WorldWideScience

Sample records for bwr cladding materials

  1. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  2. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  3. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  4. Improvement technique of sensitized HAZ by GTAW cladding applied to a BWR power plant

    International Nuclear Information System (INIS)

    Tujimura, Hiroshi; Tamai, Yasumasa; Furukawa, Hideyasu; Kurosawa, Kouichi; Chiba, Isao; Nomura, Keiichi.

    1995-01-01

    A SCC(Stress Corrosion Cracking)-resistant technique, in which the sleeve installed by expansion is melted by GTAW process without filler metal with outside water cooling, was developed. The technique was applied to ICM (In-Core Monitor) housings of a BWR power plant in 1993. The ICM housings of which materials are type 304 Stainless Steels are sensitized with high tensile residual stresses by welding to the RPV (Reactor Pressure Vessel). As the result, ICM housings have potential of SCC initiation. Therefore, the improvement technique resistant to SCC was needed. The technique can improve chemical composition of the housing inside and residual stresses of the housing outside at the same time. Sensitization of the housing inner surface area is eliminated by replacing low-carbon with proper-ferrite microstructure clad. High tensile residual stresses of housing outside surface area is improved into compressive side. Compressive stresses of outside surface are induced by thermal stresses which are caused by inside cladding with outside water cooling. The clad is required to be low-carbon metal with proper ferrite and not to have the new sensitized HAZ (Heat Affected Zone) on the surface by cladding. The effect of the technique was qualified by SCC test, chemical composition check, ferrite content measurement and residual stresses measurement etc. All equipment for remote application were developed and qualified, too. The technique was successfully applied to a BWR plant after sufficient training

  5. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  6. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  7. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  8. Studies of Corrosion of Cladding Materials in Simulated BWR-environment Using Impedance Measurements. Part I: Measurements in the Pre-transition Region

    International Nuclear Information System (INIS)

    Forsberg, Stefan; Ahlberg, Elisabet; Andersson, Ulf

    2004-09-01

    The corrosion of three Zircaloy 2 cladding materials, LK2, LK2+ and LK3, have been studied in-situ in an autoclave using electrochemical impedance spectroscopy. Measurements were performed in simulated BWR water at temperatures up to 288 deg C. The impedance spectra were successfully modelled using equivalent circuits. When the oxide grew thicker during the experiments, a change-over from one to two time constants was seen, showing that a layered structure was formed. Oxide thickness, oxide conductivity and effective donor density were evaluated from the impedance data. The calculated oxide thickness at the end of the experiments was consistent with the value obtained from SEM. It was shown that the difference in oxide growth rate between the investigated materials is small in the pre-transition region. The effective donor density, which is a measure of electronic conductivity, was found to be lower for the LK3 material compared to the other two materials

  9. A regression model for zircaloy cladding in-reactor creepdown: Database, development, and assessment

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.; Lanning, D.

    1987-01-01

    The paper presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in a PWR and a BWR. This model accounts for variation in the zircaloy cladding heat treatments - cold worked and stress relieved material typically used in a PWR and fully recrystallized material typically used in a BWR. This model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. The paper also presents a comparison between cladding creep calculations by the creepdown model and corresponding test results from the KWU/CE program. ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the creepdown model calculates cladding creep strains reasonably well. (orig./HP)

  10. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  11. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  12. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  13. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  14. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  15. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  16. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  17. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  18. Recent observations on the evolution of secondary-phase particles in zircaloy-2 under irradiation in a BWR to high burn-up

    International Nuclear Information System (INIS)

    Abolhassani, S.; Graber, T.; Gavillet, D.; Groeschel, F.

    2000-01-01

    The influence of radiation on the corrosion of the fuel claddings in a Light Water Reactor (LWR) has been the subject of many investigations, and different aspects of the overall phenomena have been studied by different techniques. Analysis of the evolution of Secondary-Phase Particles (SPPs) for different periods of immersion of the cladding in the reactor enables the rate of corrosion to the structure of the material to be correlated. In the case of Zircaloy-2 in a Boiling Water Reactor (BWR), SPPs are dissolved under irradiation, and their dissolution affects the rate of oxidation and other correlated phenomena. In recent studies, the Zircaloy-2 in claddings loaded in the Leibstadt BWR are analysed after one, three and five cycles. Results are presented, and give an account of the changes which occurred in the materials under irradiation. (authors)

  19. Recent observations on the evolution of secondary-phase particles in zircaloy-2 under irradiation in a BWR to high burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Abolhassani, S.; Graber, T.; Gavillet, D.; Groeschel, F

    2000-07-01

    The influence of radiation on the corrosion of the fuel claddings in a Light Water Reactor (LWR) has been the subject of many investigations, and different aspects of the overall phenomena have been studied by different techniques. Analysis of the evolution of Secondary-Phase Particles (SPPs) for different periods of immersion of the cladding in the reactor enables the rate of corrosion to the structure of the material to be correlated. In the case of Zircaloy-2 in a Boiling Water Reactor (BWR), SPPs are dissolved under irradiation, and their dissolution affects the rate of oxidation and other correlated phenomena. In recent studies, the Zircaloy-2 in claddings loaded in the Leibstadt BWR are analysed after one, three and five cycles. Results are presented, and give an account of the changes which occurred in the materials under irradiation. (authors)

  20. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  1. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  2. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  3. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  4. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  5. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  6. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  7. Application of laser cladding method to small-diameter stainless steel pipes in actual nuclear plant

    International Nuclear Information System (INIS)

    Atago, Y.; Yamadera, M.; Tsuji, H.; Shiraiwa, T.; Kanno, M.

    1995-01-01

    Recently, to prevent stress corrosion cracking (SCC) the material of stainless steel (Type 304), a laser cladding method which produces a highly corrosion-resisting coating (cladding) to be formed on the surface of the material was developed. This is applicable to a long distance and narrow space, because of the good accessibility of the YAG (Yttrium-Aluminum Garnet) laser beam that can be transmitted through an optical fiber. In this method, a paste mixed metallic powder and heating resistive organic solvent is firstly placed on the inner surface of a small pipe and then a YAG laser beam transmitted through an optical fiber is irradiated to the paste, which will be melted and formed a clad subsequently, which is excellent in corrosion resistance. Finally, it can be achieved further resistance against the SCC due to the clad layer formed thus on the surface of the material. Recently, this Laser Cladding method was practically and successfully applied to the actual BWR Nuclear Power Plant in Japan. This report introduces the laser cladding technique, the equipments developed for practical application in the field

  8. Control chart analysis of data regarding 0.2% yield strength (YS) and percent total circumferential elongation (%TCE) for zircaloy clad tubes for PHWR and BWR fuels

    International Nuclear Information System (INIS)

    Yadav, M.B.; Singh, Hari; Vaidyanathan, S.; Sood, D.D.; Raghavan, S.V.; Bandyopadhyay, A.K.; Kulkarni, P.G.

    1992-01-01

    Zircaloy cladding tubes for PHWR and BWR fuels are manufactured and tested at Nuclear Fuel Complex (NFC), Hyderabad. Atomic Fuels Division is carrying out the quality assurance of the fuels on behalf of Nuclear Power Corporation (NPC). In this paper an attempt has been made to assess whether the quality of the clad tubes has met the requirements specified for the two mechanical properties of the tubes namely 0.2% yield strength and percent total circumferential elongation using control chart technique. For this purpose data for about 100 lots in each case were used. Process means and process standard deviations for these properties and the control limits for the corresponding control charts were estimated. The main findings are: (i) In case of PHWR tubes the production quality level with respect to 0.2% YS is higher, while that in case of %TCE is lower causing rejection of lots. On the other hand in the case of BWR tubes the production quality levels with respect to both the properties are higher than the required one. (ii) With respect to 0.2% YS, in case of BWR tubes a change in the pattern of distribution is detected beyond the lot serial no.47. However in case of PHWR tubes, though the data falls into two groups, no such pattern is seen. A modification in the acceptance/rejection criterion of the lot has been suggested. It is also pointed out that to have a correct picture of the total variation it is necessary to study the within tube variation. (author). 4 figs, 2 tabs

  9. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  10. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  11. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  12. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  13. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  14. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  15. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  16. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  17. Carbon 14 distribution in irradiated BWR fuel cladding and released carbon 14 after aqueous immersion of 6.5 years

    Energy Technology Data Exchange (ETDEWEB)

    Sakuragi, T. [Radioactive Waste Management Funding and Research Center, Tsukishima 1-15-7, Chuo City, Tokyo, 104-0052 (Japan); Yamashita, Y.; Akagi, M.; Takahashi, R. [TOSHIBA Corporation, Ukishima Cho 4-1, Kawasaki Ward, Kawasaki, 210-0862 (Japan)

    2016-07-01

    Spent fuel cladding which is highly activated and strongly contaminated is expected to be disposed of in an underground repository. A typical activation product in the activated metal waste is carbon 14 ({sup 14}C), which is mainly generated by the {sup 14}N(n,p){sup 14}C reaction and produces a significant exposure dose due to the large inventory, long half-life (5730 years), rapid release rate, and the speciation and consequent migration parameters. In the preliminary Japanese safety case, the release of radionuclides from the metal matrix is regarded as the corrosion-related congruent release, and the cladding oxide layer is regarded as a source of instant release fraction (IRF). In the present work, specific activity of {sup 14}C was measured using an irradiated BWR fuel cladding (Zircaloy-2, average rod burnup of 41.6 GWd/tU) which has an external oxide film having a thickness of 25.3 μm. The {sup 14}C specific activity of the base metal was 1.49*10{sup 4} Bq/g, which in the corresponding burnup is comparable to values in the existing literature, which were obtained from various irradiated claddings. Although the specific activity in oxide was 2.8 times the base metal activity due to the additive generation by the {sup 17}O(n,α){sup 14}C reaction, the {sup 14}C abundance in oxide was less than 10% of total inventory. A static leaching test using the cladding tube was carried out in an air-tight vessel filled with a deoxygenated dilute NaOH solution (pH of 12.5) at room temperature. After 6.5 years, {sup 14}C was found in each leachate fraction of gas phase and dissolved organics and inorganics, the total of which was less than 0.01% of the {sup 14}C inventory of the immersed cladding tube. A simple calculation based on the congruent release with Zircaloy corrosion has suggested that the 96.7% of released {sup 14}C was from the external oxide layer and 3.3% was from the base Zircaloy metal. However, both the {sup 14}C abundance and the low leaching rate

  18. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  19. The role of cladding material for performance of LWR control assemblies

    International Nuclear Information System (INIS)

    Dewes, P.; Roppelt, A.

    2000-01-01

    The lifetime of control assemblies in LWRs can be limited presently by mechanical failure of the absorber cladding. The major cause of failure is mechanical interaction of the absorber with the cladding due to irradiation induced dimensional changes such as absorber swelling and cladding creep, resulting in cracking of the clad. Such failures occurred in both BWRs and PWRs. Experience and in-reactor tests revealed that cracking can be avoided principally by two ways: First, if strain rates and hence, stresses in the cladding are kept low (well below the yield strength), significant strains can be tolerated. This is the case for the cladding of PWR control assemblies with slowly swelling Ag-In-Cd absorber. Recent examinations of highly exposed PWR control assemblies confirmed the design correlation up to the presently used strain limit. Second, in such cases where strongly swelling absorber material like boron carbide is still preferred, materials which are resistant against irradiation assisted stress corrosion cracking (IASCC) can be used. The influence of material composition and condition on IASCC was studied in-reactor using tubular samples of various stainless steels and Ni-base alloys stressed by swelling mandrels. In several programme steps high purity materials with special features had been identified as resistant to IASCC. Another process of cladding damage which may occur in PWRs is wear caused by friction of the control rods in the surrounding guide structure. For replacement control assemblies this problem is solved by coating of the cladding. There exists meanwhile excellent experience of up to 18 operation cycles with coated claddings. (author)

  20. Future possibilities of SUSEN technologies for R&D of nuclear fuel cladding

    International Nuclear Information System (INIS)

    Mikloš, M.

    2015-01-01

    R&D possibilities with nuclear fuel cladding were discussed in this paper. The availability of 10 MWT reactor with BWR and PWR loops having chemistry control was described. Activity transport and fuel cladding corrosion can be investigated in this facility including PIE. The facility has hot cells and the laboratory is expected to start in 2017

  1. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  2. A New Material Constitutive Model for Predicting Cladding Failure

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Joe; Dunham, Robert [ANATECH Corp., San Diego, CA (United States); Rashid, Mark [University of California Davis, Davis, CA (United States); Machiels, Albert [EPRI, Palo Alto, CA (United States)

    2009-06-15

    An important issue in fuel performance and safety evaluations is the characterization of the effects of hydrides on cladding mechanical response and failure behavior. The hydride structure formed during power operation transforms the cladding into a complex multi-material composite, with through-thickness concentration profile that causes cladding ductility to vary by more than an order of magnitude between ID and OD. However, current practice of mechanical property testing treats the cladding as a homogeneous material characterized by a single stress-strain curve, regardless of its hydride morphology. Consequently, as irradiation conditions and hydrides evolution change, new material property testing is required, which results in a state of continuous need for valid material property data. A recently developed constitutive model, treats the cladding as a multi-material composite in which the metal and the hydride platelets are treated as separate material phases with their own elastic-plastic and fracture properties and interacting at their interfaces with appropriate constraint conditions between them to ensure strain and stress compatibility. An essential feature of the model is a multi-phase damage formulation that models the complex interaction between the hydride phases and the metal matrix and the coupled effect of radial and circumferential hydrides on cladding stress-strain response. This gives the model the capability of directly predicting cladding failure progression during the loading event and, as such, provides a unique tool for constructing failure criteria analytically where none could be developed by conventional material testing. Implementation of the model in a fuel behavior code provides the capability to predict in-reactor operational failures due to PCI or missing pellet surfaces (MPS) without having to rely on failure criteria. Even, a stronger motivation for use of the model is in the transportation accidents analysis of spent fuel

  3. Investigations of chemical reactions between U-Zr alloy and FBR cladding materials

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Ukai, Shigeharu

    2005-07-01

    U-Pu-Zr alloys are candidate materials for commercial FBR fuel. However, informations about chemical reactions with cladding materials developed by JNC for commercial FBR have not been well obtained. In this work, the reaction zones formed in four diffusion couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS, U-10wt.%Zr/12Cr-ODS, and U-10wt.%Zr/Fe at about 1013K have been examined and following results were obtained. 1) At about 1013K, in the U-10wt.%Zr/Fe couple, the liquid phase zones were obtained. In the other couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS and U-10wt.%Zr/12Cr-ODS, no liquid phase zones were obtained. The obtained chemical reaction zones in the later 3 couples were similar to the reported ones obtained in U-Zr/Fe couples without liquid phase formation. In comparison with the reaction zones obtained in the U-10wt.%Zr/Fe couple, the reaction zones inside cladding materials obtained in the PNC-FMS, 9Cr-ODS, and 12Cr-ODS couples were thin. 2) From the investigations of relationship between the obtained depths of the chemical reaction zones inside cladding materials and composition of the cladding materials, it was considered that the depth of chemical reaction zone would depend on the Cr content of the cladding materials and the depth would decrease with increasing Cr content, resulting in prevention of liquid phase formation. 3) From the investigations of the mechanisms of chemical reactions between U-Pu-Zr/cladding materials, it was considered that the same effect of Cr obtained in the U-Zr/cladding materials would be expected in U-Pu-Zr/cladding materials. Those seemed to indicate that the threshold temperatures of liquid phase formation for U-Pu-Zr/PNC-FMS, U-Pu-Zr/9Cr-ODS, and U-Pu-Zr/12Cr-ODS might be higher than that for U-Pu-Zr/Fe. (author)

  4. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  5. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  6. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  7. Study on transport safety of fresh MOX fuel. Performance of the cladding tube of fresh MOX fuel against external water pressure

    International Nuclear Information System (INIS)

    Ito, Chihiro

    1999-01-01

    It is important to know the ability of the cladding tube for fresh MOX fuel against external water pressure when they were hypothetically sunk into the sea for unknown reasons. In order to evaluate the ability of cladding tubes for MOX fresh fuel against external water pressure, external water pressure tests were carried out. Resistible limit of cladding tubes against external water pressure is defined when cladding tubes are deformed largely due to buckling etc. The test results show cladding tube of BWR type can resist an external water pressure of 69 MPa (a depth of water of 7,000 m) and that of PWR type fuel can resist an external water pressure of 54 MPa (a depth of water of 5,500 m). Moreover, leak tightness is maintained at an external water pressure of 73 MPa (a depth of water of 7,400 m) for BWR type cladding tubes and at an external water pressure of 98 MPa (a depth of water of 10,000 m) for PWR type cladding tubes. (author)

  8. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  9. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  10. Damage by radiation in structural materials of BWR reactor vessels

    International Nuclear Information System (INIS)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2002-01-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA Mark III Salazar reactor and separately with Ni +3 ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A 2 ). (Author)

  11. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  12. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  13. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  14. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  15. IFPE/IFA-508 and 515, PCMI Behaviour of Thin Cladding Rods, JAERI and HRP

    International Nuclear Information System (INIS)

    2007-01-01

    Description: To measure the integrated response of UO 2 and its cladding to conditions associated with PCI, the Japan Atomic Energy Research Institute carried out a series of experiments in the Halden BWR. The experiment involved two major objectives. The first was to study the influence of rod design parameters on PCI. Diametral gap, wall cladding thickness, SiO 2 additive, and pellet grain size were used as design parameters. The second objective was to study the influence of pre-irradiation (i.e. burnup) on PCI. The maximum burnup attained in the experiment was 23 MWd/kgU. These research results can be applied to current BWR-type fuel rods. The tests were performed between April 1977 and March 1981

  16. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  17. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  18. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  19. Fracture assessment of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1996-01-01

    Fracture analysis was applied to full-thickness clad beam specimens containing shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV) at beginning of life. The beam specimens were fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include gradients of material properties and residual stresses due to welding and cladding applications. Fracture toughness estimates were obtained from load vs load-line displacement and load vs crack-mouth-opening displacement data using finite-element methods and estimation schemes based on the η-factor method. One of the beams experienced a significant amount of precleavage stable ductile tearing. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models. Fracture toughness results from the clad beam specimens were compared with other deep- and shallow-crack single-edge notch bend (SENB) data generated previously from A533 Grade B plate material. Range of scatter for the clad beam data is consistent with that from the laboratory-scale SENB specimens tested at the same temperature

  20. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  1. Parallel channel effects under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Suzuki, H.; Hatamiya, S.; Murase, M.

