were heavily methylated in the PRL-, GH(1)2C1 cells. Furthermore, the inhibition of PRL gene expression in GH(1)2C1 was reversed by short-term treatment of the cells with a sublethal concentration of azacytidine (AzaC), an inhibitor of DNA methylation. The reversion of PRL gene expression by AzaC was correlated with the concurrent demethylation of the same -CCGG- sequences in the transcribed region of PRL gene. An inverse correlation between PRL gene expression and the level of methylation of the internal -C- residues in the specific -CCGG-sequence of the transcribed region of the PRL gene was demonstrated. The DNase I sensitivity of these regions of the PRL gene in PRL+, PRL-, and AzaC-treated cells was also consistent with an inverse relationship between methylation state, a higher order of structural modification, and gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Genetic identity and differential gene expression between Trichomonas vaginalis and Trichomonas tenax

    Directory of Open Access Journals (Sweden)

    Mundodi Vasanthakrishna

    2009-03-01

    Full Text Available Abstract Background Trichomonas vaginalis is a human urogenital pathogen responsible for trichomonosis, the number-one, non-viral sexually transmitted disease (STD worldwide, while T. tenax is a commensal of the human oral cavity, found particularly in patients with poor oral hygiene and advanced periodontal disease. The extent of genetic identity between T. vaginalis and its oral commensal counterpart is unknown. Results Genes that were differentially expressed in T. vaginalis were identified by screening three independent subtraction cDNA libraries enriched for T. vaginalis genes. The same thirty randomly selected cDNA clones encoding for proteins with specific functions associated with colonization were identified from each of the subtraction cDNA libraries. In addition, a T. vaginalis cDNA expression library was screened with patient sera that was first pre-adsorbed with an extract of T. tenax antigens, and seven specific cDNA clones were identified from this cDNA library. Interestingly, some of the clones identified by the subtraction cDNA screening were also obtained from the cDNA expression library with the pre-adsorbed sera. Moreover and noteworthy, clones identified by both the procedures were found to be up-regulated in expression in T. vaginalis upon contact with vaginal epithelial cells, suggesting a role for these gene products in host colonization. Semi-quantitative RT-PCR analysis of select clones showed that the genes were not unique to T. vaginalis and that these genes were also present in T. tenax, albeit at very low levels of expression. Conclusion These results suggest that T. vaginalis and T. tenax have remarkable genetic identity and that T. vaginalis has higher levels of gene expression when compared to that of T. tenax. The data may suggest that T. tenax could be a variant of T. vaginalis.

  6. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  8. Expression of activator protein-1 (AP-1) family members in breast cancer

    International Nuclear Information System (INIS)

    Kharman-Biz, Amirhossein; Gao, Hui; Ghiasvand, Reza; Zhao, Chunyan; Zendehdel, Kazem; Dahlman-Wright, Karin

    2013-01-01

    The activator protein-1 (AP-1) transcription factor is believed to be important in tumorigenesis and altered AP-1 activity was associated with cell transformation. We aimed to assess the potential role of AP-1 family members as novel biomarkers in breast cancer. We studied the expression of AP-1 members at the mRNA level in 72 primary breast tumors and 37 adjacent non-tumor tissues and evaluated its correlation with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and HER2/neu status. Expression levels of Ubiquitin C (UBC) were used for normalization. Protein expression of AP-1 members was assessed using Western blot analysis in a subset of tumors. We used student’s t-test, one-way ANOVA, logistic regression and Pearson’s correlation coefficient for statistical analyses. We found significant differences in the expression of AP-1 family members between tumor and adjacent non-tumor tissues for all AP-1 family members except Fos B. Fra-1, Fra-2, Jun-B and Jun-D mRNA levels were significantly higher in tumors compared to adjacent non-tumor tissues (p < 0.001), whilst c-Fos and c-Jun mRNA levels were significantly lower in tumors compared with adjacent non-tumor tissues (p < 0.001). In addition, Jun-B overexpression had outstanding discrimination ability to differentiate tumor tissues from adjacent non-tumor tissues as determined by ROC curve analysis. Moreover, Fra-1 was significantly overexpressed in the tumors biochemically classified as ERα negative (p = 0.012) and PR negative (p = 0.037). Interestingly, Fra-1 expression was significantly higher in triple-negative tumors compared with luminal carcinomas (p = 0.01). Expression levels of Fra-1 and Jun-B might be possible biomarkers for prognosis of breast cancer

  9. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance.

    Science.gov (United States)

    McGivney, Beatrice A; Browne, John A; Fonseca, Rita G; Katz, Lisa M; Machugh, David E; Whiston, Ronan; Hill, Emmeline W

    2012-12-01

    Myostatin, encoded by the MSTN gene, is a member of the TGF-β superfamily that regulates skeletal muscle development. A MSTN SNP significantly associated with Thoroughbred horse racing phenotypes has recently been identified as well as significant reductions in Thoroughbred skeletal muscle gene expression for three transcripts 400-1500 base pairs downstream of the MSTN gene following a period of training. Together, these findings indicate that MSTN genotypes may influence MSTN gene expression. To investigate this, MSTN mRNA expression was measured in biopsies from the middle gluteal muscle from 60 untrained yearling Thoroughbreds (C/C, n = 15; C/T, n = 28; T/T, n = 17) using two independent real-time qRT-PCR assays. MSTN gene expression was also evaluated in a subset (N = 33) of these animals using samples collected after a ten-month period of training. A significant association was observed between genotype and mRNA abundance for the untrained horses (assay I, P = 0.0237; assay II, P = 0.003559), with the C/C cohort having the highest MSTN mRNA levels, the T/T group the lowest levels and the C/T group intermediate levels. Following training, there was a significant decrease in MSTN mRNA (-3.35-fold; P = 6.9 × 10(-7) ), which was most apparent for the C/C cohort (-5.88-fold, P = 0.001). These data demonstrate the tight relationship between phenotype, genotype and gene expression at the MSTN gene in Thoroughbred racehorses. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  10. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  11. C. albicans Growth, Transition, Biofilm Formation, and Gene Expression Modulation by Antimicrobial Decapeptide KSL-W

    Science.gov (United States)

    2013-11-07

    RESEARCH ARTICLE Open Access C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W...at the end of the article © 2013 Theberge et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the...microbial growth and plaque formation by surfactant drugs. J Periodontal Res 1978, 13:474–485. 36. Semlali A, Leung KP, Curt S, Rouabhia M

  12. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  13. Influence of Different Lignocellulose Sources on Endo-1,4-β-Glucanase Gene Expression and Enzymatic Activity of Bacillus amyloliquefaciens B31C

    Directory of Open Access Journals (Sweden)

    Rosangela Di Pasqua

    2014-01-01

    Full Text Available Conversion of cellulose into fermentable sugars for ethanol production is currently performed by enzymatic hydrolysis catalyzed by cellulases. The cellulases are produced by a wide variety of microorganisms, playing a major role in the recycling of biomass. The endo-1,4-β-glucanase (CelB31C from Bacillus amyloliquefaciens B31C, isolated from compost and previously selected on the basis of highest cellulase activity levels among Bacillus isolated, was characterized as being a potential candidate for a biocatalyst in lignocellulose conversion for second-generation bioethanol production. The aim of this work was to evaluate the changes in production of enzymatic activity of the endo-1,4-β-glucanase (CelB31C and the expression of its gene (bglC using a carboxymethylcellulase activity assay and qRT-PCR analysis, respectively, during growth of B. amyloliquefaciens B31C on different cellulose sources: carboxymethylcellulose (CMC, pure cellulose from Arundo donax, pretreated Arundo donax biomass (Chemtex, and microcrystalline cellulose (Avicel. The results showed that both the expression of bglC gene and the enzymatic activity production are related to the type of cellulose source. The strain showed a high enzymatic activity on lignocellulosic biomass and on microcrystalline cellulose. Furthermore, the highest gene expression occurred during the exponential phase of growth, except in the presence of Avicel.