    1988-01-01

    Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)

  2. Effects of the inner mould material on the aluminium–316L stainless steel explosive clad pipe

    International Nuclear Information System (INIS)

    Guo, Xunzhong; Tao, Jie; Wang, Wentao; Li, Huaguan; Wang, Chen

    2013-01-01

    Highlights: ► Different mould materials were adopted to evaluate the effect of the constraint on the clad quality. ► The interface characteristics of clad pipe were analyzed for the different clad pipe. ► The clad pipes possess excellent bonding quality. - Abstract: The clad pipe played an important part in the pipeline system of the nuclear power industry. To prepare the clad pipe with even macrosize and excellent bonding quality, in this work, different mould materials were adopted to evaluate the effect of the constraint on the clad quality of the bimetal pipe prepared by explosive cladding. The experiment results indicated that, the dimension uniformity and bonding interface of clad pipe were poor by using low melting point alloy as mould material; the local bulge or the cracking of the clad pipe existed when the SiC powder was utilized. When the steel mould was adopted, the outer diameter of the clad pipe was uniform from head to tail. In addition, the metallurgical bonding was formed. Furthermore, the results of shear test, bending test and flattening test showed that the bonding quality was excellent. Therefore, the Al–316L SS clad pipe could endure the second plastic forming

  3. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  4. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  5. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  6. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  7. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  8. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  9. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  10. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  11. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  12. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  13. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  14. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  15. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  16. The significance of cladding material on the integrity of nuclear pressure vessels with cracks

    International Nuclear Information System (INIS)

    Sattari-Far, Iradj.

    1989-05-01

    The significance of the austenitic cladding layer is reviewed in this literature study. The cladding induced stresses are generally not considered when evaluating the severity of flaws in reactor pressure vessels. It has been shown that this emission may be misleading. The necessity to consider the cladding induced stresses is also emphasized in the latest edition of ASME XI. Contrary to what is commonly assumed, the austenitic cladding displays a charpy V transition region with a low ductility. The interface material (HAZ) is the most influenced region by irradiation, and a transition shift of over 100 degree C may be expected. Because of the significant difference in the thermal expansion coefficients of the cladding and the base metal, cladding induced stresses can be set up. Even after PWHT, residual stresses of yield magnitude remain in the cladding and the HAZ at ambient temperature. The cladding induced stresses are temperature dependent and decrease as the temperature increases. The cladding induced stresses have a significant influence on small defects near the inside surface of a pressure vessel. For semielliptical surface cracks, the maximum CTOD-value along the crack front is not found at the deepest point, but in the cladding/base metal interface, having a magnitude three times higher than the value in the deepest point. It implies that this type of crack would propagate along the clad/base material interface. At some point in time, the crack will reach a geometry which may cause such a severe condition at the deepest point that it will start to grow in the depth direction as well. The initiation and growth behaviour of such cracks need to be investigated to be able to assess the significance of cladding on the integrity of nuclear pressure vessels. (author) (50 figs., 33 refs.)

  17. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    International Nuclear Information System (INIS)

    Duan, Zhengang; Yang, Huilong; Satoh, Yuhki; Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie; Abe, Hiroaki

    2017-01-01

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  18. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  19. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    Science.gov (United States)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  20. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  1. Cladding and structural materials. Semi-annual progress report, July 1975--January 1976

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1976-04-01

    Progress on experimental programs and evaluation of results is given for radiation damage studies to LMFBR cladding and structural materials. The primary material being studied is 316 SS in various conditions of cold work and in the welded condition. Tensile, creep, and swelling property data on unirradiated and irradiated 316 SS cladding and duct specimens at various test conditions are provided. The importance of stress on the properties of 316 SS is highlighted. Results on core dosimetry and damage analysis indicate the increasing value of detailed core characterization. 105 figures, 21 tables

  2. Development of a detailed BWR core thermal-hydraulic analysis method based on the Japanese post-BT standard using a best-estimate code

    International Nuclear Information System (INIS)

    Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.

    2004-01-01

    The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)

  3. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  4. U. S. programs on reference and advanced cladding/duct materials

    International Nuclear Information System (INIS)

    Bennett, J.W.; Holmes, J.J.; Laidler, J.J.

    1977-05-01

    Two coordinated national programs are presently in place in the United States for development of reference and advanced cladding and duct alloys for near-term and long-term LMFBR applications. A number of government, industrial and university laboratories are active participants in these two ERDA-sponsored programs. The programs are administered by ERDA through a task group organization, with each task group representing a particular technical activity and the membership of the task group drawn from among the laboratories with active involvement in that activity. Technical coordination of the two programs is provided by the Hanford Engineering Development Laboratory. The National Reference Cladding and Duct Program is charged with the responsibility for development of the required technology to permit full utilization of the reference material, 20 percent cold-worked Type 316 stainless steel, in early LMFBR core applications. The current schedule calls for full evaluation of FFTF-related design base data prior to full-power operation of FFTF in early 1980, followed by a confirmation in early 1983 of reference material performance capabilities for initial-core CRBRP applications. Comprehensive evaluation of reference material performance to commercial plant goal fluence levels will be complete by 1985. The National Advanced Alloy Development Program was instituted in 1974 with the objective to develop, by 1986, advanced cladding and duct materials compatible with advanced fuel systems having peak burnup capabilities up to 150 MWD/kg and doubling times of 15 years or less. Screening of a large number of potential alloys was completed in mid-1975, and there are presently 16 candidate alloys under active investigation

  5. Study on thermal performance and margins of BWR fuel elements

    International Nuclear Information System (INIS)

    Stosic, Zoran

    1999-01-01

    This paper contributes to developing a methodology of predicting and analyzing thermal performance and margins of Boiling Water Reactor (BWR) fuel assemblies under conditions of reaching high quality Boiling Crisis and subsequent post-dryout thermal hydraulics causing temperature excursion of fuel cladding. Operational margins against dryout and potential for increasing fuel performance with appropriate benefits are discussed. The philosophy of modeling with its special topics are demonstrated on the HECHAN (HEated CHannel ANalyzer) model as the state-of-art for thermal-hydraulics analysis of BWR fuel assemblies in pre- and post-dryout two-phase flow regimes. The scope of further work either being or has to be performed concerning implementation of new physical aspects, including domain extension of HECHAN model applications to the Pressurized Water Reactors (PWRs), is discussed. Finally, a comprehensive overview of the literature dealing with development of the model is given. (author)

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  7. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    cladding composition to promote precipitation of minor phase(s) during fabrication. These precipitates will be stable under normal operation, but dissolve during the temperature excursions; the migration of solute elements to the free surface will then shift the reaction away from oxide formation. This pathway is referred to as the 'bulk self-healing' solution. A synergistic response of the fuel rod is anticipated in which the combined mitigation of brittle exothermic oxide formation and associated reduction in cladding temperature lead to accident tolerance with respect to cladding failure. The proposed cladding modifications potentially may influence neutronics and thermal hydraulics, both under normal operation and off-normal scenarios; a favourable reactor system response must therefore be demonstrated for both solution pathways. The objectives of the proposed IRP is four-fold: 1) demonstration of the performance of modified cladding material under normal BWR and PWR operation with respect to corrosion, in particular, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC); 2) the mitigation of accelerated cladding oxidation during off-normal scenarios that fall below unchecked LOCA events, as well as uncovering scenarios that involve used fuel in on-site storage pools; 3) the benchmarking of the fuel performance code against the databases developed in 1 and 2; 4) demonstration of overall reactor system performance with the proposed modifications to the pellet and cladding

  8. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Linde, A. van der.

    1989-04-01

    Comparative testing of UO 2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO 2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO 2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  9. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  10. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  11. Thermal-Hydraulic Aspects of Changing the Nuclear Fuel-Cladding Materials from Zircaloy to Silicon Carbides

    International Nuclear Information System (INIS)

    Niceno, Bojan; Pouchon, Manuel

    2014-01-01

    The accident in Fukushima has drastically shown the drawbacks of Zircaloy claddings despite their beneficial properties in normal use. The effect of the lack of cooling and the production of hydrogen would not have been so strong if the fuel cladding had not consisted of a zirconium (or metal) alloy. International activities have been started to search for an alternative to Zircaloy, however, still on a limited basis. A project sponsored by Swissnuclear has been conducted at Paul Scherrer Institute (PSI) with the aim to close the gap in knowledge on application of silicon carbides (SiC) as potential replacement for Zircaloys as material for nuclear fuel cladding. The work was interdisciplinary, result of collaboration between different laboratories at PSI, and has focused on SiC cladding material properties, implication of its usage on neutronics and on thermal-hydraulics. This paper summarizes thermal-hydraulic aspects of changing Zircaloy for SiC as the cladding material. The change of cladding material inevitably changes the surface properties thus making a significant impact on boiling curve, and critical heat flux (CHF). Low chemical reactivity of SiC means fewer particles in the flow (less crud), which leads to fewer failures, but also decreases the CHF. Due to differences in physical properties between SiC and Zircaloys, higher brittleness of SiC in particular, might have impact on fuel-rod assembly design, which has direct influence on flow patterns and heat transfer in the fuel assembly. Higher melting (i.e. decomposition) point for SiC means that severe accident management guidelines (SAMG) should have to be re-assessed. Not only would the core degrade later than in the case of conventional fuels, but the production of hydrogen would be quite different as well. All these issues are explored in this work in two steps; first the SiC properties which may have influence on thermal-hydraulics are outlined, then each thermal-hydraulic issues is explained from

  12. Dynamics of a BWR with inclusion of boiling nonlinearity, clad temperature and void-dependent core power removal: Stability and bifurcation characteristics of advanced heavy water reactor (AHWR)

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Dinkar, E-mail: dinkar@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Kalra, Manjeet Singh, E-mail: drmanjeet.singh@dituniversity.edu.in [DIT University, Dehradun 248 009 (India); Wahi, Pankaj, E-mail: wahi@iitk.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-11-15

    Highlights: • Simplified models with inclusion of the clad temperature are considered. • Boiling nonlinearity and core power removal have been modeled. • Method of multiple time scales has been used for nonlinear analysis to get the nature and amplitude of oscillations. • Incorporation of modeling complexities enhances the stability of system. • We find that reactors with higher nominal power are more desirable from the point of view of global stability. - Abstract: We study the effect of including boiling nonlinearity, clad temperature and void-dependent power removal from the primary loop in the mathematical modeling of a boiling water reactor (BWR) on its dynamic characteristics. The advanced heavy water reactor (AHWR) is taken as a case study. Towards this end, we have analyzed two different simplified models with different handling of the clad temperature. Each of these models has the necessary modifications pertaining to boiling nonlinearity and power removal from the primary loop. These simplified models incorporate the neutronics and thermal–hydraulic coupling. The effect of successive changes in the modeling assumptions on the linear stability of the reactor has been studied and we find that incorporation of each of these complexities in the model increases the stable operating region of the reactor. Further, the method of multiple time scales (MMTS) is exploited to carry out the nonlinear analysis with a view to predict the bifurcation characteristics of the reactor. Both subcritical and supercritical Hopf bifurcations are present in each model depending on the choice of operating parameters. These analytical observations from MMTS have been verified against numerical simulations. A parametric study on the effect of changing the nominal reactor power on the regions in the parametric space of void coefficient of reactivity and fuel temperature coefficient of reactivity with sub- and super-critical Hopf bifurcations has been performed for all

  13. Investigation of 3H and 14C inventory and distribution in spent BWR fuel rods

    International Nuclear Information System (INIS)

    Bleier, A.; Beuerle, M.; Neeb, K.H.

    1984-10-01

    In order to obtain reliable data for fuel reprocessing and waste disposal, the T and C-14 inventory, distribution and behaviour was investigated on a typical LWR fuel rod discharged from a BWR plant. The results showed that 50 ± 5% of the T generated in the fuel is present in the cladding after reactor operation. The remainder of the T stays with the fuel. Related to the reactor power the total T inventory corresponds to a T production rate of 19 000 Ci/GW e . a. The C-14 built up in the fuel represents approximately 60% of the C-14 inventory of the BWR fuel rod. The remaining part of C-14 (about 40%) experimentally determined by this analysis for the first time is generated in the cladding. From the total C-14 inventory a C-14 production rate of 17,5 Ci/GW e . a can be calculated. The fill gas contains only negligible fractions of both nuclides. The results obtained in this program are generally in good agreement with the data of theoretical estimates and with results of earlier investigations on PWR fuel rods. (orig.) [de

  14. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  15. Compact modular BWR (CM-BWR)

    International Nuclear Information System (INIS)

    Fennern, Larry; Boardman, Charles; Carroll, Douglas G.; Hida, Takahiko

    2003-01-01

    A preliminary assessment has shown that a small 350 MWe BWR reactor can be placed within a close fitting steel containment vessel that is 7.1 meters inside diameter. This allows the technology and manufacturing capability currently used to fabricate large ABWR reactor vessels to be used to provide a factory fabricated containment vessel for a 350 MWe BWR. When a close fitted steel containment is combined with a passive closed loop isolation condenser system and a natural circulating reactor system that contains a large water inventory, primary system leaks cannot uncover the core. This eliminates many of the safety systems needed in response to a LOCA that are common to large, conventional plant designs including. Emergency Core Flooding, Automatic Depressurization System, Active Residual Heat Removal, Safety Related Auxiliary Cooling, Safety Related Diesel Generators, Hydrogen Re-Combiners, Ex-vessel Core Retention and Cooling. By fabricating the containment in a factory and eliminating most of the conventional safety systems, the construction schedule is shortened and the capital cost reduced to levels that would not otherwise be possible for a relatively small modular BWR. This makes the CM-BWR a candidate for applications where smaller incremental power additions are desired relative to a large ALWR or where the local infrastructure is not able to accommodate a conventional ALWR plant rated at 1350 MWe or more. This paper presents a preliminary design description of a Compact Modular BWR (CM-BWR) whose design features dramatically reduce the size and cost of the reactor building and associated safety systems. (author)

  16. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  17. Influence of manufacturing process on the in-reactor creep anisotropy of stress-relieved Zircaloy-2 cladding

    International Nuclear Information System (INIS)

    Shann, S.H.; Van Swam, L.F.

    1995-01-01

    A procedure to determine the axial/radial and circumferential/radial contractile strain ratios (the R and P factors respectively in the Backofen-modified von Mises-Hill yield criterion) from post-irradiation dimensional measurements of Zircaloy-2 cladding of BWR fuel rods, tie rods and water rods was developed and has been described previously (S.H. Shann and L.F. van Swam, Creep anisotropy of Zircaloy-2 cladding during irradiation, Trans. SMiRT-11, Vol. C, 1991). The present study employs the procedure to determine the anisotropy factors R and P for textured cold-worked stress-relieved (CWSR) Zircaloy-2 cladding fabricated by various manufacturing processes. The analysis indicates that the cladding manufacturing process can have a pronounced effect on the anisotropy of irradiation-induced creep. Cladding types with identical yield and ultimate tensile strengths but fabricated by different manufacturing processes have different values of R and P during in-reactor creep. ((orig.))

  18. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    International Nuclear Information System (INIS)

    Wang, Jun; Mccabe, Mckinleigh; Wu, Lei; Dong, Xiaomeng; Wang, Xianmao; Haskin, Troy Christopher; Corradini, Michael L.

    2017-01-01

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  19. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: jwang564@wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Mccabe, Mckinleigh [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wu, Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Dong, Xiaomeng [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wang, Xianmao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Haskin, Troy Christopher [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Corradini, Michael L., E-mail: corradini@engr.wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States)

    2017-03-15

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  20. Corrosion Characteristics of the SMART Materials

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance.

  1. Corrosion Characteristics of the SMART Materials

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S.

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance

  2. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  3. Study on the influence of water chemistry on fuel cladding behaviour of LWR in Japan

    International Nuclear Information System (INIS)

    Mishima, Y.

    1983-01-01

    This article presents the results of the study on the influence of water chemistry on fuel cladding behaviour, which has been performed for more than ten years on BWRs and PWRs in Japan. The post irradiation examination (P.I.E.) program of commercial reactor fuel assembly which was explained at Tokyo meeting in 1981 includes an investigation of the characteristics and build-up conditions of crud deposited on mainly BWR fuel cladding. This article also provides a summary of the results of the investigation and shows how the results are utilized for establishing effective water chemistry measures

  4. Arisings of cladding wastes from nuclear fuel in the European Community

    International Nuclear Information System (INIS)

    Cottone, G.

    1978-01-01

    An inquiry has been made in the member states on composition, activation and amounts of cladding wastes arising in the European Community until 1990 from the following reactor types: BWR, PWR, SGHWR, AGR and FBR. The elaborated results of this inquiry are given in this report. On the basis of forecasted reprocessing capacities the cumulative amount of cladding waste in the Community was estimated to reach in 1985 and 1990, respectively, about 2,100 and 7,300 metric tons. This waste will mainly consist of zircaloy and of smaller amounts of stainless steel and nickel alloy. Assuming that 0.5% of the spent fuel remains with the cladding, the contamination has been estimated for cooling times varying from 1 to 1000 years. In the first centuries activation is prevailing, but contamination determines the long-term radioactivity; consequently better decontamination, removing the alpha-bearing compounds, would be beneficial in reducing the long term hazard

  5. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  6. Cladding and structural materials semi-annual progress report, January 1975--July 1975

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1975-10-01

    Theoretical and experimental programs are in progress to determine the effects of fast neutron radiation on the mechanical properties and swelling of 3C4 and 316SS cladding and duct materials. Detailed specimen characterization and detailed test conditions are required in order to provide the 2 to 5 percent accuracy of results at 1γ. Preliminary swelling tests show that swelling in stressed assemblies is much larger than in unstressed structural components. Correlation of swelling data from high exposure cladding (11.4 at. percent burnup) agrees with previous data and with the current design equation for 20 percent CW 316 stainless steel. Improved techniques for TEM specimen preparation are described along with recent results on crack propagation. Initial results are given for the effects of aging on Inconel 718 base and weld materials. Compilations of these design values of materials properties have been issued in the form of the Nuclear Systems Materials Handbook

  7. Material Selection for Accident Tolerant Fuel Cladding

    International Nuclear Information System (INIS)

    Pint, Bruce A.; Terrani, Kurt A.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H 2 environments at ≥1473 K (1200°C) for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2 AlC form a protective alumina scale in steam. However, commercial Ti 2 AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO 2 , and therefore Ti 2 AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α' formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  8. Thermal analyses for the spend fuel pool of Taiwan BWR plants during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B-Y.; Yeh, C-L.; Wei, W-C.; Chen, Y-S., E-mail: onepicemine@iner.gov.tw, E-mail: clinyeh@iner.gov.tw, E-mail: hn150456@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research, Longtan Township, Taoyuan County, Taiwan (China)

    2014-07-01

    After the Fukushima nuclear accident, the safety of the spent fuel pool has become an important concern. In this study, thermal analysis of the spent fuel pool under a loss of cooling accident is performed. The BWR spent fuel pools in Taiwan are investigated, including the Chinshan, Kuosheng, and Lungmen plants. The transient pool temperature and level behaviors are calculated based on lumped energy balance. After the pool level drops below the top of the fuel, the peak cladding temperature is predicted by the Computational Fluid Dynamics (CFD) analysis. The influence to the cladding temperature of the uniform and checkboard fuel loading patterns is also investigated. (author)

  9. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  10. Assessment of the fracture behavior of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Bass, B.R.; Keeney, J.A.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV shell (removed from a canceled nuclear plant) that includes weld, plate, and clad material. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results from three specimens. The yield strength of the weld material was determined to be 36% higher than the base material. The high yield strength for prototypic weld material may be implications for RPV integrity assessments. Fracture toughness data from three clad beam specimens are compared with other shallow- and deep-crack beam cruciform data generated previously from A 533 Grade B plate material. Difficulties with interpreting lower-bound fracture toughness curves constructed from the shallow-crack data are essentially resolved by adopting a single normalizing temperature parameter, namely, the nil-ductility transition temperature (NDT)

  11. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  12. SUMMARY OF CHARACTERISATION DATA ON CLADDING MATERIALS USED IN THE CORROSION TEST IFA-638 AND IN THE CREEP TEST IFA-617

    International Nuclear Information System (INIS)

    Nakata, M.; Hauso, E.

    1998-10-01

    Modern PWR cladding materials are being tested in two joint programme tests; the cladding corrosion test IFA-638 and in the creep test IFA-617. The materials for the two tests, have been provided by four organisations: ABB-Atom, ENUSA, Framatome and Mitsubishi Heavy Industries. This report gives an overview of the different materials being tested as fuelled test rods and unfuelled cladding coupons in IFA-638. For IFA-638, cladding has been used for fabrication of both fresh and pre-irradiated test rods. The coupon materials, all in the unirradiated condition, comprise a range of alloys of different chemical composition, heat treatment, pre-filming and /or pre-hydriding treatment. Four pre-irradiated cladding materials of the same type of those used in IFA-638, have also been used to prepare the four fuelled subsegments that are being studied in the creep rig IFA-617. All currently available information related to the IFA-638 and IFA-617 material characterisation and properties are summarised in this report. (author)

  13. Clad Treatment in KARMA Code and Library

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-yeup; Lee, Hae-chan; Woo, Hae-seuk [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-05-15

    Zirconium is the main components in clad materials. The subgroup parameters of zirconium were generated with effective cross section which obtained by using flux distribution in clad region. It decreases absorption reaction rate differences with reference MCNP results. Use of composite nuclide is acceptable to increase efficiency but should be limited to specific target composition. Therefore, the use of the composite nuclide of Zircaloy-2 should be limited when HANA clad material is used for clad. Either using explicit components or generating composite nuclide for HANA is suggested. This paper investigates the clad analysis model for KARMA whether current method is applicable to HANA clad material.

  14. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  15. Observations of crud deposits, corrosion and erosion of BWR and PWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.

    1983-01-01

    The BWR experience is limited to one reactor but the PWR experience covers a wide range of successive generations of power plants (7 in total). The systems are described and their water chemistry briefly commented. Some R and D performed on the effects of the operating regimes (steady state and transients) are summarized. Observations made by pool-side inspections and postirradiation examinations of fuel are outlined concerning water chemistry effects (crud deposits and corrosion) and ''mechanical'' coolant-cladding interaction (chip deposits and baffle jetting). (author)

  16. Loop capabilities in Rez for water chemistry and corrosion control of cladding and in-core components

    International Nuclear Information System (INIS)

    Kysela, J.; Zmitko, M.; Srank, J.; Vsolak, R.

    1999-01-01

    Main characteristics of LVR-15 research reactor and its irradiation facilities are presented. For testing of cladding, internals and RPV materials specialised loop are used. There are now five high pressure loops modelling PWR, WWER or BWR water environment and chemistry. Loops can be connected with instrumented in-pile channels enable slow strain rate testing, 1CT or 2CT specimens loading and electrically heated rods exposition. Reactor dosimetry including neutronic parameters measurements and calculations and mock-up experiments are used. Water chemistry control involves gas (O 2 , H 2 ) dosing system, Orbisphere H 2 /O 2 measurement, electrochemical potential (ECP) measurements and specialised analytical chemistry laboratory. For cladding corrosion studies in-pile channels with four electrically heated rods with heat flux up to 100 W/cm 2 , void fraction 5 % at the outlet, inlet temperature 320 deg. C and flow velocity 3 m/s were development and tested. For corrosion layer investigation there is eddy current measurements and PIE techniques which use crud thickness measurement, chemical analyses of the crud, optical metallography, hydrogen analysis, SEM and TEM. (author)

  17. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  18. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  19. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    Science.gov (United States)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers

  20. Material Selection for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  1. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  2. Experimental Study of Laser Cladding Methods on Water Erosion Resistance to Low Pressure Blades Materials of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-01-01

    Full Text Available An experimental apparatus was built to study the effects of liquid-solid impact on laser cladding processing specimens of 17-4PH stainless steel material in the present investigation. Then the result of specimens without laser surface process was compared. The impact effect on the specimens was observed using the three-dimensional digital microscope. The depth of laser cladding and substrate material caused by liquid droplet impact was studied in detail and measured. The accuracy and reliability of the experimental system and computing methods were also verified. The depth of the impact area of laser cladding specimens was distributed in the range of 0.5–1.5 μm while the 17-4PH group was distributed in the range of 2.5–3.5 μm. In contrast with specimens without laser surface processing, the material processed by laser cladding has significantly higher resistance to water erosion.

  3. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  4. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    International Nuclear Information System (INIS)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun

    2016-01-01

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate

  5. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    Energy Technology Data Exchange (ETDEWEB)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun [College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao (China)

    2016-01-15

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate.

  6. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Larry J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristics are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate

  7. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  8. Safety of some fuel cladding materials, alternative to Zr-alloys

    International Nuclear Information System (INIS)

    Hache, Georges; Clement, Bernard; Barrachin, Marc

    2013-01-01

    The Fukushima accident underlined the impact of hydrogen production on LWR core melt accident behaviour. New fuel cladding and structural materials are under development by the industry. IRSN performed a bibliographic study on the behaviour of these materials during LWR core melt accidents. Method This presentation is focused on cladding oxidation by steam and more precisely on: - number of H 2 moles produced per cladding length unit at thermochemical equilibrium; - oxidation kinetics; - heat of reaction; - physic-chemical interactions between material or oxidation products and fuel. Silicon carbide (SiC) - During SiC oxidation by steam, nearly 3 times more explosive gases (CO+H 2 ) moles are produced per cladding length unit at thermochemical equilibrium than for Zr-alloys. - SiC oxidation kinetics below 1700 deg. C: According to early tests performed by NASA and ORNL, the oxidation is linear but slow, there is an effective protection by a thin vitreous SiO 2 layer; these tests underlined the importance of the steam pressure and flow rate. Recently, published MIT and ORNL tests confirm that under large break LOCA conditions (∼5 bars) and up to 1200 deg. C, SiC recession is much slower than for Zr-alloys. Tests under small break conditions (3 inches LOCA: ∼40 bars) were not performed or not published. - SiC oxidation kinetics above 1700 deg. C (melting point of SiO 2 ): Molten SiO 2 loses its protective effect; this is known in the literature as 'catastrophic oxidation by molten oxides'. There will be a cliff-edge effect. For un-inerted containments, H 2 recombiners will be saturated, leading to a risk of CO+H 2 explosion in these containments. - During SiC oxidation by steam, the heat of reaction produced per cladding length unit at thermochemical equilibrium is of the same order of magnitude as for Zr alloys. Molten SiO 2 will interact with UO 2 to form molten mixtures at temperatures well below UO 2 melting temperature. - Calculations were

  9. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  10. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  11. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Nuenighoff, K.; Allelein, H.J. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Sicherheitsforschung und Reaktortechnik (IEK-6)

    2011-07-01

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  12. Synergistic failure of BWR internals

    International Nuclear Information System (INIS)

    Ware, A. G.; Chang, T.Y.

    1999-01-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components

  13. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  14. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  15. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  16. Modification of MELCOR for severe accident analysis of candidate accident tolerant cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: brad.merrill@inl.gov; Bragg-Sitton, Shannon M., E-mail: shannon.bragg-sitton@inl.gov; Humrickhouse, Paul W., E-mail: paul.humrickhouse@inl.gov

    2017-04-15

    Highlights: • Accident tolerant fuels (ATF) systems are currently under development for LWRs. • Many performance analysis tools are specifically developed for UO{sub 2}–Zr alloy fuel. • Modifications were made to the MELCOR code for candidate ATF cladding. • Preliminary analysis results for SiC and FeCrAl cladding concepts are presented. - Abstract: A number of materials are currently under development as candidate accident tolerant fuel and cladding for application in the current fleet of commercial light water reactors (LWRs). The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident tolerant fuel (ATF) systems for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs, or in reactor concepts with design certifications (GEN-III+), to achieve their goal enhanced ATF must endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system, while maintaining or improving performance during normal operation. Many available nuclear fuel performance analysis tools are specifically developed for the current UO{sub 2}–Zirconium alloy fuel system. The MELCOR severe-accident analysis code, under development at the Sandia National Laboratory in New Mexico (SNL-NM) for the US Nuclear Regulatory Commission (NRC), is one of these tools. This paper describes modifications

  17. Inpile (in PWR) testing of cladding materials

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs

  18. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Tsuchiya, Toshio; Masuda, Hisao; Isono, Tomoyuki; Noji, Kunio; Togo, Toshiki

    1989-01-01

    BWR Operator Training Center Corporation (BTC) was established in April 1971 for the purpose of training the operators from all BWR utilities in Japan. Since April 1974, more than 2600 operators and 1000 shift teams have been trained with the full-scope simulators in BTC up to the end of March 1988. To get the satisfactory results of the training, BTC has been making every effort to improve the facilities, the training materials, the instruction methods and the curricula. In this paper, such a series of recent improvements in the instruction methods and the curricula are presented that are effective to expand the knowledge and to improve the skills of middle or senior class operators. (author)

  19. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  20. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  1. Method and etchant to join Ag-clad BSSCO superconducting tape

    Science.gov (United States)

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  2. Development of new irradiation facility for BWR safety research

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Iida, Kazuhiro; Hanawa, Hiroshi; Ohmi, Masao

    2013-01-01

    In JAEA (Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation. (author)

  3. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  4. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  5. The possibility and the effects of a steam explosion in the BWR lower head on recriticality of a BWR core

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.

    2002-12-01

    The report describes an analysis considering a BWR postulated severe accident scenario during which the late vessel automatic depressurization brings the water below the level of the bottom core plate. The subsequent lack of ECCS leads to core heat up during which the control rods melt and the melt deposits on the core plate. At that point of time in the scenario, the core fuel bundles are still intact and the Zircaloy clad oxidation is about to start. The objective of the study is to provide the conditions of reflood into the hot core due to the level swell or a slug delivered from the lower head as the control rod melt drops into the water. These conditions are employed in the neutronic analysis with the RECRIT code to determine if the core recriticality may be achieved. (au)

  6. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  7. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  8. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  9. State-of-the-art report on the development of liquid metal reactor fuel cladding materials in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kuk, Il Hiun; Ryu, Woo Seog; Jang, Jin Sung; Rhee, Chang Kyu; Kim, Dae Whan; Park, Soon Dong; Kim, Woo Gon; Chung, Man Kyo; Han, Chang Hee

    1998-01-01

    PNC 1520 and PNC-FM5 have been developed as a cladding materials for LMR in Japan. PNC 1520 has superior swelling resistance and high temperature properties to PNC 31.6. And PNC-FMS steel has shown a high rupture stress as well as good neutron irradiation performance. In addition oxide dispersed ferritic steel (PNC-ODS) and 12Cr-8Mo steel have been developed. This report will give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is going to be operable in 2010 by analysis of the characteristics of cladding materials developed in Japan. (author). 39 refs., 2 tabs., 23 figs

  10. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  11. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  12. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  13. Cladding tube materials for advanced nuclear facilities with closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, I. [Slovenska technicka univerzita v Bratislave, Fakulta elektrotechniky a informatiky, Ustav jadroveho a fyzikalneho inzinierstva, 81219 Bratislava (Slovakia)

    2013-04-16

    The paper is aimed on perspective materials for fuel cladding in advanced nuclear reactors. Samples of Eurofer and ODS Eurofer were studied by various techniques such as Positron Annihilation Lifetime Spectroscopy, Vickers Hardness and Coincidence Doppler Broadening. After studying the samples by these methods, we implanted them by Helium atoms to simulate irradiation damage. Samples were then remeasured by Positron Annihilation Lifetime Spectroscopy to determine the affect of implantation on its behavior. (authors)

  14. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  15. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  16. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  17. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  18. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  19. Pellet-Cladding Mechanical Interaction Failure Threshold for Reactivity Initiated Accidents for Pressurized Water Reactors and Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-06-01

    Pacific Northwest National Laboratory (PNNL) has been requested by the U.S. Nuclear Regulatory Commission to evaluate the reactivity initiated accident (RIA) tests that have recently been performed in the Nuclear Safety Research Reactor (NSRR) and CABRI (French research reactor) on uranium dioxide (UO2) and mixed uranium and plutonium dioxide (MOX) fuels, and to propose pellet-cladding mechanical interaction (PCMI) failure thresholds for RIA events. This report discusses how PNNL developed PCMI failure thresholds for RIA based on least squares (LSQ) regression fits to the RIA test data from cold-worked stress relief annealed (CWSRA) and recrystallized annealed (RXA) cladding alloys under pressurized water reactor (PWR) hot zero power (HZP) conditions and boiling water reactor (BWR) cold zero power (CZP) conditions.

  20. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  1. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  2. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    Pantoja C, R.

    2010-01-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  3. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  4. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  5. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  6. Development of metallic fuel fabrication - A study on the interdiffusion behavior between ternary metallic fuel and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Soo; Seol, Kyung Won; Shon, In Jin [Chonbuk National University, Chonju (Korea)

    1999-04-01

    To study a new ternary metallic fuel for liquid metal reactor, various U-Zr-X alloys have been made by induction melting. The specimens were prepared for thermal stability tests at 630 deg. C upto 5000 hours in order to estimate the decomposition of the lamellar structure. Interdiffusion studies were carried out at 700 deg. C for 200 hours for the diffusion couples assembled with U-Zr-X ternary fuel versus austenitic stainless steel D9 and martensitic stainless steel HT9, respectively, to investigate the fuel-cladding compatibility. The ternary alloy, especially U-Zr-Mo and U-Zr-Nb alloys showed relatively good thermal stability as long as 5000hrs at 630 deg. C. From the composition profiles of the interdiffusion study, Fe penetrated deeper to the fuel side than other cladding elements such as Ni and Cr, whereas U did to the cladding side of fuel elements in the fuel/D9 couples. On the contrary, the reaction layers of Fuel/HT9 couple were thinner than that of Fuel/D9 couples and were less affected by cladding element, which was believed to be due to Zr rich layer between the fuel-cladding interface. HT9 is considered to be superior to D9 and a favorable choice as a cladding material in terms of fuel-cladding compatibility. 21 refs., 24 figs., 7 tabs. (Author)

  7. Investigations on dry sliding of laser cladded aluminum bronze

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2016-01-01

    Full Text Available The aim of this study was to investigate the tribological behaviour of laser cladded aluminum bronze tool surfaces for dry metal forming. In a first part of this work a process window for cladding aluminum bronze on steel substrate was investigated to ensure a low dilution. Therefore, the cladding speed, the powder feed rate, the laser power and the distance between the process head and the substrate were varied. The target of the second part was to investigate the influence of different process parameters on the tribological behaviour of the cladded tracks. The laser claddings were carried out on both aluminum bronze and cold work tool steel as substrate materials. Two different particle sizes of the cladding powder material were used. The cladding speed was varied and a post-processing laser remelting treatment was applied. It is shown that the tribological behaviour of the surface in a dry oscillating ball-on-plate test is highly dependent on the substrate material. In the third part a deep drawing tool was additively manufactured by direct laser deposition. Furthermore, the tool was applied to form circular cups with and without lubrication.

  8. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  9. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  10. Standard for assessment of fuel integrity under anticipated operational occurrences in BWR power plant:2002

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Suzuki, Riichiro; Komura, Seiichi; Kudo, Yoshiro; Yamanaka, Akihiro; Oomizu, Satoru; Kitamura, Hideya; Nagata, Yoshifumi

    2003-01-01

    To secure fuel integrity, a Light Water Reactor (LWR) core is designed so that no boiling transition (BT) should take place in fuel assemblies and excessive rise in fuel cladding temperature due to deteriorated that transfer should be avoided in Anticipated Operational Occurrences (AOO). In some AOO in a Boiling Water Reactor (BWR), however, the rise in reactor power could be limited by SCRAM or void reactivity effect. Recent studies have provided accumulated knowledge that even if BT takes place in fuel assemblies, the rise in fuel cladding temperature could be so small that it will not threat to fuel integrity, as long as the BT condition terminates within a short period of time. In addition, appropriate methods have been developed to evaluate the cladding temperature during dryout. This standard provides requirements in the assessment of fuel integrity under AOO in which limited-BT condition is temporarily reached and the propriety of reusing a fuel assembly that has experienced limited-BT condition. The standard has been approved by the Atomic Energy Society of Japan following deliberation by impartial members for two and half years. It is now expected that this standard will provide an effective measure for the rational expansion of fuel design and operational margin. (author)

  11. Analysis of the thermal response of a BWR Mark-I containment shell to direct contact by molten core materials

    International Nuclear Information System (INIS)

    Kress, T.S.; Cleveland, J.C.

    1988-01-01

    This study was undertaken to evaluate the thermal response of a BWR Mark-I containment shell in the event of an accident severe enough for molten core materials to fall into the cavity beneath the rector vessel and eventually come into direct contact with the shell. An existing ORNL three-dimensional transient heat transport computer code, HEATING-6, was used for a specific 2-D case (and variations) for which representative melt/shell boundary conditions required as input were available from other studies. In addition to the use of HEATING-6, a simplified analytical steady-state correlation was developed and given the name BWR Liner Analysis Program (BWRLAP). BWRLAP was ''benchmarked'' by comparison with HEATING-6 and was then used to make a number of parametric calculations to investigate the sensitivities of the results to the inputs. 5 refs., 11 figs., 2 tabs

  12. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  13. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  14. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  15. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  16. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  17. Analysis of coaxial laser micro cladding processing conditions

    OpenAIRE

    Tarasova, Tatiana Vasilievna; Gvozdeva, Galina Olegovna; Nowotny, Steffen; Ableyeva, Riana R.; Dolzhikova, Evgenia Yu

    2018-01-01

    The laser build-up cladding is a well-known technique for repair, coatings and additive manufacturing tasks. Modern equipment for the laser cladding enables material to be deposited with the lateral resolution of about 100 μm and to manufacture miniature precise parts. However, the micro cladding regimes are unknown. Determination of these regimes is an expensive task as a well-known relation between laser cladding parameters and melt pool dimensions are changing by technology micro-miniaturi...