  14. Avaliação da expressão do gene MGMT nos tecidos normal e neoplásico de doentes com câncer colorretal

    Directory of Open Access Journals (Sweden)

    Adriana Teixeira Cordeiro

    Full Text Available OBJETIVO: Avaliar a expressão tecidual do gene de reparo MGMT comparando a mucosa cólica normal e neoplásica em doentes com câncer colorretal. MÉTODOS: Foram estudados 44 portadores de adenocarcinoma colorretal confirmado por estudo histopatológico. Foram excluídos doentes suspeitos de pertencerem a famílias com câncer colorretal hereditário (HNPCC e PAF e os portadores de câncer do reto médio e inferior submetidos a tratamento quimioradioterápico neoadjuvante. A expressão do gene MGMT foi avaliada pela técnica da reação de polimerase em cadeia em tempo real (RT-PCR. A comparação dos resultados encontrados para expressão do gene MGMT entre tecidos normais e neoplásicos foi feita pelo teste t de Student pareado, adotando-se nível de significância de 5% (p <0,05. RESULTADOS: A expressão tecidual do gene MGMT em todos os doentes foi menor no tecido neoplásico quando comparada a do tecido normal (p=0,002. CONCLUSÃO: O gene de reparo MGMT encontra-se menos expresso no tecido neoplásico quando comparados aos tecidos normais em portadores de CCR esporádico.

  15. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  16. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells

    Science.gov (United States)

    Freund, Ariane; Jolivel, Valérie; Durand, Sébastien; Kersual, Nathalie; Chalbos, Dany; Chavey, Carine; Vignon, Françoise; Lazennec, Gwendal

    2004-01-01

    We have recently reported that Interleukin-8 (IL-8) expression was inversely correlated to estrogen-receptor (ER)-status and was overexpressed in invasive breast cancer cells. In the present study, we show that IL-8 overexpression in breast cancer cells involves a higher transcriptional activity of IL-8 gene promoter. Cloning of IL-8 promoter from MDA-MB-231 and MCF-7 cells expressing high and low levels of IL-8, respectively, shows the integrity of the promoter in both cell lines. Deletion and site-directed mutagenesis of the promoter demonstrate that NF-κB and AP-1 and to a lesser extent C/EBP binding sites play a crucial role in the control of IL-8 promoter activity in MDA-MB-231 cells. Knock-down of NF-κB and AP-1 activities by adenovirus-mediated expression of a NF-κB super-repressor and RNA interference, respectively, decreased IL-8 expression in MDA-MB-231 cells. On the contrary, restoration of Fra-1, Fra-2, c-Jun, p50, p65, C/EBPα and C/EBPβ expression levels in MCF-7 cells led to a promoter activity comparable to that observed in MDA-MB-231 cells. Our data constitute the first extensive study of IL-8 gene overexpression in breast cancer cells and suggest that the high expression of IL-8 in invasive cancer cells requires a complex cooperation between NF-κB, AP-1 and C/EBP transcription factors. PMID:15208657

  17. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  18. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  19. Tracking Differential Gene Expression in MRL/MpJ Versus C57BL/6 Anergic B Cells: Molecular Markers of Autoimmunity

    Directory of Open Access Journals (Sweden)

    Amy G. Clark

    2008-01-01

    Full Text Available Background: Anergy is a key mechanism controlling expression of autoreactive B cells and a major site for failed regulation in autoimmune diseases. Yet the molecular basis for this differentiated cell state remains poorly understood. The current lack of well-characterized surface or molecular markers hinders the isolation of anergic cells for further study. Global gene profiling recently identified transcripts whose expression differentiates anergic from naïve B cells in model mouse systems. The objective of the current study was to evaluate the molecular and cellular processes that differentiate anergic cells that develop in the healthy C57BL/6 (B6 milieu from those that develop in the autoimmune-prone MRL/MpJ (MRL background. This approach takes advantage of B6 and MRL mice bearing an anti-laminin Ig transgene with a well characterized anergic B cell phenotype.Results: Global gene expression was evaluated in purified transgenic B cells using Operon version 3.0 oligonucleotide microarray assaying 31,000 oligoprobes. Genes with a 2-fold expression difference in B6 as compared to MRL anergic B cells were identified. Expression of selected genes was confirmed using quantitative RT-PCR. This approach identified 43 probes corresponding to 37 characterized genes, including Ptpn22, CD74, Birc1f/Naip, and Ctla4, as differentially expressed in anergic B cells in the two strains. Gene Ontology classification identified differentiation, cell cycle, proliferation, development, apoptosis, and cell death as prominently represented ontology groups. Ingenuity Pathway Analysis identified two major networks incorporating 27 qualifying genes. Network 1 centers on beta-estradiol and TP53, and Network 2 encompasses RB1, p38 MAPK, and NFkB cell growth, proliferation, and cell cycle signaling pathways.Conclusion: Using microarray analysis we identified 37 characterized genes and two functional pathways engaged in maintenance of B cell anergy for which expression is

  20. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  1. Stochastic biological response to radiation. Comprehensive analysis of gene expression

    International Nuclear Information System (INIS)

    Inoue, Tohru; Hirabayashi, Yoko

    2012-01-01

    Authors explain that the radiation effect on biological system is stochastic along the law of physics, differing from chemical effect, using instances of Cs-137 gamma-ray (GR) and benzene (BZ) exposures to mice and of resultant comprehensive analyses of gene expression. Single GR irradiation is done with Gamma Cell 40 (CSR) to C57BL/6 or C3H/He mouse at 0, 0.6 and 3 Gy. BE is given orally at 150 mg/kg/day for 5 days x 2 weeks. Bone marrow cells are sampled 1 month after the exposure. Comprehensive gene expression is analyzed by Gene Chip Mouse Genome 430 2.0 Array (Affymetrix) and data are processed by programs like case normalization, statistics, network generation, functional analysis etc. GR irradiation brings about changes of gene expression, which are classifiable in common genes variable commonly on the dose change and stochastic genes variable stochastically within each dose: e.g., with Welch-t-test, significant differences are between 0/3 Gy (dose-specific difference, 455 pbs (probe set), in stochastic 2113 pbs), 0/0.6 Gy (267 in 1284 pbs) and 0.6/3 Gy (532 pbs); and with one-way analysis of variation (ANOVA) and hierarchial/dendrographic analyses, 520 pbs are shown to involve the dose-dependent 226 and dose-specific 294 pbs. It is also shown that at 3 Gy, expression of common genes are rather suppressed, including those related to the proliferation/apoptosis of B/T cells, and of stochastic genes, related to cell division/signaling. Ven diagram of the common genes of above 520 pbs, stochastic 2113 pbs at 3 Gy and 1284 pbs at 0.6 Gy shows the overlapping genes 29, 2 and 4, respectively, indicating only 35 pbs are overlapping in total. Network analysis of changes by GR shows the rather high expression of genes around hub of cAMP response element binding protein (CREB) at 0.6 Gy, and rather variable expression around CREB hub/suppressed expression of kinesin hub at 3 Gy; in the network by BZ exposure, unchanged or low expression around p53 hub and suppression

  2. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Sarcoidosis, a systemic granulomatous syndrome invariably affecting the lung, typically spontaneously remits but in ~20% of cases progresses with severe lung dysfunction or cardiac and neurologic involvement (complicated sarcoidosis. Unfortunately, current biomarkers fail to distinguish patients with remitting (uncomplicated sarcoidosis from other fibrotic lung disorders, and fail to identify individuals at risk for complicated sarcoidosis. We utilized genome-wide peripheral blood gene expression analysis to identify a 20-gene sarcoidosis biomarker signature distinguishing sarcoidosis (n = 39 from healthy controls (n = 35, 86% classification accuracy and which served as a molecular signature for complicated sarcoidosis (n = 17. As aberrancies in T cell receptor (TCR signaling, JAK-STAT (JS signaling, and cytokine-cytokine receptor (CCR signaling are implicated in sarcoidosis pathogenesis, a 31-gene signature comprised of T cell signaling pathway genes associated with sarcoidosis (TCR/JS/CCR was compared to the unbiased 20-gene biomarker signature but proved inferior in prediction accuracy in distinguishing complicated from uncomplicated sarcoidosis. Additional validation strategies included significant association of single nucleotide polymorphisms (SNPs in signature genes with sarcoidosis susceptibility and severity (unbiased signature genes - CX3CR1, FKBP1A, NOG, RBM12B, SENS3, TSHZ2; T cell/JAK-STAT pathway genes such as AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R, ITK, JUN, MALT1, NFATC2, PLCG1, SPRED1. In summary, this validated peripheral blood molecular gene signature appears to be a valuable biomarker in identifying cases with sarcoidoisis and predicting risk for complicated sarcoidosis.