  18. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  19. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  20. Cladding and Structural Materials for Advanced Nuclear Energy Systems Final Report

    International Nuclear Information System (INIS)

    Was, G.S.; Allen, T.R.; Ila, D.; Levi, C.; Morgan, D.; Motta, A.; Wang, L.; Wirth, B.

    2011-01-01

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: (1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, (2) irradiation creep at high temperature, and (3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  1. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  2. Neutron imaging of Zr-1%Nb fuel cladding material containing hydrogen

    International Nuclear Information System (INIS)

    Svab, E.; Meszaros, Gy.; Somogyvari, Z.; Balasko, M.; Koeroesi, F.

    2004-01-01

    Hydrogen distribution and hydride phases were analyzed in reactor fuel cladding pressure tube Zr-1%Nb material up to 13,300 ppm. From neutron diffraction measurements, formation of cubic δ-ZrH 2 and a small amount of tetragonal γ-ZrH was established. Texture effects were analyzed by imaging plate technique. From neutron radiography images a linear model was set up that adequately described the relationship between gray levels and nominal H-concentrations. The H-distribution was unveiled by 3D intensity histograms and fractal analysis of multilevel-segmented neutron radiography images

  3. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  4. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  5. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  6. Determination of plastic anisotropy of zirconium alloys cladding

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Shestak, V.E.

    1991-01-01

    Method for determining plastic anisotropy of zurconium alloy cladding is described. It is based on consideration of material as a combination of transversal crystallites with known distribution over orientations. Such approach enables to describe cladding resistance to plastic deformation at arbitrary stressed state, using the results of texture investigations and uniaxial tests of samples, cut out of claddings along three directions. Plastic anisotropy of fuel element claddings 9.15 and 13.6 mm in diameter up to several percents of plastic deformation is shown

  7. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  8. Comparison of the CORA-12, 13, 17 experiments and B4 effect on the flooding behavior of BWR bundles

    International Nuclear Information System (INIS)

    Hagen, S.; Sepold, L.; Wallenfels, K.P.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.

    1995-01-01

    The CORA quench experiments 12, 13 (PWR) and 17 (BWR) are in agreement with LOFT 2 and TMI: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces remarkable temporary temperature increase, connected to a strong peak in hydrogen production. The PWR tests CORA 12 and CORA 13 are of the same geometrical arrangement and test conduct, with the exception of the shorter time between power shutdown and quench initiation for CORA 13. A higher temperature of the bundle at start of quenching was the consequence. BWR test CORA 17 - with B 4 C absorber and additional Zircaloy channel box walls - was in respect to the delay-time between power shutdown and start of quenching similar to test CORA 12. All tests showed during the quench phase the temporary temperature increase, correlated to a hydrogen peak. The CORA 17 test resulted immediately after quenching in a modest increase for 20 s and changed then in a steep increase, resulting in the highest temperature and hydrogen peaks of the three tests. CORA 17 also showed a temperature increase in the lower part of the bundle, in contrast to CORA 12 and CORA 13 with temperature increase only in the upper half of the bundle. We interpret this earlier starting and stronger reaction due to the influence of the boron carbide, the absorber material of the BWR test. B 4 C has an exothermic reaction rate 4 to 9 times larger than Zry and produces 5 to 6,6 times more hydrogen. Probably the hot remained columns of B 4 C (seen in the non-quench test CORA 16) react early in the quench process with the increased upcoming steam. The bundle temperature raised by this reaction increases the reaction rate (exponential dependency) of the remaining metallic Zry. Due to the larger amount of Zry in the BWR bundle (channel box walls) and the smaller steam input during the heatup phase (2 g/s instead of 6 g/s) more metallic Zry can have survived oxidation during the heatup phase. (orig./HP)

  9. SCORPIO-BWR: status and future plans

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Bodal, Terje; Beere, William H.

    2004-01-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR system on a

  10. SCORPIO-BWR: status and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Porsmyr, Jan; Bodal, Terje; Beere, William H. (and others)

    2004-07-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR

  11. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  12. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  13. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  14. Electrochemical Study of Corrosion Phenomena in Zirconium Alloys

    National Research Council Canada - National Science Library

    Treeman, Nicole M

    2005-01-01

    ..., has become a potentially life-limiting issue for BWR fuel. Recent results from experimentation at MIT, Halden, and Studvik suggest that a galvanic coupling drives the phenomenon between the cladding and the adjacent material...

  15. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  16. Parametric tests of the effects of water chemistry impurities on corrosion of Zr-alloys under simulated BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, S; Ito, K [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Lin, C C [GE Nucklear Energy (United States); Cheng, B [Electric Power Research Inst. (United States); Ikeda, T [Toshiba Corp. (Japan); Oguma, M [Hitachi, Ltd (Japan); Takei, T [Tokyo Electric Power Co., Inc. (Japan); Vitanza, C; Karlsen, T M [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-02-01

    The Halden BWR corrosion test loop was constructed to evaluate the impact of water chemistry variables, heat flux and boiling condition on corrosion performance of Zr-alloys in a simulated BWR environment. The loop consists of two in-core rigs, one for testing fuel rod segments and the other for evaluating water chemistry variables utilizing four miniautoclaves. Ten coupon specimens are enclosed in each miniautoclave. The Zr-alloys for the test include Zircaloy-2 having different nodular corrosion resistance and five new alloys. The first and second of the six irradiation tests planned in this program were completed. Post-irradiation examination of those test specimens have shown that the test loop is capable of producing nodular corrosion on the fuel rod cladding tested under the reference chemistry condition. The miniautoclave tests showed that nodular corrosion could be formed without flux and boiling under some water chemistry conditions and the new alloys, generally, had higher corrosion resistance than the Zircaloy in high oxygen environments. (author). 5 refs, 4 figs, 5 tabs.

  17. Report on the BWR owners group radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    Aldrich, L.R.

    1995-01-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming open-quotes World Classclose quotes performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance

  18. Report on the BWR owners group radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, L.R. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.

  19. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  20. In-core materials testing under LWR conditions in the Halden reactor

    International Nuclear Information System (INIS)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A.

    2002-01-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  1. In-core materials testing under LWR conditions in the Halden reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A. [OECD Halden Reactor Project (Norway)

    2002-07-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  2. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang Yongjun; Zeng Xiaoyan

    2009-01-01

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  3. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  4. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  5. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    International Nuclear Information System (INIS)

    Ernst, Frank

    2016-01-01

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute - carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress-corrosion cracking (hydrogen-induced embrittlement), and - potentially - radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non-treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  6. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  7. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  8. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  9. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  10. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  11. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  12. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  13. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  14. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  15. The BWR vessel and internals project - 2001 and beyond

    International Nuclear Information System (INIS)

    Wagoner, V.; Mulford, T.

    2001-01-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  16. The BWR vessel and internals project - 2001 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, V. [Carolina Power and Light, Progress Energy Building, NC (United States); Mulford, T. [Electric Power Research Institute, Palo Alto, CA (United States)

    2001-07-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  17. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    International Nuclear Information System (INIS)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment

  18. Recent SCDAP/RELAP5 improvements for BWR severe accident simulations

    International Nuclear Information System (INIS)

    Griffin, F.P.

    1995-01-01

    A new model for the SCDAP/RELAP5 severe accident analysis code that represents the control blade and channel box structures in a boiling water reactor (BWR) has been under development since 1991. This model accounts for oxidation, melting, and relocation of these structures, including the effects of material interactions between B 4 C, stainless steel, and Zircaloy. This paper describes improvements that have been made to the BWR control blade/channel box model during 1994 and 1995. These improvements include new capabilities that represent the relocation of molten material in a more realistic manner and modifications that improve the usability of the code by reducing the frequency of code failures. This paper also describes a SCDAP/RELAP5 assessment calculation for the Browns Ferry Nuclear Plant design based upon a short-term station blackout accident sequence

  19. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  20. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  1. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  2. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    interstitials in metal lattice under irradiation causes increased strength and hardness but decreases ductility in metals.The increase in strength and hardness depends on obstacles that prevent the motion of dislocations. The clustering of point defects are responsible for these changes. Irradiation also induces instabilities in phases due to enhancement of diffusion, solute segregation, precipitate formation, order- disorder transformation and resolution of small precipitates. From the microscopic point of view accumulation of vacancies accompanied by formation of He and H 2 gases under irradiation cause an increase in volume which results in swelling and eventually ends up with embrittlement of metals. This subject was described in chapter three Zirconium and its alloys are the best structural materials for fuel cladding of BWR and PWR reactors core. The working condition in the core of nuclear reactor are very serve, respect temperature and radiation dose. It should be realized that, if fuel cladding receive damage and get cracked, the first cooling cycle and the maine equipment will be contaminated with active materials which cause additional environmental problems. Furthermore, replacement of fuel rods are very costly. Therefore, for increasing life time of fuel cladding and minimizing damage, the effect of radiation and heat on Zirconium and its alloys must be investigated. This subject was described in chapter four.The mechanical behavior and radiation resistant of fuel cladding in PWR reactor (specifically WWER ) have been investigated which is described in chapter five. Result, discussion and final conclusion are summarized in last chapter and also several points for improvement have been offered

  3. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  4. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  5. The influence of residual stresses on small through-clad cracks in pressure vessels

    International Nuclear Information System (INIS)

    deLorenzi, H.G.; Schumacher, B.I.

    1984-01-01

    The influence of cladding residual stresses on the crack driving force for shallow cracks in the wall of a nuclear pressure vessel is investigated. Thermo-elastic-plastic analyses were carried out on long axial through-clad and sub-clad flaws on the inside of the vessel. The depth of the flaws were one and three times the cladding thickness, respectively. An analysis of a semielliptical axial through-clad flaw was also performed. It was assumed that the residual stresses arise due to the difference in the thermal expansion between the cladding and the base material during the cool down from stress relieving temperature to room temperature and due to the subsequent proof test before the vessel is put into service. The variation of the crack tip opening displacement during these loadings and during a subsequent thermal shock on the inside wall is described. The analyses for the long axial flaws suggest that the crack driving force is smaller for this type of flaw if the residual stresses in the cladding are taken into account than if one assumes that the cladding has no residual stresses. However, the analysis of the semielliptical flaw shows significantly different results. Here the crack driving force is higher than when the residual stresses are not taken into account and is maximum in the cladding at or near the clad/base material interface. This suggests that the crack would propagate along the clad/base material interface before it would penetrate deeper into the wall. The elastic-plastic behavior found in the analyses show that the cladding and the residual stresses in the cladding should be taken into acocunt when evaluating the severity of shallow surface cracks on the inside of a nuclear pressure vessel

  6. BWR Radiation Assessment and Control Program: assessment and control of BWR radiation fields. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    Anstine, L.D.

    1983-05-01

    This report covers work on the BWR Radiation Assessment and Control (BRAC) Program from 1978 to 1982. The major activities during this report period were assessment of the radiation-level trends in BWRs, evaluation of the effects of forward-pumped heater drains on BWR water quality, installation and operation of a corrosion-product deposition loop in an operating BWR, and analyzation of fuel-deposit samples from two BWRs. Radiation fields were found to be controlled by cobalt-60 and to vary from as low as 50 mr/hr to as high as 800 mr/hr on the recirculation-system piping. Detailed information on BWR corrosion films and system deposits is presented in the report. Additionally, the results of an oxygen-injection experiment and recontamination monitoring studies are provided

  7. YAG laser cladding to heat exchanger flange in actual plant

    International Nuclear Information System (INIS)

    Toshio, Kojima

    2001-01-01

    This paper is a sequel to ''Development of YAG Laser Cladding Technology to Heat Exchanger Flange'' presented in ICONE-8. A YAG Laser cladding technology is a permanent repairing and preventive maintenance method for heat exchanger's flange (channel side) seating surface which is degraded by the corrosion in long term operation. The material of this flange is carbon steel, and that of cladding wire is type 316 stainless steel so as to have high corrosion resistance. In former paper above, the soundness of cladding layers were presented to be verified. This channel side flange is bolted with tube sheet (shell side) through metal gasket. As the tube sheet side is already cladded a corrosion resistant material, it needs to apply the repairing and preventive maintenance method to only channel side. In 2000 this technology had been performed to the actual heat exchanger (Residual Heat Removal Heat Exchanger; RHR Hx) flange in domestic nuclear power plant. This paper described the outline, special equipment, and our total evaluation for this actual laser cladding work. And also several technical subjects which we should solve and/or improve for the next project was presented. (author)

  8. Treatment of stainless steels and zircaloy cladding hulls

    International Nuclear Information System (INIS)

    Jenkins, I.L.; Taylor, R.F.

    1978-01-01

    Results are reported on the fissile material content and the distribution of alpha and beta-gamma emitters in both types of cladding. Apart from very small amounts of residual fuel, fissile material is present as a deposit formed during the dissolution of fuel and also as material driven into the cladding by fission recoil. Alpha-emitters penetrate to depths of 1-2 μm into both S.S. and Zircaloy claddings. The surface deposits on individual hulls can be effectively removed by refluxing with nitric acid or by cleaning with nitric acid in an ultrasonic bath. The physical structural and handling behavior of hull assemblies are examined as being of key importance to the establishment of an efficient cleaning process. The reference leaching target is to extract residual fuel fragments and to remove surface deposits. Preferred routes for compaction, drumming, and encapsulation are briefly reviewed with regard to achieving a final package volume half that of the original hulls with associated hardware

  9. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    International Nuclear Information System (INIS)

    Besch, O.A.; Yagnik, S.K.; Eucken, C.M.; Bradley, E.R.

    1996-01-01

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked

  10. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    Esteves, A.M.

    1991-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  11. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  12. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    Science.gov (United States)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (steel cladding is retained despite He2+ implantation.

  13. Prediction of cladding life in waste package environments

    International Nuclear Information System (INIS)

    McCoy, J.K.; Doering, T.W.

    1994-01-01

    Fuel cladding can potentially provide longer containment or slower release of radionuclides from spent fuel after geologic disposal. To predict the amount of benefit that cladding can provide, we surveyed degradation modes and developed a model for creep rupture by diffusion-controlled cavity growth, the mechanism that several authors have concluded is the most important. In this mechanism, voids nucleate on the grain boundaries and grow by diffusion of vacancies along the grain boundaries to the voids. When a certain fraction of the grain boundary area is covered with voids, the material fails. An analytic expression for cladding lifetime is developed. Besides materials constants, the predicted lifetime depends on the temperature history, the hoop stress in the cladding, the spacing between void nuclei, and the micro-structure. The inclusion of microstructure is a significant new feature of the model; this feature is used to help avoid excessive conservatism. The model is applied in a sample calculation for disposal of spent fuel, and the practice of using temperature limits to evaluate repository designs is examined

  14. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  15. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  16. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  17. NDT studies of laser cladding defects of pure copper on SS316L for in vessel materials for fusion reactor applications

    International Nuclear Information System (INIS)

    Shaikh, S.; Buddu, Ramesh Kumar; Raole, P.M.; Sarkar, B.

    2015-01-01

    The pure thick copper coatings of 1-3 mm are required for the in-vessel materials for the plasma facing components in fusion reactor systems to extract the very high heat flux in shorter durations (like VDEs) and to protect the in vessel components. Laser cladding technique is one of the potential technique for thick coatings on substrate materials. The present study reports the NDT characterization studies carried on samples of pure copper powder cladded on SS316L substrates of thickness 1 mm - 3 mm , fabricated by CO_2 laser system. Process parameters optimization like laser power, laser travel speed, spot size, powder feed rate and shield gas flow show the effect on quality of final cladding on steel substrates. X-ray radiography and Ultrasonic testing has been carried out thoroughly on the fabricated samples and defects are analyzed. Ultrasonic scan tests using different probes are employed as the interface defects are not thoroughly revealed by radiography. The calibration has been carried out by the test sample plate with known defect size created and various process parameters like amplitude, gain and metal velocity, relevant to specimen are chosen for probes calibration. The interface defects of porosity, lack of penetration, cracks or group porosities are observed in few set of samples developed. Radiography examination revealed the porosity at extreme edges and distributed porosity in the middle for thick cladding. Ultrasonic manual A-scanning with TR probe provides qualitative information about flaw and broadly gives its location of the defects. Samples of 1 mm thick cladding have shown relatively less porosity defects at the interface compared to 3 mm thick samples. (author)

  18. 3D pin-by-pin power density profiles with high spatial resolution in the vicinity of a BWR control blade tip simulated with coupled neutronics/burn-up calculations

    International Nuclear Information System (INIS)

    Li, J.; Nünighoff, K.; Allelein, H.-J.

    2011-01-01

    Highlights: ► High spatial resolution neutronic and burn-up calculations of quarter BWR fuel element section. ► Coupled MCNP(X)–ORIGEN2.2 simulation using VESTA. ► Control blade history effect was taken into account. ► Determining local power excursion after instantaneous control rod movement. ► Correlation between control blade geometry and occurrence of local power excursions. - Abstract: Pellet cladding interaction (PCI) as well as pellet cladding mechanical interaction (PCMI) are well-known fuel failures in light water reactors, especially in boiling water reactors (BWR). Whereas the thermo-mechanical processes of PCI effects have been intensively investigated in the last decades, only rare information is available on the role of neutron physics. However, each power transient is primary due to neutron physics effects and thus knowledge of the neutron physical background is mandatory to better understand the occurrence of PCI effects in BWRs. This paper will focus on a study of local power excursions in a typical BWR fuel assembly during control rod movements. Burn-up and energy deposition were simulated with high spatial granularity, especially in the vicinity of the control blade tip. It could be shown, that the design of the control blade plays a dominant role for the occurrence of local power peaks while instantaneously moving down the control rod. The main result is, that the largest power peak occurs at the interface between steel handle and absorber rods. A full width half maximum (FWHM) of ±2.5 cm was observed. This means, the local power excursion due to neutron physics phenomena involve approximately five pellets. With the VESTA code coupled MCNP(X)/ORIGEN2.2 calculations were performed with more than 3400 burn-up zones in order to take history effects into account.

  19. Best-estimate analysis development for BWR systems

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Kalra, S.P.; Beckner, W.D.

    1986-01-01

    The Full Integral Simulation Test (FIST) Program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An experimental program in the FIST BWR system simulator facility extends the LOCA data base and adds operational transients data. An analytical method development program with the BWR-TRAC computer program extends the modeling of BWR specific components and major interfacing systems, and improves numerical techniques to reduce computer running time. A method qualification program tests TRAC-B against experiments run in the FIST facility and extends the results to reactor system applications. With the completion and integration of these three activities, the objective of a best-estimate analysis capability has been achieved. (author)

  20. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  1. For the world's best cladding tubes, ten years of progress by Zircaloy Special Committee of JAPCO

    International Nuclear Information System (INIS)

    Mishima, Yoshitsugu

    1982-01-01

    The zircaloy special committee was organized in 1971 for the purpose of planning the trial use of two nuclear fuel assemblies for which Japan-made cladding tubes were to be used, for a BWR. Now, seven years later, these two fuel assemblies have completed their service life, and have been submitted to post-irradiation examination after cooling for a year. Zircaloy tubes have been produced by Sumitomo Metal Industries, Ltd., and Kobe Steel, Ltd., and more than ten years have elapsed since wholly Japan-made zircaloy cladding tubes were used for reloading fuel elements for the Japan Power Demonstration Reactor. In this report, the history, progress and significance of the works performed by the committee are summarized. The LWR fuel elements made in Japan have attained the highest performance in the world as the leak has been scarce, and the works of the committee is one of the pioneering activities in the development of LWR fuel technology. The situation for starting the committee, the activity of the committee during ten years, the significance and outcome of the committee activity are reported. (Kako, I.)

  2. Panorama of the BWR reactors - Evolution of the concept

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, C.; Uhrig, E. [AREVA NP GmbH, Safety Engineering Department - PEPS-G (Germany)

    2012-01-15

    Nowadays, a fleet of more than 50 boiling water reactors (BWR) are in operation in the world. This article gives a short overview on the developments of nuclear power plants of the BWR type, with a focus on the European builds. It describes the technical bases from the early designs in the fifties, sketches the innovations of the sixties and seventies in the types BWR 69 and 72 (Baulinie 69 and 72) and gives an outlook of a possible next generation BWR. A promising approach in recent BWR developments is the the combination of passive safety systems with established design basis

  3. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  4. LBB application in Swedish BWR design

    International Nuclear Information System (INIS)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P.

    1997-01-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions

  5. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Energy Technology Data Exchange (ETDEWEB)

    González-Robles, E., E-mail: ernesto.gonzalez-robles@kit.edu [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Serrano-Purroy, D. [European Commission - EC, Joint Research Centre (JRC), Institute for Transuranium Elements - ITU, Postfach 2340, D-76125 Karlsruhe (Germany); Sureda, R. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Casas, I. [Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Pablo, J. de [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2015-10-15

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO{sub 2} spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAP{sub c}) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  6. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  7. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  8. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  9. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  10. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-13

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress–corrosion cracking (hydrogen-induced embrittlement), and – potentially – radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non–treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  11. BWR internals life assurance

    International Nuclear Information System (INIS)

    Herrera, M.L.; Stancavage, P.P.

    1988-01-01

    Boiling water reactor (BWR) internal components play an important role in power plant life extension. Many important internals were not designed for easy removal and changes in material properties and local environmental effects due to high radiation makes stress corrosion cracking more likely and more difficult to correct. Over the past several years, operating experience has shown that inspection, monitoring and refurbishment can be accomplished for internal structures with existing technology. In addition, mitigation techniques which address the causes of degradation are available to assure that life extension targets can be met. This paper describes the many considerations and aspects when evaluating life extension for reactor vessel internals

  12. Design optimization of multi-layer Silicon Carbide cladding for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@unm.edu [Department of Nuclear Engineering, University of New Mexico, MSC01 1120 1 University of New Mexico, Albuquerque, NM 87131 (United States); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2017-01-15

    Highlights: • SiC cladding designs are optimized with a multi-layer structural analysis code. • Layer radial thickness fraction that minimizes cladding fracture probability exists. • The demonstrated procedure is applicable for multi-layer SiC cladding design. • Duplex SiC with the inner composite fraction ∼0.4 is optimal in a reference case. • Increasing composite thermal conductivity markedly decreases SiC cladding stress. - Abstract: A parametric study that demonstrates a methodology for determining the optimum bilayer composition in a duplex SiC cladding is discussed. The structural performance of multi-layer SiC cladding design is significantly affected by radial thickness fraction of each layer. This study shows that there exists an optimal composite/monolith radial thickness fraction that minimizes failure probability for a duplex SiC cladding in steady-state operation. An exemplary reference case study shows that the duplex cladding with the inner composite fraction ∼0.4 and the outer CVD-SiC fraction ∼0.6 is found to be the optimal SiC cladding design for the current PWRs with the reference material choice for CVD-SiC and fiber reinforced composite. A marginal increase in the composite fraction from the presented optimal designs may lead to increase structural integrity by introducing some unquantified merits such as increasing damage tolerance. The major factors that affect the optimum cladding designs are temperature gradients and internal gas pressure. Clad wall thickness, thermal conductivity, and Weibull modulus are among the key design parameters/material properties.

  13. GPE-BWR and the containment venting and filtering issue

    International Nuclear Information System (INIS)

    Palomo, J.; Santiago, J. de

    1988-01-01

    The Spanish Boiling Water Reactor Owner's Group (GPE-BWR) is formed by three utilities, owning four units: Santa Maria de Garona (46 MWe, BWR3, Mark I containment), Cofrentes (975 MWe, BWR6, Mark III containment) and Valdecaballeros (2x975 MWe, BWR6, Mark III containment) - all of the reactors having been supplied by General Electric. One of the GPE-BWR's several committees is the Safety and Licensing Committee, which follows up the evolution of severe accident topics and particularly the containment venting and filtering issue. In September 1987, the Consejo de Seguridad Nuclear (CSN), the Spanish Regulatory Body, asked the GPE-BWR to define its position on the installation of a containment venting system. The GPE-BWR created a Working Group which presented a Report on Containment Venting to the CSN in January 1987 gathered from: the US Nuclear Regulatory Commission (NRC); some US utilities; and several European countries, especially France, Germany and Sweden. CSN's review of the containment venting Report and the Action Plan proposed by the GPE-BWR finished in April 1988. The conclusion of the Report and the proposed Action Plan take into account the US NRC's identified open items on severe accidents and the R and D programs scheduled to close these items

  14. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    Hazelton, W.S.; Koo, W.H.

    1988-01-01

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  15. 5.4W cladding-pumped Nd:YAG silica fiber laser

    OpenAIRE

    Yoo, S.; Webb, A.S.; Standish, R.J.; May-Smith, T.C.; Sahu, J.K.

    2012-01-01

    We report on the spectroscopy and laser characteristics of Nd-doped fiber, fabricated by rod-in-tube from Nd:YAG as a core material with silica cladding. A cladding-pumped CW laser operation at 1058nm with 52% slope-efficiency is demonstrated.

  16. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  17. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  18. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  19. Compatibility Behavior of the Ferritic-Martensitic Steel Cladding under the Liquid Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Baek, Jong Hyuk; Kim, Sung Ho; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fuel cladding is a component which confines uranium fuel to transport energy into the coolant as well as protect radioactive species from releasing outside. Sodium-cooled Fast Reactor (SFR) has been considered as one of the most probable next generation reactors in Korea because it can maximize uranium resource as well as reduce the amount of PWR spent fuel in conjunction with pyroprocessing. Sodium has been selected as the coolant of the SFR because of its superior fast neutron efficiency as well as thermal conductivity, which enables high power core design. However, it is reported that the fuel cladding materials like austenitic and ferritic stainless steel react sodium coolant so that the loss of the thickness, intergranular attack, and carburization or decarburization process may happen to induce the change of the mechanical property of the cladding. This study aimed to evaluate material property of the cladding material under the liquid sodium environment. Ferritic-martensitic steel (FMS) coupon and cladding tube were exposed at the flowing sodium then the microstructural and mechanical property were evaluated. mechanical property of the cladding was evaluated using the ring tension test

  20. Autoclave Testing on Zirconium Alloy Materials

    International Nuclear Information System (INIS)

    Hoffmann, Petra-Britt; Sell, Hans-Juergen; Garzarolli, Friedrich

    2012-09-01

    The corrosion of Zirconium components like fuel rod claddings and spacer grids is limiting lifetime and duty of these components. In Pressurized and Boiling Water Reactors (PWR and BWR), different corrosion phenomena are of interest. Although in-pile experience is the final proof for a material development, significant experience was gained by autoclave tests, trying to simulate in-pile conditions but reducing time for return of experience by increased temperatures. For PWR application, the uniform corrosion is studied in water at up to 370 deg. C and in high pressure steam at 400 deg. C, and for BWR, the nodular corrosion is studied in high pressure steam at 500-520 deg. C. Particular attention has to be given to the corrosion media, because oxidative traces in the water can significantly affect the corrosion response. An extensive air removal is thus important for all corrosion tests. This links to the different water chemistry conditions that have been investigated as separate effects otherwise difficult to separate under in-pile conditions. Uniform corrosion in 350 deg. C water is usually a cyclic process with repeated rate transitions. In addition, at high exposure times an acceleration of corrosion can occur, e.g. for Zr-Sn alloys with a high Sn content. In 400 deg. C steam, corrosion rate decreases somewhat with increasing time. Uniform corrosion rate of Zr alloys depends on their Sn- and Fe+Cr contents as well as on their annealing parameters with a similar trend as in PWR and on their yield strength, however with an opposite trend compared to BWR conditions. Nodular corrosion of BWR alloys depends on the annealing parameter with a similar trend as in PWR and out-of-reactor also significantly on the Fe+Cr content. The hydrogen pickup fraction (HPUF) depends largely on details of the water chemistry and can particularly depend on autoclave degassing and probably also on autoclave contaminations. Thus any HPUF value from out-of- pile corrosion tests is only

  1. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  2. Laser cladding: repairing and manufacturing metal parts and tools

    Science.gov (United States)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  3. Stress corrosion cracking of L-grade stainless steels in boiling water reactor (BWR) plants

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Fukuda, Toshihiko; Yamashita, Hironobu

    2004-01-01

    L-grade stainless steels as 316NG, SUS316L and SUS304L have been used for the BWR reactor internals and re-circulation pipes as SCC resistant materials. However, SCC of the L-grade material components were reported recently in many Japanese BWR plants. The detail investigation of the components showed the fabrication process such as welding, machining and surface finishing strongly affected SCC occurrence. In this paper, research results of SCC of L-grade stainless steels, metallurgical investigation of core shrouds and re-circulation pipings, and features of SCC morphology were introduced. Besides, the structural integrity of components with SCC, countermeasures for SCC and future R and D planning were introduced. (author)

  4. Development of the BWR Dry Core Initial and Boundary Conditions for the SNL XR2 Experiments; TOPICAL

    International Nuclear Information System (INIS)

    Ott, L.J.

    1994-01-01

    The objectives of the Boiling Water Reactor Experimental Analysis and Model Development for Severe Accidents (BEAMD) Program at the Oak Ridge National Laboratory (ORNL) are: (1) the development of a sound quantitative understanding of boiling water reactor (BWR) core melt progression; this includes control blade and channel box effects, metallic melt relocation and possible blockage formation under severe accident conditions, and (2) provision of BWR melt progression modeling capabilities in SCDAP/RELAP5 (consistent with the BWR experimental data base). This requires the assessment of current modeling of BWR core melt progression against the expanding BWR data base. Emphasis is placed upon data from the BWR tests in the German CORA test facility and from the ex-reactor experiments[Sandia National Laboratories (SNL)] on metallic melt relocation and blockage formation in BWRs, as well as upon in-reactor data from the Annular Core Research Reactor (ACRR) DF-4 BWR test (conducted in 1986 at SNL). The BEAMD Program is a derivative of the BWR Severe Accident Technology Programs at ORNL. The ORNL BWR programs have studied postulated severe accidents in BWRs and have developed a set of models specific to boiling water reactor response under severe accident conditions. These models, in an experiment-specific format, have been successfully applied to both pretest and posttest analyses of the DF-4 experiment, and the BWR severe fuel damage (SFD) experiments performed in the CORA facility at the Kernforschungszentrum Karlsruhe (KfK) in Germany, resulting in excellent agreement between model prediction and experiment. The ORNL BWR models have provided for more precise predictions of the conditions in the BWR experiments than were previously available. This has provided a basis for more accurate interpretation of the phenomena for which the experiments are performed. The experiment-specific models, as used in the ORNL DF-4 and CORA BWR experimental analyses, also provide a basis

  5. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  6. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  7. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  8. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  9. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  10. Annealing studies of zircaloy-2 cladding at 580-8500C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1978-05-01

    For fuel element cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant accidents (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then much experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 0 C for returning Zircaloy cladding to the annealed condition, so that for any transient, a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  11. Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate

    International Nuclear Information System (INIS)

    Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R.

    2010-01-01

    Research highlights: → Laser cladding of P20 tool steel. → Residual stress analysis of laser clad P20 tool steel. → Microstructure of laser clad P20 tool steel. → Tooling Repair using laser cladding. → Stress reliving treatment of laser clad P20 tool steel. - Abstract: Laser cladding is to deposit desired material onto the surface of a base material (or substrate) with a relatively low heat input to form a metallurgically sound and dense clad. This process has been successfully applied for repairing damaged high-value tooling to reduce their through-life cost. However, laser cladding, which needs to melt a small amount of a substrate along with cladding material, inevitably introduces residual stresses in both clad and substrate. The tensile residual stresses in the clad could adversely affect mechanical performance of the substrate being deposited. This paper presents an experimental study on process-induced residual stresses in laser clad AISI P20 tool steel onto pre-hardened wrought P20 base material and the correlation with microstructures using hole-drilling and neutron diffraction methods. Combined with X-ray diffraction and scanning electron microscopic analyses, the roles of solid-state phase transformations in the clad and heat-affected zone (HAZ) of the substrate during cladding and post-cladding heat treatments on the development and controllability of residual stresses in the P20 clad have been investigated, and the results could be beneficial to more effective repair of damaged plastic injection molds made by P20 tool steel.

  12. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  13. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  14. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  15. BWR stability analysis

    International Nuclear Information System (INIS)

    Valtonen, K.

    1990-01-01

    The objective of this study has been to examine TVO-I oscillation incident, which occured in February 22.1987 and to find out safety implications of oscillations in ATWS incidents. Calculations have been performed with RAMONA-3B and TRAB codes. RAMONA-3B is a BWR transient analysis code with three-dimencional neutron kinetics and nonequilibrium, nonhomogeneous thermal hydraulics. TRAB code is a one-dimencional BWR transient code which uses methods similar to RAMONA-3B. The results have shown that both codes are capable of analyzing of the oscillation incidents. Both out-of-phase and in-phase oscillations are possible. If the reactor scram fails (ATWS) during oscillations the severe fuel failures are always possible and the reactor core may exceed the prompt criticality

  16. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  17. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  18. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  19. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  20. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  1. Manufacture and qualification of hot roll-clad composites with nickel base cladding material for use in flue gas desulphurization plants. Final report; Herstellung und Qualifizierung warmwalzplattierter Verbundwerkstoffe mit Nickelbasisauflagen fuer den Einsatz in Rauchgasentschwefelungsanlagen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kirchheiner, R.; Stenner, F.

    1992-03-16

    Flue gas desulphurization plants (FGD), which have been required by law since 1983, mainly apply wet scrubbing techniques. The chemical reactions taking place in those plants lead to extremely corrosive situations. Unprotected carbon steel surfaces or organic based anticorrosive systems are extremely affected after being in operation for only a few years. NiCrM alloys applied by the chemical industry in comparable situations have proved their efficiency for decades. When such massive components are newly built in FDGs, economic aspects require the use of those NiCrMo alloys in clad form. Within the frame of this project tests included the manufacture of hot roll-clad composites comprising cladding materials of the type NiMo16Cr15W (2.4819) and NiCr21Mo14W (2.4602) on the base steel RST 37-2. Large-sized sheets (10000 x 2000 x 10+2 mm) were made by means of an optimized cladding technique. The behaviour of the cladding material in case of uniform and local corrosion exposure was examined in standard laboratory tests. An increased susceptibility to intercrystalline corrosion was not detected, according to the excellent microstructure. Further laboratory tests under simulated FGD conditions and exposure tests in FGDs in operation permitted the transfer of those positive test results to practical work. The same applies without limitation to the joint-welded state with similar filler material of clad a comparable chemical composition. With respect to their technological behaviour the new hot roll-clad composites correspond to that of solid sheets of NiCrMo alloys; therefore they are qualified for use in flue gas desulphurization plants. (orig./BBR) With 32 refs., 13 tabs., 29 figs. [Deutsch] In den seit 1983 gesetzlich vorgeschriebenen Anlagen zur Rauchgasentschwefelung (REA) werden ueberwiegend nasse Waschverfahren eingesetzt. Die in diesen Anlagen ablaufenden chemischen Reaktionen fuehren zu extrem korrosiven Bedingungen. Ungeschuetzte C-Stahl-Oberflaechen bzw

  2. Theoretical investigations of the meltoff and resolidification process of fuel claddings during accidents in liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Angerer, G.

    1978-08-01

    During loss-of-coolant-flow accidents in liquid metal cooled fast breeder reactors with failure to scram the fuel claddings will melt after boiling and evaporation of the coolant. The CMOT model presented here describes the subsequent process of relocation and resolidification of the molten claddings. The basic thermohydrodynamics equations of the two-phase flow of cladding material and sodium vapor are solved numerically by differential approximations in a Eulerian reference net. The results calculated by the model improved the insight into the dynamics of the cladding relocation process. Here are the main results: - Shortly after the onset of cladding relocation large waves of molten cladding material are generated. The motion of these waves contributes considerably to the material transport. - The dynamics of cladding relocation exhibits strong local incoherences. - The formation of cladding blockages observed at the ends of the fuel region is confirmed by the calculations. - In case of incoherent cladding meltoff less cladding material is transported upwards. - Cladding relocation strongly depends on the axial pressure drop and the underlying friction factor correlations. Recalculation of the R5 loss-of-coolant-flow experiment performed in the U.S. TREAT test reactor is in good agreement with the experimental data. (orig./HP) 891 HP [de

  3. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  4. Comparison of two analytical methods for the local quantitative determination of lithium and boron contents in cladding materials

    International Nuclear Information System (INIS)

    Gavillet, D.; Guenther-Leopold, I.; Martin, M.; Guillong, M.; Hellwig, Ch.; Sell, H.J.

    2008-01-01

    Pressurized water reactors contain boric acid for reactivity control. As the acidic coolant conditions result in an increased attack of the circuit materials, LiOH is added to render the coolant slightly alkaline. However, LiOH can affect corrosion of the Zr alloy cladding. Thus the Li content in the oxide layers of irradiated fuel rods is of high interest, especially for new alloys (pathfinder rods). At the 'Paul Scherrer Institut' the lithium as well as the boron content in the oxide layers of claddings are determined by Secondary Ion Mass Spectrometry (SIMS). Quantification is performed by direct comparison with a Zircaloy-oxide layer implanted with B and Li. A new and independent method using Laser Ablation Inductively Coupled Plasma Mass Spectrometry was applied to cross-check the SIMS data. (authors)

  5. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  6. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)

    2014-07-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  7. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  8. Prevention of organic iodide formation in BWR's

    International Nuclear Information System (INIS)

    Karjunen, T.; Laitinen, T.; Piippo, J.; Sirkiae, P.