  3. Development of a cDNA microarray for the measurement of gene expression in the sheep scab mite Psoroptes ovis

    Directory of Open Access Journals (Sweden)

    Burgess Stewart TG

    2012-02-01

    Full Text Available Abstract Background Sheep scab is caused by the ectoparasitic mite Psoroptes ovis which initiates a profound cutaneous inflammatory response, leading to the development of the skin lesions which are characteristic of the disease. Existing control strategies rely upon injectable endectocides and acaricidal dips but concerns over residues, eco-toxicity and the development of acaricide resistance limit the sustainability of this approach. In order to identify alternative means of disease control, a deeper understanding of both the parasite and its interaction with the host are required. Methods Herein we describe the development and utilisation of an annotated P. ovis cDNA microarray containing 3,456 elements for the measurement of gene expression in this economically important ectoparasite. The array consists of 981 P. ovis EST sequences printed in triplicate along with 513 control elements. Array performance was validated through the analysis of gene expression differences between fed and starved P. ovis mites. Results Sequences represented on the array include homologues of major house dust mite allergens and tick salivary proteins, along with factors potentially involved in mite reproduction and xenobiotic metabolism. In order to validate the performance of this unique resource under biological conditions we used the array to analyse gene expression differences between fed and starved P. ovis mites. These analyses identified a number of house dust mite allergen homologues up-regulated in fed mites and P. ovis transcripts involved in stress responses, autophagy and chemosensory perception up-regulated in starved mites. Conclusion The P. ovis cDNA microarray described here has been shown to be both robust and reproducible and will enable future studies to analyse gene expression in this important ectoparasite.

  4. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression

    Directory of Open Access Journals (Sweden)

    Raherison Elie

    2012-08-01

    Full Text Available Abstract Background Conifers have very large genomes (13 to 30 Gigabases that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.

  5. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata

    Directory of Open Access Journals (Sweden)

    Randall Carly J

    2009-12-01

    Full Text Available Abstract Background Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5°C, 29.0°C, and 31.5°C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours. Results Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress. Conclusions Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0°C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5°C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.

  6. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    Directory of Open Access Journals (Sweden)

    Meimei Liang

    Full Text Available Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  7. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  8. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  9. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    Science.gov (United States)

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  10. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    Science.gov (United States)

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  11. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  12. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  13. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-11-01

    Full Text Available Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl, callose (Gsl and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2 and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  14. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Khan, Yusuf; Jaishankar, Jananee; Shweta, Shweta; Lata, Charu; Prasad, Manoj

    2015-01-01

    Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  15. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    López-Barragán María J

    2011-11-01

    Full Text Available Abstract Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression.

  16. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Regan Roat

    Full Text Available The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF, the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP. To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1 and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.

  17. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  18. Transcriptional regulation of BRD7 expression by Sp1 and c-Myc

    Directory of Open Access Journals (Sweden)

    Li Shufang

    2008-12-01

    Full Text Available Abstract Background Bromodomain is an evolutionally conserved domain that is found in proteins strongly implicated in signal-dependent transcriptional regulation. Genetic alterations of bromodomain genes contributed to the development of many human cancers and other disorders. BRD7 is a recently identified bromodomain gene. It plays a critical role in cellular growth, cell cycle progression, and signal-dependent gene expression. Previous studies showed that BRD7 gene exhibited much higher-level of mRNA expression in normal nasopharyngeal epithelia than in nasopharyngeal carcinoma (NPC biopsies and cell lines. However, little is known about its transcriptional regulation. In this study, we explored the transcriptional regulation of BRD7 gene. Method Potential binding sites of transcription factors within the promoter region of BRD7 gene were predicted with MatInspector Professional http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl. Mutation construct methods and luciferase assays were performed to define the minimal promoter of BRD7 gene. RT-PCR and western blot assays were used to detect the endogenous expression of transcription factor Sp1, c-Myc and E2F6 in all cell lines used in this study. Electrophoretic mobility shift assays (EMSA and Chromatin immunoprecipitation (ChIP were used to detect the direct transcription factors that are responsible for the promoter activity of BRD7 gene. DNA vector-based siRNA technology and cell transfection methods were employed to establish clone pools that stably expresses SiRNA against c-Myc expression in nasopharyngeal carcinoma 5-8F cells. Real-time PCR was used to detect mRNA expression of BRD7 gene in 5-8F/Si-c-Myc cells. Results We defined the minimal promoter of BRD7 gene in a 55-bp region (from -266 to -212bp, and identified that its promoter activity is inversely related to c-Myc expression. Sp1 binds to the Sp1/Myc-Max overlapping site of BRD7 minimal promoter, and slightly positively

  19. Application of disease-associated differentially expressed genes – Mining for functional candidate genes for mastitis resistance in cattle

    Directory of Open Access Journals (Sweden)

    Schwerin Manfred

    2003-06-01

    Full Text Available Abstract In this study the mRNA differential display method was applied to identify mastitis-associated expressed DNA sequences based on different expression patterns in mammary gland samples of non-infected and infected udder quarters of a cow. In total, 704 different cDNA bands were displayed in both udder samples. Five hundred-and-thirty two bands, (75.6% were differentially displayed. Ninety prominent cDNA bands were isolated, re-amplified, cloned and sequenced resulting in 87 different sequences. Amongst the 19 expressed sequence tags showing a similarity with previously described genes, the majority of these sequences exhibited homology to protein kinase encoding genes (26.3%, to genes involved in the regulation of gene expression (26.3%, to growth and differentiation factor encoding genes (21.0% and to immune response or inflammation marker encoding genes (21.0%. These sequences were shown to have mastitis-associated expression in the udder samples of animals with and without clinical mastitis by quantitative RT-PCR. They were mapped physically using a bovine-hamster somatic cell hybrid panel and a 5000 rad bovine whole genome radiation hybrid panel. According to their localization in QTL regions based on an established integrated marker/gene-map and their disease-associated expression, four genes (AHCY, PRKDC, HNRPU, OSTF1 were suggested as potentially involved in mastitis defense.

  20. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  1. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  2. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K.

    1988-01-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  3. Effects of Assisted Reproduction Technology on Placental Imprinted Gene Expression

    Science.gov (United States)

    Katagiri, Yukiko; Aoki, Chizu; Tamaki-Ishihara, Yuko; Fukuda, Yusuke; Kitamura, Mamoru; Matsue, Yoichi; So, Akiko; Morita, Mineto

    2010-01-01

    We used placental tissue to compare the imprinted gene expression of IGF2, H19, KCNQ1OT1, and CDKN1C of singletons conceived via assisted reproduction technology (ART) with that of spontaneously conceived (SC) singletons. Of 989 singletons examined (ART n = 65; SC n = 924), neonatal weight was significantly lower (P < .001) in the ART group than in the SC group, but placental weight showed no significant difference. Gene expression analyzed by real-time PCR was similar for both groups with appropriate-for-date (AFD) birth weight. H19 expression was suppressed in fetal growth retardation (FGR) cases in the ART and SC groups compared with AFD cases (P < .02 and P < .05, resp.). In contrast, CDKN1C expression was suppressed in FGR cases in the ART group (P < .01), while KCNQ1OT1 expression was hyperexpressed in FGR cases in the SC group (P < .05). As imprinted gene expression patterns differed between the ART and SC groups, we speculate that ART modifies epigenetic status even though the possibilities always exist. PMID:20706653

  4. Identification and expression analysis of genes associated with bovine blastocyst formation

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2007-06-01

    Full Text Available Abstract Background Normal preimplantation embryo development encompasses a series of events including first cleavage division, activation of the embryonic genome, compaction and blastocyst formation. First lineage differentiation starts at the blastocyst stage with the formation of the trophectoderm and the inner cell mass. The main objective of this study was the detection, identification and expression analysis of genes associated with blastocyst formation in order to help us better understand this process. This information could lead to improvements of in vitro embryo production procedures. Results A subtractive cDNA library was constructed enriched for transcripts preferentially expressed at the blastocyst stage compared to the 2-cell and 8-cell stage. Sequence information was obtained for 65 randomly selected clones. The RNA expression levels of 12 candidate genes were determined throughout 3 stages of preimplantation embryo development (2-cell, 8-cell and blastocyst and compared with the RNA expression levels of in vivo "golden standard" embryos using real-time PCR. The RNA expression profiles of 9 (75% transcripts (KRT18, FN1, MYL6, ATP1B3, FTH1, HINT1, SLC25A5, ATP6V0B, RPL10 were in agreement with the subtractive cDNA cloning approach, whereas for the remaining 3 (25% (ACTN1, COPE, EEF1A1 the RNA expression level was equal or even higher at the earlier developmental stages compared to the blastocyst stage. Moreover, significant differences in RNA expression levels were observed between in vitro and in vivo produced embryos. By immunofluorescent labelling, the protein expression of KRT18, FN1 and MYL6 was determined throughout bovine preimplantation embryo development and showed the same pattern as the RNA expression analyses. Conclusion By subtractive cDNA cloning, candidate genes involved in blastocyst formation were identified. For several candidate genes, important differences in gene expression were observed between in vivo and in

  5. Similarities in temperature-dependent gene expression plasticity across timescales in threespine stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Metzger, David C H; Schulte, Patricia M

    2018-04-14

    Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.

  6. Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2006-11-01

    Full Text Available Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc. In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II and Npr3 (natriuretic peptide decoy receptor genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor, as well as the Npr2 gene (encoding the CNP receptor. Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine

  7. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  8. Study of bantam miRNA expression in brain tumour resulted due to ...

    Indian Academy of Sciences (India)

    ANIMESH BANERJEE

    2017-06-19

    Jun 19, 2017 ... these genes lead to an inappropriate segregation of cell fate determinants ... ground could possibly be a consequence of brain tumour resulting ... Expression of bantam miRNA in Drosophila brain tumour. Figure 1. Bantam is ...

  9. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species

    Science.gov (United States)

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P.; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops. PMID:26465154

  10. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Science.gov (United States)

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops.

  11. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Directory of Open Access Journals (Sweden)

    Zehong Ding

    Full Text Available Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops.

  12. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  14. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    Science.gov (United States)

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  15. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  16. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    Science.gov (United States)

    Normal Nasal Gene Expression Levels Using cDNA Array Technology. The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  17. Cloning and expression of a ζ-carotene desaturase gene from ...

    Indian Academy of Sciences (India)

    2015-06-05

    Jun 5, 2015 ... 1School of Chemical Engineering and Technology, and 2School of Environmental Science and .... The extracted RNA was reverse transcribed into cDNA ..... rial to enrich carotenoid contents and increase tolerance to.

  18. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    Science.gov (United States)

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  19. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    Science.gov (United States)

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  20. Jun Wang

    Indian Academy of Sciences (India)

    0.32O2 solid solution on depositing -alumina washcoat on .... Volume 38 Issue 5 September 2015 pp 1435-1438. High-performance aqueous rechargeable batteries based on zinc anode and NiCo2O4 cathode · Jun Wang Zhijun Jia Songbo Li ...

  1. Evaluation of the Role of -137G/C Single Nucleotide Polymorphism (rs187238 and Gene Expression Levels of the IL-18 in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Hoseini

    2018-03-01

    Full Text Available Objectives: Interleukin-18 (IL-18 is a proinflammatory and proatherogenic cytokine, and its genetic variations may contribute to the development of coronary artery disease (CAD. We sought to investigate the role of -137G/C polymorphism and gene expression levels of IL-18 in patients with CAD. Methods: The study population included 100 patients with angiographically proven CAD and 100 matched controls. Total RNA and DNA were extracted from leukocytes using appropriate kits. The genotype of -137G/C polymorphism and gene expression level of IL-18 was determined using allele-specific polymerase chain reaction (PCR and real-time (RT-PCR assay, respectively. Results: The genotypic and allelic distribution of IL-18 -137G/C polymorphism was not significantly different between the two groups (p > 0.050. Moreover, the -137G/C polymorphism did not increase the risk of CAD in dominant and recessive genetic models (p > 0.050. However, subgroup analysis of CAD patients revealed that the IL-18 -137G/C polymorphism was significantly associated with increased risk of CAD in hypertensive patients (odds ratio (OR = 7.51; 95% confidence interval (CI: 1.24–25.17; p = 0.019 and smokers (OR = 4.90; 95% CI: 1.21–19.70; p = 0.031 but not in the diabetic subpopulation (p = 0.261. The genotype distribution of IL-18 -137G/C genetic polymorphism was significantly different among patients with one, two, and three stenotic vessels (p < 0.050. The gene expression level of IL-18 was significantly higher in the CAD group than the control group (p < 0.001. Moreover, the carriers of CC genotype had significantly lower gene expression levels of IL-18 than carriers of GG genotype (p < 0.050.Conclusions: The -137G/C polymorphism of IL-18 may be associated with the CAD risk in hypertensive and smoker subgroup of CAD patients. The -137G/C polymorphism seems to play an important role in determining the severity of CAD. Increased IL-18 gene expression level is a significant risk

  2. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  3. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.).

    Science.gov (United States)

    Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin

    2014-09-15

    Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  5. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  6. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  7. Genetics of sputum gene expression in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Weiliang Qiu

    Full Text Available Previous expression quantitative trait loci (eQTL studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs. The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5, the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.

  8. Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Qiu, Weiliang; Cho, Michael H.; Riley, John H.; Anderson, Wayne H.; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A.; Lomas, David A.; Crapo, James D.; Beaty, Terri H.; Celli, Bartolome R.; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M.; Silverman, Edwin K.; Hersh, Craig P.

    2011-01-01

    Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus. PMID:21949713

  9. Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1.

    Science.gov (United States)

    Whitham, Martin; Chan, M H Stanley; Pal, Martin; Matthews, Vance B; Prelovsek, Oja; Lunke, Sebastian; El-Osta, Assam; Broenneke, Hella; Alber, Jens; Brüning, Jens C; Wunderlich, F Thomas; Lancaster, Graeme I; Febbraio, Mark A

    2012-03-30

    Exercise increases the expression of the prototypical myokine IL-6, but the precise mechanism by which this occurs has yet to be identified. To mimic exercise conditions, C2C12 myotubes were mechanically stimulated via electrical pulse stimulation (EPS). We compared the responses of EPS with the pharmacological Ca(2+) carrier calcimycin (A23187) because contraction induces marked increases in cytosolic Ca(2+) levels or the classical IκB kinase/NFκB inflammatory response elicited by H(2)O(2). We demonstrate that, unlike H(2)O(2)-stimulated increases in IL-6 mRNA, neither calcimycin- nor EPS-induced IL-6 mRNA expression is under the transcriptional control of NFκB. Rather, we show that EPS increased the phosphorylation of JNK and the reporter activity of the downstream transcription factor AP-1. Furthermore, JNK inhibition abolished the EPS-induced increase in IL-6 mRNA and protein expression. Finally, we observed an exercise-induced increase in both JNK phosphorylation and IL-6 mRNA expression in the skeletal muscles of mice after 30 min of treadmill running. Importantly, exercise did not increase IL-6 mRNA expression in skeletal muscle-specific JNK-deficient mice. These data identify a novel contraction-mediated transcriptional regulatory pathway for IL-6 in skeletal muscle.