    1996-01-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR's as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs

  9. Boiling water system of nuclear power plants (BWR)

    International Nuclear Information System (INIS)

    Martias Nurdin

    1975-01-01

    About 85% of the world electric generators are light water reactors. It shows that LWR is technologically and economically competitive with other generators. The Boiling Water Reactor (BWR) is one of the two systems in the LWR group. The techniques of BWR operation in several countries, especially low and moderate power BWR, are presented. The discussion is made in relation with the interconnection problems of electric installation in developing countries, including Indonesia, where the total electric energy installation is low. The high reliability and great flexibility of the operation of a boiling water reactor for a sufficiently long period are also presented. Component standardization for BWR system is discussed to get a better technological and economical performance for further development. (author)

  10. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  11. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  12. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  13. New method to calculate the mechanical properties of unirradiated fuel cladding from ring tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    displacement of the loading piece and another one between the equivalent stress in the same point and the nominal applied stress. In the first iteration a calculation is performed with an approximate plastic stress-strain law, and the two above-mentioned relationships are used to determine a new law from the experimental results. In the second iteration the calculation takes into account the new plastic stress-strain law and determines two new relationships. After a few iterations an excellent fit is obtained. This method is an improvement of the original method by Arsene and Bai [3] and allows obtaining the plastic stress-strain curve in the hoop direction in a consistent way. The experimental data used in this work to check the validity of the procedure have been obtained on unirradiated Zirlo cladding, with the standard alloy composition and geometry (outer diameter of the cladding 9.5 mm and a wall thickness of 0.56 mm). References: [1]. Arsene, S.; Bai, J.B. A new approach to measuring transverse properties of structural tubing by a ring test, Journal of Testing and Evaluation, 24: 386-391 (1996) [2]. Arsene, S.; Bai, J. 'A new approach to measuring transverse properties of structural tubing by a ring test-experimental investigation', Journal of Testing and Evaluation, 26: 26-30 (1998) [3]. Arsene, S.; Bai, J.B.; 'Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 deg. C and 300 deg. C', Metallurgical and materials and transactions A, 34A: 553-566 (2003) [4]. Chang-Sun Seok, Bong-Kook, K.Linga, 'The properties of the ring and burst creep of zirlo claddings', Engineering Failure Analysis, 13: 389-397 (2006). (authors)

  14. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  15. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  16. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  17. Utility experience with BWR-PSMS

    International Nuclear Information System (INIS)

    Bond, G.R.

    1986-01-01

    The BWR Power Shape Monitoring System (BWR-PSMS) has proven to be an effective and versatile tool for core monitoring. GPU Nuclear Corporation's (GPUN) Oyster Creek plant has been involved in the PSMS development since its inception, having been selected by EPRI as the initial demonstration site. Beginning with Cycle 10, Oyster Creek has been applying the BWR-PSMS as the primary core monitoring tool. Although the system has been in operation at Oyster Creek for the past several cycles, this is the first time the PSMS was used to monitor compliance to the plant technical specifications, to guide adherence to vendore fuel maneuvering recommendations and to develop data for certain performance records such as fuel burnup, isotopic accounting, etc. This paper will discuss the bases for the decision to apply PSMS as the fundamental core monitoring system, the experience in implementing the PSMS in this mode, activities currently underway or planned related to PSMS, and potential future extensions and applications of PSMS at Oyster Creek

  18. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  19. An overview of the HSST Full-Thickness Shallow-Crack Clad Beam Testing Program

    International Nuclear Information System (INIS)

    Keeney, J.A.; Theiss, T.J.; McAfee, W.J.; Bass, B.R.

    1994-01-01

    A testing program is described that will utilize full-thickness clad beam specimens to quantify fracture toughness for shallow flaws in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow flaws in the beam specimen include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. Fracture toughness tests focusing on shallow flaws in plate and weld material will also provide data for evaluating the relative influence of absolute and normalized crack depth on constraint conditions. Pretest finite-element analyses are described that provide near-tip stress and strain fields for characterization of constraint in the shallow-crack specimens in terms of the Q-stress. Analysis results predict a constraint loss in the shallow-crack clad beam specimen similar to that determined for a previously tested shallow-crack single-edge notch homogeneous bend specimen with the same normalized crack depth

  20. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    This project contributes to more accurate design guidelines for high-performance building envelopes by analysis of hygrothermal performance of ventilated wooden cladding. Hygrothermal performance is defined by cladding temperature and moisture conditions, and subsequently by risk of degradation. Wood cladding is the most common facade material used in rural and residential areas in Norway. Historically, wooden cladding design varied in different regions in Norway. This was due to both climatic variations and the logistical distance to materials and craftspeople. The rebuilding of Norwegian houses in the 1950s followed central guidelines where local climate adaptation was often not evaluated. Nowadays we find some technical solutions that do not withstand all climate exposures. The demand for thermal comfort and also energy savings has changed hygrothermal condition of the building envelopes. In well-insulated wall assemblies, the cladding temperature is lower compared to traditional walls. Thus the drying out potential is smaller, and the risk of decay may be higher. The climate change scenario indicates a warmer and wetter future in Norway. Future buildings should be designed to endure harsher climate exposure than at present. Is there a need for refined climate differentiated design guidelines for building enclosures? As part of the Norwegian research programme 'Climate 2000', varieties of wooden claddings have been investigated on a test house in Trondheim. The aim of this investigation was to increase our understanding of the relation between microclimatic conditions and the responding hygrothermal performance of wooden cladding, according to orientation, design of ventilation gap, wood material quality and surface treatment. The two test facades, facing east and west have different climate exposure. Hourly measurements of in total 250 sensors provide meteorological data; temperature, radiation, wind properties, relative humidity, and test house data

  1. Alternative Zr alloys with irradiation resistant precipitates for high burnup BWR application

    International Nuclear Information System (INIS)

    Garzarolli, F.; Ruhmann, H.; Van Swan, L.

    2002-01-01

    In the core of BWRs, the second-phase particles (SPP) of Zircaloy-2 and Zircaloy-4, the Zr(FeCr) 2 and the Zr 2 (FeNi) phase, release Fe and dissolve. The degree of dissolution depends on initial size and fluence. These SPP, however, are important for the corrosion behavior of Zircaloy. Zircaloy shows an increase of corrosion at a certain burnup, depending on the initial SPP size and fast neutron fluence. Only Zr alloys with irradiation resistant SPP avoid this type of increased corrosion completely. Two types of irradiation resistant materials were considered. One is a Zr-Sn-Fe alloy containing the Zr 3 Fe phase, which is irradiation resistant under BWR conditions. The other material is a Zr-Sn-Nb alloy containing the irradiation resistant β-Nb phase. In-BWR tests have shown that a Sn content of >0.8% is mandatory to minimize the nodular corrosion. Two prototypes of irradiation resistant alloys, Zr1.3Sn0.25-0.3 Fe and Zr1Sn2-3Nb, were irradiated in a BWR for 1372 days to a fast fluence of 9 x 10 21 n/cm 2 (E > 1 MeV). These irradiation tests showed that Zr1.3Sn0.25-0.3 Fe has a little lower resistance against nodular corrosion than optimized LTP (Low Temperature Process) Zircaloy-2/4 and revealed that Zr1Sn2-3Nb is superior to LTP Zircaloy-2/4 with respect to nodular and shadow corrosion resistance. The BWR corrosion resistance of Zr1Sn2-3Nb depends on heat treatment. The lowest corrosion was observed with material fabricated completely in the α-range, but also material manufactured in the lower (α+β)-range exhibits low corrosion. Material fabricated in the upper (α+β)-range showed a somewhat higher corrosion, a corrosion behavior similar to LTP Zircaloy-2/4. As far as final annealing is concerned, a long time annealing at 540 deg C is superior to a standard recrystallization treatment (e.g., at 580 deg C), which still leads to a corrosion behavior that is better than stress relieved Zr1Sn2-3Nb. Zr1Sn2-3Nb is resistant to shadow corrosion, when fabricated

  2. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    Science.gov (United States)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  3. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  4. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  5. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  6. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    cladding environment. Our interpretation of the sub-cooled nucleate boiling impact on the PWR fuel cladding's chemical environment explains the most important change of the fuel cladding's environmental characteristics - the creation of oxidizing conditions. This conclusion requires new criteria for corrosion resistance properties of fuel cladding materials. These materials must have high corrosion resistance by oxidizing conditions. The presence of oxidizing conditions in PWR fuel cladding's environment explains also in practice observed fact that the nickel oxide formation dominates over the metallic nickel in corrosion product depositions on fuel elements' cladding. Our conclusions offer a logically explanation of prime root cause for Axial Offset Anomaly in US Westinghouse NPPs - the lower corrosion resistance of Zircaloy-4 cladding materials by oxidizing conditions occurring by sub-cooled nucleate boiling. (authors)

  7. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  8. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  9. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  10. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  11. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  12. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  13. Development and application of preventive maintenance technique for pipes using laser cladding method

    International Nuclear Information System (INIS)

    Hatakenaka, Hiroaki; Yamadera, Masao; Shiraiwa, Takanori.

    1995-01-01

    A laser cladding method which produces a highly corrosion-resisting coating (cladding) on the surface of the material was developed for the purpose of preventing stress corrosion cracking (SCC) in the austenitic stainless steel (Type 304). In this method, metallic powder paste is applied on the inner surface of pipes, and then a YAG laser beam is irradiated to the paste, which melts and forms a clad with excellent corrosion resistance. Recently, the laser cladding method was practically and successfully applied to the actual nuclear power plant in Japan. This report describes this laser cladding technique, the equipment, and actual works in the field. (author)

  14. BWR Services maintenance training program

    International Nuclear Information System (INIS)

    Cox, J.H.; Chittenden, W.F.

    1979-01-01

    BWR Services has implemented a five-phase program to increase plant availability and capacity factor in operating BWR's. One phase of this program is establishing a maintenance training program on NSSS equipment; the scope encompasses maintenance on both mechanical equipment and electrical control and instrumentation equipment. The program utilizes actual product line equipment for practical Hands-on training. A total of 23 formal courses will be in place by the end of 1979. The General Electric Company is making a multimillion dollar investment in facilities to support this training. These facilities are described

  15. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    Alencar, Donizete Anderson de

    2004-01-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  16. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  17. A Multi-Scale Modeling of Laser Cladding Process (Preprint)

    National Research Council Canada - National Science Library

    Cao, J; Choi, J

    2006-01-01

    Laser cladding is an additive manufacturing process that a laser generates a melt-pool on the substrate material while a second material, as a powder or a wire form, is injected into that melt-pool...

  18. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  19. UKAEA fast reactor project research and development programme on fuel element cladding and sub-assembly wrapper materials

    International Nuclear Information System (INIS)

    Harries, D.R.

    1977-01-01

    Research and development work on fuel element component (cladding, subassembly wrappers, etc.) materials for the U.K. sodium cooled fast reactor programme has been conducted at the United Kingdom Atomic Energy Authority (UKAEA) establishments at Dounreay, Harwell, Risley, and Springfields during the past fifteen years or so. This work has formed an integral part of, and has been co-ordinated by, the UKAEA Fast Reactor Project and has involved close liaison with the Nuclear Power Company (NPC) and the Central Electricity Generating Board (CEGB). The research and development were initially related to the Prototype Fast Reactor (PFR) but the scope has now been extended to cover the first Civil Fast Reactor (CFR1), which has recently been re-designated the Civil Demonstration Fast Reactor (CDFR). The paper outlines the present status of the development of sodium cooled fast reactors in the U.K. and proceeds to summarize the principal PFR and CDFR core and fuel element parameters which have determined the planning and direction of the fuel element materials programme. The current position on the fuel element cladding and wrapper research and development programme is reviewed, and the facilities and future irradiation programme to be carried out in PFR are described

  20. Critical stability conditions of the fuel element cladding; Kriticni uslovi stabilnosti kosuljice G.E

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M; Savic, D [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1968-12-15

    The role of the fuel element cladding being the first safety barrier, is to prevent contamination by the fission products. Construction of the fuel element cladding depends on the reactor type, coolant type, fuel type, technology of material fabrication, influence of the material on the neutron economy, thermal conditions, etc. That is why an optimum solution has to be found. This paper deals with mechanical properties of ceramic natural UO{sub 2} sintered fuel pellets in the zircaloy-2 cladding. This type of fuel is used in heavy water reactors.

  1. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  2. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  3. Modelling of ultrasonic nondestructive testing of cracks in claddings

    International Nuclear Information System (INIS)

    Bostroem, Anders; Zagbai, Theo

    2006-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  4. Annealing studies of Zircaloy-2 cladding at 580-850 deg C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1983-01-01

    For fuel rod cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then a great deal of experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 deg C for returning Zircaloy cladding to the annealed condition, so that for any transient a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  5. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  6. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.; Devrient, B.; Roth, A.; Ehrnsten, U.; Ernestova, M.; Zamboch, M.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  7. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  8. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  9. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  10. Construction of in-situ creep strain test facility for the SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Heo, Hyeong Min; Kim, Jun Hwan; Kim, Sung Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, in-situ laser inspection creep test machine was developed for the measuring the creep strain of SFR fuel cladding materials. Ferritic-martensitic steels are being considered as an attractive candidate material for a fuel cladding of a SFR due to their low expansion coefficients, high thermal conductivities and excellent irradiation resistances to a void swelling. HT9 steel (12CrMoVW) is initially developed as a material for power plants in Europe in the 1960. This steel has experienced to expose up to 200dpa in FFTE and EBR-II. Ferritic-Martensitic steel's maximum creep strength in existence is 180Mpa for 106 hour 600 .deg., but HT9 steel is 60Mpa. Because SFR is difficult to secure in developing and applying materials, HT9 steel has accumulated validated data and is suitable for SFR component. And also, because of its superior dimensional stability against fast neutron irradiation, Ferritic-martensitic steel of 9Cr and 12Cr steels, such as HT9 and FC92(12Cr-2W) are preferable to utilize in the fuel cladding of an SFR in KAERI. The pressurized thermal creep test of HT9 and FC92 claddings are being conducted in KAERI, but the change of creep strain in cladding is not easy to measure during the creep test due to its pressurized and closed conditions. In this paper, in-situ laser inspection pressurized creep test machine developed for SFR fuel cladding specimens is described. Moreover, the creep strain rate of HT9 at 650 .deg. C was examined from the in-situ laser inspection pressurized creep test machine.

  11. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance

  12. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  13. An analytical model to predict and minimize the residual stress of laser cladding process

    Science.gov (United States)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  14. COVE-1: a finite difference creep collapse code for oval fuel pin cladding material

    International Nuclear Information System (INIS)

    Mohr, C.L.

    1975-03-01

    COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)

  15. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T; Piippo, J; Sirkiae, P [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  16. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; KIM, Hyun-Gil; JUNG, Yang-Il; PARK, Dong-Jun; KOO, Yang-Hyun

    2013-01-01

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al 3 Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a

  17. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  18. Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1982-01-01

    In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method is different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys

  19. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  20. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  1. BWR Refill-Reflood Program. Final report

    International Nuclear Information System (INIS)

    Myers, L.L.

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests

  2. Second phase precipitation in irradiated Type 316 stainless steel cladding

    International Nuclear Information System (INIS)

    Hales, J.W.

    1978-05-01

    Differences in the phase composition of FFTF fuel cans following irradiation in the General Electric Test Reactor compared to HEDL fuel cans prompted laboratory studies to be conducted using cladding from the same lots of material used to fabricate the fuel pins and on cladding sections removed from the plenum area of the irradiated fuel pins to help establish the cause of the observed differences

  3. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  4. Parametric study of the behaviour of a pre irradiated BWR fuel rod under conditions of LOCA simulated in the halden in pile test system with the FALCON code

    Energy Technology Data Exchange (ETDEWEB)

    Khvostov, G.; Zimmermann, M. A. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, Villigen (Switzerland); Ledergerber, G. [Kernkraftwerk Leibstadt AG, Leibstadt (Switzerland); Kolstad, E. [Institute for Energy Technology - OECD Halden Reactor Project, Halden (Norway); Montgomery, R. O. [Anatech Corporation, San Diego (United States)

    2008-10-15

    A new LOCA test at Halden was planned as the first experiment within the Halden LOCA program addressing the behaviour of commercially irradiated BWR fuel of medium burn up with burst of the cladding expected to occur at a temperature of about 1050.deg.C, which is essentially higher than in the preceding experiments. The specific measures to be adopted have been suggested based upon a parametric study using the FALCON fuel behaviour code and aimed at an optimized design of the test fuel rod for the given high target cladding temperature of 1150 .deg. C (peak local). The analysis has shown a reasonable agreement with the fundamental experimental findings, such as correlations of NUREG 0630, as well as consistency with the data from Halden LOCA testing available so far. Thus, a general conclusion is drawn about the applicability of the methodology developed at PSI to the analysis of LWR fuel rod behaviour during LOCA, in consideration of the effects of fuel burn up.

  5. Water chemistry and corrosion control of cladding and primary circuit components. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-12-01

    Corrosion is the principal life limiting degradation mechanism in nuclear steam supply systems, especially taking into account the trends to increase fuel burnup, thermal rate and cycle length. Primary circuit components of water cooled power reactors have an impact on Zr-based alloys behaviour due to crud (primary circuit corrosion products) formation, transport and deposition on heat transfer surfaces. Crud deposits influence water chemistry, radiation and thermal hydraulic conditions near cladding surface, and by this way-Zr-based alloy corrosion. During the last decade, significant improvements were achieved in the reduction of the corrosion and dose rates by changing the cladding material for one more resistant to corrosion or by the improvement of water chemistry conditions. However, taking into account the above mentioned tendency for heavier fuel duties, corrosion and water chemistry, control will remain a serious task to work with for nuclear power plant operators and scientists, as well as development of generally accepted corrosion model of Zr-based alloys in a water environment in a new millennium. Upon the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, water chemistry and corrosion of cladding and primary circuit components are in the focus of the IAEA activities in the area of fuel technology and performance. At present the IAEA performs two co-ordinated research projects (CRPs): on On-line High Temperature Monitoring of Water Chemistry and Corrosion (WACOL) and on Activity Transport in Primary Circuits. Two CRPs deal with hydrogen and hydride degradation of the Zr-based alloys. A state-of-the-art review entitled: 'Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants' was published in 1998. Technical Committee meetings on the subject were held in 1985 (Cadarache, France), 1989 (Portland, USA), 1993 (Rez, Czech Republic). During the last few years extensive exchange of experience in

  6. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  7. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  8. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  9. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  10. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  11. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  12. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  13. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  14. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Fourth semiannual report, July-December 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1981-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts have been developed for possible demonstration: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the scope of this program one of these concepts had to be selected for a large-scale demonstration in a commercial power reactor. The selection was made to demonstrate Zr-liner fuel and to include bundles which have liners prepared from either low oxygen sponge zirconium or of crystal bar zirconium. The demonstration is intended to include a total of 132 barrier bundles in the reload for Quad Cities Unit 2, Cycle 6. In the current report period changes in the nuclear design were made to respond to changes in the Energy Utilization Plan for Quad Cities Unit 2. Bundle designs were completed, and were licensed for use in a BWR/3. The core specific licensing will be done as part of the reload license for Quad Cities Unit 2, Cycle 6

  15. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  16. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  17. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  18. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  19. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  20. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  1. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    International Nuclear Information System (INIS)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  2. Assessment of thin-walled cladding tube mechanical properties by segmented expanding Mandrel test

    International Nuclear Information System (INIS)

    Nilsson, Karl-Fredrik

    2015-01-01

    This paper presents the principles of the segmented expanding mandrel test for thin-walled cladding tubes, which can be used as a basic material characterisation test to determine stress-strain curves and ductility or as a test to simulate mechanical pellet-cladding interaction. The paper discusses the strengths and weaknesses of the test method and it illustrates how the test can be used to simulate hydride reorientations in zirconium claddings and quantify how hydride reorientation affects ductility. (authors)

  3. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    Science.gov (United States)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  4. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    International Nuclear Information System (INIS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-01-01

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10 −3 s −1 , 3 × 10 −4 s −1 and 3 × 10 −5 s −1 ). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation

  5. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  6. Development of internal CRD for next generation BWR-endurance and robustness tests of ball-bearing materials in high-pressure and high-temperature water

    International Nuclear Information System (INIS)

    Shoji Goto; Shuichi Ohmori; Michitsugu Mori; Shohei Kawano; Tadashi Narabayashi; Shinichi Ishizato

    2005-01-01

    An internal CRD using a heatproof ceramics insulated coil is under development to be a competitive and higher performance as Next- Generation BWR. In the case of the 1700MWe next generation BWR, adapting the internal CRDs, the reactor pressure vessel is almost equivalent to that of 1356 MWe ABWR. The endurance and robustness tests were examined in order to confirm the durability of the bearing for the internal CRD. The durability of the ball bearing for the internal CRD was performed in the high-pressure and high-temperature reactor water of current BWR conditions. The experimental results confirmed the durability of rotational numbers for the operation length of 60 years. We added the cruds into water to confirm the robustness of the ball bearing. The test results also showed good robustness even in high-density crud conditions, compared with the current BWR. This program is conducted as one of the selected offers for the advertised technical developments of the Institute of Applied Energy founded by METI (Ministry of Economy, Trade and Industry) of Japan. (authors)

  7. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  8. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  9. BWR vessel and internals project (BWRVIP)

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Dyle, R.L.

    1996-01-01

    Recent Boiling Water Reactor (BWR) inspections indicate that Intergranular Stress Corrosion Cracking (IGSCC) is a significant technical issue for some BWR internals. IN response, the Boiling Water Reactor Vessel and Internals Project (BWRVIP) was formed by an associated of domestic and international utilities which own and operate BWRs. The project is identifying or developing generic, cost-effective strategies for managing degradation of reactor internals from which each utility can select the alternative most appropriate for their plant. The Electric Power Research Institute manages the technical program, implementing the utility defined programs. The BWRVIP is organized into four technical tasks: Assessment, Inspection, Repair and Mitigation. An Integration task coordinates the work. The goal of the Assessment task is to develop methodologies for evaluation of vessel and internal components in support of decisions for operation, inspection, mitigation or repair. The goal of the Inspection task is to develop and assess effective and predictable inspection techniques which can be used to determine the condition of BWR vessel and internals that are potentially susceptible to service-related SCC degradation. The goal of the Repair task is to assure the availability of cost-effective repair/replacement alternatives. The goal of the Mitigation task is to develop and demonstrate countermeasures for SCC degradation. This paper summarizes the BWRVIP approach for addressing BWR internals SCC degradation and illustrates how utilities are utilizing BWRVIP products to successfully manage the effect of SCC on core shrouds

  10. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)

  11. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  12. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  13. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Birney, K.R.; Pitner, A.L.; Basmajian, J.A.

    1980-04-01

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  14. Improvement for BWR operator training, 3

    International Nuclear Information System (INIS)

    Noji, Kunio; Toeda, Susumu; Saito, Genhachi; Suzuki, Koichi

    1990-01-01

    BWR Operator Training Center Corporation (BTC) is conducting training for BWR plant operators using Full-scope Simulators. There are several courses for individual operators and one training course for shift crew (Family Training Course) in BTC. Family Training is carried out by all members of the operating shift-crew. BTC has made efforts to improve the Family Training in order to acquire more effective training results and contribute to up-grade team performance of all crews. This paper describes some items of our efforts towards Family Training improvement. (author)

  15. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs

  16. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  17. Method and system for edge cladding of laser gain media

    Science.gov (United States)

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  18. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  19. Modelling of ultrasonic nondestructive testing of cracks in claddings

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Anders; Zagbai, Theo [Calmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Mechanics

    2006-05-15

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The present project has been concerned with the modelling of defects in claddings. A cladding is a layer of material that is put on for corrosion protection, in the nuclear power industry this layer is often an austenitic steel that is welded onto the surface. The cladding is usually anisotropic and to some degree it is most likely also inhomogeneous, particularly in that the direction of the anisotropy is varying. This degree of inhomogeneity is unknown but probably not very pronounced so for modelling purposes it may be a valid assumption to take the cladding to be homogeneous. However, another important complicating factor with claddings is that the interface between the cladding and the base material is often corrugated. This corrugation can have large effects on the transmission of ultrasound through the interface and can thus greatly affect the detectability of defects in the cladding. In the present project the only type of defect that is considered is a planar crack that is situated inside the cladding. The investigations are, furthermore, limited to two dimensions, and the crack is then only a straight line. The crack can be arbitrarily oriented and situated, but it must not intersect the interface to the base material. The crack can be surface-breaking, and this is often the case of most practical interest, but it should then be

  20. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  1. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  2. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  3. Kinematics of two-phase mixture level motion in BWR pressure vessels

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Stritar, A.

    1985-01-01

    A model is presented for predicting two-phase mixture level elevations in BWR systems. The model accounts for the particular geometry and conditions in a BWR system during Small-Break Loss of Coolant Accidents. The model presented here is particularly suitable for efficient, high-speed simulations on small minicomputers. The model has been implemented and tested. Results are shown from BWR ATWS simulations

  4. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  5. Application of gadolinia credit to cask transportation of BWR-STEP3 SFAs

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Mitsuhashi, Ishi; Ito, Dai-ichiro; Nakamura, Yu

    2003-01-01

    Instead of the fresh-fuel assumption, the application of gadolinia credit to cask transportation of BWR SFAs is studied. Its efficacy for BWR-STEP2 SFAs had already been estimated. This paper reports on the application of gadolinia credit to cask transportation of BWR-STEP3 SFAs. (author)

  6. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  7. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  8. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide

    International Nuclear Information System (INIS)

    Gallardo V, J. M.; Morales S, J. B.

    2013-10-01

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO 2 ) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO 2 mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  9. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  10. A PC Mathcad-based computational aid for severe accident analysis and its application to a BWR small LOCA sequence

    International Nuclear Information System (INIS)

    Wu, Laung-Kuang T.; Lee, S.J.

    2004-01-01

    A PC-based Mathcad program is used to develop a computational aid for analyzing severe accident phenomena. This computational aid uses simple engineering expressions and empirical correlations to estimate key quantities and timings at various stages of accident progressions. In this paper, the computational aid is applied to analyze an early phase of a BWR small LOCA sequence. The accident phenomena analyzed include: break flow rates, boiled-up water level in the core, core uncovery time, depressurization of the reactor pressure vessel, core heat-up, onset of clad oxidation, hydrogen generation, and onset of fuel relocation. The results are compared with those obtained running the MAAP 3.0B code. This PC-based computational aid can be used to train plant personnel in understanding severe accident phenomena and to assist them in managing severe accidents. (author)

  11. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  12. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined...... can fabricate waveguides with an index difference in the order of 10−3, where both the core material and the cladding material are based on SU-8. The refractive index measurements are performed on thin polymeric films, while further optical characterizations are performed on waveguides with a height...

  13. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  14. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  15. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    Science.gov (United States)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  16. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  17. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  18. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  19. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L; Camacho L, M E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  20. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  1. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kanwarjeet, E-mail: kanwar722@yahoo.com; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-11-15

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10{sup −3} s{sup −1}, 3 × 10{sup −4} s{sup −1} and 3 × 10{sup −5} s{sup −1}). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  2. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    International Nuclear Information System (INIS)

    Chakravarti, B.

    1996-01-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ''like for like'' replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants

  3. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1982-01-01

    A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  4. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1983-01-01

    A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  5. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  6. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  7. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  8. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2013-08-01

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant

  9. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  10. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  11. The HAMBO BWR simulator of HAMMLAB

    International Nuclear Information System (INIS)

    Karlsson, Tommy; Jokstad, Haakon; Meyer, Brita D.; Nihlwing, Christer; Norrman, Sixten; Puska, Eija Karita; Raussi, Pekka; Tiihonen, Olli

    2001-02-01

    Modernisation of control rooms of the nuclear power plants has been a major issue in Sweden and Finland the last few years, and this will continue in the years to come. As an aid in the process of introducing new technology into the control rooms, the benefit of having an experimental simulator where proto typing of solutions can be performed, has been emphasised by many plants. With this as a basis, the BWR plants in Sweden and Finland decided to fund, in co-operation with the Halden Project, an experimental BWR simulator based on the Forsmark 3 plant in Sweden. The BWR simulator development project was initiated in January 1998. VTT Energy in Finland developed the simulator models with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator was thoroughly tested by experienced HRP personnel and professional Forsmark 3 operators, and accepted by the BWR utilities in June 2000. The acceptance tests consisted of 19 well-defined transients, as well as the running of the simulator from full power down to cold shutdown and back up again with the use of plant procedures. This report describes the HAMBO simulator, with its simulator models, the operator interface, and the underlying hardware and software infrastructure. The tools used for developing the simulator, APROS, Picasso-3 and the Integration Platform, are also briefly described. The acceptance tests are described, and examples of the results are presented, to illustrate the level of validation of the simulator. The report concludes with an indication of the short-term usage of the simulator. (Author)

  12. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  13. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  14. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  15. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  16. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  17. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  18. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  19. The BWR Hybrid 4 control rod

    International Nuclear Information System (INIS)

    Gross, H.; Fuchs, H.P.; Lippert, H.J.; Dambietz, W.

    1988-01-01

    The service life of BWR control rods designed in the past has been unsatisfactory. The main reason was irradiation assisted stress corrosion cracking of B 4 C rods caused by external swelling of the B 4 C powder. By this reason KWU developed an improved BWR control rod (Hybrid 4 control rod) with extended service life and increased control rod worth. It also allows the procedure for replacing and rearranging fuel assemblies to be considerably simplified. A complete set of Hydbrid 4 control rods is expected to last throughout the service life of a plant (assumption: ca. 40 years) if an appropriate control rod reshuffling management program is used. (orig.)

  20. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-01

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean

  1. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  2. Irradiation effect on fatigue behaviour of zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Soniak, A.; Lansiart, S.; Royer, J.; Waeckel, N.

    1993-01-01

    Since nuclear electricity has a predominant share in French generating capacity, PWR's are required to fit grid load following and frequency control operating conditions. Consequently cyclic stresses appear in the fuel element cladding. In order to characterize the possible resulting clad damage, fatigue tests were performed at 350 deg C on unirradiated material or irradiated stress relieved Zircaloy-4 tube portions, using a special device for tube fatigue by repeated pressurization. It appears that, for high stress levels, the material fatigue life is not affected by irradiation. But the endurance fatigue limit undergoes a decrease from the 350 MPa value for unirradiated material to the 210 MPa value for the material irradiated for four cycles in a PWR. However, this effect seems to saturate with irradiation dose: no difference could be detected between the two cycles results and the corresponding four cycles results. The corrosion effect and the load following influence were also investigated: they do not appear to modify the fatigue behaviour in our experimental conditions

  3. An overview of the BWR ECCS strainer blockage issues

    International Nuclear Information System (INIS)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-01-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, open-quotes Containment Emergency Sump Performance,close quotes and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts

  4. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  5. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    Science.gov (United States)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  6. Finite element analysis of laser engineered net shape (LENSTM) tungsten clad squeeze pins

    International Nuclear Information System (INIS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-01-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local 'squeeze' pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ('soldering'). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS TM process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding

  7. The mechanical structure of the SVEA BWR fuel

    International Nuclear Information System (INIS)

    Nylund, O.; Johansson, A.; Junkrans, S.

    1985-01-01

    The SVEA BWR fuel assembly design is characterized by a double-wall cruciform internal structure forming an internal water gap and dividing the assembly into 4 subbundles. The effect is a favourable distribution of fuel and moderator, a minimum amount of structural material in active core, a combination of structural stability and flexibility for minimum control rod friction in reduced gaps and a reduced creep deformation of the fuel assembly. The results of a laboratory test program confirm the much lower friction force obtained with the SVEA fuel assemblies while withdrawing and inserting the control rod. (RF)

  8. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  9. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.G., E-mail: Joshua.Stone@ga.com; Schleicher, R.; Deck, C.P.; Jacobsen, G.M.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) fiber, SiC matrix composites (SiC/SiC) are being considered as a cladding material for light water reactors in order to improve safety performance. Engineered, multi-layer cladding designs consisting of both monolithic SiC (mSiC) and SiC/SiC have been examined as promising concepts to meet both strength and impermeability requirements. A new model has been developed to calculate stresses and failure probabilities for multi-layer cladding consisting of SiC-based materials in reactor operating conditions. The results show that stresses in SiC-based cladding are dominated by temperature-dependent irradiation-induced swelling, with the largest stresses occurring during the cold shutdown conditions. Failure probabilities are driven by the resulting tensile stresses at the cladding inner wall, while the outer wall is subject to compressive stresses. This indicates that the inner SiC/SiC, outer mSiC concept has the lowest failure probability, as the pseudo-plastic deformation of the composite reduces tensile loading and the compressed monolith provides a reliable, impermeable barrier to fission product release.

  10. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  11. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  12. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  13. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qingjun [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: sduzhu@yahoo.com.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2007-06-30

    Amorphous composite coatings Fe{sub 38}Ni{sub 30-X}Si{sub 16}B{sub 14}V{sub 2}M {sub X} (X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  14. Consolidation of cladding hulls from the electrometallurgical treatment of spent fuel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.

    1998-01-01

    To consolidate metallic waste that is residual from Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel, waste ingots are currently being cast using an induction furnace located in a hot cell. These ingots, which have been developed to serve as final waste forms destined for repository disposal, are stainless steel (SS)-Zr alloys (the Zr is very near 15 wt.%). The charge for the alloys consists of stainless steel cladding hulls, Zr from the fuel being treated, noble metal fission products, and minor amounts of actinides that are present with the cladding hulls. The actual in-dated cladding hulls have been characterized before they were melted into ingots, and the final as-cast ingots have been characterized to determine the degree of consolidation of the charge material. It has been found that ingots can be effectively cast from irradiated cladding hulls residual from the electrometallurgical treatment process by employing an induction furnace located in a hot cell

  15. Development of a laser multi-layer cladding technology for damage mitigation of fuel spacers in Hanaro reactor

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, D. H.; Hwang, S. S.; Suh, J. H.

    2002-01-01

    A laser multi-layer cladding technology was developed to mitigate the fretting wear damages occurred at fuel spacers in Hanaro reactor. The detailed experimental results are as follows. 1) Analyses of fretting wear damages and fabrication process of fuel spacers 2) Development and analysis of spherical Al 6061 T-6 alloy powders for the laser cladding 3) Analysis of parameter effects on laser cladding process for clad bids, and optimization of laser cladding process 4) Analysis on the changes of cladding layers due to overlapping factor change 5) Microstructural observation and phase analysis 6) Characterization of materials properties (hardness and wear tests) 7) Manufacture of prototype fuel spacers 8) Development of a vision system and revision of its related softwares

  16. Some remarks on the analysis of stress-corrosion cracking of austenitic stainless-steel cladding

    International Nuclear Information System (INIS)

    Kupka, I.; Nrkous, P.

    1977-01-01

    Stress-corrosion cracking is greatly influenced by tensile stresses in the material. The occurrence of tensile stresses in the material under consideration results from residual stresses brought about during manufacturing processes and from stress caused by operation. In the case of an austenitic steel cladding the residual stresses arise in the course of welding and thermal treatment. The technique of residual stress measurement in austenitic cladding materials is described and the results are given. Both the longitudinal and transverse components of the stresses show in all cases similar behaviour not only prior to, but also after heat treatment. (J.B.)

  17. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Okubo, Kazutoshi.

    1991-01-01

    A region increased with the hydrophilic property at the surface is formed in the downstream portion of a cladding tube. Then, the surface of the region is made coarse. With such a constitution, coolants form three streams generally divided into a bubble stream, a slab stream and an annular stream along the cladding tube from the upstream to the downstream during operation of a BWR type reactor, and if BWR power is increased, the annular stream is enlarged. In this region, since oolant membranes for covering the surface of the region improved with its hydrophile property are easily formed by downcoming coolants, and the thickness of the coolant membrane is increased remarkably, the surface of the cladding tube can be cooled certainly and efficiently. Further, since there is no definit downwarding water stream in the annular portion, frictional pressure loss of the BWR is not increased by incresing the hydrophilic property. (T.M.)

  18. FIST small break accident analysis with BWR TRACBO2-pretest predictions

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    The BWR Full Integral Simulation Test (FIST) program includes experimental simulation and analytical evaluation of BWR thermal-hydraulic phenomena during transient events. One such event is a small size break in the suction line of one of the recirculation pumps. The results from a test simulating this transient in the FIST facility are compared with a system analysis using the Transient Reactor Analysis Code (TRACB02). This comparison demonstrates BWR-TRAC capability for small break analyses and provides detailed understanding of the phenomena

  19. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  20. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  1. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  2. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  3. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  4. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  5. Meeting the challenge of extremely corrosive service: A primer on clad oilfield equipment

    International Nuclear Information System (INIS)

    Pendley, M.R.

    1993-01-01

    Extremely corrosive environments, such as those often encountered in deep, hot, sour oil and gas wells, are usually characterized by the presence of hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), chlorides, and other corrosive species coupled with high temperatures (> 400 F/204 C) and high pressures (up to 20,000 psi/138 MPa). Most low alloy and stainless steel materials are not suitable for such environments. Extremely corrosive service conditions dictate the use of a corrosion-resistant alloy (CRA) in areas which are exposed to the hostile environment. However, it is often cost-prohibitive to make an entire component out of CRA material. An alternative strategy is to use a low alloy steel for the bulk of the component and clad critical surfaces with a corrosion-resistant material. Clad equipment can provide excellent corrosion resistance in hostile environments at a fraction of the cost of 100% CRA components. This paper will detail the problems posed by extremely corrosive environments and discuss how clad equipment provides a cost-effective solution

  6. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  7. Possibility of using BeMgZnSe as a new cladding material for ZnSe-based blue laser diodes

    International Nuclear Information System (INIS)

    Kim, D. C.; Choi, J. H.; Yoo, K. H.; Kim, T. W.; Yao, T.