  10. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    Science.gov (United States)

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  11. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  12. Analysis of the influence of the T393C polymorphism of the GNAS gene on the clinical expression of primary hyperparathyroidism.

    Science.gov (United States)

    Piedra, María; Berja, Ana; Ramos, Laura; García-Unzueta, María Teresa; Morán, Jesús Manuel; Ruiz, David; Amado, José Antonio

    2017-12-01

    The receptor of parathyroid hormone and parathyroid hormone-related-protein (PTH/PTHrp) is located in the cell membrane of target tissues - kidney and osteoblasts. It is a G protein-coupled-receptor whose G s α subunit is encoded by the GNAS gene. Our aim was to study whether the single nucleotide polymorphism (SNP) T393C of the GNAS gene is associated with renal stones, bone mineral density (BMD), or bone remodelling markers in primary hyperparathyroidism (PHPT). An analysis was made of clinical and biochemical parameters and densitometric values in three areas and their relationship with the T393C SNP of the GNAS gene in 261 patients with primary hyperparathyroidism and in 328 healthy controls. Genotyping was performed using the Custom Taqman ® SNP Genotyping assay. The genotype frequencies of GNAS T/C 393 were similar in the control and PHPT groups. No association was found between genotypes and clinical expression of PHPT (renal stones and bone fractures). A nonstatistically significant trend was seen to lower BMD in the lumbar spine, femoral neck, and total hip in both PHPT and control C homozygote subjects. Genetic susceptibility to PHPT related to the GNAS T393C polymorphism or a major influence in its development and clinical expression were found. A C allele-related susceptibility to lower BMD in trabecular bone in both PHPT and control subjects is not sufficient to suggest a more severe clinical expression of PHPT. This trend may be considered as a basis for further studies with larger sample sizes and complementary functional evaluation. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  14. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  15. Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2003-05-01

    Full Text Available Abstract Background Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102, only the bidirectional (Synechocystis PCC 6803 or both NiFe-hydrogenases (Anabaena PCC 7120 prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. Results We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41% to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia coli, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. Conclusion Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known

  16. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  17. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  18. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray

    International Nuclear Information System (INIS)

    Tamaoki, Masanori; Matsuyama, Takashi; Nakajima, Nobuyoshi; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2004-01-01

    Plants in the field are subjected to numerous environmental stresses. Lengthy continuation of such environmental stresses or a rapid increase in their intensity is harmful to vegetation. Assessments of the phytotoxicity of various stresses have been performed in many countries, although they have largely been based on estimates of leaf injury. We developed a novel method of detecting plant stresses that is more sensitive and specific than those previously available. This method is based on the detection of mRNA expression changes in 205 ozone-responsive Arabidopsis expressed sequence tags (ESTs) by cDNA macroarray analysis. By using this method, we illustrated shifts in gene expression in response to stressors such as drought, salinity, UV-B, low temperature, high temperature, and acid rain, as distinct from those in response to ozone. We also made a mini-scale macroarray with 12 ESTs for diagnosis of the above environmental stresses in plants. These results illustrate the potential of our cDNA macroarray for diagnosis of various stresses in plants

  19. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  20. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  1. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  2. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  3. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  4. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  5. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  6. The Expression of Embryonic Liver Development Genes in Hepatitis C Induced Cirrhosis and Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Martha, E-mail: mbehnke@mcvh-vcu.edu [Transplant Program Administration, Virginia Commonwealth University Health System, 1200 E. Broad St., Richmond, VA 23298 (United States); Reimers, Mark [Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, 800 E Leigh St., Richmond, VA 23298 (United States); Fisher, Robert [Department of Surgery, Virginia Commonwealth University, 1200 E. Broad St., Richmond, VA 23298 (United States)

    2012-09-18

    Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.

  7. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  8. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  9. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  10. Differentially expressed genes in Populus simonii x P. nigra in respnse to NaCl stress using cDNA-AFLP

    Science.gov (United States)

    Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stre...

  11. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R., E-mail: tzachare@msu.edu

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  12. Modulation of rhodopsin gene expression and signaling mechanisms evoked by endothelins in goldfish and murine pigment cell lines

    Directory of Open Access Journals (Sweden)

    G.J.D. Lopes

    2010-09-01

    Full Text Available Endothelins (ETs and sarafotoxins (SRTXs belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L:10-h darkness (10D was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

  13. Generation of Oxtr cDNA(HA)-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner.

    Science.gov (United States)

    Hidema, Shizu; Fukuda, Tomokazu; Hiraoka, Yuichi; Mizukami, Hiroaki; Hayashi, Ryotaro; Otsuka, Ayano; Suzuki, Shingo; Miyazaki, Shinji; Nishimori, Katsuhiko

    2016-05-01

    The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR. © 2015 Wiley Periodicals, Inc.

  14. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  15. Preharvest Ultraviolet C Irradiation Increased the Level of Polyphenol Accumulation and Flavonoid Pathway Gene Expression in Strawberry Fruit.

    Science.gov (United States)

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Mimee, Benjamin; Veronneau, Pierre-Yves; Rolland, Daniel; Roussel, Dominique

    2017-11-22

    Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m -2 ; middle, 15 kJ m -2 ; and high , 29.4 kJ m -2 ). Significant accumulation (p radiation. The expression of the flavonoid pathway structural genes, i.e., FaCHS1, FaCHI, FaFHT, FaDFR, FaFLS, and FaFGT, was upregulated in the low- and middle-dose groups, while the early stage genes were not affected by the high dose. FaMYB1 was also relatively enhanced in the low- and middle-dose groups, while FaASR was upregulated in only the low-dose group. Hormetic preharvest UV-C dose ranges for enhancing the polyphenol content of strawberries were established for the first time.

  16. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes

    International Nuclear Information System (INIS)

    Biacchesi, Stephane; Skiadopoulos, Mario H.; Tran, Kim C.; Murphy, Brian R.; Collins, Peter L.; Buchholz, Ursula J.

    2004-01-01

    Human metapneumovirus (HMPV) is a recently recognized causative agent of respiratory tract disease in individuals of all ages and especially young infants. HMPV remains poorly characterized and has been reported to replicate inefficiently in vitro. Complete consensus sequences were recently determined for two isolates representing the two proposed HMPV genetic subgroups (Biacchesi et al., Virology 315 (1) (2003) 1). We have developed a reverse genetic system to produce one of these isolates, CAN97-83, entirely from cDNA. We also recovered a version, rHMPV-GFP, in which the enhanced green fluorescent protein (GFP) was expressed from a transcription cassette inserted as the first gene, leaving the 41-nt leader region and first 16 nt of the N gene undisturbed. The ability to monitor GFP expression in living cells greatly facilitated the initial recovery of this slow-growing virus. In addition, the ability to express a foreign gene from an engineered transcription cassette confirmed the identification of the HMPV transcription signals and identified the F gene-end signal as being highly efficient for transcription termination. The ability to recover virus containing a foreign insert in this position indicated that the viral promoter is contained within the 3'-terminal 57 nt of the genome. Recombinant HMPV replicated in vitro as efficiently as biologically derived HMPV, whereas the kinetics and final yield of rHMPV-GFP were reduced several-fold. Conditions for trypsin treatment were investigated, providing for improved virus yields. Another version of HMPV, rHMPV+G1F23, was recovered that contained a second copy of the G gene and two extra copies of F in promoter-proximal positions in the order G1-F2-F3. Thus, this recombinant genome would encode 11 mRNAs rather than eight and would be 17.3 kb long, 30% longer than that of the natural virus. Nonetheless, the rHMPV+G1F23 virus replicated in vitro with an efficiency that was only modestly reduced compared to rHMPV and was

  17. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  18. Intersex related gene expression profiles in clams Scrobicularia plana: Molecular markers and environmental application

    International Nuclear Information System (INIS)

    Ciocan, Corina M.; Cubero-Leon, Elena; Langston, William J.; Pope, Nick; Cornelius, Keith; Hill, E.M.; Alvarez-Munoz, Diana; Indiveri, Paolo; Lerebours, Adelaide; Minier, Christophe; Rotchell, Jeanette M.

    2015-01-01

    Highlights: • Expression of intersex-related genes was analysed in clam gonads sampled from the Channel. • Genes were differentially expressed at sites with varying levels of intersex and contaminants. • Correlations between gene expressions, key contaminants and sampling sites were identified. • No single gene expression studied correlated with intersex incidence. - Abstract: Intersex, the appearance of female characteristics in male gonads, has been identified in several aquatic species. It is a widespread phenomenon in populations of the bivalve, Scrobicularia plana, from the southwest coast of the U.K. Genes previously identified as differentially expressed (ferritin, testicular haploid expressed gene, THEG, proliferating cell nuclear antigen, PCNA; receptor activated protein kinase C, RACK; cytochrome B, CYB; and cytochrome c oxidase 1, COX1) in intersex clams relative to normal male clams, were selected for characterisation and an environmental survey of the Channel region. Transcripts were significantly differentially expressed at sites with varying intersex incidence and contaminant burdens. Significant correlations between specific gene expressions, key contaminants and sampling locations have been identified, though no single gene was associated with intersex incidence. The results highlight the difficulty in understanding the intersex phenomenon in molluscs where there is still a lack of knowledge on the control of normal reproduction

  19. Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    DEFF Research Database (Denmark)

    Vikman, Petter; Xu, Cang-Bao; Edvinsson, Lars

    2009-01-01

    /JNK) and their downstream transcription factors (ATF-2, Elk-1 and c-Jun) were examined. RESULTS: We observed that compared with control (DMSO-treated cerebral arteries), the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT(1) receptors, but not of AT(2) receptors, at both mRNA and protein...... factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO), and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries. CONCLUSIONS: DSP induces cerebral vessel inflammation...

  20. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    Science.gov (United States)

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Identification and expression analysis of CYS-A1, CYS-C1, NIT4 genes in rice seedlings exposed to cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Lin, Yu-Juan; Lu, Chun-Jiao; Zhang, Xue-Hong

    2017-09-01

    Involvement of genes (CYS-A1, CYS-C1 and NIT4) encoded with cysteine synthase, β-cyanoalanine synthase, nitrilase and cyanide metabolisms are evident in Arabidopsis. In the present study, identifications of CYS-A1, CYS-C1 and NIT4, predictions of conserved motifs, and constructions of phylogenetic relationships, based on their amino acid sequences in rice, were conducted. In order to elucidate the transcriptional responses of these cyanide-degrading genes, two candidate homologues were selected for each gene to test their expression changes upon exposure to exogenous KCN in rice seedlings using RT-PCR. Results showed that all selected candidate homologous genes were differentially expressed at different exposure points in roots and shoots of rice seedlings, suggesting their distinct roles during cyanide assimilation. Both candidate homologues for CYS-A1 constantly exhibited more abundant transcripts in comparison to control. However, only one candidate homologue for CYS-C1 and NIT4 showed a remarkable up-regulation during KCN exposure. Analysis of both tissue and solution cyanide indicated that rice seedlings were quickly able to metabolize exogenous KCN with minor accumulation in plant tissues. In conclusion, significant up-regulation of CYS-A1 suggested that the endogenous pool of cysteine catalyzed by cysteine synthase does not restrict the conversion of exogenous KCN into cyanoalanine through the β-cyanoalanine pathway. However, insufficient responses of the transcription level of NIT4 suggested that NIT enzyme may be a limiting factor for cyanoalanine assimilation by rice seedlings.

  2. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  3. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    Science.gov (United States)

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  4. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  6. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Traditional Chinese Medicine Baicalin Suppresses mESCs Proliferation through Inhibition of miR-294 Expression

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-03-01

    Full Text Available Background: Traditional Chinese herbal medicines (TCMs have been widely used against a broad spectrum of biological activities, including influencing the cardiac differentiation from mouse embryonic stem cells (mESCs. However, their effects and mechanisms of action on ESCs proliferation remain to be determined. The present study aimed to determine the effect of three TCMs, baicalin, ginsenoside Rg1, and puerarin, on mESCs proliferation and to elucidate the possible mechanism of their action. Methods: Cell proliferation was examined with a cell proliferation assay Cell Counting Kit-8 (CCK-8, propidium iodide (PI staining was used to visualize cell cycle. The mRNA expression level of c-myc, c-fos, c-jun, GAPDH and microRNAs were measured by quantitative real time RT-PCR. Results: We found that baicalin 50 μM suppressed the proliferation of mESCs as observations in more cells in G1 phase and less cells in either S phase or G2/M phase. Moreover, baicalin suppressed the expressions of c-jun and c-fos in mESCs and down-regulated the expression of miR-294. Overexpression of miR-294 in mESCs significantly reversed the effects of baicalin both on mESC proliferation and c-fos/c-jun expression. Conclusions: Baicalin down-regulation of miR-294 may be its key mechanism of action in decreasing mESCs proliferation.

  8. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    International Nuclear Information System (INIS)

    Shi, Ge; Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin; Ou, Bai-sheng; Kim, Sooil; Lee, Young Ho; Yoon, Tae-Jin; Kim, Seong-Jin; Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon; Kim, Chang Deok

    2010-01-01

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  9. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ge [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Guangxi, Nanning, 530023 (China); Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Ou, Bai-sheng [Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Guangxi, Nanning, 530023 (China); Kim, Sooil; Lee, Young Ho [Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Yoon, Tae-Jin [Department of Dermatology, School of Medicine, Gyeongsang National University, Jinju, 660-702 (Korea, Republic of); Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 660-702 (Korea, Republic of); Kim, Seong-Jin [Department of Dermatology, Chonnam National University Medical School, Gwangju, 501-757 (Korea, Republic of); Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Kim, Chang Deok, E-mail: cdkimd@cnu.ac.kr [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of)

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  10. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  11. Effects of dietary supplementation with docosahexaenoic acid (DHA on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice

    Directory of Open Access Journals (Sweden)

    Jency Thomas

    2015-08-01

    Full Text Available A body of evidence has accumulated indicating diabetes is associated with cognitive impairments. Effective strategies are therefore needed that will delay or prevent the onset of these diabetes-related deficits. In this regard, dietary modification with the naturally occurring compound, docosahexaenoic acid (DHA, holds significant promise as it has been shown to have anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The hippocampus, a limbic structure involved in cognitive functions such as memory formation, is particularly vulnerable to the neurotoxic effects related to diabetes, and we have previously shown that streptozotocin-induced diabetes alters hippocampal gene expression, including genes involved in synaptic plasticity and neurogenesis. In the present study, we explored the effects of dietary supplementation with DHA on hippocampal gene expression in C57Bl/6 diabetic mice. Diabetes was established using streptozotocin (STZ and once stable, the dietary intervention group received AIN93G diet supplemented with DHA (50 mg/kg/day for 6 weeks. Microarray based genome-wide expression analysis was carried out on the hippocampus of DHA supplemented diabetic mice and confirmed by real time polymerase chain reaction (RT-qPCR. Genome-wide analysis identified 353 differentially expressed genes compared to non-supplemented diabetic mice. For example, six weeks of dietary DHA supplementation resulted in increased hippocampal expression of Igf II and Sirt1 and decreased expression of Tnf-α, Il6, Mapkapk2 and ApoE, compared to non-supplemented diabetic mice. Overall, DHA supplementation appears to alter hippocampal gene expression in a way that is consistent with it being neuroprotective in the context of the metabolic and inflammatory insults associated with diabetes.

  12. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.