    1999-01-01

    We calculated the gain and the radiative recombination current density of ZnSe/Be x Mg y Zn 1-x-y Se/Be x Mg y Zn 1-x - y Se separate confinement heterostructure (SCH) laser diodes and compared the results with those for the more popular ZnSe/Zn 1-x Mg x S y Se 1-y /Zn 1-x Mg x S y Se 1-y system. For five different values of the cladding-layer energy gap (E g,c ), we sought the optimum SCH structure that had a minimum threshold current density for both quaternaries, and we compared the corresponding current densities. For the same E g,c , ZnMgSSe was found to have a smaller threshold current density. The threshold current density decreased rapidly with increasing. E g,c in both materials. Therefore, if the available energy gap of the BeMgZnSe cladding is larger than that of ZnMGZnSSe, BeMgZnSe may be the better choice

  8. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  9. Theoretical studies of the influence of filler material gas gap and cladding material on rewetting rate of nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Blackburn, D.; Pearson, K.G.; Shires, G.L.

    1977-03-01

    Theoretical studies of the effect of fuel and gas gap on the rewetting rate of overheated fuel pins quenched by a falling film of water are presented. Two approaches have been made: a finite difference technique and an approximate analytical solution. The results obtained by the two methods for the case of a uranium-dioxide-filled Zircaloy clad fuel pin are in close agreement. The paper shows that under high pressure conditions the delaying effect of the stored heat within the fuel on the wetting rate is relatively small, particularly if a gas gap is present between the clad and the fuel. At low pressure conditions, however, the effect of the fuel may be very important. Simplification of the analytical solution shows that at low wetting rates a constant fractional reduction in wetting speed may be anticipated the magnitude of which depends only on the relative thermal diffusivities and heat capacities of the fuel and cladding. (author)

  10. Finite element modeling of pellet-clad mechanical interaction with ABAQUS

    International Nuclear Information System (INIS)

    Cheon, C. S.; Lee, B. H.; Koo, Y. H.; Oh, J. Y.; Son, D. S.

    2002-01-01

    Pellet-clad mechanical interaction (PCMI) was modelled by an axisymmetric finite element method. Thermomechanical models of pellet and clad materials and a contact model for their interaction have been implemented in addition to the application of appropriate boundary conditions so that the FE model was configured. Temperature and displacement were evaluated through a coupled analysis using a general purposed FE code, ABAQUS. Also, a batch program has been developed to efficiently deal with a series of jobs such as making an interface with a fuel performance code, the generation of an input deck for ABAQUS code and its execution, and an interpretation of the output. Under various conditions, results from the present FE model were analyzed. Preliminary verification was conducted by comparing the clad elongation measured during an in-pile PCMI experiment with that calculated by means of the developed FE model

  11. Current status of studies on nodular corrosion

    International Nuclear Information System (INIS)

    Yasuda, Takayoshi; Kawasaki, Satoru; Echigoya, Hironori; Kinoshita, Yutaka; Kubota, Hiroyuki; Konishi, Takao; Yamanaka, Tuneyasu.

    1993-01-01

    The studies on nodular corrosion formed on the outer surface of BWR fuel cladding tubes were reviewed. Main factors affecting the corrosion behavior were material and environmental conditions and combined effect. The effects of such material conditions as fabrication process, alloy elements, texture and surface treatment and environmental factors as neutron irradiation, thermo-hydrodynamic, water chemistry, purity of the coolant and contact with foreign metals on the corrosion phenomena were surveyed. Out-of-reactor corrosion test methods and models for the corrosion mechanism were also reviewed. Suppression of the accumulated annealing temperature during tube reduction process improved the nodular corrosion resistance of Zircaloys. Improved resistance for the nodular corrosion was reported for the unirradiated Zircaloys with some additives. Detailed irradiation test under the BWR conditions is needed to confirm the trend. Concerning the environmental factors, boiling on the cladding surface due to heat flux reduces the nodular corrosion susceptibility, while oxidizing radical generated from dissolved oxygen accelerates the corrosion. Concerning corrosion mechanisms, importance of such phenomena as the depleted zone of alloying elements in zirconium matrix, reduction of H + to H 2 in oxide layer, electrochemical property of precipitates, crystallographic anisotropy of oxidation rates were revealed. (author) 59 refs

  12. Modification of OCA-I for application to a reactor pressure vessel with cladding on the inner surface

    International Nuclear Information System (INIS)

    Sauter, A.; Cheverton, R.D.; Iskander, S.K.

    1983-01-01

    The computer code OCA-I calculates the temperature distribution through the walls of a cylinder during a thermal transient and then performs a two-dimensional linear-elastic fracture-mechanics analysis to obtain stress-intensity factors for long surface flaws, considering both pressure and thermal loads. The code has been particularly useful in evaluating flaw behavior in reactor pressure vessels during overcooling accidents, but it has not previously treated the stainless steel cladding on the inner surface of the vessel as a discrete region. Although the cladding is quite thin compared with the base material, the large difference in thermal conductivity and coefficient of thermal expansion between the two materials results in a significant effect of the cladding on stress-intensity factors for surface cracks. Thus, the cladding was recently included as a discrete region in OCA-I

  13. Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J.; Lopez, V.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Madrid (Spain); Martinez, D. [Plataforma Solar de Almeria, Tabernas Almeria (Spain)

    1998-05-12

    The present work deals with Ni alloy cladding on AISI 4140 steel samples made with high power density concentrated solar beams. The quality of the cladding is high concerning the adherence, low dilution and high hardness of the coating. Some considerations are presented concerning the future of high power density beams related to SUrface Modification of Metallic mAterials with SOLar Energy (SUMMA cum SOLE)

  14. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  15. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A; Wehle, F; Opel, S; Velten, R [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  16. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R.

    2008-01-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  17. Chemical interaction between (Cs-Te) doped fuels and cladding material under irradiation

    International Nuclear Information System (INIS)

    Delbrassine, A.; Flipot, A.J.

    1977-01-01

    Pins containing UO 2 -30 wt.% PuO 2 low density pellets and or caesium and or tellurium as doping elements have been irradiated for about 40 days in the BR 2 reactor. The effect of two Cs/Te ratios, namely 1.3 and 4, and a wide range of O/M ratios on the inner corrosion of the clad has been investigated. The influence of tellurium on the attack of the cladding has been pointed out. It may be responsible for the chromium and nickel depletion in the grain boundaries of the steal. The corrosion patterns and the thickness of the corroded layer could be different in the total length of a fuel pin. It seems therefore necessary to measure the effective Cs/Te ratio associated with the local corrosion layers. This local Cs/Te ratio should be more useful than the initial mean Cs/Te ratio in a pin for understanding the corrosion phenomena. (author)

  18. Residual stress analysis in reactor pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Pont, D.

    1991-08-01

    Residual stresses in cladding and welded attachments could contribute to the problem of stress-corrosion cracking in boiling-water reactors (BWR). As part of a larger program aimed at quantifying residual stress in BWR components, models that would be applicable for predicting residual stress in BWR components are reviewed and documented. The review includes simple methods of estimating residual stresses as well as advanced finite-element software. In general, simple methods are capable of predicting peak magnitudes of residual stresses but are incapable of adequately characterizing the distribution of residual stresses. Ten groups of researchers using finite-element software are reviewed in detail. For each group, the assumptions of the model, possible simplifications, material property data, and specific applications are discussed. The most accurate results are obtained when a metallurgical simulation is performed, transformation plasticity effects are included, and the heating and cooling parts of the welding thermal cycle are simulated. Two models are identified which can provide these features. The present state of these models and the material property data available in the literature are adequate to quantify residual stress in BWR components

  19. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  20. Fuel rod response to BWR power oscillations during anticipated transient without scram

    International Nuclear Information System (INIS)

    Cunningham, M.; Scott, H.

    1998-01-01

    The US NRC is examining fuel behaviour during a postulated BWR anticipated transient without scram (ATWS) with power oscillations to determine if current regulatory criteria are adequate. Currently, the 280 cal/g limit for RIAs is used to show that coolable geometry is maintained and pressure pulses are avoided during ATWSs. Two specific questions have now been raised about the continued use of the 280 cal/g value. First, this value was derived from energy deposition values whereas the regulatory requirements are written in terms of fuel enthalpy. The second is that fuel rod rupture with fuel dispersal has been observed in RIA tests with high bum-up fuel rods having energy deposition values well below the current limit. However, the BWR ATWS power oscillation transient is slower than a RIA power pulse, thus reducing the likelihood of failure. Therefore questions about the adequacy of the 280 cal/g limit do not necessarily imply unacceptable fuel damage occurring during such power oscillations and there is no immediate safety concern. The reported analysis, using the FRAPTRAN transient fuel rod analysis code, was thus undertaken to determine if further investigation might be appropriate and with the intention of starting some discussions about the issue. There was a comment that a limit of 100 cal/g fuel enthalpy had been mentioned following the scoping calculations but that perhaps enthalpy was not the main concern in an ATWS. It was also observed that cladding stresses are lower than in all RIA. The question was what really is the main concern. It was replied that the main concern was a question of maintaining a coolable geometry i.e. not loosing fuel particles out of the rod. And it was agreed that enthalpy may not be the important issue, rather that it previously had been used as the parameter and so had been considered. Confirmation of this presently being an evaluation and not a regulatory concern was sought and provided, it being pointed out that the NRC

  1. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  2. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  3. Assessment of the Prony's method for BWR stability analysis

    International Nuclear Information System (INIS)

    Ortiz-Villafuerte, Javier; Castillo-Duran, Rogelio; Palacios-Hernandez, Javier C.

    2011-01-01

    Highlights: → This paper describes a method to determine the degree of stability of a BWR. → Performance comparison between Prony's and common AR techniques is presented. → Benchmark data and actual BWR transient data are used for comparison. → DR and f results are presented and discussed. → The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  4. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  5. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  6. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  7. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  8. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  9. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  10. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data

  11. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  12. Strain-induced corrosion cracking in ferritic components of BWR primary circuits

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B.

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 o C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  13. Asymptotic Method for Cladding Stress Evaluation in PCMI

    International Nuclear Information System (INIS)

    Kim, Hyungkyu; Kim, Jaeyong; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok

    2014-01-01

    A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more

  14. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests

    International Nuclear Information System (INIS)

    Garzarolli, F.; Broy, Y.; Busch, R.A.

    1996-01-01

    Laboratory corrosion tests have always been an important tool for Zr alloy development and optimization. However, it must be known whether a test is representative for the application in-reactor. To shed more light on this question, coupons of several Zr alloys were exposed under isothermal conditions in BWR and PWR type environments. For evaluation of the in-PWR tests and for comparison of out-of-pile and in-pile tests, the different temperatures and times were normalized to a temperature-independent normalized time by assuming an activation temperature (Q/R) of 14,200 K. Comparison of in-PWR and out-of-pile corrosion behavior of Zircaloy shows that corrosion deviates to higher values in PWR if a weight gain of about 50 mg/dm 2 is exceeded. In the case of the Zr2.5Nb alloy, a slight deviation of corrosion as compared to laboratory results starts in PWR only above a weight gain of 100 mg/dm 2 . In BWR, corrosion of Zircaloy is enhanced early in time if compared with out-of-pile. Zr2.5Nb exhibits higher corrosion results in BWR than Zircaloy-4. Alloying chemistry and material condition affect corrosion of Zr alloys. However, several of the material parameters have shown a different ranking in the different environments. Nevertheless, several material parameters influencing in-reactor corrosion like the second phase particle (SPP) size of in-PWR behavior as the Sn and Fe content can be optimized by out-of-pile corrosion tests

  15. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  16. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  17. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  18. Laser surface cladding:a literature survey

    OpenAIRE

    Gedda, Hans

    2000-01-01

    This work consists of a literature survey of a laser surface cladding in order to investigate techniques to improve the cladding rate for the process. The high local heat input caused by the high power density of the laser generates stresses and the process is consider as slow when large areas are processed. To avoid these disadvantages the laser cladding process velocity can be increased three or four times by use of preheated wire instead of the powder delivery system. If laser cladding is ...

  19. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  20. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.

    1999-01-01

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  1. An A BWR demonstration simulator for training and developing technical staff

    International Nuclear Information System (INIS)

    Powers, J.; Yonezawa, H.; Aoyagi, Y.; Kataoka, K.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  2. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  3. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  4. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  5. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  6. Neutron dosimetry. Environmental monitoring in a BWR type reactor

    International Nuclear Information System (INIS)

    Tavera D, L.; Camacho L, M.E.

    1991-01-01

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  7. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  8. Scaling and uncertainty in BWR instability problems

    International Nuclear Information System (INIS)

    Di Auria, F.; Pellicoro, V.

    1995-01-01

    This paper deals with a critical review of activities, performed at the DCMN of Pisa University, in relation to the thermo-hydraulic oscillations in two-phase systems. Stability analyses, including model development and achievement of experimental data, are generally performed for BWRs in order to achieve the following objectives: to reach a common understanding in relation to the predictive capabilities of system codes and to the influence of various parameters on the instability; to establish a data base for the qualification of the analytical tools already or becoming available; to set-up qualified tools (code/models + nodalization + user assumption) suitable for predicting the unstable behaviour of the nuclear plants of interest (current BWR, SBWR, ABWR and RBMK). These considerations have been the basis for the following researches: 1) proposal of the Boiling Instability Program (BIP) (1) 2) evaluation of stability tests in PIPER-ONE apparatus (2) 3) coupled thermal-hydraulic and neutronic instabilities in the LaSalle-2 BWR plant (3) 4) participation to the NEA-OECD BWR Benchmark (4) The RELAP/MOD2 and RELAP5/MOD3 codes have been used. (author)

  9. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  10. Phased array concept for the ultrasonic inservice inspection of the spherical bottom of BWR-pressure vessels

    International Nuclear Information System (INIS)

    Brekow, G.; Wuestenberg, H.; Moehrle, W.; Schulz, E.

    1989-01-01

    The spherical bottom of BWR-pressure vessels contains holes for the nozzles of control rods and instrumentation. Up to now the detectable areas for the ultrasonic inspection are the accessible ligaments between the nozzles with an orientation parallel and transverse to the manipulator rails. Some licensing authorities demand an inspection technique capable of reliably detecting significant crack initiation in all critical areas near the cladding of the spherical inner surface. By order and in cooperation with the HEW we have developed a computer controlled equipment with two ultrasonic probes containing four linear arrays and a digitized A-scan storage for documentation and evaluation of inspection results. The manipulator guided probe movement in the paths between the nozzles of the spherical bottom is controlled by a computer program. This program determines for each array system and for each coupling position the beam angle as a function of the variable skewing angle to realize detection conditions suited to possible crack positions at the longitudinal, transverse and diagonal ligaments between the nozzles for control rods and instrumentation. (orig./HP)

  11. Solution treatment of fast reactor claddings

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro

    1974-01-01

    The fuel cladding tubes for Joyo (experimental FBR) are required to be a material corresponding to AISI Type 316 and cold-rolled after solution treatment. It is necessary to have no precipitation of carbide and to make the grain size smaller than ASTM No.6. It is very difficult to obtain the fine grains without the precipitation, however. In this connection, the behavior of carbide solution at high temperature and the annealing behavior of the material cold-worked and solution-treated were studied. The following matters are described: the solid solubility line of AISI Type 316; the behavior of carbide at solution treatment temperature; and the annealing behavior of the cold-worked material. (Mori, K.)

  12. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  13. Effect of annealing temperature on the mechanical properties of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. Hoop creep characteristics of zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The critical annealing temperature at which a minimum creep strain occurs decreases as the applied stress increases. An additional test at 700F and 30 ksi hoop stress was conducted to demonstrate that the critical annealing temperature is essentially independent of the test temperature. Plausible explanations based on differing substructures developed in cold-worked stress-relieved material are forwarded. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. R-parameters were determined from in situ transverse strain gage measurements in uniaxial tensile tests. P-parameters were calculated from uniaxial test data (R and yield stress) and hoop yield stress determined in biaxial, closed-end internal pressurization tests

  14. General Electric's training program for BWR chemists

    International Nuclear Information System (INIS)

    Osborn, R.N.; Lim, W.

    1981-01-01

    This paper describes the development and implementation of the General Electric boiling water reactor chemistry training program from 1959 to the present. The original intention of this program was to provide practical hands on type training in radiochemistry to BWR chemistry supervisors with fossil station experience. This emphasis on radiochemistry has not changed through the years, but the training has expanded to include the high purity water chemistry of the BWR and has been modified to include new commission requirements, engineering developments and advanced instrumentation. Student and instructor qualifications are discussed and a description of the spin off courses for chemistry technicians and refresher training is presented

  15. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  16. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  17. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  18. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    Science.gov (United States)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  19. Comparison of the CORA-12, 13, 17 experiments and B{sub 4} effect on the flooding behavior of BWR bundles; Vergleich der Flutexperimente CORA-12, 13, 17 und der Einfluss des B{sub 4}C auf das Flutverhalten von SWR-Buendeln

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, S.; Sepold, L.; Wallenfels, K.P.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.

    1995-08-01

    The CORA quench experiments 12, 13 (PWR) and 17 (BWR) are in agreement with LOFT 2 and TMI: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces remarkable temporary temperature increase, connected to a strong peak in hydrogen production. The PWR tests CORA 12 and CORA 13 are of the same geometrical arrangement and test conduct, with the exception of the shorter time between power shutdown and quench initiation for CORA 13. A higher temperature of the bundle at start of quenching was the consequence. BWR test CORA 17 - with B{sub 4}C absorber and additional Zircaloy channel box walls - was in respect to the delay-time between power shutdown and start of quenching similar to test CORA 12. All tests showed during the quench phase the temporary temperature increase, correlated to a hydrogen peak. The CORA 17 test resulted immediately after quenching in a modest increase for 20 s and changed then in a steep increase, resulting in the highest temperature and hydrogen peaks of the three tests. CORA 17 also showed a temperature increase in the lower part of the bundle, in contrast to CORA 12 and CORA 13 with temperature increase only in the upper half of the bundle. We interpret this earlier starting and stronger reaction due to the influence of the boron carbide, the absorber material of the BWR test. B{sub 4}C has an exothermic reaction rate 4 to 9 times larger than Zry and produces 5 to 6,6 times more hydrogen. Probably the hot remained columns of B{sub 4}C (seen in the non-quench test CORA 16) react early in the quench process with the increased upcoming steam. The bundle temperature raised by this reaction increases the reaction rate (exponential dependency) of the remaining metallic Zry. Due to the larger amount of Zry in the BWR bundle (channel box walls) and the smaller steam input during the heatup phase (2 g/s instead of 6 g/s) more metallic Zry can have survived oxidation during the heatup phase. (orig./HP)

  20. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is