    Directory of Open Access Journals (Sweden)

    Dennis Bakker

    Full Text Available In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis, sometimes resulting in colectomy or death. The main virulence factors of C. difficile are toxin A and toxin B. Besides the genes encoding these toxins (tcdA and tcdB, the pathogenicity locus (PaLoc also contains genes encoding a sigma factor (tcdR and a putative anti-sigma factor (tcdC. The important role of TcdR as a sigma factor for toxin expression is undisputed, whereas the role of TcdC as an anti-sigma factor, inhibiting toxin expression, is currently the subject of debate. To clarify the role of TcdC in toxin expression, we generated an isogenic ClosTron-based mutant of tcdC in Clostridium difficile strain 630Δ Erm (CT::tcdC and determined the transcription levels of the PaLoc genes and the expression levels of the toxins in the wild type strain and the tcdC mutant strain. We found only minor differences in transcription levels of the PaLoc genes between the wild type and CT::tcdC strains and total toxin levels did not significantly differ either. These results suggest that in C. difficile 630Δerm TcdC is not a major regulator of toxin expression under the conditions tested.

  13. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei

    2010-03-04

    We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5\\'-flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa,ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A.E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endo-metrial epithelial cells in vitro. © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  14. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  15. Characterization of cycP gene expression in Achromobacter xylosoxidans NCIMB 11015 and high-level heterologous synthesis of cytochrome c' in Escherichia coli.

    Science.gov (United States)

    Harris, Roger L; Barbieri, Sonia; Paraskevopoulos, Kostas; Murphy, Loretta M; Eady, Robert R; Hasnain, S Samar; Sawers, R Gary

    2010-01-01

    The cycP gene encoding a periplasmic cytochrome c' from the denitrifying beta-proteobacterium Achromobacter xylosoxidans was characterized. The genes flanking cycP encode components of a mobile genetic element characteristic of the beta-proteobacteria, suggesting that cycP has inserted within a transposon or insertion element. The gene therefore does not form part of a denitrification operon or gene cluster. The level of expression of the cycP gene and the level of synthesis of its corresponding gene product were found to increase by maximally 3-fold anaerobically. Expression of cycP appears to occur mainly by non-specific read-through transcription from portions of the insertion element. Conditions were developed for high-level overproduction of cytochrome c' in Escherichia coli, which resulted in signal peptide cleavage concomitant with secretion of the protein into the periplasm. Using a single-step purification, 20-30 mg of pure protein were isolated from a 1-litre culture. Based on UV-visible spectrophotometry the dimeric protein was shown to have a full complement of haem and to be indistinguishable from the native protein purified from A. xylosoxidans. This system provides an excellent platform to facilitate biochemical and structural dissection of the mechanism underlying the novel specificity of NO binding to the proximal face of the haem.

  16. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  17. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    International Nuclear Information System (INIS)

    Koczor, Christopher A.; Fields, Earl; Jedrzejczak, Mark J.; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A.; Lewis, William

    2015-01-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of

  18. Cocoa polyphenols and fiber modify colonic gene expression in rats.

    Science.gov (United States)

    Massot-Cladera, Malen; Franch, Àngels; Castell, Margarida; Pérez-Cano, Francisco J

    2017-08-01

    Cocoa intake has been associated with health benefits, improving cardiovascular function and metabolism, as well as modulating intestinal immune function. The aim of this study was to take an in-depth look into the mechanisms affected by the cocoa intake by evaluating the colonic gene expression after nutritional intervention, and to ascertain the role of the fiber of cocoa in these effects. To achieve this, Wistar rats were fed for 3 weeks with either a reference diet, a diet containing 10 % cocoa (C10), a diet based on cocoa fiber (CF) or a diet containing inulin (I). At the end of the study, colon was excised to obtain the RNA to evaluate the differential gene expression by microarray. Results were validated by RT-PCR. The C10 group was the group with most changes in colonic gene expression, most of them down-regulated but a few in common with the CF diet. The C10 diet significantly up-regulated the expression of Scgb1a1 and Scnn1 g and down-regulated Tac4, Mcpt2, Fcer1a and Fabp1 by twofold, most of them related to lipid metabolism and immune function. The CF and I diets down-regulated the expression of Serpina10 and Apoa4 by twofold. Similar patterns of expression were found by PCR. Most of the effects attributed to cocoa consumption on genes related to the immune system (B cell and mast cell functionality) and lipid metabolism in the colon tissue were due not only to its fiber content, but also to the possible contribution of polyphenols and other compounds.

  19. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  20. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    Energy Technology Data Exchange (ETDEWEB)

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  1. cDNA cloning and expression analysis of two distinct Sox8 genes in Paramisgurnus dabryanus (Cypriniformes).

    Science.gov (United States)

    Xia, Xiaohua; Zhao, Jie; Du, Qiyan; Chang, Zhongjie

    2010-08-01

    The Sox9 gene attracts a lot of attention because of its connection with gonadal development and differentiation. However, Sox8, belonging to the same subgroup SoxE, has rarely been studied. To investigate the function as well as the evolutionary origin of SOXE subgroup, we amplified the genomic DNA of Paramisgurnus dabryanu using a pair of degenerate primers. Using rapid amplification of the cDNA ends (RACE), it was discovered that P. dabryanu has two duplicates: Sox8a and Sox8b. Each has an intron of different length in the conserved HMG-box region. The overall sequence similarity of the deduced amino acid of PdSox8a and PdSox8b was 46.26%, and only two amino acids changed in the HMG-box. This is the first evidence showing that there are two distinct duplications of Sox8 genes in Cypriniformes. Southern blot analysis showed only one hybrid band, with lengths 7.4 or 9.2 kb. Both semi-quantitative RT-PCR and real-time quantitative PCR assay displayed that both PdSox8a and PdSox8b are downregulated during early embryonic development. In adult tissues, the two Sox8 genes expressed ubiquitously, and expression levels are particularly high in the gonads and brain. In gonads, both PdSox8a and PdSox8b are expressed at a higher level in the tesis than in the ovary. PdSox8a and PdSox8b may have functional overlaps and are essential for the neuronal development and differentiation of gonads.

  2. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  3. Comparison of gene expression profiles of HepG2 cells exposed to Crambescins C1 and A1

    Directory of Open Access Journals (Sweden)

    María R. Sánchez

    2014-06-01

    Full Text Available Crambescins are guanidine alkaloids firstly isolated in the early 90s from the encrusting Mediterranean sponge Crambe crambe (Schmidt, 1862 (Bondu et al., 2012, Laville et al., 2009, Berlinck et al., 1990. C. crambe derivatives are divided in two families named crambescins and crambescidins (Gerlinck et al., 1992. Although data on the bioactivity of these compounds is scarce, crambescidins have recognized cytotoxic, antifungal, antioxidant, antimicrobial and antiviral activities (Buscema and Van de Vyver, 1985, Jares-Erijman., 1998, Olszewski et al., 2004, Lazaro et al., 2006, Suna et al., 2007, AOKI et al., 2004. Recently we have carefully evaluated the cytotoxic activity of C816 over several human tumor cell types and characterized some of the cellular mechanisms responsible of the anti-proliferative effect of this compound on human liver-derived tumor cells (Rubiolo et al., 2013. Taking this into account, and to better understand the mechanism of action of crambescins and their potential as therapeutic agents, we made a comparative gene expression profiling of HepG2 cells after crambescin C1 (C1 and crambescin A1 (CA1 exposures. Results have shown that C1 induces genes involved in sterol and glucose metabolisms and metabolism involving growth factors. It also down regulates genes mainly involved in cell cycle control, DNA replication, recombination and repair, and drug metabolism. Flow cytometry assays revealed that C1 produces a G0/G1 arrest in HepG2 cell cycle progression. CA1 also down-regulates genes involved in cell cycle regulation, DNA recombination and pathways related to tumor cells proliferation with lower potency when compared to C1.

  4. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  5. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  6. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    Directory of Open Access Journals (Sweden)

    Seong Ho Choi

    2016-03-01

    Full Text Available We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD gene expression in subcutaneous (s.c. and intramuscular (i.m. adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control, with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα and peroxisome proliferator-activated receptor gamma (PPARγ increased between the initial and intermediate biopsies and declined thereafter (p<0.03. SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04, and G-coupled protein receptor 43 (GPR43 gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01 PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05. AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04 and CCAAT enhancer binding protein-beta (CEBPβ gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03. Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05; SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  7. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  8. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  9. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  10. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  11. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  12. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F

    2007-09-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.

  13. Gene Expression Correlation for Cancer Diagnosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Binbing Ling

    2014-01-01

    Full Text Available Poor prognosis for late-stage, high-grade, and recurrent cancers has been motivating cancer researchers to search for more efficient biomarkers to identify the onset of cancer. Recent advances in constructing and dynamically analyzing biomolecular networks for different types of cancer have provided a promising novel strategy to detect tumorigenesis and metastasis. The observation of different biomolecular networks associated with normal and cancerous states led us to hypothesize that correlations for gene expressions could serve as valid indicators of early cancer development. In this pilot study, we tested our hypothesis by examining whether the mRNA expressions of three randomly selected cancer-related genes PIK3C3, PIM3, and PTEN were correlated during cancer progression and the correlation coefficients could be used for cancer diagnosis. Strong correlations (0.68≤r≤1.0 were observed between PIK3C3 and PIM3 in breast cancer, between PIK3C3 and PTEN in breast and ovary cancers, and between PIM3 and PTEN in breast, kidney, liver, and thyroid cancers during disease progression, implicating that the correlations for cancer network gene expressions could serve as a supplement to current clinical biomarkers, such as cancer antigens, for early cancer diagnosis.

  14. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  15. EXPRESSION OF ANTIVIRAL GENE ON TIGER SHRIMP Penaeus monodon AT DIFFERENT TISSUE AND BODY SIZE

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2012-12-01

    Full Text Available The role of tiger shrimp defense against invading pathogen on molecular level such antiviral gene expression is limited to be reported. Gene expression is a process which codes information of genes that is converted to the protein as a phenotype. Distribution of PmAV antivirus gene, that has been reported as an important gene on non-specific response immune, is needed to be observed to several organs/tissues and size of tiger shrimp. The aim of this study is to determine the distribution of gene antiviral expression at several organ/tissue and size of shrimp. The organs/tissues observed in this study were: gill, hepatopancres, muscle tissue, eyes, heart, stomach, gonad, and intestine. While the size of shrimp consisted of three groups, those are: (A 10-20 g/ind., (B 30-40 g/ind., and (C 60-70 g/ind. Analysis of antiviral gene expression was performed by RNA extraction, followed by the cDNA syntesis, and amplification of gene expression by semi-quantitative PCR. The result of PCR optimation showed the optimal concentration of cDNA and primer was 1 μL and 50 mol, respectively for PCR final volume of 25 μL. Antiviral gene was expressed on the hepatopancreas and stomach in percentage of 50.0% and 16.7%, respectively. While the highest percentage of individual expressing the antiviral gene was observed in the shrimp size of C (66.7%, followed by B (50.0% and A (16.7%. The result of study implied that the hepatopancreas has importantly involed in tiger shrimp defense mechanism on viral infection.

  16. Dexamethasone-induced radioresistance occurring independent of human papilloma virus gene expression in cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, H.P.; Mariotta, M.; Mirimanoff, R.O. [Lab. de Radiobiologie, Service de Radio-Oncologie, CHUV, Lausanne (Switzerland); Knebel Doeberitz, M. von [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Inst. fuer Virusforschung

    1998-02-01

    The aim of this study was to investigate the role of HPV 18 E6 and E7 gene products with respect to radiosensitivity of two cervical carcinoma cell lines. The two cervical carcinoma lines C4-1 and SW 756 were used in which treatment with dexamethasone allows to modulate expression levels of HPV 18 E6 and E7 genes: Upregulation in C4-1, down-regulation in SW 756. Effects of treatment with dexamethasone on plating efficiency and radiosensitivity were assessed using a clonogenic assay. Treatment with dexamethasone increased plating efficiency of the C4-1 cells, but did not affect plating efficiency of SW 756 cells. Treatment with dexamethasone induced enhanced radioresistance in both cell lines. Thus, in C4-1 cells the observed changes in radioresistance correlate to the enhancement in expression of HPV 18 genes E6/E7, whereas in SW 756, a reduced expression correlates negatively with the enhanced radioresistance. (orig./MG) [Deutsch] Das Ziel dieser Studie lag darin, die Rolle der HPV-18-Gene E6 und E7 in bezug auf die Strahlenempfindlichkeit von menschlichen Zervixkarzinomzellen zu untersuchen. Wir verwendeten zwei menschliche Zervixkarzinomzellinien, C4-1 und SW 756, in welchen die Expression der viralen Gene HPV 18 E6 und E7 mit Dexamethason moduliert werden kann: In C4-1 bewirkt die Behandlung mit Dexamethason eine Erhoehung der Expression dieser Gene, in SW 756 eine Verminderung. Die Wirkung auf die Wachstumsfaehigkeit der Zellen und auf die Wachstumshemmung durch die Bestrahlung wurde unter Verwendung eines klonogenen Assays bestimmt. Dexamethason bewirkte eine erhoehte Wachstumsfaehigkeit der C4-1 Zellen, ohne die Wachstumsfaehigkeit der SW-756-Zellen zu beeinflussen, wie schon frueher beschrieben. Die Resistenz beider Zellinien gegenueber Bestrahlung wurde erhoeht. Somit besteht in den C4-1-Zellen eine Korrelation der Expression der viralen Gene mit der Zunahme der Strahlenresistenz, wogegen in den SW-756-Zellen die Abnahme der Expression im Gegensatz zu

  17. Beta-Glucan Synthase Gene Expression in Pleurotus sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus sp. is a popular edible mushroom, containing various functional component, in particular, Beta-glucan. Beta-glucans is a part of glucan family of polysaccharides and supposedly contribute to medicinal and nutritional value of Pleurotus.sp. In order to understand the distribution of Beta-glucan in Pleurotus.sp, the Beta-glucan synthase gene expression was determined and compared in different part of Pleurotus, namely mycelium, stripe and cap. The Pleurotus.sp RNA was extracted using commercial kit, employing Tissuelyser ll (Qiagen, USA) to disrupt the cell walls. Then the RNA was quantified by Nano drop (Thermo Fisher, USA) and visualized using denaturing agarose gel. RNA with good OD 260.280 reading (∼2.0) was chosen and converted to cDNA. Using Laccase synthase gene as home keeping gene, Beta-glucan synthase gene expression was quantified using CFX 96 Real Time PCR detection system (Biorad, USA). Preliminary result shows that Beta-glucan synthase was relatively expressed the most in stripe, followed by mycelium and barely in cap. (author)

  18. Expression Analysis of Genes Related to Rice Resistance Against Brown Planthopper, Nilaparvata lugens

    Directory of Open Access Journals (Sweden)

    Panatda Jannoey

    2017-05-01

    Full Text Available Brown planthopper (BPH is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes (PR1a, PR2, PR3, PR4, PR6, PR9, PR10a, PR13, PR15 and PRpha, signaling molecule synthesis genes (AOS, AXR, ACO and LOX, antioxidant-related genes (CAT, TRX, GST and SOD and lignin biosynthesis-related genes (CHS, CHI and C4H were investigated in a resistant rice variety. AOS, PR6, PR9 and PR15 genes showed significantly increased relative expression levels at 24.38-, 19.17-, 14.71-, and 12.74-fold compared to the control. Moderate increased relative expression levels of lignin biosynthesis-related gene (C4H, pathogenesis-related genes (PR4, PR10a and PRpha, and antioxidant-related gene (GST were found, while CHI, LOX, SOD, TRX1 and AXR showed decreased relative expression levels. It was thus clearly shown that wound-induced response genes were activated in rice plants after BPH attacks through AOS activation. Jasmonic acid signaling molecule may activate PR6, PR15, GST and CAT subsequently increasing their expression for H2O2 detoxification. PR6 were expressed at the highest relative level among the PR genes. These genes therefore have also a considerable synergistic role with the other genes against BPH by interfered their digestion tract system.

  19. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2008-06-01

    Full Text Available Abstract Background In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. Results We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11–16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P Conclusion Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  20. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    Science.gov (United States)

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH) 2 D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH) 2 D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH) 2 D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH) 2 D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH) 2 D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.